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Abstract

This research examines how investment platforms determine asset exposure, distinguishing

authentic from replicant behavior. I develop an exposure-based demand model to study how retailer

demand shocks move through fund networks and influence platform decisions. The model introduces

replicant risk, a new concept capturing how competition and imitation among platforms affect asset

pricing via exposure elasticity. Using Brazilian fund data, I estimate the model through a Bayesian

dynamic factor approach to quantify this elasticity. Between 2016 and 2021, a replicant risk-based

strategy earned an annual premium of 7.6% with 15.47% volatility. The strategy is nearly market-

neutral and shows no momentum. The model highlights stocks particularly sensitive to replicant

behavior, deepening our understanding of asset pricing and investor dynamics. This framework

links financial intermediation and platform competition, offering insight into how platforms shape

prices. It underscores the growing importance of demand-side forces in financial markets and the

strategic behavior of investment intermediaries.
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“I’ve seen things you people wouldn’t believe.

Attack ships on fire off the shoulder of Orion.

I watched C-beams glitter in the dark near

the Tannhaüser Gate. All those moments

will be lost in time, like tears in rain. Time

to die.”

Replicant Roy Batty in Blade Runner

1 Introduction

Distinguishing authentic behavior from mere imitation is a classic problem in fields ranging from

artificial intelligence to evolutionary biology. The Turing test, for example, aims to determine whether a

machine can reproduce human communication patterns so effectively that it is indistinguishable from a

real person (Turing, 1950). Similarly, in the fictional universe of Blade Runner, the Voight-Kampff test

assesses whether an individual responds emotionally like a human or merely simulates such responses.1

This challenge leads to a question in the study of herding dynamics in the financial context: Is it

possible to explain the asset exposure decisions of investment platforms on the basis of their own

principles, or do they merely imitate prevailing patterns? I examine whether investment platforms’

equity exposure decisions reflect independent choices or whether they emerge from a replicant behavior.

This replicant behavior is explained by the role of investment platforms in the intermediation of retail

investor resources.

These platforms play a central role in the allocation of retail investor resources, directing them

to various assets. These platforms are made up of a range of mutual funds offered to retail investors

by both large financial institutions and small asset managers. The way these platforms organize the

funds is similar to a “spoke-hub” network structure: A fund is responsible for trading directly in the

asset market (hub), and a fundraising network in the form of quota funds is exposed to the same

assets managed by the hub fund, even without participating directly in the market. This network

structure of mutual funds available to the retail market provides managers with economies of scale.

The fragmentation of fundraising across funds prevents managers that buy assets directly from the

market from being exposed to flows concentrated in their own liabilities. Thus, instead of studying

supply and demand for equities solely from the perspective of the direct holdings of a few funds (hubs),

an exposure-based model will propose to study supply and demand from the perspective of the direct

and indirect holdings of investment funds available on investment platforms.

The exposure of investment platforms to stocks helps to introduce a new type of risk into the

financial economy, which I call replicant risk. By assessing the exposure elasticity of IBRX-100 stocks

on different investment platforms, it becomes feasible to create an investable replicant portfolio. The

portfolio’s long position includes stocks displaying non-replicant behavior on these platforms, while the

short position comprises stocks with replicant behavior. The replicant portfolio achieved an annual

return of 7.6% with a volatility of 15.46% between 2016 and 2021. This portfolio offers key insights

for platform risk management. In particular, the strategy is nearly market neutral: the correlation

between the market betas of the long and short positions is −0.5 during the studied period. In addition,

the yearly returns of the long and short positions are closely correlated and varies above and below

1In the book “Do Androids Dream of Electric Sheep?” by Philip K. Dick, published in 1968.
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zero in diverse intervals, indicating that there is no momentum driver in this strategy. For platforms,

being able to identify replicant behavior is crucial, as participating in either position of this strategy

can have significant implications depending on the month. Specifically, during the COVID-19 outbreak

(February to March 2020), the short position comprising replicant-influenced stocks outperformed the

long position. For platforms like Santander, which did not exhibit replicant behavior during this time,

this knowledge is highly valuable for managing risks across various funds tied to the institution.

Recent literature in finance has shown that demand in a financial market has a significant impact

on asset price formation. Demand-based asset pricing seeks to explain why shocks associated with

investors’ resources flows are able to generate significant price fluctuations independently of asset

fundamentals (Koijen and Yogo, 2019; Gabaix and Koijen, 2021; Koijen and Yogo, 2020; Koijen,

Richmond, and Yogo, 2024; Fuchs, Fukuda, and Neuhann, 2023; Van der Beck, 2022; Kim, 2025;

Camanho, Hau, and Rey, 2022; Jiang, Richmond, and T. Zhang, 2024; Ben-David et al., 2022; Jansen,

Wenhao Li, and Schmid, 2024; Benetton and Compiani, 2024; Huebner, 2023; Albuquerque, Cardoso-

Costa, and Faias, 2024). Specifically, Koijen and Yogo (2019) proposes a demand system based on

stock characteristics to study the impact of demand on stock prices, focusing on the role of institutional

investors. In a complementary way, Gabaix and Koijen (2021) proposes the hypothesis of inelastic

markets, arguing that the price elasticity of aggregate demand for equities is low enough to amplify

the effects of inter-asset class flows (flows between bonds and equities) on the prices of these assets.2

Currently, there are no models in the financial literature that adequately explain how investors

choose their exposure to stocks through mutual fund networks. Retail investors typically allocate

their funds via financial services platforms, which offer a variety of mutual funds. However, there is

a lack of an exposure-based demand model that takes into account the network of these funds. The

key to understanding this issue lies in how data are collected through direct holdings of outstanding

shares. By examining consolidated share positions among mutual funds in the Brazilian market, we

can propose a new model that better captures retailer investor demand.

In contrast to this research, there are proposals in finance that relate the concept of networks to

portfolio optimization, treating assets and their correlations as a network. An example is the work of

Peralta and Zareei (2016), where the authors treat the stocks themselves as nodes in a network whose

links are market returns. In the context of asset allocation, identifying the position of each stock in

a financial network can significantly improve the composition of the portfolio. In general, centrality

measures3 capture the influence of each asset in the network, allowing investors to adjust the weights

according to the connectivity between securities. In stable markets, there is evidence that the most

central assets can provide a higher average return. However, during turbulent periods, the overweight

of assets far from the network nodes tends to reduce risk and improve diversification (Ren et al., 2017;

Peralta and Zareei, 2016; Ioannidis, Sarikeisoglou, and Angelidis, 2023).

