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E-mails: anajulia.camara@gmail.com / valderio.reisen@ufes.br / pascal.bondon@l2s.centralesupelec.fr

Abstract. The generalized linear autoregressive moving average (GLARMA) model has

been used in epidemiological studies to evaluate the impact of air pollutants on human health,

as frequently, the response variable is a nonnegative integer-valued time series. The relative

risk (RR) measure commonly quantifies these health effects. Due to the nature of the data, a

robust approach for the GLARMA model is proposed based on the robustification of the quasi-

likelihood function. In this method, outlying observations are bounded separately by weight

functions on covariates and by the Huber loss function on the response variable. A numerical

study was realized to evaluate the performance of the proposed methodology for distinct sample

sizes. In real data analysis, the impact of the particulate pollutant PM10 in the monthly number

of deaths in Vitoria, Brazil, was investigated, showing that the parameter estimates involving

the robust method are more reliable than the classic.

Keywords. Count time series, GLARMA model, M -estimators, Additive outliers, Respi-

ratory diseases, Air pollution.

1 Introduction

The expansion of cities and communities in the last decades led to economic growth and
urban development. However, it also originated environmental and health problems once
many activities generate residues that affect the populations’ quality of life. Ozone (O3),
nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and particulate
matter (PM) are the main pollutants in the atmosphere, and even at concentrations
within limits established by the World Health Organization (WHO) offer risk to hu-
man health (Pope and Dockery (2018)and Lippmann (2014)). Epidemiological studies
have shown evidence of an association between concentration levels of air pollutants and
mortality, morbidity, and hospital admissions, mainly caused by respiratory and cardio-
vascular diseases (see Pope et al. (1995), Dockery and Pope (1996), Ostro et al. (1999),
Schwartz (2000), Ostro et al. (2009), Chen et al. (2010), Froes et al. (2016) among others).

Epidemiological data are frequently treated as counting time series as they record
the frequency of events in successive time intervals. Count series are non-Gaussian pro-
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cesses formed by non-negative integers. They naturally arise in scientific areas such as
the economy, medicine, agriculture, sports, among others. Examples are the monthly
number of hospital admissions caused by a disease, the number of car accidents in a
city, and the number of transactions of a given stock observed in one hour. Method-
ologies started to emerge in the early 1970s. Initially, count time series were adjusted
by generalized linear models (GLM), introduced by (Nelder and Wedderburn (1972)),
a procedure that expands the possibilities for the distribution of the response variable,
which can assume distributions belonging to the exponential family, e.g., Normal, Pois-
son, Gamma, Negative Binomial, etc. In addition, the relation between the mean of
the dependent variable (µ) and the linear predictor (η) can be more flexible, assuming
any monotonous non-linear function. Nevertheless, the GLM can not capture the time
dependency structure in the data. The earliest work considering correlated time series
can be found in Cox (1981), where models are classified into two categories: observa-
tion and parameter driven. The main difference between them is how the dependence
structure is added to the model. Zeger and Qaqish (1988) proposed a quasi-likelihood
approach to time series regression, generalized by Benjamin et al. (2003). Davis et al.
(1999) and Davis et al. (2003) introduced the generalized linear autoregressive moving
average models (GLARMA). Fokianos and Tjosthein (2011) proposed log-linear models
for time series. Other procedures can be found in Davis et al. (2021), which realized an
overview of methodologies for count time series. Although many methods have been de-
veloped in the field, they all present limitations that contribute to the non-development
of a unified theory. Despite this, Davis et al. (2021) addresses that the GLARMA fam-
ily is ”one of the most flexible and easily fit count models that balance parameter and
observation-driven models”. In this methodology, an ARMA structure (Box and Jenkins
(1976)) is added to the GLM, allowing the modeling of correlated observations from the
exponential family. Even though GLARMA presents some limitations regarding proper-
ties for general models, this method has been widely used in applications in distinct fields
of knowledge; see e.g, Rydberg and Shephard (2003), in finances, Karami et al. (2017),
in air pollution, Kim et al. (2018) in engineering, Ballesteros-Cánovas et al. (2018) and
Peitzsch et al. (2021) in climate changes, among others.

Studying the statistical association between air pollutants and health effects is com-
plex and must be computed with caution independently of the statistical regression and
time series models used. In the epidemiological context, the response variable is usually
time correlated, and this should be taken into account. In addition, the dynamic of the
response variable and, therefore, the statistical functions that measure the impact of the
pollutants on health can not be fully explained by the response variable itself or by only
one contaminant since the population under the study is exposed to a complex mixture
of pollutants and chemical compounds. Many authors have been ignoring the fact that
the contaminants present multicollinearity. Souza et al. (2018) showed that if this char-
acteristic is not treated properly, the association measures can be profoundly impacted,
leading to false conclusions regarding the population’s health risk in generalized additive
models. Finally, covariates are time correlated and display complex behaviors such as
periodicity, missing values, and extreme observations. High levels, or peaks, of pollu-
tants are frequently observed in air quality variables and often ignored. However, they
can affect the estimation of some characteristics of the data, like mean, variance, and
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correlation. In addition, many authors have been verifying that the presence of atypi-
cal observations (outliers) can seriously deteriorate the estimates of time series models
(Reisen et al. (2017)).

Robustness indicates insensitivity to minor deviations from the assumptions (Huber
(1981)). The foundations of this statistical approach can be found in Tukey (1960),
Huber (1964), and Hampel (1968). Robust models have the characteristic of fitting
properly to most datasets. If the data has no abrupt observations, the robust method
will behave approximately the same as the classic model. Nevertheless, if the data is
composed of a small percentage of outliers, the robust models will show results almost
as good as the classic models applied to clean data. Usually, robust estimates depend
on a dispersion function that varies more slowly in extreme values than the quadratic
functions. Outliers in time series can seriously affect the estimation and inference of
parameters (Martin and Yohai (1985) and Bustos and Yohai (1986)). Fox (1972) appears
to be the first author to consider outliers within time series, proposing two types of classes:
the additive outliers, which affect only a single observation, and innovation outliers which
affect succeeding observations. However, the additive outliers deserve special attention,
as they usually cause more prejudice in practical problems. Ledolter (1989) showed that
the ARMA models could be substantially affected by additive outliers. Chang et al.
(1988) and Chen and Liu (1993) verified that the presence of additive outliers could bias
the parameter estimates of the ARMA model. A similar conclusion was obtained by
Reisen et al. (2017) and Sarnaglia et al. (2021) for fractionally integrated and periodic
ARMA processes. Fokianos and Tjosthein (2011) verified that the maximum likelihood
estimator in log-linear Poisson models is highly affected by additive outliers.

