MACEID - ALAGOAS

15° ENCONTRO BRASILEIRO SOBRE ADSORCAQ

15th Brazilian Meeting about Adsorption

Deep Learning Surrogate Models for High-Pressure CO2 Adsorption:
A Bayesian Approach with Extended Peng-Robinson Equation

Marlon de Souza Gama?, Felipe Rocha Pinto ?, Carla L. Manske Camargo ?, Frederico
Wanderley Tavares *°, Amaro Gomes Barreto Jr.>*
4 Chemical and Biochemical Engineering Processes (EPQB),School of Chemistry - EQ/UFRJ, Federal University of Riode Janeiro,

Rio de Janeiro, RJ, Brazil
b Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Abstract

Accurate modeling for the removal of carbon dioxide (CO2) by adsorption entails the integration of principles of mass,
energy, and momentum conservation with adsorption models. In this context, the thermodynamic description of
adsorption equilibrium can be approached at various levels of detail. However, incorporating highly detailed isotherms
presents a significant challenge for adsorption column solvers, as it requires solutions at each time step and position,
leading to a substantial increase in computation time. To address this challenge, we developed a Deep Neural Network
to train a surrogate model using adsorption data obtained through the solution of an extended Peng-Robinson model for
confined fluids. These equilibrium data for CO2 adsorption were obtained by a Magnetic Suspension Balance (MSB),
which enables sorption measurements at elevated pressures. We evaluated the extended Peng-Robinson model within a
Bayesian framework to generate a collection of pseudo-experimental points, aiming to be used as inputs to train a model
based on pattern identification techniques. The Bayesian structure is advantageous as it incorporates information from
experimental data and prior assumptions of general knowledge (a priori knowledge) to generate posterior distributions
of parameters and models. Finally, the output from the surrogate model is integrated into the mass balance equations
while solving the partial differential equations that describe an adsorption column for CO> removal. This approach
results in a model for the evolution of the mass front in a fixed bed, facilitating enhanced accuracy in predicting system
behavior.
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ignoring the nature of the molecules and the
fundamentals of molecule-surface interactions.
Although it serves the purpose, this approach limits
the range of application of the model.

1. Introduction

The adsorption process is widely used in

industries to separate different fluids, including
CO; capture. Developing adsorption models is
essential for this process's optimization, design, and
operation. Generally, mass and energy balances are
necessary to model separation and purification in
fixed bed columns. The axial dispersion term and a
mass transfer model in the film using the linear
drive force (LDF) equation are expected for a
rupture simulation. In other words, the kinetic
terms are consolidated in the literature. The
bottleneck occurs when choosing predictive and
accurate models for determining the adsorption
isotherm, which is necessary information for the
modeling. For pure substances and mixtures, it is
expected to estimate the isotherm parameters,

Travalloni et al. (2014) [1] and Barbosa et al.
(2016) [2] propose an extension of the Peng-
Robinson equation of state for confined fluids (PR-
C) based on Grand-Canonical Monte Carlo
simulations. It is applied as a hypothesis that the
particles are hard spheres, confined in slit-like
pores and interacting with each other by square-
well potential. PR-C was able to make good
correlations of type IV isotherms and present
excellent predictions when compared with
experimental results for the adsorption of
CH4/CO2/N, mixtures on activated carbon at high
pressures.
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The main objective of this work is based, in
particular, on scale integration. First, the PR-C
equation of state is applied to calculate the absolute
adsorption of CO, isotherms at high pressures.
Then, a Bayesian statistical analysis is applied to
make inferences about the parameters and output
variables of the PR-C model.

For coupling the equation of state with the fixed-
bed model, a model was trained based on machine
learning to perform fast calculations of the
adsorbed CO, concentration under multiple
temperature and pressure conditions.

2. Methodology

2.1. Experimental Data

The adsorption equilibrium isotherms of CO:
were obtained at the ATOMS Laboratory (Applied
Thermodynamics and Molecular Simulation) of the
Federal University of Rio de Janeiro (UFRIJ),
Brazil. A  Rubotherm IsoSORP  magnetic
suspension balance (MSB) was used to conduct
adsorption measurements on zeolite 4A within the
1 to 50 bar pressure range.

2.2. Modeling of confined fluids via extended
equations of state

The development of statistical mechanics
improved the connection between macroscopic
thermodynamic properties and physical
phenomena described at the microscopic level. For
cylindrical pores, the PR-C model [1,2] is given by
Eq. 1 and 2,
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in which the parameters a, and b, are
modifications to the original Peng-Robinson
parameters, v is the molar volume, 6 is a parameter
relative to the pore geometry, F,, is a function of
the fraction of particles interacting with the pore
wall, N, is the Avogadro number, R is the

universal ideal gas constant and ¢, is the molecule-
wall interaction potential.

