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Abstract

This paper proposes the Bootstrap Estimator with Variable Selection (BEVS)

procedure to estimate the determinants of the probability of default (PD) in the

Brazilian banking system as a case study. In this method, we combine techniques

such as Lasso regression, Loess smoothing, and bagging, showing that this integrated

approach yields improved results compared to those obtained through their individual

performance. Our findings indicate that BEVS not only refines the estimate of PD

but also offers a comprehensive view of the impact of macroeconomic factors over

the study period.
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1 Introduction

After more than a decade since the recent Global Financial Crisis, despite considerable

efforts made to understand the sources of financial stability and systemic risk, a significant

gap still remains in the field (Christiano et al., 2018; De Bandt and Hartmann, 2019).

This is specially the case in developing economies, since these regions often feature a

limited number of publicly traded banks and restricted information, generating challenges

in analyzing the probability of default (PD) across all financial institutions (FIs)1.

Taking the Brazilian scenario as a case study, which offers insights applicable to other

economies, there is a lack of research in understanding the determinants of PD in the

banking system, encompassing both listed and non-listed banks (Souza et al., 2015, 2016;

Guerra et al., 2016). Considering the composition of the banking system as of September

2022, where only 24 (13.2%) of the member FIs covered by the private deposit insurance

agency (DIA), Fundo Garantidor de Créditos (FGC), are publicly listed, the inclusion of

non-listed banks to address the whole system becomes particularly relevant.

To address this gap, the present study introduces the Bootstrap Estimator with Variable

Selection (BEVS), a method that allows for an integrated and broad analysis of the impact

of macroeconomic variables on PD. Through this approach, we aim to provide deeper

insight into the determinants of PD that could inform the development of strategies and

policies designed to improve financial stability. In relation to the broader literature, our

work is closely related to the strand that integrates different techniques to enhance accuracy

in time series analysis (Petropoulos et al., 2018; Li et al., 2023; Wang et al., 2023).

In our proposed method, we combine techniques such as Lasso regression, Loess

smoothing, and bootstrap aggregation (bagging), showing that this integrated approach

yields improved results compared to those obtained through their individual performance.

In particular, we demonstrate that BEVS outperforms the single Lasso model set as a

benchmark. Our findings indicate that BEVS not only refines the estimate of PD but also

offers a nuanced view of the impact of macroeconomic factors over the study period, such

as a distribution of coefficients and a measure of variable significance through the number

1In this paper, the terms "bank" and "financial institution" are used interchangeably, even though
banks can be viewed as a subset of the financial services sector. In this narrower sense, banks are
financial institutions that accept deposits into various savings and demand deposit accounts, a service that
non-banking financial institutions (such as investment banks, leasing companies, insurance companies,
investment funds, finance firms, and others) cannot offer. For more information, see Hagendorff (2019).
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of appearances.

This work is structured into five sections, beginning with this Introduction. Section

2 details the theoretical framework with the foundations of BEVS that is employed to

estimate the determinants of the probability of default in the Brazilian banking system.

Section 3 describes the data used in our models. Section 4 presents the results and a

discussion of our findings, and Section 5 concludes with the final remarks of this paper.

2 Theoretical Framework

To understand the determinants of the probability of default in the Brazilian financial

system as a case study, in this section, we introduce our Bootstrap Estimator with Variable

Selection. In addition, we also present the construction of the PD and delve into key

concepts of methods such as Lasso, Loess, and bagging.

2.1 Probability of Default

In this work, we utilize the structural model of Merton (1974) to estimate the idiosyn-

cratic probability of default (IPD) for each financial institution. Using these IPDs, we then

compute the aggregate PD for the Brazilian banking system, weighted by the deposits

of individual FIs2 (Souza et al., 2015, 2016; Guerra et al., 2016; Coccorese and Santucci,

2019; da Rosa München, 2022).

Recalling previous definitions and using the Black and Scholes (1973)’s model, the

option’s payoff for the equity holder at time T is given by 1.

Eit = max(Ait N (d1it) − DBit e−rtT N (d2it), 0) (1)

Where Ait is the asset value, rt is the risk-free interest rate, N (.) is the cumulative normal

distribution function,

d1it =
ln( Ait

DBit
) + (rt + σ2

Ait

2 )T
σAit

√
T

and

2By weighting the IPD based on individual FI’s deposits, we gain insights into systemic risk and an
institution’s influence within the Brazilian banking sector. Deposits are core liabilities for FIs and delineate
the potential burden on the Brazilian deposit insurance in the event of default.
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d2it = d1it − σAit

√
T =

ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T

,

in which σAit denotes the volatility of the assets.

Thus, the IPDit of a FI in a time horizon T , calculated in t = 0, is given by 2.

IPDit = P (DBit ≥ Ait)

= P (ln DBit ≥ ln Ait)

= N (−d2it)

= N

 −
ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T


(2)

Note that the probability of default is the area under the default barrier, that is, a

fraction of total liabilities. Also, note that the negative of d2it can also be used to compute

the distance to distress (D2D) for a risk neutral environment, which is the distance of

the bank’s asset value to the distress barrier in t = 0, measured in assets value’ standard

deviations.

Finally, to calculate our aggregate PD for the entire Brazilian financial system, we

utilize the following expression given by 3.

PDt =
∑N

i=1 IPDit × Depositsit∑N
i=1 Depositsit

, ∀t ∈ {1, . . . , T} (3)

2.2 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator (Lasso) is a linear regression

method proposed by Tibshirani (1996, 2011) that performs both variable selection and

regularization, thereby improving the prediction accuracy and interpretability of traditional

linear models. It shrinks some of the coefficients and sets others to zero, combining the

advantages of subset selection and ridge regression.

Consider the data (xi, yi), i = 1, 2, · · · N , where xi := (x1, · · · , xp)T are the predictor

variables and yi are the responses. Letting β̂ := (β̂1, · · · , β̂p)T , the objective of the Lasso

is to solve 4.
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arg min
β0,β

{
N∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
}

s.t.
p∑

j=1
|βj| ≤ t (4)

Here, t ≥ 0 s a tuning parameter that determines the amount of regularisation, that is,

the amount of shrinkage that is applied to the estimates. We can also write the Lasso

problem in the equivalent Lagrangian form given by 5.

β̂lasso = arg min
β0,β

{
1
2

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
+ λ

p∑
j=1

|βj|
}

(5)

Note that Lasso regression employs an l1 penalty, denoted as ∥β∥1 = ∑ |βj|, which

enforces certain coefficient estimates to be precisely zero when the tuning parameter λ is

sufficiently large. Hence, similar to the best subset selection, Lasso also performs variable

selection. Consequently, models derived from Lasso tend to be more interpretable (sparse

models) compared to those generated by Ridge regression.

Carefully selecting the regularization parameter, denoted as λ, is an important aspect

of utilizing Lasso regression. Making an informed choice for this parameter is essential

for optimizing the model’s performance in terms of prediction accuracy and model inter-

pretability, as it controls the strength of shrinkage and variable selection. However, if

regularization becomes too strong, important variables may be left out of the model, and

coefficients may shrink excessively, which can reduce both predictive power and inference.

Considering this, information criteria such as the Bayesian Information Criterion and the

Akaike Information Criterion may be favored for cross-validation, since they offer the

advantage of faster computation while exhibiting greater stability in small sample sizes.

An information criterion selects the estimator’s regularization parameter by optimizing a

model’s in-sample accuracy while penalizing its effective number of parameters or degrees

of freedom.

2.3 Locally Weighted Regression

Locally weighted regression (Loess), also known as Locally Estimated Scatterplot

Smoothing, is a non-parametric method that enables the fitting of multiple regressions

within local neighborhoods of a dataset. Introduced by Cleveland (1979) and further

developed by Cleveland and Devlin (1988), this technique combines the simplicity of linear

least squares regression with the flexibility of non-linear regression.
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The Loess method constructs a function that interprets the deterministic portions of

data variability, analyzing point by point by fitting simple models to localized data subsets.

Consequently, there is no requirement to specify a global function to fit a model to the

data. Instead, it focuses on representing individual data segments, promoting a granular

understanding of data distributions.