Some authors point out that the preference for allocations to assets with lower centrality occurs

2The inelastic market hypothesis belongs to an extensive recent finance literature that explores themes like the rise

of passive indexing, the role of institutional investors, and imperfect competition in financial economics (see Pavlova

and Sikorskaya, 2023; Bond and Garcia, 2022; Berk and Van Binsbergen, 2025; Chinco and Sammon, 2024; Heath et al.,

2022; Davis, Kargar, and J. Li, 2023; Haddad and Muir, 2021; Rey et al., 2024; Coimbra and Rey, 2024, Greenwood and

Sammon, 2022, Chodorow-Reich, Ghent, and Haddad, 2021, Haddad and Muir, 2025; Azar, Schmalz, and Tecu, 2018;

Haddad, Huebner, and Loualiche, 2025; Rostek and Yoon, 2023, Coles, Heath, and Ringgenberg, 2022, Charles, Frydman,

and Kilic, 2024; Brown et al., 2023; Neuhann and Sockin, 2024; Loseto and Mainardi, 2023; Yu An, Benetton, and Song,

2023; Sammon and Shim, 2024; Clark, Houde, and Kastl, 2021).
3The central nodes of the network tend to coincide with older, larger capitalization, cheaper and more financially risky

assets.
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because these assets have a lower correlation with the assets considered central in the network. This

preference provides greater protection during crises or sudden drops in liquidity. For example, the

study by Ren et al. (2017) shows that in drawdown scenarios, allocating more to peripheral assets led

to better performance than traditional portfolio selection strategies. The study by Peralta and Zareei

(2016) discusses, based on an extensive data set, that weighting inversely proportional to centrality

not only reduces portfolio variance but also improves performance metrics such as Carhart’s alpha

(Carhart, 1997). However, during periods of stability, some research suggests that the core assets in a

network may be more effective in capturing upswings (C. He et al., 2022; Ioannidis, Sarikeisoglou, and

Angelidis, 2023). In these scenarios, the higher internal correlation between core assets does not seem

to hinder diversification as much, as the market tends to move more homogeneously, diluting some of

the risk. In addition, the dynamic monitoring of connections through temporal measures of centrality

can help in the transition of weights to take advantage of uptrends or minimize sudden losses in crises

(Zhao et al., 2018).

The robustness of these portfolio optimization methods depends on their ability to capture changes

in the structure of the network over time, as well as the way in which transaction costs are incorporated,

a factor that is little addressed in these studies. Work such as Ioannidis, Sarikeisoglou, and Angelidis

(2023) shows that the dynamic adaptation of the portfolio to changes in the market regime can indeed

outperform traditional Markowitz techniques (Markowitz, 1952). In this research, I adopt a different

approach. The exposure portfolio is made up of a network of mutual funds, which I refer to as an

investment platform. A concrete example of such a platform is the selection of funds the financial

Brazilian institutions offer to clients, e.g., the Itaú investment platform. To effectively address the

question of replicant behavior among these funds, it is essential to estimate an exposure-based demand

model of each investment platform on the market. Additionally, this approach allows an analysis of

the impact that different sets of funds have on asset pricing in financial markets, as well as the risks

associated with a market structure composed of platforms.

Thus, a pricing model based on the exposure of investors with funds on investment platforms

seeks to explain the reasons for the variability of asset prices, which do not seem to be explained by

fundamentals but rather by replicant behavior. One of the explanations for price variability is the

inelastic markets hypothesis (Gabaix and Koijen, 2021). An exposure-based asset pricing model does

not need to assume that investors are inelastic, providing an alternative perspective on asset market

dynamics. Regardless of the price elasticity of investor demand on investment platforms, the market for

exposures is concentrated on a limited number of platforms. This high concentration means that these

platforms respond to changes in investor demand by adjusting the supply of exposures simultaneously.

In such a concentrated environment, the price elasticity of demand is just one factor to consider when

evaluating which platform holds market power, especially if investors are price inelastic. Market power

can be indicated by the compensation of fund managers, which also takes into account the transaction

costs that are passed on to investors.

Therefore, the purpose of an exposure-based demand model is to assess the consequences of

price variability as investment platforms react to shocks in investor demand. This alternative view of

the investor demand model assumes that the financial market can be interpreted as an oligopoly of

investment platforms competing for investors’ resources. It is a Cournot oligopoly, by exposure, not by

price. In this context, the interaction between platforms can be described as an exposure oligopoly, in

which each platform adjusts its allocation strategies in response to the decisions of its competitors.

In this context, the most important decision variable for understanding the demand for exposure on

a platform would not be the asset price but rather demand shocks from competing platforms. This

4



new way of interpreting market participants makes it possible to study risk through inter-platform

spillovers and their consequences for the variability of asset prices. I define inter-platform spillovers

in terms of an exposure elasticity of demand. This new definition of elasticity makes it possible to

determine whether a platform can be considered a replicant or not.

Replicant behavior in finance has been widely studied in the literature. For example, digital

investment platforms have been linked to speculative trading patterns. Barber et al. (2022) show

that retailer investors trading through easily accessible apps such as Robinhood exhibit coordinated

behavior, generating temporary price spikes followed by negative corrections. In turn, Apesteguia,

Oechssler, and Weidenholzer (2020) analyze copy trading platforms and show that the ability to

automatically replicate the decisions of experienced traders induces investors to take excessive risks,

thus amplifying the replicative dynamics in financial markets. In Section 2, I systematically review

part of the vast literature on replicant behavior.

The data used in this research are described in Section 3. The dataset includes consolidated

positions in mutual fund portfolios. It will be essential to distinguish between direct holdings in

outstanding shares and exposure to stocks. This distinction allows me to propose an exposure-based

demand model that may not necessarily be suitable for optimizing the portfolios of a single manager.

The sample consists of 7 million observations of exposures in FI (hub) and FIC (network fundraising)

mutual funds from 41 investment platforms in the Brazilian market. These data were obtained from

Quantum’s company.4 The exposures involve 166 stocks that were part of the IBRX-100 index at

any time between January 2016 and December 2021. During this period, there were approximately

1,300 funds with assets under management exceeding R$15 million, more than 10 shareholders, and

exposures equal to or greater than zero. The funds were classified by ANBIMA in categories related to

free multi-market funds (often associated with US market hedge funds) and included eight different

classifications of shares (which can be defined as mutual funds).

