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Abstract: Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) protocols were in-
troduced to address vulnerabilities related to detector side-channel attacks in traditional QKD systems.
In conventional architectures, imperfections or inadequate protection of detectors may be exploited by an
eavesdropper to compromise security without violating the principles of quantum mechanics. In contrast,
MDI-QKD removes the need to trust the detectors by delegating the measurement stage to a central relay,
which may even be controlled by an adversary, without compromising the security of the key shared between
legitimate users. The integration of the MDI paradigm with the advantages of continuous-variable QKD
(CV-QKD), such as compatibility with telecommunication technologies, room-temperature operation, and
the elimination of the need for single-photon sources, makes MDI-CV-QKD a highly promising approach for
metropolitan-scale quantum networks. Additionally, it supports high key rates over short distances. In the
prepare-and-measure version, Alice and Bob encode data into modulated coherent (or squeezed) states using
Gaussian or non-Gaussian distributions and send them to an untrusted relay, where a continuous-variable
Bell measurement is performed using balanced beam splitters and homodyne detectors. The measurement
results are publicly announced but do not reveal information about Alice’s and Bob’s original states, preserv-
ing security through sufficient statistical correlations. In this work, we present a study of the MDI-CV-QKD
protocol in a symmetric scenario under symmetric attacks. Although this configuration is not the most effi-
cient from a theoretical standpoint, it holds practical relevance. Moreover, the assumed symmetry enables
a simplified security analysis, allowing for the derivation of feasible analytical expressions.
Keywords: Continuous variable quantum key distribution. Measurement device independent. Coherent
states. Bell measurement.

1. Introduction

Quantum cryptography has emerged as one of the

most mature quantum technologies for ensuring

secure communication in the era of rapidly ad-

vancing quantum computing [1-6]. Among the

various quantum key distribution (QKD) proto-

cols, CV-QKD systems stand out due to their

compatibility with existing optical infrastructures

and their ability to deliver high secret key rates

[6]. However, the practical implementation of CV-

QKD still faces significant challenges over long

distances, mainly due to optical channel loss, lim-

ited detection efficiency, and vulnerabilities asso-

ciated with measurement devices [2,6]. In this

context, measurement-device-independent QKD

(MDI-QKD) protocols represent a promising al-

ternative for mitigating attacks that exploit de-

tector imperfections [1]. By combining the ad-

vantages of CV-QKD and MDI-QKD protocols,

MDI-CV-QKD aims to enable secure key distri-

bution at high rates over metropolitan distances

while simultaneously removing trust assumptions

on measurement devices. The first MDI-CV-QKD

protocol was proposed in [2-3], employing Gaus-

sian modulation of coherent states and continuous-

variable Bell detection. This approach laid the

groundwork for a new class of protocols capa-
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ble of leveraging the practicality of continuous-

variable systems with the enhanced security of

MDI architectures.

2. MDI-CV-QKD Protocol

MDI-CV-QKD protocols represent a class of

quantum key distribution (QKD) schemes that

combine two key approaches:

• Continuous Variables (CV-QKD): Informa-

tion is encoded in continuous properties

of light, such as the amplitude and phase

quadratures of coherent or squeezed states.

• Measurement device independence: The

need to trust measurement devices is elimi-

nated by delegating detection to an untrusted

central relay.

As in conventional CV-QKD protocols, MDI-

CV-QKD also admits two distinct yet equiva-

lent representations: the prepare-and-measure ver-

sion, which enables practical implementation of

the protocol, and the entanglement-based version,

which provides the mathematical framework nec-

essary for security analysis. In the prepare-and-

measure version of MDI-CV-QKD protocols, Al-

ice and Bob encode the key into modulated coher-

ent states, which are sent to a central station (Char-

lie).

Charlie performs a continuous-variable Bell mea-

surement, and the results are publicly announced,

allowing Alice and Bob to share a secret key

without revealing sensitive information to a po-

tential eavesdropper (Eve), even if she controls

the relay. In the entanglement-based representa-

tion, there is a difference in the state preparation

stage: Alice and Bob independently prepare two-

mode squeezed vacuum (TMSV) states, sending

one mode to the relay while retaining the other.

These retained modes are measured locally via

heterodyne detection at Alice’s and Bob’s stations,

while the transmitted modes undergo the same

Bell measurement procedure as in the preparation-

and-measure case.

This version can be interpreted as an entanglement

swapping protocol, where the Bell measurement

on the transmitted modes generates a Gaussian en-

tangled state between the modes held by Alice and

Bob.