In this approach, at each point in the dataset, a low-degree polynomial is fitted to a

subset of the data, using explanatory variable values near the point for which the response

is estimated. The fitting process employs weighted least squares, assigning higher weights

to nearby data points and lower weights to those farther away. The value of the regression

function for each data point is determined by evaluating the local polynomial using the

values of the specific explanatory variables associated with that data point. The Loess

fitting process concludes once the values of the regression function have been computed

for each of the n data points.

For the selection of data subsets in weighted least squares fits, a nearest-neighbors

algorithm is employed. The ’bandwidth’ or ’smoothing parameter’, denoted as α, is a

user-defined input that controls the amount of data used in each local polynomial fit.

Specifically, α represents the fraction of the total n data points used in each local fit.

These data points are selected on the basis of their explanatory variable values, with

a preference for those closest to the point for which the response is estimated. Since a

polynomial of degree k requires at least (k + 1) points for a fit, the smoothing parameter

α must be between (λ + 1)/n and 1, with λ denoting the degree of the local polynomial.

In practice, irregularly spaced local regressions are common when using a fixed span h.

This results in some local estimates (e.g., x0) being based on many points, while others

rely on only a few points. For this reason, it is beneficial to employ a nearest-neighbor

strategy to determine the span for each target of local regressions. To achieve this, we

calculate ∆i(x0) = |x0 − xi| based on the smoothing parameter α and define the span as

h(x0) = ∆(n×α)(x0). In this context, a span equal to 0.75 of α, for example, implies that

for each local fit, our goal is to utilize 75% of the data defined by α.

The variable α is known as the smoothing parameter because it controls the flexibility

of the Loess regression function. Larger values of α result in a smoother function that

is less sensitive to data fluctuations. As α decreases, the regression function becomes

increasingly aligned with the data. However, using an excessively small value for the
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smoothing parameter is not advisable, as it can lead the regression function to capture

random errors in the data.

The local polynomials fit to each subset of the data are typically either of first or second

degree, meaning they are either locally linear or locally quadratic. Using a zero-degree

polynomial transforms Loess into a weighted moving average. Although it is theoretically

possible to employ higher degree polynomials, doing so would result in models that deviate

from the core principles of Loess. Loess operates on the premise that any function within

a small neighborhood can be adequately approximated using a low-order polynomial. This

preference for simplicity aligns with the ease of fitting the data, as high-degree polynomials

tend to overfit and introduce numerical instability.

The weight function assigns the highest weight to the data points closest to the point

of estimation and the lowest weight to those farthest away. This weighting scheme is

rooted in the concept that points in close proximity within the explanatory variable space

are more likely to exhibit a simple relationship than those that are distant. Consequently,

data points closely aligned with the local model exert a more substantial influence on

model parameter estimates, while those less likely to conform to the local model have a

diminished impact on these estimates. In this context, Loess traditionally uses the tri-cube

weight function, defined as 6.

W (x) =


(1 − |d|3)3, for |d| < 1,

0, for |d| ≥ 1
(6)

where d represents the distance of a given data point from the point on the curve being

fitted, scaled to fall within the range of 0 to 1. However, any other function that meets

the criteria listed in Cleveland (1979) can also be employed3. The weight assigned to a

particular point within a localized data subset is determined by evaluating the distance

weight function in such a way that the maximum absolute distance among all points in

the data subset is normalized to exactly one.

3Let W be a weight function with the following properties:

1. W (x) > 0 for |x| < 1;

2. W (−x) = W (x);

3. W (x) is a non-increasing function for x ≥ 0;

4. W (x) = 0 for |x| ≥ 1.
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2.4 Bagging

Bagging, also called bootstrap aggregation, is a machine learning ensemble algorithm

proposed by Breiman (1996) designed to improve the stability and accuracy of regression

and classification algorithms. In general, this method is used for fitting multiple versions of

a prediction model and then combining (or ensembling) them into an aggregated prediction.

In other words, bagging is an algorithm in which b bootstrap copies of the original training

data are created and new predictions are made by averaging the predictions of the individual

base learners.

Recall that for a set of n independent observations Z1, · · · , Zn, each with a variance of

σ2, the variance of their mean Z̄ is σ2/n. This indicates that the variance is reduced when

averaging a group of observations. Consequently, a straightforward method to decrease the

variance and thereby enhance the prediction accuracy of a statistical learning approach

is to create multiple training sets from the population, construct a separate predictive

model for each set, and then average these predictions. In other words, by calculating

f̂ 1(x), f̂ 2(x), · · · , f̂B(x) using B distinct training sets and then averaging these, we can

obtain a single, low-variance statistical learning model, as indicated by Equation 7.

f̂avg(x) = 1
B

B∑
b=1

f̂ b(x) (7)

However, this approach is not feasible in most cases, as we typically do not have access

to multiple training sets. Instead, we can employ bootstrapping, which involves drawing

repeated samples from the single available training dataset, doing so with replacement.

In this method, we generate B distinct bootstrapped training datasets. For each of

these, labeled as the bth set, we train our model to obtain f̂ ∗b(x). By averaging all these

predictions, we arrive at a final model as described in Equation 8.

f̂bag(x) = 1
B

B∑
b=1

f̂ ∗b(x) (8)

This method is particularly effective with unstable, high-variance base learners, which

are algorithms that show significant output variation in response to minor changes in the

training data. However, for more stable algorithms or those with high bias, bagging tends

to yield less improvement in predictions because of their inherent lower variability.
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2.5 Bootstrap Estimator with Variable Selection

Building on the established frameworks of Lasso, Loess, and bagging techniques, we

integrate these concepts to formulate the Bootstrap Estimator with Variable Selection, or

BEVS. The contribution of BEVS lies in the combination of robust and established methods

that could offer improved results compared to those obtained through their individual

performance4. Thus, in this section, we outline the principal components and procedures

of the BEVS approach, demonstrating its efficiency in analyzing the determinants of the

probability of default in the Brazilian financial system.

There are notable works in the literature that also propose to combine different

techniques to enhance accuracy in time series analysis (Petropoulos et al., 2018; Wang

et al., 2023). For instance, the work of Bergmeir et al. (2016) presents a bagging approach

that first transforms the data using Box-Cox, then decomposes it into trend, seasonal, and

remainder components. They bootstrap the remainder with the Moving Block Bootstrap

(MBB), reintegrate the series, and apply an inverse Box-Cox transformation. This process

generates a random pool of similar bootstrapped time series, each fitted with an optimal

exponential smoothing model selected via bias-corrected AIC, culminating in a median

aggregation of forecasts.

Before exploring in detail the BEVS procedure, Algorithm 1 provides an overview of

its algorithmic structure, which will guide the subsequent discussion.

4We demonstrate this by comparing the performance of Lasso in relation to BEVS.
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Algorithm 1 Bootstrap Estimator with Variable Selection (BEVS)
Data: Time series of the probability of default y, number of bootstrap iterations, bootstrap

block size b, maximum number of parameters in Lasso, and size of the dimensionality
reduction;

// 1. Pre-processing
1 Compute the smoothed series, ys, by applying Loess smoothing on the original PD series

y using cross-validation;
2 Construct deviations from the smoothed series, ds, as: ds = y − ys;
3 Transform ds for Circular Block Bootstrapping:
4 for i > N do
5 Xi = Xi mod N

6 X0 = XN

// 2. Bootstrap Process
7 for iteration = 1 to Number of bootstrap iterations do
8 Generate Bootstrapped Subseries:
9 for i = 1 to N do

10 Bi = (Xi, . . . , Xi+b−1)
11 Combine ys with random error blocks from {B1, . . . , BN} to obtain augmented series

ya;
12 Apply Lasso regression on ya incorporating bounded constraints and optimizing the

penalty parameter λ using cross-validation to obtain yl;
13 Assess the model fit yl using the deviance ratio and null deviance.