The PR-C model establishes the modeling of the
molecule-pore interaction through a square-well
potential described in terms of radial coordinate in
relation to the pore center. Finally, using the
textural properties of the adsorbent solid (¥}, and
7,) and the thermodynamically stable root, the
number of moles of the adsorbed species (n,4s) is
obtained through Equation 3 [6]:

Nads = Nexe T Vads Pouik 3)

In which n,, is the excess adsorbed concentration
given by the gravimetric apparatus, V,4sis the
volume of the adsorbed phase and pp,;x is the
density of the gas phase (bulk).

2.3. Bayesian general framework

Current literature points out the Markov Chain
Monte Carlo (MCMC) method as a well-
established solution to perform the sampling of the
posterior distribution, according to Bayes’ theorem
[3.5]:

P(D|6) P(O
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in which P(0|D) is the a posteriori probability of
the parameters 6 given a data set D; P(D |0) is the
likelihood term, described as the probability of the
data against the set of parameters; P(0) is the a
priori probability of the parameters and P(D) is
known as evidence and difficult to compute, being
often treated as a normalizing constant. Therefore,
attention focused on the numerator of Equation 4,
so the posterior probability can be considered as
proportional to the likelihood multiplied by the a
priori probability [3,4].

The main advantage of the Bayesian approach is
the possibility of including additional external
information, the a priori distributions of the
parameters, in addition to the experimental data.
Such information can improve the accuracy and
credibility of estimates. In the present work, all
calculations were performed using the emcee
package for Python language [4]. In order to obtain
an adequate approximation of the posterior
distribution of the parameters, 32 walkers were
used in a total of 10000 Markov chain steps.
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2.4. Deep Neural Network

The hyperparameters were determined using an
optimization in Python using the Keras [7] and
TensorFlow [8] platforms as tools. The optimal
architecture was evaluated by minimizing the mean
absolute percentage error.

We used the MCMC data with the following
separation: 90% for training, 5% for validation,
and 5% for testing. The hyperparameters were
determined following the criteria: The network was
optimized with mixed activation functions. The
ReLU, GeLU, Sigmoid, and Tanh functions were
tested for each layer. The Number of neurons:
search ranges from 20 to 400; for the Number of
mini-batches, the search ranges between 128 to
1024; and for the adaptive learning rate, the search
ranges from 1-107 to 1-107.

3. Results and Discussion

3.1. Bayesian Inference applied to the calculation
of absolute adsorption isotherms via PR-C model

Figure 1 presents the experimentally obtained
excess adsorption isotherms for five different
temperatures up to pressures of 50 bar. In general,
good reproducibility is observed for the reported
gravimetric technique.

Subsequently, using the excess information and the
MCMC method, the absolute adsorption isotherms
were calculated according to Eq. 3. Based on the
experimental fluctuations, the Bayesian structure
allows for the inference of uncertainties related to
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Fig. 1. Excess isotherms for CO:2 on zeolite 4A at
different tempearatures.

the parameters of the PR-C confined fluid model
(confinement and textural parameters). These
uncertainties are then propagated to the model's
output variable (n,4,), enabling the construction of
confidence bands for the absolute adsorption
isotherms, as shown in Figure 2.
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Fig. 1.. Absolute isotherms for CO: calculated using PR-C

model and after Bayesian framework.

3.2. Surrogate model from a DNN approach

The best architecture for the model training,
based on the described methodology, was using a
model with two hidden layers: the input connects
with the first layer by a GeL.U function, the second
layer has a ReLLU function, and the last layer has a
linear output. All hidden layers had 240 neurons.
As shown in Fig. 3, the parity plot presents a good
agreement between the experimental and predicted
values with an R? of 0.9996.
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Fig. 2. Parity plot between the predicted and the
experimental adsorbed CO2 on zeolite 4A.
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The advantage of using a model generated by
neural networks is that it reduces computational
costs. Here, the prediction of the CO, adsorption
capacity calculated by the surrogate model is
calculated two times faster than by the PR-C model
(Table 1).

Table 1. Comparison of methodologies

Computational cost for calculating a point (T,P) of
the isotherm

PR-C model
Surrogate Model

0.42 ms
0.19 ms

3.3. Fixed bed simulations

The surrogate model generated by DNN was
coupled to the differential mass and energy
balances for a fixed bed adsorption column.
Initially, Figure 1 presents the simulations of the
CO,  breakthrough  curves for  different
compositions when feeding a pilot scale column at
1 bar.
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Fig. 3. CO2 breakthrough curves for different inlet
compositions at 1 bar.
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Fig. 5. COz breakthrough curves for different inlet
compositions at 50 bar.

Finally, Figure 5 presents the simulations of the
CO; rupture curves for a pilot-scale column under
high pressure conditions (50 bar).

4. Conclusions

The Equation of State (EoS) for confined fluids has
demonstrated its suitability for calculating absolute
adsorption isotherms at high pressures, showing
comparability with other methodologies such as
Ozawa [6]. Additionally, the development of an
accurate surrogate model offers a lower
computational cost alternative for isotherm
calculations. Moving forward, the next steps will
involve the implementation of a multicomponent
approach and validation against dynamic
experimental data.
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