2.1. Protocol Steps

Quantum State Preparation: Alice and Bob in-

dependently encode your information into the

quadratures of coherent states, using randomly

modulated amplitudes. Consequently, Alice ini-

tiates the protocol by preparing mode A in a co-

herent state |α⟩ where the complex amplitude

α is modulated according to a two-dimensional

Gaussian distribution with zero mean and vari-

ance ϕ in each quadrature. Similarly, Bob pre-

pares mode B in a coherent state |β ⟩, where β fol-

lows the same Gaussian modulation. These states
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are then transmitted through potentially insecure

quantum channels to a central relay, which per-

forms a continuous-variable Bell measurement [2-

5]. In the entanglement-based representation, Al-

ice and Bob prepare a two-mode squeezed vacuum

(TMSV) state. By performing a heterodyne mea-

surement on one mode of their entangled pair, both

Alice and Bob effectively prepare a coherent state

through the resulting projection on the comple-

mentary mode. This correspondence establishes

the statistical and operational equivalence between

the prepare-and-measure and entanglement-based

models [2]. Continuous-Variable Bell Measure-

ment: The relay performs a Bell measurement

by mixing modes A and B on a balanced (50:50)

beam splitter, whose action is described by the fol-

lowing unitary transformation: âC = (âA − âB)
√

2

and âD = (âA + âB)
√

2 representing the annihila-

tion operators of the output modes, which can be

rewritten in terms of q̂C = (q̂A − q̂B)
√

2 and p̂D =

(p̂A + p̂B)
√

2, the relay measures the conjugate

quadratures q̂C and p̂D via homodyne detection,

yielding the following classical values ⟨q̂C⟩ = q−

and ⟨p̂D⟩ = p+. These outcomes are combined

into the complex variable γ = (q−+ ip+)/
√

2.

The probability distribution p(γ) depends on the

Gaussian modulations applied by Alice and Bob.

The value of γ is then publicly announced, via

a classical and authenticated channel, allowing

Alice and Bob to establish classical correlations

without revealing their individual data [2].

Interception Strategies: The most general eaves-

dropping strategy consists of a coordinated attack

targeting both Charlie’s measurement device and

the communication channels along links LAC and

LBC effectively modeling a global unitary attack

on the whole system accessible to Eve. In this

case, since the protocol employs Gaussian mod-

ulation and Gaussian-state detection, the optimal

attack necessarily involves Gaussian unitary oper-

ations. This is justified in the asymptotic regime

against collective attacks, where the extremality of

Gaussian states ensures that, for fixed covariance

matrices, Gaussian attacks maximize the accessi-

ble information to the eavesdropper. This greatly

simplifies the security analysis [7]. Taking into

account the reconciliation efficiency β , the secret

key rate is given by

K := β I (A : B)− IE (1)

where I (A : B) denotes the mutual information be-

tween Alice and Bob, and IE denotes Eve’s Holevo

information with respect to the reference party [2,

6]. Both the mutual information and Eve’s Holevo

information are conditioned on the variable γ .

3. Symmetric MDI-CVQKD model

The theoretical analysis of the MDI-CV-QKD

protocol begins with the modeling of the quan-

tum states prepared by Alice and Bob. In

the entanglement-based representation both par-

ties generate EPR pairs, whose covariance matrix
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Figure 1: Prepare-and-Measure scheme configu-
ration of the protocol extracted from [10].

Symmetric setup with the untrusted relay located midway
between the parties.

Figure 2: Illustration of the entanglement-based
scheme of the protocol extracted from the article
[10].

Entanglement-based picture of the protocol under a
two-mode Gaussian attack. Eve introduces ancillary modes
through two beam splitters with transmissivity τ .

(CM) is given by [8, 9]:

V (µ) =

 µI
√

µ2 −1σz√
µ2 −1σz µI

 (2)

where µ = ϕ + 1 describes the noise variance

in the quadratures (associated with the degree of

squeezing), I is the 2x2 identity matrix and σz =

diag(1,−1) is the Pauli Z matrix. This state en-

codes quadrature correlations that are essential for

the protocol.

3.1. State preparation with local detection

To transform these EPR states into coherent states

to be sent through the channel, modes a and b from

Alice and Bob, respectively, are measured locally

via heterodyne detection. This measurement in-

troduces vacuum noise and projects modes A and

B into coherent states |α⟩ and |β ⟩ (with a certain

attenuation relative to the coherent state prepared

in the PM model), with a resulting conditional co-

variance matrix [8]:

VA|a =VB|b = µI− µ2 −1
µ +1

I= I, (3)

this transformation results in the transmission of

coherent states to the untrusted central relay (Char-

lie), which performs a Bell measurement.