// 3. Post-Bootstrap Processing
14 From the individual Lasso models yl, construct an ensemble model ye by averaging

coefficients with non-zero values over bootstrap iterations;
15 Examine the distribution of coefficients across all bootstrap samples to identify patterns

or trends;
16 Initiate a dimensionality reduction process on ye with an appearance threshold of 10% to

filter significant features;
17 while not all variables meet threshold do
18 Discard models with variables below threshold
19 Adjust threshold

// 4. Residual Analysis
20 Compute the residuals, r, as: r = y − ye;
21 Perform the following analyses on the residuals ye to validate the model’s performance:

• Goodness-of-Fit tests;

• Error metric calculations;

• Distribution tests;

• Autocorrelation tests.
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Delving into the BEVS procedure, at the beginning we employ the Loess smoothing

technique to delineate the underlying trends in the time series data, which in our case is the

PD. This non-parametric method uses a time trend to recover the underlying dynamics in

the series, capturing specifically the low-frequency variations of the data. In this step, the

smoothing parameter is determined using the generalized cross-validation (GCV) criterion,

which optimizes the bias-variance trade-off to minimize the predictive error on a validation

set.

Following the determination of the optimal smoothing parameter via the Loess tech-

nique, the next step in the BEVS procedure is to construct a residual series for the

bootstrap process. This is achieved by subtracting the smoothed data, derived through the

Loess method, from the original dataset representing the PD. To adapt it for the Circular

Block Bootstrap (CBB) approach (Politis and Romano, 1992), this error term vector,

denoted as Xi, i = 1, . . . , N , where N is the length of the error series, is transformed to

form a circular series by appending a segment of its initial part to the end. Mathematically,

for i > N , the series wraps around such that Xi ≡ Xi( mod N), and, at the starting point, it

holds that X0 ≡ XN . This definition ensures a continuous and seamless transition, forming

a loop where the end reconnects to the beginning, maintaining the intrinsic structure and

dependencies present in the original series.

After creating the circular series, we systematically generate a collection of potential

subseries, each denoted by Bi = (Xi, . . . , Xi+b−1), where b represents the bootstrap block

size holding a uniform number of observations5. This iterative process spans the entire

length of the dataset, assembling a pool of subseries to construct new series based on the

original data. This is achieved by augmenting the Loess smoothed series with error blocks

randomly sampled with replacement from the set of potential subseries {B1, . . . , BN}. Here,

we apply the CBB concept, utilizing the circular nature of the error series to maintain the

temporal dependencies and structures observed in the original data.

In each iteration, the Lasso regression is applied to the newly bootstrapped series

to identify significant predictors, utilizing a penalty to induce sparsity in the parameter

estimates. To embed theoretical reasoning into the regression, the lower and upper bounds

for each independent variable are defined, guiding the estimation within plausible and

5In this study, the PD series comprises 60 observations, leading us to segment it into 7 bootstrap blocks
for a balanced and efficient analysis.

11



theoretically grounded ranges6. The regression’s tuning parameter, λ, is optimized through

cross-validation to ensure optimal predictive performance. This process is repeated for a

predetermined number of series7, aiming to capture a robust representation of potential

outcomes and maintain stability in the results. It is important to note that the new series

have a lag adjustment, which involves incorporating lagged values of the smoothed series

into the analysis.

In addition, we derive a set of goodness-of-fit (GOF) metrics in each bootstrap iteration

to evaluate each model performance based on the optimal λ determined through cross-

validation. The central element in this analytical process is the evaluation of the log-

likelihood, derived from the deviance ratio and the null deviance of the dataset (Hastie

et al., 2015). These informations are used to calculate key statistical criteria including

the Akaike Information Criterion (AIC), corrected AIC (AICc), and Bayesian Information

Criterion (BIC)8. These criteria incorporate the number of parameters (non-zero coefficients

at the chosen λ value) and the number of observations, thereby providing a comprehensive

view of the model fit.

After completing the iterative process, we advance to the next phase of the BEVS

procedure, which involves aggregating all individual Lasso models created during the

bootstrapping process into a unified bagged (ensemble) model. This strategy aims to

retain only those coefficients that consistently appear with non-zero values across all the

iterations, thereby accentuating the variables that significantly influence the dependent

variable. Furthermore, we calculate the average coefficient value and analyze a range of

percentiles to understand the distribution of each coefficient across the bootstrap samples,

6To guide the directional relationships between the dependent variable and each of the independent
variables based on theoretical reasoning, we implement bounded constraints on the coefficients during the
Lasso regression. When a negative relationship is expected, we assign a lower bound of negative infinity
and an upper bound of zero to the coefficient estimates, restricting them to non-positive values. Conversely,
for a expected positive relationship, the bounds are established at zero and positive infinity, ensuring
only non-negative estimates. In instances where there is no prior theoretical directional expectation or
where our objective is to empirically determine the sign of the relationship, we opt for a more unrestricted
approach by setting the bounds to negative and positive infinity, allowing the analysis to freely estimate
the optimal coefficient values.
7We found that 1,000 simulations is sufficient to maintain stability in our results. We also perform a
robustness check varying the number of simulations to see its effects on the results, which can be seen in
Table 4.
8Both AIC and BIC serve to assess the model’s fit, each from a slightly different theoretical premises. AIC
aims to balance goodness-of-fit with model complexity, penalizing models that have too many parameters
to prevent overfitting. The adjusted version of AIC, called AICc, is more unbiased, making it advantageous
when working with smaller sample sizes. Conversely, BIC favors parsimonious models, imposing stricter
penalties to models with a large number of parameters.
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enabling us to account for the potential pathways the series could follow. This analytical

step includes counting the frequency of non-zero coefficients for each variable in the

ensemble, thereby providing a quantitative measure of its significance in the model.

Following the aggregation process, the BEVS procedure initiates a dimensionality

reduction phase to further optimize the model. During this iterative process, the prevalence

of each variable across the ensemble of Lasso models is assessed, retaining only those

variables that exceed a predefined threshold of appearance in the remaining models9. This

process is conducted iteratively with each cycle discarding the variables that fall below the

threshold and recalibrating the threshold based on the newly reduced model dimension.

The procedure continues until all variables in the model satisfy the appearance threshold,

resulting in a more condensed, yet effective set of predictors. This approach not only

enhances the robustness and efficiency of the predictive framework but also fosters a model

that is both parsimonious and retains substantial predictive power by concentrating on

the most consistently influential variables.

In the final step of the BEVS approach, we employ a detailed analysis of the residuals

derived from the difference of the original series, which in our case is the PD, and

the bagged ensemble model. This important phase involves extensive analysis on both

the complete and the reduced model to evaluate whether the dimensionality reduction

process has created a parsimonious, yet effective model that retains reliable results for the

residuals. We analyze the following robustness pillars10: (i) GOF tests, (ii) error metrics,

(iii) distribution tests, and (iv) autocorrelation tests.

For the GOF tests, we consider several metrics including D2, AIC, AICc, BIC, R2,

and average R211. The metric D2 represents the fraction of deviance explained12. For

9The threshold was set at 10% to ensure that only the most consistently significant variables were retained.
10We do not test for cointegration between the modeled PD series and its derivative ensemble model
because both series are inherently related by design, making the identification of a common stochastic
trend more a reflection of the model’s construction than an expected property. Cointegration typically
implies a long-run equilibrium relationship between non-stationary series, but here, it merely underscores
the ensemble’s dependency on the PD. If the PD were observed rather than modeled, then testing for
cointegration would be more relevant, as it would assess the long-term consistency of predictions with
real-world data.
11In the context of our analysis, R2 is the traditional coefficient of determination calculated using residuals
from the original series versus the ensemble model. In contrast, the average R2 represents the mean of the
R2 values computed for each of the 1,000 individual bootstrapped series, providing an aggregated insight
into their collective performance.
12The name D2 is by analogy with R2, the fraction of variance explained in regression. Its expression
is given by D2 = (Devnull − Devλ)/Devnull, where Devλ is defined as minus twice the difference in
log-likelihood between a model fit with parameter λ and the fully parameterized model, while Devnull is
the null deviance computed for the constant model. For more information, see Hastie et al. (2015).
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the error metrics, we calculate the Mean Absolute Scaled Error (MASE) and the Root

Mean Square Error (RMSE), both of which offer distinct perspectives on the discrepancies

between our predictions and the actual observations. For the distribution tests, we utilize

the Kolmogorov-Smirnov (KS) test to access whether the residuals conform to a normal

distribution. Lastly, for autocorrelation tests, we employ the Ljung-Box test up to the

fourth lag to examine any potential autocorrelation in the residuals.