In Section 4, I explore the theoretical foundations of an exposure-based demand model. I propose

representing exposure-based demand through a dynamic factor model, where each investment platform

has its own specific model. The dynamics of these factors are designed to capture the temporal

structure of the correlations between the aggregate exposures of each platform. In Section 4.3, I

elaborate on the analogy between a factor model as described by Ross (1976) and my proposal for

exposure-based factors. This analogy aims to establish connections between stock pricing models based

on returns and my model, which relies solely on exposure. Additionally, I discuss the potential of

treating the collection of exposure-based factors and heterogeneous beliefs about the expected values

of stock returns as a single aggregate factor. This topic will be further examined in another paper

(Ferraresi, 2025c). A part of this discussion is presented in the Appendix A and B.

To quantify replicant behavior, I use the exposure elasticity of demand for each investment

platform, which I will denote by the Greek letter δ. This parameter is related to a concept known

as a granular variable (Gabaix, 2011; Gabaix and Koijen, 2024). In Section 4.2, I will elaborate not

only on the idea of a granular variable but also on my proposal of a granular network variable. The

granular network variable is the linear combination of demand shocks in other platforms. This granular

network variable provides crucial insights into an investor’s demand for exposure on an investment

platform. The only reference to this type of granular network variable comes from the preliminary

work of Chodorow-Reich, Gabaix, et al. (2024). Because a granular network variable considers the

demand shocks of other platforms, it can be used as an instrument to identify the slope of residual

demand curves.

4https://quantumfinance.com.br
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It is important to note a key distinction between the exposure-based demand model proposed in

this paper and the demand models for equities found in the finance literature: the role of the demand

agent differs. In the financial literature’s demand models, the interests of those seeking shares are

mediated by mutual fund managers. These managers decide on the direct holdings of their funds,

which in turn affects the holdings of financial institutions. The main takeaway is that focusing solely

on direct ownership of outstanding shares in financial institutions offers a limited perspective on the

market.

How can exposure elasticity explain the existence of a replicant risk? Replicant risk is a premium

associated with uncertainty about the behavior of investment platforms. This uncertainty exists

because, for any level of market risk, there will be uncertainty associated with the context in which

the platforms are inserted. In other words, whether it is a coordination context or not. I will assess

uncertainty by forming an investment portfolio that is based on the exposure elasticities of individual

stocks.

Each investment platform will have a different exposure elasticity for each stock. I define this

exposure elasticity by δm,n, where m is the platform and n is the stock. Each 1% variation in the

granular network variable of a platform will be associated with δm,n% variation in the platform’s

exposure. Thus, for each stock, there is a proportion p of investment platforms that show a replicating

behavior δn > 0, and a proportion 1 − p that does not have a replicating behavior δn ≤ 0. The

proportions p or 1 − p define two possible market regimes for the dynamics of stocks. A simplified

example helps to better understand these regimes and the new type of replicant risk in share premiums.

The Figure 1 represents the possibilities of premiums on two stocks given the behavior of the set of

platforms in coordination and anti-coordination contexts.

stock 1

δ1 > 0 δ1 ≤ 0

stock 2
δ2 > 0 (2%;2%) (2%;0%)

δ2 ≤ 0 (0%;2%) (3%;3%)

coordination

stock 1

δ1 > 0 δ1 ≤ 0

stock 2
δ2 > 0 (0%;0%) (4%;2%)

δ2 ≤ 0 (2%,4%) (3%,3%)

anti-coordination

Figure 1: Exposure-based game in two stocks given the set of platforms. In bold the possibles expected

returns of equilibrium.

Examine the scenario of anti-coordination: when neither stock exhibits replicant behavior, the

risk premium aligns with the market premium. For instance, both stocks show a market premium

of 3%, indicating that exposure-based shocks are generally offset by exposure supply from platforms.

Anti-coordination involves two costs. First, there is a distrust cost tied to replicant behavior, which

can potentially cancel out the market premium if both stocks exhibit such behavior. In this scenario,

the expected returns will be 0%, and this market setup will not be an equilibrium. The second cost is

related to non-replicant behavior, with a stock facing costs associated with the potential shift from

non-replicant to replicant (outside option). In an anti-coordination environment, the distrust cost

exceeds the outside option cost, resulting in the anti-diagonal payoff illustrated in Figure 1. This

scenario achieves equilibrium as a Nash equilibrium with mixed strategies, where replicant behavior

proportions in stocks are exactly p = 0.5.

In a coordination context, consider again the market premium of 3% for stocks not showing

replicant behavior of the platforms, serving as the baseline market condition. Here, the outside option

cost related to replicant behavior is 1%, akin to the anti-coordination case, thus leading to 2% expected
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returns when all platforms are replicant. Evaluating a coordination scenario, distrust costs may

reduce premiums, as platforms gain no advantage from synchronized actions. Again, distrust costs for

non-replicant stocks surpass the outside option costs. The outcomes in this coordination scenario are

shown in Figure 1, with a Nash equilibrium in mixed strategies existing between two market regimes,

where replicant behavior in stocks is p < 0.5.

It is crucial to understand the motivations behind the coordination of the platform. For platforms

that manage funds exposed to the same assets, there is always a counterparty risk inherent in the

exposures offered to the retail market. In finance, diversification plays a central role, not only in

individual managers’ decisions but also between portfolios managed by different managers. Exposure

elasticity captures exactly this diversification between platforms. When all platforms have a positive

elasticity of exposure in a stock, there are necessarily trading opportunities that make it possible to

reduce exposure through other assets, transforming counterparty risk into replicant risk due to the

coordination context. In the specific case of the fictitious values used in this example, the replicant

premium is the outside option of 1%, and given this asymmetry, the Nash equilibrium is for the

proportion of replicant platforms in each of the two stocks to be different from 0.5.

sorting procedure

stock 1 stock 2 · · · stock N

p1

p2

...

pN

anti-coordination threshold p = 0.5

short (p > 0.5)

long (p < 0.5)

Figure 2: Example of constructing a long-short portfolio using the platforms proportions p as criterion.

The replicant premium in a stock is the difference in premium between non-replicant and replicant

behavior, taking into account the uncertainty of whether the platforms are coordinated or not. This

premium can be quantified using the Fama and MacBeth (1973) procedure. I illustrate this procedure

in Figure 2. For a set of stocks in a panel of exposure data each month, it is possible to construct a

portfolio long the stocks with exposure elasticity δ > 0 and short the stocks with exposure elasticity

δ ≤ 0. If the proportions of platforms with replicant behavior approach p = 0.5, the replicant risk

would turn into a counterparty risk in a context in which the platforms do not coordinate.

