

Arranjo de sensores ópticos baseados em testes colorimétricos convencionais e análise quimiométrica para identificação de diferentes tipos de café

Henrique Beluomini Barros¹ (G)*, Bárbara Cristina Dias¹ (PG), João Flávio da Silveira Petruci¹ (PQ)

¹ Universidade Federal de Uberlândia (UFU), Instituto de Química (IQUFU), Uberlândia – MG, Brasil, CEP 38.400-902. henrique.barros@ufu.br*

RESUMO

A qualidade e adulteração do café representam problemas sérios tanto do ponto de vista econômico quanto de saúde pública. Dessa maneira, o desenvolvimento de métodos simples para discriminação e identificação de cafés é essencial. Neste estudo, foi desenvolvido um método analítico simples, rápido e eficiente para discriminar diferentes marcas de café por meio de testes colorimétricos aliados à análise quimiométrica. As amostras foram obtidas a partir de dupla extração de cápsulas de café com solução hidroalcoólica 70:30 (EtOH:H₂O) utilizando uma máquina de café expresso comercial. Os extratos foram submetidos a diferentes testes colorimétricos (Folin-Ciocalteu, FRAP, acidez e DPPH), sendo as alterações de cor quantificadas por espectrofotometria de absorção no UV-Vis. Os valores de absorbância obtidos para cada análise permitiram a aplicação de ferramentas estatísticas multivariadas, como PCA e HCA, possibilitando a discriminação entre as diferentes marcas. Os resultados indicaram que o método demonstrou boa capacidade discriminante, sendo promissor para a identificação de amostras adulteradas e contribuindo para o controle de qualidade do café.

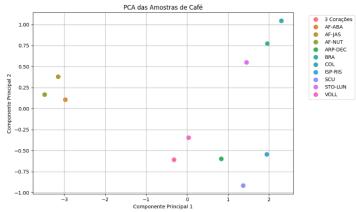
Palavras-chave: café, testes colorimétricos, espectrofotometria, quimiometria, adulteração.

Introdução

O café é uma das bebidas mais populares do mundo, apreciada pelo seu sabor e por ser um estimulante natural. O café é também uma das principais *commodities*, ficando atrás apenas do petróleo. É conhecido por seus efeitos estimulantes e benefícios à saúde, e seu comércio movimenta bilhões de dólares anualmente (1). A alta nos preços do café e o aumento da demanda global, aliados a fatores como mudanças climáticas e oscilações na produção, incentivam a adulteração do café. Essa prática não apenas compromete a qualidade do produto, mas também a segurança alimentar (2). Os métodos convencionais empregados na identificação de amostras de café adulteradas, como microscopia óptica e eletrônica, são, em geral, demorados e podem ser subjetivos (3). A busca por métodos analíticos simples e eficazes são fundamentais para detectar essas alterações e garantir a qualidade e segurança do café consumido.

Neste estudo, um método de triagem baseado em testes colorimétricos e análise quimiométrica, foi usado com o objetivo de criar perfis analíticos (impressões digitais) capazes de discriminar diferentes marcas de café e indicar possíveis adulterações.

Experimental


Preparo das amostras

As amostras de café foram preparadas a partir de cápsulas comerciais, submetidas a extração com uma solução hidroalcoólica 70:30 (EtOH:H₂O), utilizando uma máquina de café expresso comercial. Cada cápsula foi extraída duas vezes para aumentar o rendimento. Os extratos obtidos foram utilizados

nos testes colorimétricos de determinação de flavonoides (AlCl₃), fenóis totais (Folin-Ciocalteu) e acidez (indicadores B5, B8, B11). As medidas de absorbância foram obtidas por espectrofotometria UV-Vis e processadas em triplicata.

Resultados e Discussão

Os testes colorimétricos revelaram variações significativas entre as amostras, associadas à composição de cada marca. Os dados espectrais obtidos foram tratados por análise de componentes principais (PCA) e análise hierárquica de agrupamento (HCA), permitindo a formação de agrupamentos distintos para cada marca de café. O método demonstrou capacidade de diferenciação eficaz, sugerindo sua aplicação potencial em rotinas de controle de qualidade.

Figura 1. Gráfico de Análise de Componentes Principais (PCA) aplicado aos dados espectrofotométricos de testes ácido-base, flavonoides e fenóis totais. As amostras de café foram agrupadas de acordo com similaridade química, permitindo a diferenciação entre marcas e tipos.

Tabela 1. Médias das absorbâncias obtidas nos testes ácido-base (B5, B8, B11), teor de flavonoides e fenóis totais para as diferentes marcas de café.

Amostra	B 5	B8	B11	Flavonoides	Fenóis Totais
3 Corações	0,406	0,481	0,570	0,266	0,532
AF-ABA	0,275	0,374	0,171	0,134	0,354
AF-JAS	0,288	0,381	0,180	0,161	0,278
AF-NUT	0,267	0,372	0,151	0,082	0,270
ARP-DEC	0,574	0,502	0,876	0,327	0,517
BRA	0,541	0,527	0,869	0,752	0,546
COL	0,666	0,523	0,941	0,832	0,546
ISP-RIS	0,682	0,574	0,952	0,440	0,527
SCU	0,569	0,569	0,878	0,341	0,540
STO-LUN	0,595	0,536	0,699	0,662	0,530
VOLL	0,519	0,472	0,579	0,316	0,521

Conclusões

O uso de arranjos de reagentes colorimétricos, aliado à espectrofotometria UV-Vis e análise quimiométrica, mostrou-se uma abordagem promissora para a discriminação de marcas de café. A metodologia se destaca por sua simplicidade, rapidez, baixo custo e potencial para detecção de adulterações.

Agradecimentos

A Universidade Federal de Uberlândia, ao CNPq e a FAPEMIG pelo apoio à iniciação científica.

Referências

- V. L. Singleton; R. Orthofer; R. M. Lamuela-Raventós, *Methods Enzymol.*, 1999, 299, 152–178.
- 2. W. Brand-Williams; M. E. Cuvelier; C. Berset, *LWT Food Sci. Technol.*, **1995**, *28*, 25–30.
- 3. C. Chang; M. Yang; H. Wen; J. Chern, *J. Food Drug Anal.*, **2002**, *10*(3), 178–182.
- 4. M. C. L. Mendonça; M. M. C. Ferreira, *Anal. Chim. Acta*, **2005**, *538*, 229–237.
- 5. R. G. de Paula Pereira et al., *Food Chem.*, **2014**, *153*, 179–184.
- 6. S. Wold; K. Esbensen; P. Geladi, *Chemometr. Intell. Lab. Syst.*, **1987**, *2*, 37–52.

Chemometrics: A Practical Guide Wiley-Interscience

Chemometrics: A Practical Guide, Wiley-Interscience, New York, 1999