The nonrobustness of the maximum likelihood estimator in generalized linear models
has been extensively studied in the literature (see Carroll and Welsh (1986), Künsch
et al. (1989), Ruckstuhl and Welsh (1999), and others). Due to this, robust estimation
procedures have been developed, e.g, Cantoni and Ronchetti (2001), Lo and Ronchetti
(2009), and Valdora and Yohai (2014). The work of Cantoni and Ronchetti (2001) is
probably the most relevant which is based on the quasi-likelihood functions. The au-
thors proposed the Mallows’ quasi-likelihood estimator (MQLE) considering the class
of M -estimators of Mallows’ (Mallows (1975)). In this method, outlying observations
are bounded separately by weight functions on covariates and by a loss function on the
response variable. Although proposed for independent observations Kitromilidou and
Fokianos (2016) extended this method to count time series in the context of the log-
linear Poisson model. They found that the MQLE behaved comparably to the classic
log-linear model without perturbations. At the same time, in the presence of additive
outliers, the MQLE provided more reliable results. Actually, procedures derived from
M -estimators (Huber (1964)) are appropriate alternatives to modeling time series con-
taminated by outliers or generated by probability distribution with heavy tails (see Bai
et al. (1992),Li (2008) and Wu (2007)). Thus, considering the previous discussion, the
GLARMA model structure, and the nature of the data application, this paper proposes
a robust alternative for the GLARMA Poisson model based on the MQLE estimator. To
the best of our knowledge, robustified proposals for the GLARMA using M -estimators
are still not explored in the literature. This paper aims to fill this gap. Due to the limi-
tations regarding the asymptotic properties of the GLARMA model, we considered the
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development of asymptotic theory for the proposed robust approach beyond the scope
of this work. In fact, Davis et al. (2021) claim that after all these years theoretical
properties for the classic GLARMA model were only established for very restrictive spe-
cial cases. However, although a general asymptotic theory has not yet been developed,
the simulation study showed that asymptotic results corroborate that the estimators are
consistent.

A Monte Carlo study was realized to evaluate the impact of additive outliers in
the response variable and covariates, considering the classic GLARMA (proposed by
Davis et al. (2003)) and the robust proposal under distinct scenarios and sample sizes.
Additionally, real data analysis was realized to study the effect of Particulate Material
(PM10) on the deaths caused by respiratory diseases in Vitoria, Brazil.

This work is organized as follows. Section 2 introduces the GLARMA model. Section
3 discusses robust estimation and proposes a robust approach for the GLARMA Poisson
model. Section 4 presents a Monte Carlo empirical study to evaluate the performance
of the proposed procedure. Section 5 presents a real data analysis, which is the primary
motivation of this paper. Finally, Section 6 is composed of conclusions about the work.

2 The generalized linear autoregressive moving aver-
age model

The GLARMAmodels (Davis et al. (2003)) are a class of observation-driven non-Gaussian
state space models in which the state process is linearly correlated to the explanatory
variables and non-linearly to the past values of the observed process.

Let {Yt} := {Yt}t∈Z be the observations on the response series,Xt = (X1,t, X2,t, ..., Xk,t)
T

the vector of k covariates observed for t = 1, ..., n, and Ft−1 = σ {Ys, s ≤ t− 1} the pro-
cess history. The observation process Yt conditioned on Ft−1 is assumed exponentially
distributed with density

f(Yt|Wt) = exp {YtWt − atb(Wt) + ct} , (1)

where {Wt} := {Wt}t∈Z is the canonical parameter that summarizes the information
in Ft−1, and at and ct are sequences of constants (for more, see Dunsmuir (2015) and
Davis et al. (2021)). The conditional mean and variance of Yt are µt = E(Yt|Ft−1) and
σ2
t = Var(Yt|Ft−1), respectively.

The specification of Wt = ln(µt) is given by

Wt =X
T
t β + Zt, (2)

where β is a (k + 1) x 1 vector of unknown coefficients, and the noise process {Zt}t∈Z,
which induces a serial dependence on the observation, is given by

Zt =
∞∑
i=1

γiet−i. (3)
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The parameters γi’s are the coefficients in the power series expansion

∞∑
i=1

γiB
i =

θ(B)

ϕ(B)
− 1, (4)

where the autoregressive and moving average components ϕ(B) = (1−ϕ1B− ...−ϕpBp)
and θ(B) = (1 + θ1B + ... + θqB

q) are polynomials with no common zeroes and have
all their zeros outside the unit circle. The parameter vector γ is formed by ϕ’s and θ’s,
and B is the backshift operator of the form Bk(Zt) = Zt−k. From (3) and (4) Zt can be
calculated recursively with the difference equation

Zt = ϕ1(Zt−1 + et−1) + · · ·+ ϕp(Zt−p + et−p) + θ1et−1 + · · ·+ θqet−q. (5)

The predictive residuals {et}t∈Z, in (3) are given by

et =
Yt − µt

νt
, (6)

where νt = σt for Pearson residuals. From (6), E(et|Ft−1) = (E(Yt|Ft−1) − µt)/νt = 0.
Under the initial conditions es = 0 and Ys = 0, for s ≤ 0, let Fe

t−1 = σ(es, s ≤ t − 1).
Equation (6) implies Fe

t−1 ⊂ Ft−1, therefore

E(et|Fe
t−1) = E[E(et|Ft−1)|Fe

t−1] = 0,

which means that {et} are martingale differences, with Cov(et, es)=0, for t ̸= s. For
Pearson residuals,

Var(et) = E(e2t ) = E[E(e2t |Ft−1)] = E

[
E
(

Yt−µt

σ

)2 ∣∣∣∣ Ft−1

]
= E

[
E(Yt−µt|Ft−1)

2

σ2

]
= 1,

i.e. {et} are weakly stationary white noise.