3.2. Central relay action and Eve’s Attack

The global quantum system is then composed of

the modes of Alice, Bob, and Eve, structured

in a global CM: VaABbE1E2 = VaA ⊕VbB ⊕VE1E2 ,

where Eve’s contribution is modeled as a two-

mode Gaussian state. It is convenient to permute

the modes such that the covariance matrix is ar-

ranged in the order of action of the beam split-

ters, with VabAE1E2B and Ia ⊕ Ib ⊕BS, where BS =

S (τ)⊕S (τ)T .

The characterization of the two-mode Gaussian at-

tack performed by Eve involves the reduced state

of two auxiliary modes, E1 and E2, extracted from
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a reservoir and interacting with modes A and B

through two beam splitters with transmissivity τ

(symmetric model). The mixing of the modes via

this interaction accounts for the losses in the Al-

ice–Charlie and Bob–Charlie channels. After the

action of the beam splitters, the output auxiliary

systems E1 and E2, are stored in a quantum mem-

ory, along with the remaining auxiliary systems of

the reservoir. The covariance matrix of Eve’s two-

mode state, in the symmetric normal form associ-

ated with the reduced state, is given by:

VE1E2 =

 ωI G

G ωI

 , (4)

where G = diag(g,g′) determines the correlations

between E1 and E2 , while ω represents the vari-

ance of the thermal noise introduced at the beam

splitters. For given values of thermal noise, Eve’s

covariance matrix is fully determined by the corre-

lation parameters, which must satisfy a set of bona

fide conditions (derived by the uncertainty princi-

ple) and can be represented as a point in a corre-

lation plane. Due to the symmetry of the proto-

col, it is possible to reduce the number of param-

eters and derive a simple analytical expression for

the secret-key rate. This allows for the analysis of

symmetric attacks in terms of the correlation pa-

rameters g and g′.

In this work, we consider only the case where

Eve’s systems are uncorrelated (g = g′ = 0). The

symmetry also ensures the equivalence between

direct and reverse reconciliation. After the at-

tack, the output modes A′ and B′ are subjected

to continuous-variable Bell detection, while Eve’s

output modes, E ′
1 and E ′

2, together with all other

ancillary modes, are measured by a coherent mea-

surement at the end of the protocol. We can com-

pute the secret key rate from the conditional state

of modes a and b after homodyne detections per-

formed by Charlie and the communication of the

outcome γ . In this case, the rate is given by

K = Iab|γ − IE|γ , with IE|γ being the conditional

mutual information between Alice and Bob, and

Iab|γ represents the Holevo information accessible

to Eve from the output ancillary states.

Since the output modes are in a global pure state,

and given the nature of the homodyne and hetero-

dyne detections performed, the von Neumann en-

tropies associated with the post-relay conditional

state of Alice and Bob, as well as the state of

Bob conditioned on the detections by Alice and

the central relay, allow the determination of Eve’s

Holevo information:

IE|γ = S
(
ρab|γ

)
−S
(
ρb|γα̃

)
(5)

and the mutual information can be computed via

signal-to-noise ratio [2]:

IAB = log
(

µ

χ

)
(6)

where the noise term χ = χ (τ,ω), can be de-
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scribed by the reduced covariance matrices after

the relay and after Alice’s measurement.

From the covariance matrix Vab|γ , all the informa-

tion required to compute the secret key rate can be

determined. Under the imposed symmetry condi-

tions, it takes the following form:

Vab|γ =


µ − xy xy

µ − xy′ −xy′

xy µ − xy

−xy′ µ − xy′

 ,

(7)

with
x := τ

(
µ2 −1

)
/2

y := 1/(τµ +λ ) , y′ := 1/(τµ +λ ′)

λ := (1− τ)(ω −g) , λ ′ := (1− τ)(ω −g′) .