Therefore, it is crucial to infer the demand parameters for each investment platform, which will be

discussed in detail in Section 5. I employ a Bayesian approach to infer these parameters because the

demand models for each platform have high-dimensional parametric space. In contrast, the frequentist

approach only provides aggregate estimates of price elasticity due to convergence issues in the generalized

method of moments (GMM). For instance, Koijen and Yogo (2019) classify retail investment providers

into categories (such as banks and pension funds) and estimate a low-dimensional portfolio choice

model for each category on a quarterly basis. Instead of referring to them as investment providers or

financial institutions, I prefer the term investment platforms, considering the interconnectedness of

funds. The Bayesian approach allows for the estimation of panels of high-dimensional portfolio choice

models for each platform using monthly data. Additionally, Bayesian modeling captures the uncertainty
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in the exposure-based demand model by utilizing the posterior distribution of each parameter.

Bayesian approaches to dynamic factor models have become increasingly popular due to their

ability to capture parameter uncertainty through full posterior distributions (Frühwirth-Schnatter,

Hosszejni, and Lopes, 2024; Lopes and M. West, 2004; Bai and P. Wang, 2015; Aguilar and M.

West, 2000; Koop, Korobilis, et al., 2010). By treating parameters as random variables, Bayesian

methods incorporate prior information and provide a more comprehensive representation of uncertainty,

which can be especially important in volatile financial situations (Bauder et al., 2018; Nakajima and

M. A. West, 2013). In contrast, the frequentist perspective focuses more on point estimates and

confidence intervals. Although this approach offers simpler computational methods, it often overlooks

the full extent of the estimation risk. Some comparative analyses highlight the limited uncertainty

quantification of the frequentist framework but also note that frequentist inference is generally easier

to apply in large-scale situations where computational efficiency is crucial (Sigauke, 2016). Ultimately,

the choice between these two perspectives largely depends on the specific context, considering the

complexity of the data, the dimensionality of the model, and the amount of prior knowledge available.

I will discuss these points in Section 5.1.

In Section 6, I examine the empirical findings. To measure the degree of replicant behavior in

the market, Bayesian estimates are used to determine parameters for each platform using the same

approach of Ward et al. (2019).5 A comprehensive list of estimated parameters for each platform

is presented in Appendix D. With the exposure elasticity of the demand parameters available, it is

feasible to gauge the proportion of platforms that feature positive or negative exposure elasticity across

stocks in the IBRX-100 index. Only positive exposures are considered for these estimates. The analysis

does not include evaluations of decisions regarding the platforms’ network of fund exposures on the

extensive margin. The entire data set is used, to ensure that the parameters do not change over time.

The study identified replicant proportions in 42 stocks from 15 platforms and highlights the significance

of this topic for these platforms’ risk management, as the risk ties to the fund selection available to

retail investors. The platform exhibiting the greatest replicant behavior was the financial institution

Itau, showing such behavior in 21 of the 42 stocks examined. Itau stands as Brazil’s largest private

bank by market value,6 implying that a risk metric applicable to a platform like Itau’s fund set could

enhance risk management in the context of imperfect competition for retail funds, encompassing both

Itau and other platforms.

Finally, this research seeks to improve the literature on demand-driven asset pricing by incorporating

insights into the financial intermediation of investor resources, competition between platforms, and the

possibility of replicant behavior when choosing exposures in mutual fund network portfolios.

2 Related Literature

Replicant behavior in financial markets has received significant academic attention (Hirshleifer, 2020).

Researchers have studied why investors, both individual and institutional, often make similar trading

decisions and how these aggregated actions influence asset prices and overall market dynamics. Early

theoretical models primarily focused on information asymmetries, suggesting that rational investors can

derive valuable insights from observing the trades of others. In these “information cascades,” market

participants, even when equipped with private signals, may choose to follow the crowd simply because

5Ward et al. (2019) utilized the STAN package in R, which was explained in Carpenter et al. (2017)
6The most valuable brand in Latin America, valued at US$8.7 billion, according to Brand Finance’s 2023 Global 500

Ranking (https://brandfinance.com/)
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they believe that the consensus incorporates aggregated information (Bikhchandani, Hirshleifer, and

Welch, 1992). Such models highlighted how replicant behavior can arise from rational considerations

when the cost of collecting or processing personal information is high (Cipriani and Guarino, 2014).

However, literature soon showed that concerns about reputation can amplify these effects: analysts,

fund managers, and other financial professionals risk harming their careers by deviating from the

majority, thus reinforcing a tendency toward conformity (Dasgupta, Prat, and Verardo, 2005; Nirei,

Stamatiou, and Sushko, 2012).

Over time, empirical studies have provided substantial evidence that replicant behavior is not

just a theoretical construct, but a measurable phenomenon with material consequences (Tan, Xiaoyan

Zhang, and Xinran Zhang, 2023; Eaton et al., 2022; Van der Beck and Jaunin, 2021; Boehmer et al.,

2021; Pedersen, 2022). In US equity markets, for example, researchers have documented institutional

herding in both cross-sectional and time-series data, showing that large money managers often buy

or sell the same stocks in overlapping periods (Puckett and Yan, 2008; Teh, De Bondt, et al., 1997).

This clustering of trades can temporarily push prices away from fundamentals, only for valuations

to revert once contrarian investors step in or momentum dissipates. Various studies estimate that

these short-term distortions can amount to a few percentage points of price deviation before reversal

(Cipriani and Guarino, 2005; Gutierrez and Kelley, 2009). In addition, some scholars find that buy-side

herding can accelerate the price discovery process in certain contexts when the group is collectively

responding to new, accurate information; however, sell-side herding tends to coincide with faster and

more dramatic downward price pressures, especially in times of crisis (Cai et al., 2019; Stephanie

Kremer and Nautz, 2013).