Considering n successive observations y1, y2, ..., yn, the likelihood is constructed as
the product of conditional densities of {Yt} given Ft−1, corresponding to the following
log-likelihood

L(δ) =
∑n

t=1 {YtWt(δ)− atb(Wt(δ)) + ct} ,

where δ = (βT ,ϕT ,θT )T is the parameter vector.

For the particular case of Poisson distribution, where Yt|Ft−1 ∼ Poisson(µt) with
µt = eWt , the log-likelihood is given by

L(δ) =

n∑
t=1

{
ytWt(δ)− eWt(δ) − log(yt!)

}
. (7)

The log-likelihood can be maximized using Newton-Raphson iterations or Fisher scor-
ing procedure from suitable initial values by computing the first and second derivatives
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of the likelihood. According to Davis et al. (2005) the first derivative for (7) is given by

∂L(δ)

∂δ
=

n∑
t=1

(yt − µt)
∂Wt(δ)

∂δ
, (8)

and the second derivative is

∂L2(δ)

∂δ∂δT
=

n∑
t=1

(yt − µt)
∂2Wt(δ)

∂δ∂δT
−

n∑
t=1

µt
∂Wt(δ)

∂δ

∂Wt(δ)

∂δT
. (9)

E(yt − µt|Ft−1) = 0 at the true value of δ, which implies that the first summation
in (9) is zero. This motivates the Fisher-scoring approximation based only on the first
derivatives

∂L2(δ)

∂δ∂δT
= −

n∑
t=1

µt
∂Wt(δ)

∂δ

∂Wt(δ)

∂δT
. (10)

Note that although E(DNR(δ)) = E(DFS(δ)), these expectations can not be calcu-

lated in closed form. Thus, the maximum likelihood estimation δ̂ can be computed using
the Newton-Raphson iterations (based on equations (8) and (9)) or the Fisher scoring
approximations (equations (8) and (10)).

3 Robust estimation

Given a parametric model Fδ, a general M -estimate (Huber (1981)) of δ ∈ ∆, say δ̂, is
defined as a solution of

arg min
δ

n∑
i=1

ρ(ξi, δ), (11)

where ρ(·) is the loss function. Supose the solution of (11) is an interior point, if ρ(·) is
differentiable with respect to δ, where ψ(·) = ρ′(·), then δ̂ is the solution of the estimating
equations

n∑
i=1

ψ(ξi, δ) = 0. (12)

There are several candidates for ρ. However, the Huber loss function, proposed by
Huber (1964), and Tukey’s biweight, given by (Beaton and Tukey (1974)) are the most
used. Another loss functions can be found in Hampel (1974), Andrews (1974), Dennis
and Welsch (1978), and Maronna et al. (2006). According to Huber (1981), ρ(·) must to
satisfy the following assumptions:
A1) ρ(0) = 0;
A2) ρ(ξ) = ρ(−ξ)∀ξ ∈ R, i.e. ρ(ξ) is a symmetric function;
A3) 0 ≤ ξ ≤ ξ∗ ⇒ ρ(ξ) ≤ ρ(ξ∗),∀(ξ, ξ∗) ∈ R2;
A4) ψ(·) is bounded;
A5) ρ(·) has a second derivative almost everywhere.
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Here we will focus on the Huber loss function

ρH(ξ) =

{
1
2ξ

2, |ξ| ≤ c
c|ξ| − 1

2c
2, |ξ| > c.

(13)

Its derivative, ψ-function, is given by

ψH(ξ) =

{
ξ, |ξ| ≤ c
csign (ξ) , |ξ| > c,

(14)

where the constant c must be prespecified and regulates the amount of robustness. This
parameter regulates the trade-off between the efficiency and robustness of the estimators.
Good choices for the constant value are in the range between 1 and 2. According to
(Huber (1964)) c = 1.345 provides 90% efficiency when the data is normally distributed.
Other specific values are also used in the literature, e.g., c = 1.2 (Cantoni and Ronchetti
(2001)), c = 1.25 (Streett et al. (1988) and Chi (1994)). The choice of c should reflect
the proportion of outliers in the data. Moreover, this value must be adjusted according
to the data distribution.

3.1 Robust estimation for GLARMA models

To robustify the parameter estimation of the GLARMA model, we propose here an
extension of the approach given by Cantoni and Ronchetti (2001) called the Mallows’
Quasi-Likelihood Estimator (MQLE). Their approach is based on natural generalizations
of quasi-likelihood functions, considering a general class ofM -estimators of Mallows’ type
(Mallows (1975)), where the influence of deviations on response variable and covariates
are bounded separately.

The MQLE for GLARMA family, denoted by δ̂MQLE , is the solution of the estimating
equation

Sn(δ) =

n∑
t=1

[
ν(Yt, µt)w(Xt)µ

′
t −

1

n

n∑
t=1

E (ν(Yt, µt)|Ft−1)w(Xt)µ
′
t

]
= 0. (15)

The δ̂MQLE is anM -estimator (Huber (1981); Hampel et al. (1986)) characterized by the
score function Sn(δ) =

∑n
t=1 [ν(Yt, µt)w(Xt)µ

′
t − a(δ)], where a(δ) = 1

n

∑n
t=1 E(ν(Yt, µt)w(Xt)µ

′
t|Ft−1)

is a bias correction used to ensure Fisher’s consistency. Additionally, function ν(·, ·)
is chosen to control deviations on Y -space and leverage points on X-space are down-
weighted by w(·).