To determine the entropic quantity S
(
ρab|γ

)
, in

this context, it is sufficient to compute the sym-

plectic eigenvalues of the covariance matrix. In

the limit µ >> 1, It is possible to obtain [2,9,10]

S
(
ρab|γ

)
= loge2

√
λλ ′µ/4µ , and now, for com-

puting the double conditional covariance matrix, it

is convenient put the Vab|γ in the block form and

apply the heterodyne detection on Alice’s mode a,

getting

S
(
ρb|γα̃

)
= h

(√
(τ +2λ )(τ +2λ ′)/τ

)
, (8)

and therefore we have the Holevo quantity. The

conditional mutual information between Alice and

Figure 3: (Color online) Secret key rate as a func-
tion of distance under collective attacks for differ-
ent levels of thermal noise.

Secret key rate as a function of distance for a CV-QKD
protocol under collective attacks, assuming a symmetric
configuration and setting the correlation parameters
g = g′ = 0. The analysis considers thermal noise levels
ω = {1;1.05;1.1;1.2}, reconciliation efficiency β = 0.99,
modulation variance µ = 10, and fiber loss rate 0.2 dB/km .
The secret key rate is computed using analytical expressions
derived under Gaussian collective attacks. The vertical
dashed lines indicate the maximum secure distances K = 0
for each value of ω , beyond which key distribution is no
longer secure.

Bob can be computed from the covariance matrix,

and thus we can obtain the
(
Vab|γ + I

)
/2 expres-

sion for the secret key rate in the symmetric model

[10]:

K = log

(
τ

e2
√

λλ ′ (τ +λ )(τ +λ ′)

)
+h
[√

(τ +2λ )(τ +2λ ′)/τ

]
. (9)

In the key rate calculations, we considered the par-

ticular case where g = g′ = 0 and evaluated the

distances that allow for a positive key rate under

the presence of thermal noise and in the pure-loss

regime. We identified a maximum distance of 3.8
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km for pure loss and 3.2 km for the case with

ω = 1.2. These ranges are expected to increase in

the asymmetric scenario, which will be addressed

in the continuation of this work, along with the

evaluation of other protocol parameters.

4. Final Remarks

In this work, we analyze the MDI-CV-QKD pro-

tocol based on Ref. [10], considering a symmetric

scenario under symmetric attacks. Although this

configuration is not the most efficient from a the-

oretical perspective, it remains relevant due to its

potential for practical implementation in quantum

network applications. Moreover, the symmetry al-

lows for a simplified security analysis, enabling

the derivation of more simple analytical expres-

sions.

Acknowlegement

This work has been fully funded by the project

“Comparative Analysis of PM protocols for

Quantum Cryptography” supported by QuIIN -

Quantum Industrial Innovation, EMBRAPII CI-

MATEC Competence Center in Quantum Tech-

nologies, with financial resources from the PPI

IoT/Manufatura 4.0 of the MCTI grant number

053/2023, signed with EMBRAPII.

References

1. Lo HK, Curty M, Qi B. Measurement-device-

independent quantum key distribution. Phys Rev

Lett. 2012;108(13):130503.

2. Pirandola S, et al. High-rate measurement-

device-independent quantum cryptography. Nat

Photonics. 2015;9(6):397–402.

3. Ma XC, et al. Gaussian-modulated coherent-

state measurement-device-independent quantum

key distribution. Phys Rev A. 2014;89(4):042335.

4. Fletcher AI, et al. An overview of CV-MDI-

QKD. arXiv Preprint. 2025;arXiv:2501.09818.

5. Li Z, et al. Continuous-variable measurement-

device-independent quantum key distribution.

Phys Rev A. 2014;89(5):052301.

6. Ghoreishi SA, et al. The future of se-

cure communications: device independence

in quantum key distribution. arXiv Preprint.

2025;arXiv:2504.06350.

7. García-Patrón R, Cerf NJ. Unconditional

optimality of Gaussian attacks against continuous-

variable quantum key distribution. Phys Rev Lett.

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future – 2025



2006;97(19):190503.

8. Laudenbach F, et al. Continuous-variable

quantum key distribution with Gaussian modu-

lation—the theory of practical implementations.

Adv Quantum Technol. 2018;1(1):1800011.

9. Weedbrook C, et al. Gaussian quantum

information. Rev Mod Phys. 2012;84(2):621–69.

10. Ottaviani C, Spedalieri G, Braunstein SL,

Pirandola S. Continuous-variable quantum cryp-

tography with an untrusted relay: detailed security

analysis of the symmetric configuration. Phys Rev

A. 2015;91(2):022320.

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future – 2025


	Introduction
	MDI-CV-QKD Protocol
	Protocol Steps

	Symmetric MDI-CVQKD model
	State preparation with local detection
	Central relay action and Eve’s Attack

	Final Remarks