3 Data

To calculate the individual PD and construct the aggregate PD, we utilized quarterly

data from December 2007 to September 2022 for 226 Brazilian financial institutions, yielding

an unbalanced panel data with 7,556 observations. All balance sheet data employed in

this study are publicly provided by the Central Bank of Brazil (BCB, 2023a).

The dataset considers financial conglomerates and independent institutions until

December 2014, and the prudential conglomerates and independent institutions before

March 201513 with the business model category of b1, b2, b4, and n114, provided there are

at least six valid observations in the studied period. The final dataset represents 99.82% of

total assets and 99.75% of total credit of covered member institutions in September 2022,

with an average of 98.94% and 99.07% throughout the period, respectively. For the interest

rate, we used public data provided by B3, the Brazilian financial market infrastructure

company (B3, 2023).

To estimate the probability of default on a one-year horizon for each FI using the
13Note that until December 2013, the Central Bank of Brazil registered only the institution type of
financial conglomerates and independent institution. Starting before March 2014, the perspective of
prudential conglomerate and independent institution was included. However, capital information from
bank’s DLO (Statement of Operating Limits) was published only in the prudential conglomerate and
independent institution perspective before March 2015. The difference between the two filters lies in the
latter’s inclusion of institutions other than those belonging to the financial conglomerate, such as: (i)
consortium administrators, (ii) payment institutions, (iii) companies that perform acquisition of credit
operations, including real estate or credit rights, (iv) other legal entities domiciled in the country that
have as an exclusive objective an equity interest in the aforementioned entities and (v) investment funds
in which the entities that compose a prudential conglomerate take or retain substantial risks and benefits
(BCB, 2023a).
14We used only these four business model category to account for institutions that issue covered deposits
under the deposit insurance system in Brazil. The categories include: (b1) for commercial banks, universal
banks with commercial portfolios, or savings banks; (b2) for universal banks without commercial portfolios,
investment banks, or foreign exchange banks; and (n1) for non-banking credit companies. The member
institutions are: (i) multiple banks; (ii) commercial banks; (iii) investment banks; (iv) development
banks; (v) Caixa Econômica Federal (Brazilian federal savings bank); (vi) savings banks; (vii) finance and
investment companies; (viii) building societies; (ix) mortgage companies savings; and (x) loan associations
(FGC, 2023; BCB, 2023a). For more information on FGC-covered deposits, see BCB (2021).
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Merton (1974)’s structural model, we applied the following variables: adjusted total

assets15 for A, total liabilities to calculate DB, annualized interbank interest rate DI for r,

and the annualized standard deviation of the logarithmic returns of adjusted total assets,

that is, log(At/At−1), for asset volatility σA. Once all IPD are constructed, we build our

PD according to equation 3 utilizing the deposits of individual FIs, yielding our final time

series of 60 observations. Table 1 presents the aggregate descriptive statistics for these

variables, Figure 1 presents the correlation matrix, and all balance sheet accounts and

code variables are shown in Appendix C.

15The adjusted total assets represent a modification of the total assets, accounting for specific adjustments
related to netting and reclassification. Netting involves consolidating certain balance sheet items, such as
repurchase agreements, interbank relations and relations within branches, the foreign exchange portfolio,
and debtors due to litigation. In addition, reclassifications are performed within the foreign exchange
and leasing portfolios, which may involve reorganizing or reevaluating these assets according to specific
criteria or regulations.
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Table 1: Descriptive statistics of the dependent and independent variables.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
Dependent Variable

ATAa 52.86 215.48 0.00 0.31 11.03 2,184.86
TLa 48.17 198.95 0.00 0.23 9.53 2,018.16
TDa 15.63 73.16 0.00 0.01 2.29 854.76
DIb 9.05 3.83 1.90 6.39 12.60 14.14
AV 0.39 0.36 0.00 0.14 0.55 3.73
IPDb 14.98 19.07 0.00 0.01 27.59 94.93
PDb 5.73 1.10 3.91 4.89 6.30 8.38

Independent Variables
DIb 9.34 3.44 1.90 6.77 11.93 14.14
CPIb 5.97 2.28 2.13 4.50 6.72 11.89
CCIb 126.11 23.76 85.53 107.36 147.99 164.42
CARb 16.85 0.80 15.42 16.33 17.36 18.65
HDtIb 37.54 5.80 24.96 36.02 39.86 49.86
GDb 31.02 9.55 18.88 22.77 39.17 47.98
TDc 12.80 11.64 −2.95 4.81 15.57 42.78
Loansc 13.28 9.04 −3.46 6.31 18.16 34.10
GDPc 1.71 3.84 −10.10 −0.40 3.62 12.40
NSFR 1.04 0.07 0.90 0.98 1.09 1.14
HHIb 0.16 0.01 0.12 0.15 0.17 0.18

Notes: The sample period runs from 2007:IV-2022:III for the Brazilian financial system. ATA
= adjusted total assets; TL = total liabilities; TD = total deposits; DI = interest rate (CDI);
AV = assets volatility; IPD = idiosyncratic probability of default; PD = weighted probability
of default; CPI = broad national consumer price index (IPCA) in 12 months; CCI = consumer
confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD
= net public debt (federal government and Central Bank in terms of GDP); Loans = credit
operations outstanding; GDP = gross domestic product at market prices (real growth rate) ;
NSFR = proxy for the net stable funding ratio and HHI = Herfindahl-Hirschman index for
deposits concentration.
a In BRL billion.
b In percentage.
c In year-over-year (YoY) transformation.
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Figure 1: Correlation matrix of the dependent and independent variables.

4 Results and Discussion

This section investigates the determinants of the PD of the Brazilian banking system

from December 2007 to September 2022, utilizing the BEVS procedure for this purpose.

As detailed in Section 2, the PD is calculated using Equation 3 by weighting the IPD

of individual FIs based on their deposits, and the application of the BEVS procedure is

outlined in 2.5. Figure 2 presents the PD series, highlighting both periods of economic

recession, as classified by CODACE (2023), and instances of extrajudicial settlements or

interventions conducted by the BCB.

17



Figure 2: Probability of default of the Brazilian banking system.

Notes: Areas shaded in gray indicate periods of economic recession as dated by CODACE (2023), while
areas shaded in blue represent periods of extrajudicial settlements or interventions made by the BCB in
the banking sector.

In the initial stage of implementing the BEVS framework, we first apply a Loess fit to

the PD series using cross-validation to capture its underlying trends and specifically its low-

frequency variations, as illustrated in Figure 3. Subsequently, we employ the circular block

bootstrap technique to generate 1,000 bootstrapped series, thus preserving the temporal

dependencies and structures inherent in the original PD series. These bootstrapped series

serve as the basis for each Lasso fit and the final bagged model, and are presented in

Figure 4.
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Figure 3: Loess fit of the probability of default.

Notes: The line in purple represents the Loess fit of the PD in black.

Figure 4: Bootstrapped series of the probability of default.

Notes: The lines in gray represent the bootstrap series of the PD in black.

Upon completing the bootstrapping and Loess fitting phases, we construct an ensemble

model named the ‘BEVS model.’ This model aggregates information from all individual

Lasso models generated from the 1,000 bootstrapped series by averaging the non-zero

coefficients, thus mitigating the uncertainty and risk associated with selecting a single
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model, as shown in Figure 5. The density distribution of these coefficients, presented in

Figure 6, serves as an additional measure to understand the influence of the variables and

the reliability of the coefficients. Specifically, each point on the density plot represents

an estimate derived from one of the 1,000 individual Lasso models. A greater dispersion

around the mean value indicates greater uncertainty in the coefficient estimates, while a

narrower dispersion indicates increased reliability.

Figure 5: BEVS and Lasso fit of the probability of default.

Notes: The line in blue represents the BEVS fit of the PD (in black), which is the bagged model of all
Lasso fit in the bootstrapped series (in gray) of the PD.
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Figure 6: Density level of BEVS model.

Notes: Each point in time shows the distribution of the BEVS estimation for that particular point. The
color of the distribution is related to the absolute value of the PD, in which the darker the color, the lower
is the related value.