Künsch (1984) extended the definition of Influence Function (IF) of Hampel (1974)
to time series for stationary process. Therefore, considering a cumulative distribution

function F , the IF(Yt;ψ, F ) =M(ψ, F )−1Sn(δ), whereM(ψ, F )−1 = −E
[

∂
∂βSn(δ)

]
, for

more, see Maronna et al. (2006). Choosing a bounded function Sn leads to limits on
the influence function, which ensures the robustness of the estimator. Thus, bounded
functions ν(·, ·) and w(·) must be chosen to restrict outlying values on the response
variable and covariates, respectively.
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Let ν(Yt, µt) = ψH(rt)
1

V ar(Yt)1/2
, where, ψH is the Huber loss function defined in

(14), rt =
Yt−µt

V ar(Yt)1/2
, are the Pearson residuals and µ′

t = µt
∂Wt(δ)

∂δ , t = 1, ..., n. Replace

it on (15), then δ̂MQLE of the GLARMA Poisson model is the solution of the following
equation

Sn(δ) =

n∑
t=1

[
ψH (rt)

V ar(Yt)1/2
w(Xt)µt

∂Wt(δ)

∂δ
− 1

n

n∑
t=1

E

(
ψH (rt)

V ar(Yt)1/2

∣∣∣∣ Ft−1

)
w(Xt)µt

∂Wt(δ)

∂δ

]
= 0,

(16)
where V ar(Yt) = µt and

E

(
ψH (rt)

∣∣∣∣ Ft−1

)
= c {P (Yt ≥ j2 + 1|Ft−1)− P (Yt ≤ j1|Ft−1)}

+µ
1/2
t {P (Yt = j1|Ft−1)− P (Yt = j2|Ft−1)} ,

with j1 =
⌊
µt − cµ

1/2
t

⌋
and j2 =

⌊
µt + cµ

1/2
t

⌋
.

A common choice for the sequence of weights w(Xt), t = 1, ..., n, in (16) is w(Xt) =√
1− htt, where htt is the tth diagonal element of the hat matrix H = Xt(X

T
t Xt)

−1XT
t

(see Cantoni and Ronchetti (2001)). However, the hat matrix does not have breakdown
points, i.e., the estimates are not reasonable if large atypical values contaminate the data.
More sophisticated methods can be found in the literature based on the inverse of robust
Mahalanobis distance.

Let µ and
∑

be the location parameter and the covariance matrix of Xt, respectively.
The squared Mahalanobis distance of each observation along a row in Xt from µ with
respect to

∑
is

dµ,
∑(Xt)

2 = (Xt − µ̂)T
∑̂−1

(Xt − µ̂).

To robustify the Mahalanobis distance, the location parameters and the covariance
matrix can be estimated using the minimum covariance determinant algorithm, the fast
MCD (see Rousseeuw (1984), page 877 and Rousseeuw (1985) for more details). In this
procedure, h observations (out n) are chosen whose classical covariance matrix presents
the lowest determinant. Then the MCD estimate of location (µ̂(MCD)) is the average of

the h points, and their covariance matrix is the MCD estimate scatter (
∑̂

(MCD)). In this

paper, we use the weight function w(·) based on the MCD estimates. It is given by

w(Xt) = min

1,
 b

(Yt − µ̂(MCD))T
∑̂−1

(MCD)(Yt − µ̂(MCD))


α/2
 , (17)

where α and b are tuning constants. Simpson et al. (1992) evaluate some values for the
constant α and claim that α = 1 is usual for the class of generalized M-estimators. In
addition, the authors set b equal to the (1 − γ)-quantile of the chi-squared distribution
with k− 1 degrees of freedom, where k is the number of predictor covariates and γ = 0.1
and 0.05.
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Solve equation (15) corresponds to minimize the following equation

Q(δ) =

n∑
t=1

QM (δ), (18)

where QM (δ) is given by

QM (δ) =
∫ µt

s̃
ν(Yt, u)w(Xt)du− 1

n

∑n
j=1

∫ µj

ũ
E[ν(Yj , u)w(Xj)|Ft−1]du,

with s̃ and ũ defined such as ν(Yt, s̃) = 0 and E[ν(Yt, ũ)] = 0 (see Cantoni and Ronchetti
(2001) for more details).

Parameter estimates can be obtained using Newton-Raphson or Fisher-scoring ap-
proximations. The first derivative of Q(δ) is

∂Q(δ)

∂δ
= Sn(δ). (19)

For rt ≤ c the second derivative is

∂2Q(δ)

∂δ∂δT
=

n∑
t=1

[
(Yt − µt)

∂2Wt(δ)

∂δ∂δT
w(Xt)− µt

∂Wt(δ)

∂δ

∂Wt(δ)

∂δT
w(Xt)− a′(δ)

]
. (20)

where

a(δ) = 1
n

∑n
t=1 E

[
ψH

(
Yt−µt

µ
1/2
t

)
w(Xt)µ

1/2
t

∂Wt(δ)
∂δ

∣∣∣∣ Ft−1

]
.

For rt > c the second derivative of Q(δ) with respect to δ is

∂2Q(δ)

∂δ∂δT
=

n∑
t=1

{
csign(rt)w(Xt)

[
1

2
µ
1/2
t

∂Wt(δ)

∂δ

∂Wt(δ)

∂δT
+ µ

1/2
t

∂2Wt(δ)

∂δ∂δT

]
− a′(δ)

}
.

(21)

At the true parameter of δ, E[(yt − µt)|Ft−1] = 0, the expected value of the first
summation in (20) is zero, which motivates the Fisher Scoring approximation:

∂2Q(δ)

∂δ∂δT
=

n∑
t=1

[
−µt

∂Wt(δ)

∂δ

∂Wt(δ)

∂δT
w(Xt)− a′(δ)

]
. (22)

Details about the computation of the derivative a′(δ) = ∂a(δ)
∂δ and the second derivative

of Q(δ) with respect to δ can be found in Appendix 1.