Evidence of replicant behavior can be observed in various regions and asset classes. In the US stock

market, researchers have found that 38 percent of large institutional investors tend to intentionally

herd toward technology stocks (Uwilingiye et al., 2019). Furthermore, studies on digital currency

exchanges conducted by Song (2023) have introduced a psychological and behavioral metric called the

herd behavior index, which measures the herd instinct of investors in cryptocurrency markets and

identifies anomalies in cryptocurrency returns. Similarly, research on emerging markets—from Malaysia

(Lai and Lau, 2004) to Taiwan (Shyu and Sun, 2010), from China (Wei Li, Rhee, and S. S. Wang, 2017)

to India (Garg and Gulati, 2013)—indicates that both institutional and individual investors often

align their trading strategies in response to macroeconomic announcements or changes in regulatory

conditions. In particular, herding behavior in the Chinese A-share market is observed to be more

pronounced among individual investors than among institutional investors. This discrepancy may be

due to differences in experience levels, risk preferences, or access to reliable information (Wei Li, Rhee,

and S. S. Wang, 2017).

Several studies use laboratory experiments to unravel the micro-level motivations for replicant

behavior, supporting the view that herding can serve as a strategy to reduce uncertainty in highly

ambiguous environments (Cipriani and Guarino, 2005). When investors face complex signals or volatile

market conditions, following the majority provides psychological reassurance and a form of social

validation (Petersen and Spickers, 2023). In addition, periods of optimism, characterized by bullish

sentiment, can lead to buy-side convergence as rising prices reinforce positive feedback loops. In

contrast, when negative sentiment dominates, investors can herd to sell, accelerating downward price

spirals (Guo et al., 2024; Bast́ıas and Ruiz, 2022). Although both buy-side and sell-side herding lead

to temporary price distortions, the magnitude and duration can differ, with some scholars noting that

sell-side waves tend to occur more quickly and can be more destabilizing (Cai et al., 2019; Boortz

et al., 2013).
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A particularly rich line of research focuses on how institutional frameworks influence the intensity

and impact of replicant behavior. Incentive structures that tie fund managers’ compensation to short-

term performance or relative benchmarks can exacerbate herding, as few managers want to underperform

their peers or deviate sharply from the prevailing consensus (Pedraza and Pulga, 2019; Bootrz and

Kremer, 2013). Peer benchmarking increases the perceived risks of going against the group; If the

entire cohort goes in one direction and loses, blame is diffused, but if a single contrarian underperforms,

reputational damage is more severe (Dasgupta, Prat, and Verardo, 2005; Nirei, Stamatiou, and

Sushko, 2012). Regulatory factors also play a role. Studies in emerging markets, such as the Chilean

context, suggest that changes in capital controls or pension fund guidelines can trigger large-scale asset

reallocations that look very much like herding (Bast́ıas and Ruiz, 2022). Similar patterns appear in

developed markets as well; Fiechter and Mangeney (2020) documents that acquisitions of brokerage

firms and consolidation of research analysts reduce the diversity of opinion in the market, potentially

increasing herding as fewer independent research signals circulate among large investors.

The intensity and impact of replicant behavior on asset pricing also occur in the short term.

Herding can distort valuations, pushing certain securities above or below their fundamental value in

the short term. When these movements coincide with market stress or liquidity shortages, volatility

can spill over into other assets and even trigger cross-asset correlations. For example, Ben-Horin

and Kedar-Levy (2013) finds that equity herding among large institutional investors can also affect

corporate bonds, likely due to rebalancing decisions or changes in perceived risk across a portfolio.

As correlated trades accumulate, seemingly disparate assets can begin to move in tandem, reducing

the potential benefits of diversification. In the medium term, some segments of the literature suggest

that markets correct these mispricings, especially once contrarian participants enter the fray (Clarke,

Ornthanalai, and Tang, 2015). However, other studies warn that when herding episodes coincide with

cheap credit or excessive leverage, distortions can persist and fuel bubble-like conditions that increase

systemic fragility (Petersen and Spickers, 2023; Krokida, Makrychoriti, and Spyrou, 2020).

Another important issue is the distinction between informed and uninformed herding. The

former can improve informational efficiency when the crowd actually converges on superior insights

or fundamental news that has not yet been fully digested by the market. In such cases, herding

accelerates the incorporation of relevant information into prices (Clarke, Ornthanalai, and Tang, 2015;

Christoffersen and Tang, 2010). However, uninformed or sentiment-driven herding can obscure true

value signals, potentially undermining market efficiency and exacerbating volatility. Identifying which

type of herding predominates is an empirical challenge. Many econometric studies attempt to determine

whether abnormal trading patterns correlate with meaningful events such as earnings announcements or

macroeconomic data releases (Jurkatis, Stephanie Kremer, and Nautz, 2012). When trades concentrate

on the absence of clear informational catalysts, it is suggested that herding is largely driven by bias or

imitation rather than rational inference.

Market stress, such as financial crises, often intensifies replicant behavior among investors. During

turbulent times, risk aversion increases, making the perceived safety of following the crowd more

appealing. For example, research conducted during the global financial crisis indicates that pension

funds and other long-term institutional investors resorted to collective selling as credit risks became

more apparent (Bast́ıas and Ruiz, 2022). Similarly, Boortz et al. (2013) argues that the risk of

information - where the reliability or availability of signals decreases - increases the tendency to herd.

In such situations, decision-makers may distrust their own analyses and give undue importance to

observable trades made by well-known institutions. Consequently, these behavioral shifts can lead to

liquidity shortages and exacerbate downward price spirals.
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Despite the disruption it can cause, replicant behavior can stabilize markets in certain contexts.

When a fundamentally justified signal is strong - for example, a clear indication that a company’s

future earnings have improved - uniform buying by a large number of institutional players can quickly

bring the security back to its fair value. In normal, non-crisis environments, many herding episodes

appear to be short-lived and self-correcting, especially in large, liquid markets where contrarian traders

can profit from temporary mispricings (Gutierrez and Kelley, 2009; Clarke, Ornthanalai, and Tang,

2015). However, there is disagreement among scholars on whether the long-term net effect of herding

is beneficial or detrimental to price discovery and market efficiency. Some emphasize the negative

externalities of correlated trading, such as increased systemic risk and potential contagion between

asset classes (Krokida, Makrychoriti, and Spyrou, 2020; Ben-Horin and Kedar-Levy, 2013). Others

note that herding driven by legitimate fundamental signals could ultimately improve overall market

quality.

From a policy point of view, the literature suggests a range of measures that could mitigate

the most destructive aspects of replicant behavior. Enhanced transparency is widely advocated, and

timely disclosure of large trades or short positions can potentially diminish the incentive to cluster.