To assess the efficiency of the BEVS model, we compare it with a benchmark single Lasso

model fitted on the original PD series. The coefficient values for both the benchmark Lasso

model and the BEVS models before and after dimensionality reduction are shown in Table

2. This table is organized into three panels: Panel A contains the coefficients and values

for the benchmark Lasso model; Panel B presents the BEVS model before dimensionality

reduction; and Panel C shows the BEVS model after dimensionality reduction. The results

of the residuals and other statistical tests for these models are presented in Table 3. This

comparative analysis underscores the performance advantages and statistical robustness

achieved by the BEVS approach.

In Table 2, it can be observed that, although the average coefficients of the variables

present in both the benchmark Lasso and BEVS models are similar, the BEVS model has

the distinct advantage of showing a distribution of possible coefficient values, illustrated by

the percentile ranges. This feature not only enhances the model’s statistical robustness but

also allows for a more nuanced understanding of each variable’s impact. Specifically, the

range enables us to identify whether a variable’s effect is consistently positive, consistently

negative, or varies in sign, thereby broadening the scope for economic interpretation. Ad-

ditionally, the number of appearances column in the BEVS models serves as a quantitative

measure of variable significance. In particular, variables such as the autoregressive PDt−1,

the interest rate, and total deposits appear consistently across all bootstrapped iterations,
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reinforcing their importance for the estimation process.

When comparing the benchmark Lasso with the BEVS model, it is clear that each

employs a distinct approach to variable selection, generating implications for model

robustness and interpretability. While Lasso produces a single optimal set of coefficients

based on minimizing the residual sum of squares across the entire dataset, BEVS leverages

multiple bootstrap iterations to create an ensemble of models. This ensemble approach

makes BEVS more sensitive to variables with smaller, although non-zero, impacts on the

outcome variable, allowing it to capture marginal effects that may be overlooked by Lasso.

Additionally, BEVS averages out the influence of data outliers or noise, resulting in a

more stable set of variables. Importantly, this stability extends to the distribution of each

coefficient across bootstrap samples, in contrast to Lasso’s single-point estimate approach.

By considering the coefficient distribution, BEVS not only ensures statistical robustness

but also offers a nuanced understanding of the variability in each variable’s impact.

Regarding the economic interpretation of the BEVS model, Table 2 shows how macroe-

conomic factors exert influence over the PD in the Brazilian banking system. As expected,

we found an increase in the default risks during adverse economic conditions, as shown

by the dynamics of the GDP, inflation, the interest rate, consumer confidence, household

debt, and government debt, with great emphasis on the interest rate due to its recurrent

selection in all models. Additionally, increases in the growth of total deposits and loans

are associated with higher PD, indicating that the acceleration of these portfolios may

reflect a deterioration in the overall risk profile of banks and should be closely monitored.

We also observe results reinforcing that stronger capital adequacy ratio and higher market

concentration are associated with lower PD. Finally, we also find that the persistence of

the PD is significant, ranging from 41% up to 74% in all simulations.

In examining the number of appearances, it is important to address the counterintuitive

impact of NSFR in the BEVS model without dimensionality reduction. Specifically, NSFR

has a positive coefficient of 0.33716 and appears in 8.3% of all simulations, in accordance

with its positive correlation of 22.1% as shown in Figure 1. This result is counterintuitive

because, from a regulatory perspective, a higher NSFR should contribute to a safer financial

system. However, in terms of correlation, it is important to note that the NSFR metric

became a regulatory requirement in Brazil in October 2018 (BCB, 2022), and all values

16Note that while the average and 50th percentile coefficients suggest a positive impact of NSFR, a negative
coefficient is observed in less than 5% of the simulations. .
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before this date are constructed based on a proxy proposed by Takeuti (2020). When

the correlation is examined specifically for the period from December 2018 to September

2022, it changes to -22.2%, aligning more closely with the expected influence of NSFR

on financial stability. Section 4.2 delves into the theoretical restrictions on variable signs

relevant to this case.

As we observed an appearance of 8.3% of NSFR in the model, this aspect of variable

importance is addressed in BEVS through the dimensionality reduction procedure, where

variables appearing in less than 10% of the simulations are candidates for elimination.

Given that NSFR falls under this criterion, all models that incorporate it as an explanatory

variable are excluded from the bagging process, and this procedure continues until all

variables appear in at least 10% of the remaining ones, leading to a more parsimonious

model without compromising the robustness of the results, as shown in Table 3. All figures

of the dimensionality reduction process can be found in the Appendix 5.
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Table 2: Summary of the benchmark Lasso and the BEVS model with and without
dimensionality reduction.

Variable Average
Coefficient

1st
Percentile

5th
Percentile

50th
Percentile

95th
Percentile

99th
Percentile

Number of
Appearances

Panel A: Benchmark Lasso
Intercept 2.700 - - - - - -
PDt−1 0.643 - - - - - -
DI -0.048 - - - - - -
CCI -0.001 - - - - - -
CAR -0.006 - - - - - -
HDtI 0.016 - - - - - -
TD 0.019 - - - - - -
HHI -4.984 - - - - - -

Panel B: BEVS Without Dimensionality Reduction
Intercept 4.075 2.261 2.744 4.082 5.387 5.915 1,000
PDt−1 0.619 0.412 0.481 0.628 0.719 0.741 1,000
DI -0.062 -0.108 -0.089 -0.060 -0.043 -0.032 1,000
CPI 0.032 -0.010 0.001 0.030 0.073 0.088 150
CCI -0.002 -0.007 -0.005 -0.002 -0.000 -0.000 813
CAR -0.008 -0.046 -0.038 -0.008 0.033 0.058 106
HDtI 0.006 0.000 0.000 0.005 0.017 0.020 360
GD 0.005 0.000 0.000 0.004 0.013 0.022 489
TD 0.012 0.005 0.008 0.012 0.017 0.020 1,000
Loans 0.007 0.000 0.001 0.006 0.020 0.025 287
GDP -0.012 -0.033 -0.026 -0.011 -0.001 -0.000 772
NSFR 0.337 -1.222 0.000 0.254 1.060 1.712 83
HHI -9.243 -16.604 -14.369 -9.313 -3.931 -1.362 990

Panel C: BEVS With Dimensionality Reduction
Intercept 4.110 2.336 2.771 4.105 5.392 5.925 917
PDt−1 0.618 0.410 0.481 0.627 0.718 0.738 917
DI -0.062 -0.111 -0.088 -0.060 -0.043 -0.031 917
CPI 0.031 -0.011 0.000 0.028 0.073 0.089 138
CCI -0.002 -0.006 -0.004 -0.002 -0.000 -0.000 764
CAR -0.008 -0.046 -0.039 -0.008 0.034 0.059 103
HDtI 0.006 0.000 0.000 0.005 0.017 0.020 337
GD 0.005 0.000 0.000 0.004 0.013 0.022 457
TD 0.012 0.005 0.008 0.012 0.017 0.020 917
Loans 0.007 0.000 0.001 0.006 0.020 0.026 274
GDP -0.012 -0.033 -0.026 -0.011 -0.002 -0.000 711
HHI -9.203 -16.491 -14.315 -9.310 -3.900 -1.334 907

Notes: DI = interest rate (CDI); CPI = broad national consumer price index (IPCA) in 12 months; CCI
= consumer confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD =
net public debt (federal government and Central Bank in terms of GDP); TD = YoY transformation of
total deposits; Loans = YoY transformation of credit operations outstanding; GDP = YoY transformation
of gross domestic product at market prices (real growth rate) ; NSFR = proxy for the net stable funding
ratio and HHI = Herfindahl-Hirschman index for deposits concentration. All variables are expressed as
a percentage.
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Table 3: Statistical metrics for the benchmark Lasso and the BEVS model with and
without dimensionality reduction.

Test Benchmark
Lasso

Full
BEVS

Reduced
BEVS

Ljung-Box (t-1) 0.938 0.051 0.050
Ljung-Box (t-2) 0.994 0.120 0.120
Ljung-Box (t-3) 0.747 0.217 0.218
Ljung-Box (t-4) 0.861 0.269 0.269
KS 0.051 0.318 0.306
D2 0.882 0.894 0.893
AIC -113.006 -101.684 -101.626
AICc -110.853 -99.419 -99.376
BIC -98.346 -87.037 -87.031
MASE 0.825 0.762 0.763
RMSE 0.377 0.323 0.323
R2 0.882 0.913 0.913
Avg R2 0.882 0.894 0.893
Number of Final Predictors 8 13 12
Notes: The specifications for each test are addressed in Section 2.5.