4 Monte Carlo study

A simulation study was conducted to evaluate the performance of the robust estimation
for the GLARMA Poisson model proposed in 3.1. The model is given by

Yt|Ft−1 ∼ Poisson(µt) (23)

ln(µt) = β0 + β1X1,t + Zt. (24)
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Two scenarios were considered to the regressor variable; (X1,t) is an independent N(0, 1)
random variable, and (X1,t) is an autoregressive process of order 1. We set β0 = 1 and
β1 = 0.5. The Monte Carlo simulations were repeated 1000 times with sample sizes equal
to n = 100 and n = 1000. The choice of the tuning parameter for the Huber function was
c = 1.345. However, the cross-validation procedure applied to time series, using blocks,
is also an option to choose the value of this constant (see Bergmeir and Benitez (2012)
and Bergmeir et al. (2018)). Both options were considered in the numerical simulations
and provided similar results.

4.1 Covariate contaminated by additive outliers

Additive outliers perturbed the covariate (X1,t). The contaminated version of X1,t is
defined by X∗

1,t = X1,t+ωφt, where ω = 5 is the magnitude of the outlier which impacts
X1,t and φt indicates the presence or not of this outlier and its sign at time t, i.e., φt = 0
with probability 1− φ, φt = 1 with probability φ/2, and φt = −1 with probability φ/2,
where φ = 0.01

Once Davis et al. (2003) only presented formal properties for the simplest case, where
the time correlation structure is moving average, we will first show the scenario consid-
ering the GLARMA(0,1) model and then extend the simulations for the GLARMA(1,0)
model.

4.1.1 Scenario 1: Moving average process - GLARMA(0,1)

The GLARMA(0,1) model is defined as equations (23) and (24), where {Zt} is a moving
average process of order 1, defined as Zt = θ(Yt−1 − eηt−1)e−ληt−1 with θ = 0.2 and
λ = 0.5, which corresponds to Pearson residuals.

Table 1 presents the parameter estimation considering X1,t as an independent ran-
dom vector in time, following a distribution Normal(0,1). For n = 100, in the classic

procedure, without outliers, the mean of β̂0 and β̂1 was close to the real values, while θ̂
was underestimated. The classic approach in the presence of additive outliers was im-
pacted in the mean of β̂1 and θ̂, with both parameters being underestimated. The mean
squared error (MSE) increased in the presence of outliers for all parameters in the study.
The robust approach without any outlier presented parameter estimations similar to the
classic in the same conditions. However, the mean of θ̂ was closer to the real value of θ,
and consequently, the MSE was smaller than the error observed in the classic method.
Finally, the proposed robust methodology was applied to contaminated data. The results
showed that, differently from the classic GLARMA, the mean of the estimates was not
affected, with values close to the real ones. The MSE was not impacted as well. Similar
conclusions were observed for n = 1000, but the values of the MSE were smaller.

In Table 2, X1,t ∼ AR(1), with the autoregressive parameter assuming value 0.4.
Similarly to Table 1, the classic GLARMA in the absence of contamination presented
parameters estimates closer to the real values, except for θ̂, which was underestimated.
In the presence of additive outliers, β̂1 and θ̂ were again affected. It is important to note
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Table 1: Parameter estimation - X1,t ∼ N(0, 1) - GLARMA(0,1)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.986 0.0057 1.055 0.0084 0.997 0.0006 1.029 0.0014

β̂1 0.509 0.0036 0.403 0.0139 0.503 0.0003 0.403 0.0095

θ̂ 0.121 0.0096 0.079 0.0171 0.126 0.0057 0.094 0.0114

Robust β̂0 0.968 0.0069 0.979 0.0066 0.984 0.0009 0.988 0.0008

β̂1 0.539 0.0054 0.514 0.0049 0.533 0.0014 0.514 0.0005

θ̂ 0.168 0.0063 0.158 0.0069 0.175 0.0011 0.171 0.0013

that the impact in β̂1 was more prominent in this case, which suggests that for covariates
with time correlation structure, the presence of perturbation in the data must be carefully
treated. For the robust approach, the mean of parameters in the study was close to the
actual values, with values of MSE slightly bigger than the classic method, except for θ̂.
The robust GLARMA applied to the series contaminated by additive outliers provided
parameter estimates close to the real ones and MSE values comparable to the results of
the classic method in the absence of outliers. The same conclusions were observed for
n = 100 and n = 1000.

Table 2: Parameter estimation - X1,t ∼ AR(1) - GLARMA(0,1)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.980 0.0064 1.000 0.0055 0.997 0.0005 1.019 0.0009

β̂1 0.493 0.0044 0.338 0.0281 0.501 0.0003 0.424 0.0060

θ̂ 0.111 0.0117 0.112 0.0124 0.120 0.0065 0.108 0.0087

Robust β̂0 0.964 0.0078 0.977 0.0066 0.982 0.0009 0.987 0.0007

β̂1 0.532 0.0063 0.479 0.0047 0.532 0.0014 0.517 0.0006

θ̂ 0.161 0.0072 0.160 0.0077 0.168 0.0015 0.166 0.0016

4.1.2 Scenario 2: Autoregressive process - GLARMA(1,0)

For the GLARMA(1,0) model, defined by equations (23) and (24), {Zt} is an autoregres-
sive process of order 1, where Zt = ϕ[Zt−1 + (Yt−1 − eηt−1)e−ληt−1 ], with ϕ = 0.2, and
λ = 0.5.

Table 3 presents the parameter estimation for X1,t ∼ N(0, 1). For both sample sizes,

in the classic procedure, without perturbations, the mean of β̂0 and β̂1 was close to the
real values, while ϕ̂ was underestimated. The parameter estimates of the classic approach
in the presence of additive outliers were impacted in the mean and MSE of β̂1 and ϕ̂. Both
parameters were underestimated. The robust proposal without contamination presented
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parameter estimations close to the classic in the same conditions, except for ϕ̂, which was
closer to the actual value of ϕ, and displayed an MSE smaller than that observed in the
classic method. When the proposed robust GLARMAmodel was applied to contaminated
data, the mean of the estimates was not affected, with values close to the real ones. The
MSE has practically not changed compared to the scenario without additive outliers.