Policymakers have also considered adjusting performance benchmarking practices to encourage longer

investment horizons. If fund managers are no longer strictly judged on quarterly results or relative

ranking, they may feel freer to deviate from group behavior, improving the diversity of strategies in the

market (Pedraza and Pulga, 2019). Macroprudential regulations, such as countercyclical capital buffers

or circuit breakers, could help dampen the impact of large-scale, simultaneous sell-offs that are triggered

by herd instincts. At the same time, regulatory bodies must tread carefully to avoid unintended

consequences, such as stifling beneficial information flows or reducing the depth of secondary markets.

Recent work has also begun to examine the role of technology and alternative data in replicant

behavior (Yang and Loang, 2024). As high-frequency traders and algorithmic strategies proliferate,

some researchers suggest that automated models may “learn” from each other’s trades and inadvertently

create new forms of herding, possibly on very short time scales (K. Li, 2014). In addition, a greater

reliance on machine learning for investment decisions could reduce the diversity of analytical approaches,

particularly if many firms use similar algorithms trained on overlapping data sets. As a result, the

next generation of research may focus on how artificial intelligence amplifies or attenuates replicant

behavior, and whether advanced methods can be developed to identify emerging clusters before they

destabilize markets (Loang, 2025; Dou, Goldstein, and Ji, 2024; Kaniel et al., 2023; Feng, J. He, et al.,

2024; Axtell and Farmer, 2025; Dyer et al., 2024; LeBaron, 2006).

References indicate that replicant behavior is influenced by a combination of rational, behavioral,

and institutional factors. Cognitive biases, such as uncertainty aversion, shifts in sentiment, and peer

benchmarking, tend to lead investors toward imitation behavior, particularly in times of increased

ambiguity or crisis. In addition, regulatory frameworks, incentive structures, and industry norms can

either strengthen or mitigate these behavioral tendencies. Empirical evidence shows that herding can

cause short-term price distortions of various magnitudes, with potential long-term effects that are still

a topic of debate. While some aspects of herding can facilitate the market’s integration of genuinely

useful information, others contribute to mispricing and increase systemic vulnerabilities. By integrating

findings from behavioral finance and institutional economics, researchers aim to clarify the conditions

under which aggregated investor behavior acts as a stabilizing force rather than a threat to financial

stability.

My contribution to the literature focuses on understanding how the behavior of investment

platforms, which often resembles that of a replicant, can significantly affect the risk management
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of these platforms. This article examines the equity exposure of investment platforms and analyzes

whether their asset allocation decisions are independent strategies or simply imitations of existing

trends. It also assesses how the structure of fund networks affects asset pricing, taking into account

the presence of imperfect competition among platforms. The effect of replicant investment platforms

on asset pricing is defined by replicant risk. The general contribution of my research is to the use and

interpretation of the exposure data of the fund network in the form of an investment platform, as is in

various unpublished works (Ferraresi, 2025b, 2025c; Ferraresi and Urbano, 2025; Ferraresi and Leal,

2025; Ferraresi and Di Pietra, 2025; Ferraresi, Castro, and Yoshinaga, 2025).

3 Data

Retailer investors demand assets in exchange for their financial resources. Since this demand is

delegated to mutual fund managers, it is natural to think of the demand-based model from the

manager’s perspective. However, the demand for assets from each fund or manager is an incomplete

view of the structure of the financial market. The market is made up of investment platforms. These

platforms can be large financial institutions or small asset managers that have a network of funds in

which their investors can invest. The demand for assets intermediated by multiple funds differs from

the demand for assets intermediated by a single fund. This difference is due to the fact that raising

funds through a network of investment funds provides exposure to assets acquired by any mutual fund

on the same platform. Therefore, the structure of investment funds available to retail investors through

investment platforms requires special care in the description and interpretation of data.

For example, the demand for a network of funds is not only due to the direct holdings of its funds.

It is very important to differentiate between direct participation in outstanding shares and exposure to

shares. An investment fund’s exposure must consider the direct and indirect holdings due to the fund’s

participation in other funds. The exposure in an asset corresponds to the consolidated holdings of the

funds. Consolidation takes into account the indirect holding in each asset due to purchases of stakes in

other funds.

Q0P

V1 V2

V3

master fund r0

feeder fund r1

Figure 3: The assets are the upper rectangles, and the liabilities are the lower rectangles. Only the

master fund r0 directly participates in the outstanding shares, but both funds have exposure to the

stock.

Consider a simple example of an investment platform with exposure to a stock with Q outstanding

shares. This platform, represented in Figure 3, makes only two funds available to retailers: A master

fund r0 and a feeder fund r1. Retail funding is represented in each fund’s liabilities as V2 and V3. Only
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the master fund r0 acquires a fraction Q0 in the outstanding shares worth Q0 × P , using the total

resource V1 + V2. Both funds are exposed to the stock due to the V1 of the feeder r1 invested in master

r0.

To better understand the difference between exposure and direct participation, note that there are

two ways of calculating a stock’s relative weight in a fund’s portfolio. The first calculation is associated

with the relative weight due to the direct holding ω(d), and the second ω, to the indirect + direct

holding associated with an exposure E. These two forms coincide for the master r0, since in this case,

the exposure is the direct participation itself E0 = Q0, with

ω
(d)
0 =

Q0P

V1 + V2
= 1 and ω0 =

E0P

V1 + V2
=

Q0P

V1 + V2
= 1.

These two ways of calculating relative weight do not coincide in r1. Although there is no direct

participation in the outstanding shares Q1 = 0, there is an indirect participation due to the amount V1

invested in r0. The r0 uses the r1 to raise funds, with V1 = V3. So, although w
d
1 = Q1P/V3 = 0, it is

possible to obtain an indirect participation:

w1 =
E1P

V3
⇒ V1

Q0P
=
E1P

V3
⇒ E1 =

V 2
1

Q0P 2
,

therefore, an investment platform, the fund network, can have a greater exposure to shares (Q0 +

V 2
1 /Q0P

2) than direct participation of its funds Q0. An exposure-based demand should consider the

fundraising structure through a network of investment funds available to retailers. This fundraising

structure is a form of a multiplier because the institution’s exposure is always greater than direct

participation.