4.1 Robustness Test

In any statistical model that employs bootstrapping techniques, assessing the stability

of the results under varying parameters is an important step to ensure robustness. This is

especially the case for the BEVS model, which relies on a set of ensemble estimates generated

from multiple bootstrap iterations. To this end, we conducted different robustness tests,

such as (i) varying the number of bootstrap simulations and (ii) varying the bootstrap

block size. This exercise aims to investigate whether the conclusions drawn from the BEVS

model remain consistent when altering these parameters. Specifically, we examine how

changes in (i) and (ii) influence the distribution of coefficients, the significance of variables,

and, ultimately, the model’s ability to reliably estimate the PD in the Brazilian banking

system. The results of exercise (i) are presented in Tables 4 and 5, and the results of

exercise (ii) are detailed in Tables 9 and 10 in Appendix 5.

In Tables 4 and 5, the BEVS model shows stability when varying the number of boot-

strap simulations from 100 to 50,000. Table 4 indicates minor fluctuations in metrics such

as autocorrelation, information criteria, and performance measures, enhancing confidence

in the capacity of the model to estimate PD in the Brazilian banking system. In Table

25



5, similar consistency is observed in the average coefficients and the frequency of the

variable appearances. Specifically, variables like the intercept and the autoregressive show

almost no variation in their average coefficients or their appearance frequencies across all

bootstrap iterations. The use of 1,000 simulations for the BEVS model is shown to be

effective for stability, computational efficiency, and interpretability, especially with regard

to the number of appearances metric.

Table 4: Statistical and performance metrics across different numbers of bootstrap simula-
tions.

Test Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Panel A: Without Dimensionality Reduction
Ljung-Box (t-1) 0.051 0.059 0.053 0.05 0.049 0.049
Ljung-Box (t-2) 0.12 0.129 0.124 0.12 0.119 0.119
Ljung-Box (t-3) 0.217 0.222 0.221 0.216 0.215 0.215
Ljung-Box (t-4) 0.269 0.272 0.27 0.265 0.263 0.263
KS 0.318 0.349 0.377 0.292 0.297 0.304
D2 0.894 0.898 0.895 0.894 0.894 0.894
AIC -101.684 -101.872 -101.785 -101.744 -101.701 -101.752
AICc -99.419 -99.526 -99.495 -99.497 -99.464 -99.52
BIC -87.037 -86.935 -87.047 -87.157 -87.149 -87.213
MASE 0.762 0.757 0.761 0.763 0.763 0.764
RMSE 0.323 0.32 0.322 0.324 0.324 0.324
R2 0.913 0.914 0.914 0.913 0.913 0.913
Avg R2 0.894 0.898 0.895 0.894 0.894 0.894
Number of Final Predictors 13 13 13 13 13 13
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 7 7 7 7 7
Bootstrap Sample Size 1,000 100 500 5,000 10,000 50,000
Computation Time 1.09 mins 9.87 secs 1.01 mins 9.13 mins 18.04 mins 1.54 hours

Panel B: With Dimensionality Reduction
Ljung-Box (t-1) 0.05 0.059 0.053 0.049 0.049 0.049
Ljung-Box (t-2) 0.12 0.132 0.125 0.12 0.118 0.118
Ljung-Box (t-3) 0.218 0.229 0.223 0.216 0.214 0.214
Ljung-Box (t-4) 0.269 0.28 0.271 0.263 0.26 0.26
KS 0.306 0.304 0.377 0.29 0.29 0.299
D2 0.893 0.897 0.895 0.894 0.894 0.894
AIC -101.626 -101.71 -101.725 -101.709 -101.676 -101.729
AICc -99.376 -99.363 -99.449 -99.469 -99.444 -99.502
BIC -87.031 -86.775 -87.033 -87.149 -87.144 -87.212
MASE 0.763 0.758 0.763 0.762 0.763 0.763
RMSE 0.323 0.32 0.322 0.323 0.324 0.324
R2 0.913 0.914 0.914 0.913 0.913 0.913
Avg R2 0.893 0.897 0.895 0.894 0.894 0.894
Number of Final Predictors 12 12 12 12 12 12
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 7 7 7 7 7
Bootstrap Sample Size 1,000 100 500 5,000 10,000 50,000
Computation Time 1.09 mins 9.87 secs 1.01 mins 9.13 mins 18.04 mins 1.54 hours

Notes: Number of bootstrap simulations varies between 100 and 50,000.
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Table 5: Coefficient and appearance performance across different numbers of bootstrap
simulations.

Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Variable A. C. % A. C. % A. C. % A. C. % A. C. % A. C. %
Intercept 4.075 100.0 4.242 100.0 4.124 100.0 4.055 100.0 4.067 100.0 4.059 100.0
PDt−1 0.619 100.0 0.615 100.0 0.618 100.0 0.620 100.0 0.619 100.0 0.620 100.0
DI -0.062 100.0 -0.064 100.0 -0.063 100.0 -0.062 100.0 -0.062 100.0 -0.061 100.0
CPI 0.032 15.0 0.029 15.0 0.030 16.6 0.031 15.3 0.031 14.9 0.030 14.2
CCI -0.002 81.3 -0.002 86.0 -0.002 81.4 -0.002 80.5 -0.002 79.9 -0.002 80.0
CAR -0.008 10.6 0.002 14.0 -0.007 11.2 -0.009 11.1 -0.009 11.1 -0.009 11.3
HDtI 0.006 36.0 0.005 38.0 0.006 35.4 0.006 36.2 0.006 35.5 0.006 35.4
GD 0.005 48.9 0.004 48.0 0.005 48.8 0.005 49.8 0.005 49.6 0.005 49.8
TD 0.012 100.0 0.011 100.0 0.012 100.0 0.012 100.0 0.012 100.0 0.012 100.0
Loans 0.007 28.7 0.008 31.0 0.007 30.4 0.007 26.7 0.007 27.2 0.007 27.2
GDP -0.012 77.2 -0.012 77.0 -0.012 78.2 -0.012 76.0 -0.012 75.7 -0.012 75.5
NSFR 0.337 8.3 0.583 10.0 0.352 7.8 0.408 7.4 0.427 7.4 0.395 7.6
HHI -9.243 99.0 -9.834 100.0 -9.396 99.6 -9.182 99.2 -9.223 99.2 -9.205 99.0
Notes: A. C. = Average Coefficient; % = Number of Appearances as a percentage of total simulations.
Other variables are as previously described.

In Tables 9 and 10 presented in Appendix 5, we also observe stability and robustness

in the BEVS model when varying block sizes. Autocorrelation, KS measures, and other

performance indicators show minimal variation, confirming the reliability of the model.

Likewise, core variables, such as the intercept and autoregressive terms, remain stable in

their average coefficients and appearance frequencies. These findings collectively indicate

the robustness of the model and validate our choice of a block size that approximates

the square root of the series length, as this balances computational efficiency, desired

statistical properties, and interpretive clarity17 (Demirel and Willemain, 2002).

4.2 Theoretical Sign Restrictions

In the analysis presented in Section 4, we employed the BEVS procedure without

imposing any sign restrictions on the estimated coefficients. This approach was intended

to estimate the possible signs of the relationships between the macroeconomic variables
17While the square root of the series length, rounded down to the nearest integer, serves as our benchmark
for block size selection, alternative criteria could be employed taking into consideration: (i) statistical
independence, achieved by minimizing inter-block autocorrelation through appropriate block size; (ii)
computational efficiency, balancing the trade-off between block size and processing time; (iii) convergence
behavior, assessing the rate at which estimates stabilize with varying block sizes and focusing on minimizing
the RMSE to ensure more accurate and reliable estimates.; (iv) domain-specific requirements, guiding
block sizes that correspond to inherent temporal structures of the data, such as natural units like months,
quarters, or years, or to its seasonality, thereby enhancing the interpretability of the bootstrap estimates
(Carlstein, 1986; Hall et al., 1995; Lahiri, 1999; Nordman, 2009).
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and the probability of default of the Brazilian banking system in the 1,000 simulated series.