Table 3: Parameter estimation - X1,t ∼ N(1, 0) - GLARMA(1,0)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.973 0.0071 1.029 0.0073 0.995 0.0006 1.020 0.0009

β̂1 0.501 0.0029 0.404 0.0139 0.505 0.0003 0.421 0.0064

ϕ̂ 0.119 0.0100 0.082 0.0166 0.127 0.0057 0.115 0.0077

Robust β̂0 0.965 0.0082 0.972 0.0078 0.983 0.0009 0.992 0.0007

β̂1 0.536 0.0049 0.507 0.0041 0.530 0.0012 0.502 0.0003

ϕ̂ 0.169 0.0064 0.160 0.0069 0.178 0.0009 0.176 0.0011

Table 4 presents the parameter estimation for X1,t ∼ AR(1). As observed in Table 3,
the classical method in clear data presented parameter estimates closer to the real values,
except for ϕ̂, which was underestimated. In the presence of additive outliers β̂1 and ϕ̂
were affected. Note that β̂1 = 0.299, while the real parameter value is 0.50, a significant
reduction. For the robust approach, the mean of parameters in the study was close to the
actual values, with values of MSE slightly bigger than the classic method, except for ϕ̂.
The robust GLARMA applied to the series contaminated by additive outliers provided
parameter estimates close to the real ones and MSE values similar to the classic method
in the absence of outliers. Similar results were observed for n = 100 and n = 1000.

Table 4: Parameter estimation - X1,t ∼ AR(1) - GLARMA(1,0)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.981 0.0069 1.005 0.0059 0.997 0.0006 1.041 0.0022

β̂1 0.511 0.0042 0.299 0.0414 0.503 0.0003 0.376 0.0153

ϕ̂ 0.117 0.0099 0.135 0.0081 0.119 0.0068 0.108 0.0088

Robust β̂0 0.967 0.0079 0.983 0.0068 0.982 0.0009 0.993 0.0006

β̂1 0.549 0.0072 0.482 0.0038 0.528 0.0012 0.499 0.0003

ϕ̂ 0.169 0.0059 0.168 0.0066 0.167 0.0015 0.166 0.0016

4.2 Response variables Yt contaminated by additive outliers

The effect of additive outliers in count time series was evaluated considering GLARMA(0,1)
and GLARMA(1,0) models under scenarios where covariate is an independent random
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variable and X1,t ∼ AR(1). The contaminated version of Yt is defined by Y ∗
t = Yt+ωφt,

where ω = 30 is the magnitude of the outlier which impacts Yt and φt indicates the
presence or not of this outlier at time t, i.e., φt = 1 with probability φ, and φt = 0 with
probability 1− φ, where φ = 0.01.

4.2.1 Scenario 3: Moving average process - GLARMA(0,1)

GLARMA(0,1) model is defined according equations (23) and (24), where process {Zt}
is a moving average of order 1, given by Zt = θ(Yt−1 − eηt−1)e−ληt−1 with θ = 0.2 and
λ = 0.5.

Table 5 presents the parameter estimation for X1,t ∼ N(0, 1). Under the classical

procedure, with clear data, the mean of β̂0 and β̂1 was close to the real values, and θ̂
was underestimated. However, all parameters were impacted by additive outliers on the
count response variable. β̂0 was overestimated, while β̂1 and θ̂ were underestimated. The
MSE increased in the presence of outliers for all parameters in the study. The robust
approach without additive outliers on {Yt} presented parameter estimates similar to the

classic in the same conditions. But, the mean of θ̂ was closer to the real value of θ, while
its MSE was smaller than the in the classic method. The robust methodology applied to
contaminated data showed that the mean of the estimates was not affected, with values
close to the real ones. The MSE slightly decreased. Similar conclusions were observed
for n = 1000.

Table 5: Parameter estimation - X1,t ∼ N(0, 1) - GLARMA(0,1)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.977 0.0071 1.121 0.0194 0.996 0.0006 1.137 0.0193

β̂1 0.526 0.0047 0.388 0.0153 0.504 0.0003 0.468 0.0012

θ̂ 0.120 0.0099 0.009 0.0371 0.125 0.0058 0.031 0.028

Robust β̂0 0.968 0.0077 0.977 0.0071 0.982 0.0009 0.997 0.0006

β̂1 0.539 0.0053 0.526 0.0047 0.533 0.0014 0.531 0.0013

θ̂ 0.171 0.0073 0.168 0.0060 0.172 0.0012 0.165 0.0017

Table 6 presents the parameter estimates forX1,t ∼ AR(1). The classic GLARMA(0,1),
for n = 100, in the absence of contamination on {Yt} presented estimates closer to the

real values, only for β̂0. β̂1 and θ̂ were underestimated. For n = 1000, only θ̂ was un-
derestimated, while β̂0 and β̂1 were close to actual values. In the presence of outliers, all
parameters were affected. Note that the impact for n = 1000 was more prominent in this
case. For both sample sizes, in the robust approach, without additive outliers, the mean
of parameters in the study was close to the real ones. In the presence of perturbations
on the response variable, the robust approach provided parameter estimates close to the
true values and MSE measures comparable to the results of the classic method in the
absence of outliers.
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Table 6: Parameter estimation - X1,t ∼ AR(1) - GLARMA(0,1)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.993 0.0056 1.117 0.0184 0.998 0.0005 1.303 0.0921

β̂1 0.447 0.0059 0.396 0.0134 0.502 0.0003 0.318 0.0331

θ̂ 0.116 0.0104 0.013 0.0351 0.125 0.0058 -0.005 0.0425

Robust β̂0 0.982 0.0064 0.992 0.0066 0.983 0.0008 1.043 0.0024

β̂1 0.505 0.0040 0.492 0.0037 0.536 0.0017 0.507 0.0004

θ̂ 0.167 0.0061 0.154 0.0067 0.172 0.0012 0.141 0.0039

4.2.2 Scenario 4: Autoregressive process - GLARMA(1,0)

The GLARMA(1,0) model is defined by equations (23) and (24), with the autoregressive
process of order 1 {Zt} given by Zt = ϕ[Zt−1 +(Yt−1 − eηt−1)e−ληt−1 ], with ϕ = 0.2, and
λ = 0.5.