The investment platform organizes the network of funds for retailers in a spoke-hub structure. In

this representation, the platform establishes master funds to manage the shares that circulate in the

market through direct participation. The master fund serves as the central hub in the network, while

all other nodes act as feeders, investing in the master fund’s shares. The end nodes collect resources

from retailers and transfer them to the central hub by exchanging exposure for quota shares.

exposure + hub shares

exposure + hub shares

$$

Figure 4: A retailer investment platform in the form of a spoke-hub network. Only the master fund

in the network’s center (hub) has a direct participation in the outstanding shares. All the other four

nodes are responsible for retail fundraising.

The structure of a network of investment funds available by investment platforms is more complex

than the representation in Figure 4. Funds identified as masters often hold shares in other funds and

feeders may invest directly in stocks. In addition, a fund on one platform can acquire shares of other

platforms, and funds managed by one platform can be distributed to retailer investors on different

platforms. In any case, Figure 4 represents a simplified platform. If other platforms were considered,
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the fund networks would have intersections, given the fund distribution network of the fundraising

industry.

The most relevant data for the exposure-based demand model presented in Section 4 are the

stock exposures of their fund networks made available to the retail market. The sample included

around 7 million observations of stock exposures in investment funds classified as master and feeder

funds qualified to buy stakes in other funds from 41 platforms in the Brazilian market. The company

Quantum7 collected the data. The exposures covered 166 stocks, some of which were part of the

IBRX-100 index between January 2016 and December 2021. Throughout this period, around 1300

investment funds were available to retail investors with assets under management exceeding R$15
million; it has more than five shareholders and only includes exposures with values greater than or

equal to zero.

Some minimum criteria are required to include or exclude funds from the sample. A minimum

threshold for the funds’ assets under management and the number of shareholders limit the importance

of small, young, and exclusive investment funds. To better understand any criteria, it is necessary to

understand that the fund sector in the Brazilian market has segmented the different responsibilities

inherent in its financial intermediation services. The functions associated with investment funds can be

divided into custody, management, administration, and distribution. Different platforms can perform

these different functions in a single investment fund.

For example, custody is the safekeeping of asset in an investment fund, including the physical and

financial settlement of assets, that is, the buying and selling of shares, bonds, and other assets. The

institution that carries out custody is called a depository institution and is responsible for holding the

assets on behalf of the investors’ funds. The administration is responsible for ensuring that the fund

functions properly. The institutional administrator has the power to carry out the necessary acts to

manage the fund. One of these acts is to calculate the value of a fund’s liquid assets, also called assets

under management.

In addition, management and distribution are the two other most important functions in under-

standing asset demand. Management is responsible for making investment decisions, such as selecting

the assets the fund will buy and sell. Distribution is responsible for raising funds from investors, that

is, selling the investment fund’s shares. The distributor can be the administrator himself or a third

party he hired. Over time, most investment funds begin with a main fund that manages the resources

and some feeder funds distributed by one platform or different platforms.

Thus, small investment funds in the data sample (with few assets under management and few

shareholders) can significantly affect the results of a platform’s exposure. Platform’s exposure would

be related to the pressure caused by strong retail outflows due to the high mortality of funds in their

early stages of implementation. In this case, the demand for exposure would be strongly related to the

outflow of funds and not to the risk allocation decisions when funds decide to expose themselves to

a stock. As a criterion, I chose funds with at least 5 shareholders and R$15 million in assets under

management in the months between 2016 and 2021.

The Brazilian Financial and Capital Markets Association (ANBIMA) classified these investment

funds in the sample into nine classifications related to equity management strategies. These funds

related to equity management could be interpreted as mutual funds. The nomenclature of hedge funds

and mutual funds in the Brazilian market is fuzzy. The ANBIMA did not use this nomenclature. Since

July 2015, ANBIMA has classified investment funds on three levels. This hierarchy of levels seeks to

7https://quantumfinance.com.br
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reflect logic in the investment process. The first classification level describes the asset classes defined

by the Brazilian Securities Commission (CVM) regulations. Assets at this first level are divided into

fixed income, equities, multi-market, and foreign exchange. The other two levels are associated with

self-regulation of the funds. The intermediate level is related to types of risk management and is

differentiated into indexed, active, and foreign investment. The last level varies according to strategy.

The database contains the investment funds classified as multi-market with a free strategy

that allows leverage. These funds do not engage in specific strategies. These funds are associated

with hedge funds in the US market. The sample also contains all the equity funds associated with

mutual funds. These funds are classified by indexes and with active management based on strategies

related to value/growth, sector, dividends, small caps, sustainability/governance, active index and

free management. In the Brazilian market, equity funds must hold at least 67% of their portfolio in

shares, warrants or subscription receipts, depositary receipts, shares in equity funds, and shares in

equity index funds. Figure 5 offers a more thorough investigation of the selected sample.

Figure 5 describes (a) the evolution of the number of funds, (b) the evolution of the median assets

under management each month of these funds, (c) the evolution of the median shareholders each

month, and (d) the median of the net redemption/applications flows of these shareholders each month

of the sample. The funds classified as network feeders are turquoise, and the Brazilian market has the

acronym FIC (quota investment fund) in the name of the fund. Funds classified as masters are red and

have the acronym FI (investment funds) in their names. Disclosure of exposure data (consolidated

form) and direct holdings in outstanding shares (non-consolidated form) occurs monthly. By regulation

of the CVM, these data are released with a delay of one quarter at the request of financial institutions.

Although portfolio data are only released at the end of each month, the prices of the fund’s

shares, their assets under management, the number of shareholders, and the values of redemption

and applications flows occur daily. The option was to smooth the higher frequency information and

synchronize the daily and monthly information. All the information on the investment funds that is

disclosed daily is carried out on average in the last fifteen business days. The idea is that the monthly

disclosure of positions in portfolios is not necessarily the closing positions of the month. Each fund has

its portfolio disclosure policy, and the regulator does not standardize the disclosure of these numbers.

Figure 5 suggests gains in the scale of the fund industry in raising funds in the form of a network

of investment funds. The number of investment funds that behave as feeders of the funding network

and the number of shareholders of these funds indicate a faster evolution in this period than the funds

that play a role in the direct management of outstanding shares. On the other hand, the evolution

of median wealth in the form of assets under management has the opposite behavior. Despite the

suggestion of probable gains of scale in building a fundraising network in the form of a network, the

evolution of investor flows suggests a more significant variability in the flows of funds associated with

the direct management of outstanding shares, indicating the possibility of a dilemma between gains

of scale and risks associated with liquidity. Investor flows in network feeder funds are the funds with

distributions between institutions. As these flows are primarily the origin of the resources that master

funds use to manage portfolios with direct participation, there is a risk associated with the liquidity

that retail investors provide to the fund industry.