Although these results offer a nuanced understanding of variable impacts, it was observed

that some of the estimated magnitudes are complex due to the broad range of coefficient

values across the quantiles. Thus, to align the model results with economic theory, we

introduce sign restrictions as discussed in Section 2.5, aiming to enhance interpretability

while cautiously limiting their scope to minimize model bias toward specific outcomes.

These selected variables and their expected signs are shown in Table 6.

Table 6: Sign restrictions imposed on variables

Variable Name Variable Description Expected Sign
CPI Broad National Consumer Price Index Positive
CAR Capital Adequacy Ratio Negative
HDtI Household Debt to Income Positive
NSFR Proxy for the Net Stable Funding Ratio Negative
Notes: In cases where a negative relationship is expected, the coefficient estimates are constrained
to the interval [−∞, 0], ensuring non-positive values. Similarly, for expected positive relationships,
coefficients are restricted to [0, +∞], allowing only non-negative estimates. Where no prior di-
rectional expectation exists, coefficients are unrestricted with bounds [−∞, +∞], allowing free
estimation of optimal values. For more details, see Section 2.5.

The results of this restricted BEVS model, which incorporates the theoretical sign

constraints as shown in Table 6, are summarized in Table 7. Note that the application of

sign restrictions has refined the model’s estimates to be more aligned with economic theory.

For instance, in the case of the NSFR variable, the coefficients remain consistently negative

in both models with and without dimensionality reduction, enhancing the variable’s

interpretive clarity. Furthermore, the imposition of sign restrictions led to an increase

in the number of appearances for both NSFR and Loans. Specifically, while Loans was

already part of the model after the dimensionality reduction and merely bolstered its

representation, NSFR, which had fewer initial appearances, achieved the threshold to

remain in the model after the reduction process.

However, the CAR, which is generally considered a significant determinant of a bank’s

probability of default, experienced a decrease in the frequency of its appearances and was

ultimately excluded from the reduced BEVS model after the dimensionality reduction

process. While this exclusion could be attributed to multicollinearity or model overfitting,

the similar statistical metrics between the full and reduced BEVS models, as shown by

metrics such as AIC, BIC, and D2 in Table 8, suggest that the full BEVS model may
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still offer valuable insights into the influence of CAR on the probability of default in the

Brazilian banking system.

Table 7: Summary of the benchmark Lasso and BEVS models incorporating theoretical
sign restrictions.

Variable Average
Coefficient

1st
Percentile

5th
Percentile

50th
Percentile

95th
Percentile

99th
Percentile

Number of
Appearances

Panel A: Benchmark Lasso
Intercept 3.064 - - - - - -
PDt−1 0.631 - - - - - -
DI -0.053 - - - - - -
CCI -0.001 - - - - - -
CAR -0.015 - - - - - -
HDtI 0.019 - - - - - -
TD 0.020 - - - - - -
GDP -0.005 - - - - - -
HHI -6.537 - - - - - -

Panel B: BEVS Without Dimensionality Reduction
Intercept 4.277 2.485 2.865 4.147 5.967 7.723 1,000
PDt−1 0.582 0.303 0.381 0.607 0.711 0.733 1,000
DI -0.074 -0.136 -0.118 -0.068 -0.048 -0.042 1,000
CPI 0.042 0.000 0.004 0.042 0.094 0.108 353
CCI -0.003 -0.009 -0.006 -0.002 -0.000 -0.000 882
CAR -0.015 -0.040 -0.037 -0.013 -0.000 -0.000 79
HDtI 0.006 0.000 0.000 0.005 0.016 0.019 334
GD 0.012 0.000 0.000 0.011 0.027 0.036 592
TD 0.011 0.003 0.006 0.011 0.017 0.021 1,000
Loans 0.014 0.000 0.001 0.012 0.031 0.039 598
GDP -0.018 -0.045 -0.038 -0.017 -0.003 -0.000 870
NSFR -1.339 -3.843 -3.172 -1.239 -0.070 -0.003 107
HHI -8.445 -15.621 -14.002 -8.626 -2.651 -0.799 955

Panel C: BEVS With Dimensionality Reduction
Intercept 4.283 2.507 2.847 4.141 6.033 7.720 921
PDt−1 0.575 0.293 0.374 0.598 0.708 0.728 921
DI -0.075 -0.136 -0.119 -0.070 -0.049 -0.042 921
CPI 0.042 0.000 0.004 0.042 0.094 0.108 345
CCI -0.003 -0.009 -0.007 -0.003 -0.000 -0.000 805
HDtI 0.006 0.000 0.000 0.005 0.016 0.019 309
GD 0.012 0.000 0.000 0.011 0.028 0.036 568
TD 0.011 0.003 0.006 0.011 0.017 0.021 921
Loans 0.014 0.000 0.001 0.013 0.031 0.039 571
GDP -0.019 -0.046 -0.039 -0.017 -0.003 -0.000 803
NSFR -1.324 -3.846 -3.173 -1.236 -0.066 -0.003 106
HHI -8.426 -15.707 -14.067 -8.565 -2.641 -0.775 876

Notes: DI = interest rate (CDI); CPI = broad national consumer price index (IPCA) in 12 months; CCI
= consumer confidence index; CAR = capital adequacy ratio; HDtI = household debt to income; GD =
net public debt (federal government and Central Bank in terms of GDP); TD = YoY transformation of
total deposits; Loans = YoY transformation of credit operations outstanding; GDP = YoY transformation
of gross domestic product at market prices (real growth rate) ; NSFR = proxy for the net stable funding
ratio and HHI = Herfindahl-Hirschman index for deposits concentration. All variables are expressed as
a percentage.
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Table 8: Statistical metrics for the benchmark Lasso and BEVS models incorporating
theoretical sign restrictions.

Test Benchmark
Lasso

Full
BEVS

Reduced
BEVS

Ljung-Box (t-1) 0.980 0.109 0.107
Ljung-Box (t-2) 1.000 0.173 0.167
Ljung-Box (t-3) 0.727 0.282 0.274
Ljung-Box (t-4) 0.835 0.335 0.329
KS 0.034 0.240 0.232
D2 0.885 0.900 0.898
AIC -111.513 -101.043 -100.993
AICc -108.690 -98.244 -98.199
BIC -94.758 -84.901 -84.873
MASE 0.807 0.743 0.746
RMSE 0.371 0.319 0.321
R2 0.885 0.915 0.914
Avg R2 0.885 0.900 0.898
Number of Final Predictors 9 13 12
Notes: The specifications for each test are addressed in Section 2.5.

5 Final Remarks

This paper proposes the Bootstrap Estimator with Variable Selection procedure to

estimate the determinants of the probability of default of the Brazilian banking system as

a case study over the period from December 2007 to September 2022. In this method, we

combine techniques such as Lasso regression, Loess smoothing, and bagging, showing that

this integrated approach yields improved results compared to those obtained through their

individual performance. Our findings indicate that BEVS not only refines the estimate of

PD but also offers a comprehensive view of the impact of macroeconomic factors over the

study period.

The BEVS model introduces a significant enhancement in time series analysis. It

generates a distribution of coefficients, providing a comprehensive view of variables’

impacts, and utilizes the number of appearances of each variable as a robust measure of

significance. In addition, the ensemble approach improves the detection of marginal effects

often overlooked by single-model methods, while simultaneously neutralizing the influence

of outliers, enhancing overall model stability. Furthermore, dimensionality reduction in
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BEVS leads to a parsimonious, yet effective, model, ensuring efficiency without sacrificing

analytical depth. Beyond the Brazilian banking system, the benefits provided by BEVS

are applicable to a wide range of time series datasets, making it a versatile tool for various

economic and financial applications.

Regarding our results, we contributed to the understanding of how adverse economic

conditions influence the PD of the Brazilian banking system, with interest rates being

an important element in these dynamics. In addition, we find that the growth of total

deposits and loans is associated with higher PD, indicating that the acceleration of these

portfolios may reflect a deterioration in the overall risk profile of banks and should be

closely monitored by the supervisor.