Table 7 presents the parameter estimation forX1,t ∼ N(0, 1). In the classic procedure,

without additive outliers, the mean of β̂0 and β̂1 was close to the real values, while ϕ̂
was underestimated. All the parameter estimates were impacted in the presence of
additive outliers on {Yt}. The MSE increased in the presence of outliers for parameters

β̂0 and β̂1, for n = 100. For n = 1000, the MSE increased for all parameters. The
robust approach without outlier presented parameter estimations close to the classic in
the same conditions, except for ϕ̂, which was more relative to the true value of ϕ. As
expected, for this parameter, the MSE was smaller than that observed in the classic
method. Applying the robust procedure to the contaminated data, the mean of the
estimates was not affected, with values close to the real ones.

Table 7: Parameter estimation - X1,t ∼ N(0, 1) - GLARMA(1,0)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.975 0.0068 1.229 0.0565 0.996 0.0006 1.183 0.0340

β̂1 0.506 0.0024 0.423 0.0076 0.503 0.0002 0.431 0.0049

ϕ̂ 0.121 0.0093 0.111 0.0080 0.127 0.0056 0.010 0.0359

Robust β̂0 0.963 0.0081 1.004 0.0065 0.985 0.0008 1.000 0.0005

β̂1 0.527 0.0036 0.509 0.0028 0.528 0.0011 0.525 0.0009

ϕ̂ 0.167 0.0059 0.170 0.0050 0.176 0.0010 0.168 0.0014

Table 8 presents the parameter estimation for X1,t ∼ AR(1). As observed in Table 7,
the classical method, without perturbation, presented parameter estimates closer to the
real values, except for ϕ̂, which was underestimated. In the presence of additive outliers,
all parameters were affected. For the robust approach, the mean of parameters in the
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study was close to the actual values, with values of MSE slightly bigger than the classic
method, except for ϕ̂. The robust GLARMA applied to response variables perturbed
by additive outliers provided parameter estimates close to the real ones and MSE values
comparable to the classic method in the absence of outliers. Similar results were observed
for n = 100 and n = 1000.

Table 8: Parameter estimation - X1,t ∼ AR(1) - GLARMA(1,0)

n=100 n=1000
no outlier with outlier no outlier with outlier

Mean MSE Mean MSE Mean MSE Mean MSE

Classic β̂0 0.975 0.0067 1.28 0.0824 0.997 0.0006 1.118 0.0146

β̂1 0.501 0.0032 0.413 0.0097 0.501 0.0003 0.448 0.0029

ϕ̂ 0.116 0.0105 -0.007 0.0439 0.117 0.0071 0.021 0.0319

Robust β̂0 0.966 0.0077 0.988 0.0063 0.982 0.0010 0.993 0.0007

β̂1 0.525 0.0043 0.530 0.0048 0.525 0.0009 0.523 0.0009

ϕ̂ 0.160 0.0069 0.166 0.0076 0.165 0.0016 0.162 0.0018

The empirical study showed that the classic GLARMA is impacted by additive out-
liers, independently of the perturbation affecting the covariate or the response variable.
The proposed robust GLARMA approach provides similar results to the classic in the
absence of additive outliers. In contaminated data, the robust approach was superior,
providing parameter estimates closer to the true values with small MSE measures. In all
scenarios analyzed, the MSEs for n = 1000 were smaller than n = 100, independently of
the methodology applied.

5 Real data analysis

A real data analysis was realized to evaluate the impact of the Particulate Material
(PM10) on the monthly number of deaths by respiratory diseases between 2011 to 2018
(n = 96) in the Great Vitoria region (GVR), Brazil, which is a port and industrialized
region, densely populated in the state of Esṕırito Santo, with approximately 1,900,000
inhabitants. Although the atmosphere is composed of many gases and particulate mat-
ter, only PM10 was considered because the data quality of other contaminants during
the period was too poor. The PM10 are microscopic solid particles and liquid droplets
suspended in the air, with a diameter of 10 micrometers (µm) or less. This particle
pollution mainly comes from motor vehicles, wood-burning heaters, and industry. It
has been associated with premature mortality, increased hospital admissions for heart
or lung causes, acute and chronic bronchitis, asthma attacks, and respiratory symptoms
(Schwartz (2000)).

A significant correlation was observed between the number of deaths and the maxi-
mum monthly concentrations of PM10 in the atmosphere (ρ = 0.45). Imputation data
were performed before fitting the model to handle the missing observations presented
in the PM10 series. We used the multivariate imputation by chained equation method
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(MICE), proposed by van Buuren and Oudshoorn (2000).

Figure 1 presents the series of deaths caused by respiratory diseases and concentra-
tions of PM10. The number of deaths shows a positive trend and seasonal behavior.
Furthermore, the PM10 concentration also presents a positive trend and three peaks.
These aberrant observations can be considered additive outliers.

Figure 1: Time series of the number of deaths by respiratory diseases and concentrations of
PM10 in the metropolitan area of Vitoria, Brazil.

The modeling considered a slightly positive trend in the number of deaths, and to
handle the annual seasonality, sine and cosine functions were incorporated. The model
is written as

ηt = β1xt,1 + β2trend + β3 sin(2πt/12) + β4 cos(2πt/12) + Zt, (25)

where t is the month number, xt,1 is the PM10 concentrations and Zt is the autocorrela-
tion structure of the GLARMA model.

The classic GLARMA Poisson (Davis et al. (2003)) and the robust approach proposed
in Section 3.1 were adjusted, and their parameter estimation was compared. Table 9
presents the estimates β̂i’s of the parameters βi’s in the classic model. All the estimates
were significant at the 5% level of significance, except β1, the coefficient related to the
PM10 levels in the atmosphere.

Table 10 presents the estimates of the robust GLARMA model. All the estimates
were significant at the 5% level of significance.