Future research could extend BEVS analysis to multiple economies, offering a compar-

ative study of the variable selection process and the frequency of number of appearances

in diverse macroeconomic environments. Such comparative work could shed light on the

unique economic factors that influence the stability of each region’s banking system. Fur-

thermore, exploring the interaction and relative impacts of these macroeconomic variables

across economies could enhance our understanding of global financial dynamics and inform

cross-border risk management strategies.
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A Dimensionality Reduction Procedure

Figure 7: Bootstrapped series of the probability of default with dimensionality reduction.

Notes: The lines in gray represent the bootstrap series of the PD in black. The lines in orange represents
the removed bootstrapped series in the dimensionality reduction process.
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Figure 8: BEVS and Lasso fit of the probability of default with dimensionality reduction.

Notes: The line in blue represents the BEVS fit of the PD (in black), which is the bagged model of all
Lasso fit in the bootstrapped series (in gray) of the PD. The solid lines in orange represents removed
models in the dimensionality reduction process. The dashed line in orange represents the BEVS fit after
the dimensionality reduction.

Figure 9: Density level of BEVS model with dimensionality reduction.

Notes: Each point in time shows the distribution of the BEVS estimation for that particular point after
the dimensionality reduction process. The color of the distribution is related to the absolute value of the
PD, in which the darker the color, the lower is the related value.
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B Robustness Test

Table 9: Statistical and performance metrics across different numbers of bootstrap blocks.

Test Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Panel A: Without Dimensionality Reduction
Ljung-Box (t-1) 0.051 0.051 0.048 0.046 0.046 0.043
Ljung-Box (t-2) 0.12 0.12 0.117 0.113 0.112 0.108
Ljung-Box (t-3) 0.217 0.215 0.211 0.206 0.205 0.198
Ljung-Box (t-4) 0.269 0.261 0.258 0.257 0.259 0.25
KS 0.318 0.3 0.405 0.36 0.32 0.315
D2 0.894 0.898 0.893 0.894 0.894 0.894
AIC -101.684 -102.243 -101.677 -101.619 -101.495 -101.576
AICc -99.419 -100.041 -99.425 -99.394 -99.243 -99.349
BIC -87.037 -87.813 -87.068 -87.102 -86.89 -87.052
MASE 0.762 0.76 0.768 0.764 0.763 0.768
RMSE 0.323 0.321 0.324 0.323 0.324 0.325
R2 0.913 0.914 0.912 0.913 0.913 0.912
Avg R2 0.894 0.898 0.893 0.894 0.894 0.894
Number of Final Predictors 13 13 13 13 13 13
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 2 4 8 10 12
Bootstrap Sample Size 1,000 1,000 1,000 1,000 1,000 1,000
Computation Time 1.67 mins 1.4 mins 1.37 mins 1.37 mins 1.18 mins 1.62 mins

Panel B: With Dimensionality Reduction
Ljung-Box (t-1) 0.05 0.049 0.047 0.045 0.046 0.044
Ljung-Box (t-2) 0.12 0.118 0.116 0.111 0.113 0.11
Ljung-Box (t-3) 0.218 0.212 0.21 0.204 0.207 0.201
Ljung-Box (t-4) 0.269 0.256 0.256 0.251 0.257 0.249
KS 0.306 0.271 0.395 0.367 0.308 0.307
D2 0.893 0.897 0.892 0.893 0.894 0.894
AIC -101.626 -102.254 -101.638 -101.615 -101.545 -101.576
AICc -99.376 -100.06 -99.391 -99.396 -99.298 -99.352
BIC -87.031 -87.86 -87.052 -87.122 -86.962 -87.065
MASE 0.763 0.759 0.767 0.764 0.762 0.767
RMSE 0.323 0.321 0.324 0.323 0.324 0.325
R2 0.913 0.914 0.912 0.913 0.913 0.912
Avg R2 0.893 0.897 0.892 0.893 0.894 0.894
Number of Final Predictors 12 12 12 12 12 12
Maximum Predictors in Lasso 8 8 8 8 8 8
Dimension Reduction Rate 10% 10% 10% 10% 10% 10%
Number of Bootstrap Blocks 7 2 4 8 10 12
Bootstrap Sample Size 1,000 1,000 1,000 1,000 1,000 1,000
Computation Time 1.67 mins 1.4 mins 1.37 mins 1.37 mins 1.18 mins 1.62 mins

Notes: Number of bootstrap blocks varies between 2 to 12.
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Table 10: Coefficient and appearance performance across different numbers of bootstrap
blocks.

Benchmark
Simulation

Simulation
1

Simulation
2

Simulation
3

Simulation
4

Simulation
5

Variable A. C. % A. C. % A. C. % A. C. % A. C. % A. C. %
Intercept 4.075 100.0 4.023 100.0 4.055 100.0 4.030 100.0 4.022 100.0 4.043 100.0
PDt−1 0.619 100.0 0.627 100.0 0.619 100.0 0.620 100.0 0.620 100.0 0.621 100.0
DI -0.062 100.0 -0.060 100.0 -0.061 100.0 -0.061 100.0 -0.061 100.0 -0.061 100.0
CPI 0.032 15.0 0.026 11.2 0.026 15.1 0.028 13.7 0.029 15.7 0.027 14.5
CCI -0.002 81.3 -0.002 82.6 -0.002 80.0 -0.002 79.7 -0.002 79.8 -0.002 79.8
CAR -0.008 10.6 -0.008 11.8 -0.010 10.9 -0.011 10.8 -0.008 11.5 -0.012 12.1
HDtI 0.006 36.0 0.006 35.5 0.006 37.2 0.007 35.8 0.006 33.2 0.006 36.2
GD 0.005 48.9 0.005 46.7 0.005 50.8 0.006 49.9 0.005 50.2 0.005 52.3
TD 0.012 100.0 0.012 100.0 0.012 100.0 0.012 99.9 0.012 100.0 0.012 100.0
Loans 0.007 28.7 0.007 28.7 0.007 29.6 0.008 29.5 0.007 29.6 0.007 25.7
GDP -0.012 77.2 -0.013 70.8 -0.013 72.7 -0.013 73.4 -0.012 75.9 -0.012 71.5
NSFR 0.337 8.3 0.476 7.8 0.337 7.2 0.414 7.3 0.495 8.1 0.399 7.7
HHI -9.243 99.0 -9.119 99.5 -9.107 99.7 -9.110 98.8 -9.091 99.0 -9.070 99.3
Notes: A. C. = Average Coefficient; % = Number of Appearances as a percentage of total simulations.
Other variables are as previously described.
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C Balance sheets accounts and granular data

Table 11: Balance sheets accounts and macroeconomic variables.

Variable Composition Description
Dependent Variable

Adjusted Total Assets
(+)[10000007] Current Assets and Long Term Receivables
(+)[20000004] Fixed Assets
(+)[49908008] Creditor for Advanced Residual Value

Total Liabilities

(+)[40000008] Current and Long Term Liabilities
(+)[50000005] Deferred Income
(+)[60000002] Equity
(+)[70000009] Gross Revenues
(+)[80000006] Gross Expenses

Demand Deposits (+)[41100000] Demand Deposits
Saving Deposits (+)[41200003] Saving Deposits
Time Deposits (+)[41500002] Time Deposits

Independent Variable

Interest Rate 4389 Interest rate
CDI in annual terms (basis 252)

Broad National Consumer
Price Index 13522 Broad National Consumer

Price Index (IPCA) in 12 months
Consumer Confidence Index 4393 Consumer confidence index

Capital Adequacy Ratio 21424 Regulatory Capital to
Risk-Weighted Assets

Household Debt to Income 29037 Household debt to income
(Households gross disposable national income)

Net Public Debt 4503 Net public debt (% GDP) - Total
Federal Government and Central Bank

Total Deposits
27790
27805
1835

Demand + Time + Savings deposits
(end-of-period balance)

Credit Operations Outstanding 20539 Total Credit operations outstanding

Gross Domestic Product
at Market Prices 6561

Gross Domestic Product at Market Prices -
Quarterly Rate (compared to the same
period of the previous year) - Table 5932

Notes: The numbers in the composition column for the dependent variables correspond to the
Cosif balance sheet information, which is the accounting framework for all financial institutions
in the Brazilian financial market. The numbers for the independent variables in this same column
are based on the codes of macroeconomic variables from BCB (2023b), except for GDP, which
comes from IBGE (2023). For additional information on Cosif balance sheet data, refer to BCB
(2023a).
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