Figure 2 plots the sample autocorrelation function (ACF) and the sample partial auto-
correlation function (PACF) of the residuals in the classic and robust GLARMA models.
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Table 9: Parameter estimates of the classic GLARMA model fitted to the number of deaths
caused by respiratory diseases.

Intercept β̂1 β̂2 β̂3 β̂4
Estimate 4.0571 0.0003 0.0034 -0.0573 -0.0954
Standard error 0.0383 0.0002 0.0006 0.0228 0.0228
p-value <2e-16 0.0706 <1.9e-06 0.0121 2e-05

Table 10: Parameter estimates of the robust GLARMA model fitted to the number of deaths
by respiratory diseases.

Intercept β̂1 β̂2 β̂3 β̂4
Estimate 4.0097 0.0009 0.0030 -0.0495 -0.0824
Standard error 0.0311 0.0001 0.0004 0.0177 0.0180
p-value <2e-16 2e-07 1e-10 0.0053 4e-06

These plots show no difference with white noise, indicating a reasonable adjustment in
both approaches.

Figure 2: Sample ACF and PACF of the residuals in the classic and robust GLARMA models.

(a) Classic GLARMA model. (b) Robust GLARMA model.

The parameter estimation in Tables 9 and 10 shows that although there is a signifi-
cant correlation between PM10 concentrations and the monthly number of deaths in the
period, in the classic GLARMA model, the parameter related to the pollutant was not
significant at 5% level of significance. However, in the robust approach, the impact of
the PM10 was significant, which means that this pollutant contributes significantly to the
increase in deaths caused by respiratory diseases. It is essential to observe that the value
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of parameter β1 seems to be underestimated in the classic model (β̂1(classic) = 0.0003),

once the robust estimate was three times this value (β̂1(robust) = 0.0009).

To evaluate the performance of the GLARMA robust proposal in this real data analy-
sis, we removed the peaks in PM10 concentration measurements and replaced them with
its mean value. Then the classic GLARMA model was adjusted to the series without
the extreme values. The robust approach is expected to behave approximately the same
as this model. The values of the parameter estimates in Table 11 are similar to those in
Table 10, with emphasis on β1, the main affected by the presence of outliers, confirming
our expectation.

Table 11: Parameter estimates of the classic GLARMA model fitted to the number of deaths
by respiratory diseases.

Intercept β̂1 β̂2 β̂3 β̂4
Estimate 4.0196 0.0008 0.0033 -0.0540 -0.0874
Standard error 0.0447 0.0003 0.0005 0.0220 0.0225
p-value <2e-16 0.0274 2e-08 0.0143 0.0001

In the epidemiology context, the impact of air pollutants on human health is evaluated
by relative risk (RR). The RR of a variable Xi = Xi,t is the change in the expected count
of the response variable per ζ-unit change in the Xi, keeping the other covariates fixed.

For Poisson regression, the RR is given by

R̂RXi(ζ) = exp(β̂iζ) (26)

The approximate confidence interval (CI) at an α significance level in the GLARMA with
Poisson marginal distribution is

ĈI{RRxi(ζ)} = exp
{
ζ
(
β̂i − zα/2 se(β̂i); β̂i + zα/2 se(β̂i)

)}
, (27)

where β̂i is the conditional maximum likelihood estimator β̂i,n of βi, se(β̂i) is the esti-

mated standard deviation of β̂i, and zα/2 denotes the (1−α/2)-quantile of the standard
normal distribution.

The RR of the air pollutants is important information for the regulatory agencies to
quantify the impact of these contaminants on the population’s health. Table 12 presents
the estimated RR and CIs for PM10. The CIs were calculated with the bootstrap ap-
proach proposed by Camara et al. (2022) and the asymptotic approximation (equation
(27)), with α = 5%. The R̂R was significant considering the classic and robust ap-
proaches (the value one does not belong to the intervals). In addition, the asymptotic
and bootstrap CIs were equivalent, indicating that the classic model underestimated the
relative risk. This result is in agreement with that observed in the simulation study.
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Table 12: Estimated RR and 95% CI for PM10 in the classic and robust GLARMA models.

PM10
Classic

GLARMA
Robust

GLARMA

R̂R 1.0187 1.0497

ĈI asymptotic [1.0001;1.0376] [1.0305;1.0692]

ĈI bootstrap [1.0004;1.0379] [1.0217;1.0794]

6 Conclusions

This work proposed a robust approach for the GLARMA model, introduced by Davis
et al. (2003). This methodology is based on the robustification of the quasi-likelihood
function using M -estimator to control deviations on response variable and weight func-
tions to limit leverage points on covariates.

The simulation study showed that additive outliers could widely affect the classic
GLARMA. The robust proposal behaves approximately like the classical approach in the
absence of outliers. At the same time, for contaminated data, the parameter estimation
was almost as good as the classic method applied to clean observations.

The robust model was applied to the monthly number of deaths caused by respi-
ratory diseases in Vitória, Brazil, to evaluate the impact of PM10 in the populations’
health. This analysis showed that the RR is underestimated by the classic method,
which means ignoring the impact of more than 100% of the exposure on the outcome.
The numerical study agrees with this observation. The RR observed indicated that the
PM10 contributed significantly to the increase of deaths by respiratory disease in the
region.
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Appendix 1

The derivative of constant a(δ) with respect to δ is

a′(δ) =
∂a(δ)

∂δ
=

1

n

n∑
t=1

[(A)(B) + (C)(D)] , (28)

where
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For rt ≤ c, the first derivative of Q(δ) with respect to δ is given by

∂Q(δ)

∂δ
=
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Yt − µt

µ
1/2
t

)
1
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Thus, the second derivative of Q(δ) with respect to δ is
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For rt > c, the first derivative of Q(δ) with respect to δ is given by
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where

∂
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sign(rt) = 2δ(rt),

and δ(.) is the Dirac delta function. By definition, δ(rt) = 0 if rt ̸= 0. As rt > c, c > 0,
δ(rt) = 0. Then
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