The exposure data collected by Quantum was consolidated, considering up to fifty levels of funds

on funds. In most cases, consolidation down to three or four levels is sufficient. This type of data is

challenging to collect and contributes significantly to the finance literature. The data currently used

in the finance literature is only on direct participation. The exposure observations E(m, a, r, n, t) in
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(a) number of funds (b) mean and median in dashed (AUM in logs)

(c) median number of retailers (d) mean and median in dashed of retailers

(e) median net flows

Figure 5: The network of investment funds (IFs) among sampled institutions has significantly expanded.

Feeders funds (FF) are turquoise, and masters funds (MFs) are red. The number of feeders has

increased over time above masters (a), and the assets under management (AUM) for masters have

risen quickly (b). The number of retailers in feeders exceeds the number of feeders in masters (c). The

flow pressure is more volatile in masters (d).
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(a) number of stocks (b) Bradesco stocks exposure (in logs)

Figure 6: IBRX-100 stocks in platform portfolios. Median in red. On the left, the distance between

max and min in purple. On the right, the distance between the quintiles in purple.

the sample are indexed by m = 1, . . . , 41 investment platforms, which made available r = 1, . . . , 1134

investment funds to investors with a = 1, . . . , 9 different ANBIMA classifications. The ANBIMA

classification will be omitted in the notation. Each observation refers to stocks n = 1, . . . , 166 that are

part of the IBRX-100 index between January 2016 and December 2021 t = 1, . . . , 72.

The number of stocks in the IBRX-100 index never reaches 100 in any given month (Figure 6a).

Exposure refers to investment funds; if a fund has no exposure to any index stocks, I assign zero to its

portfolio. The exposure data are derived from the portfolio weights ωm,r,n,t = Em,r,n,tPn,t /AUMm,r,t,

where the assets under management are defined as AUMm,r,t =
∑
n
Pn,tEm,r,n,t +Hm,r,t +Om,r,t. This

represents the net worth of the fund, including the aggregate exposure to stock
∑
n
Pn,tEm,n,t and the

value of the inflows/outflows of retail investors Hm,t along with the market value of external asset

exposures Om,t. Thus, the exposure for each fund is Em,r,n,t and is calculated using the observables

ωm,r,n,t, AUMm,r,t, and Pn,t. The exposure-based demand model looks at the total exposure of the

fund network, exemplified in Figure 6b, which displays the Bradesco platform’s exposure timeline.

Consequently, the platform exposure is an aggregate measure that totals the investments of the

platform’s funds,

Em,n,t =
∑
r

Em,r,n,t. (1)

The exposure variable can be consolidated across all platforms to evaluate asset exposure, as shown by:

En,t =
∑
m

Em,n,t. (2)

Thus, alterations in platform or asset exposure lead to correlated exposure patterns. The exposure

change by platform is given by:

em,n,t = log
Em,n,t

Em,n,t−1
, (3)

while the exposure change by asset is defined as:

en,t = log
En,t

En,t−1
. (4)

17



The Figure 7 illustrate these two types of changes, demonstrating that changes are more pronounced

at the platform level, suggesting correlated behaviors. The variable of interest seeks to examine the

variation in volatility. The core modeling strategy employs the detailed hypothesis of aggregated

fluctuations introduced by Gabaix and Koijen (2011), which posits that most of the aggregate fluctuation

originates from idiosyncratic shocks to individual agents. In the case of investment platforms, the

retailer exposure-based demand shocks play the role of idiosyncratic shocks.

(a) change exposure on platforms (b) change exposure in assets

Figure 7: The red line represents the median evolution, while the blue region indicates the inter-quintile

range.

Two points of view can be taken when examining the data. One is the concept of granular

instrumental variables as discussed by Gabaix and Koijen (2024). This instrument leverages the notion

that variations in exposure levels with different averages can lead to latent shocks if the exposure

model on each platform can be depicted as an exposure-based factor model. These variations have

been suggested for identifying parameters linked to aggregate variables, such as stock prices. To utilize

similar approaches for analyzing platform-specific exposures, it is feasible to consider only the shocks

affecting other platforms. The granular network variable is essentially a linear combination of exposures

from various platforms,

Gm,t =
∑
j ̸=m

(
S̃j,t −

1

M − 1

)
Ej,t, (5)

where, the summing results in idiosyncratic shocks from other platforms if it assuming specific factor

model to explain the exposures over time.8 The variable Gm,t is for one stock. In the case of the

portfolio of stocks, the granular variable is a vector Gm,t ∈ RN .

This concept resembles the research by Chodorow-Reich, Gabaix, et al. (2024), who introduce

network granular instrumental variables, or network GIV. They extended the concept of granular

instruments to account for network economies. For example, they suggest using a network GIV to

determine and quantify the influence of a TFP shock in the steel industry on overall economic prices

and output. In the case of investment platforms, the granular network variable is a persistent stochastic

process over time, for example, in three different platforms in Figure 8.

The progression of the granular variable is influenced by both the dimensions and exposure

strategies of the platforms. Figure 8 depicts the temporal series of the granular network variable in

8More details in Section 4.
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(a) Bradesco (b) Verde

(c) Itau

Figure 8: Times series of granular network variable and granular variable. Median granular network in

red and the total granular in blue (in logs).

19



red and the granular variable in blue. The granular variable is expressed as the sum of the values

described in Equation (5), excluding the platform itself, m. As for Itau, its platform’s size results in a

significantly larger discrepancy compared to others. Conversely, although the Verde asset management

platform exhibits granularity similar to that of the Bradesco platform, its higher variability suggests

that fluctuations in Bradesco impact it more significantly, while its lower variability has a lesser effect

on Bradesco.

In the next section, I will develop the exposure-based demand model using the granular network

variable to infer the parameter of exposure elasticity of demand. This parameter will be essential for

the empirical analysis of replicant risk in Section 6.

4 An Exposure-Based Demand

In this section, I will analyze the theoretical foundations of exposure-based demand. Section 4.1 presents

the fundamentals of an exposure market, while Section 4.2 discusses stock pricing using the granular

instrumental variable proposed by Gabaix and Koijen (2024). Moreover, I investigate the potential

to generalize this instrument into a granular network variable, as proposed in the initial research by

Chodorow-Reich, Gabaix, et al. (2024). This variable could be used as an explanatory variable in

examining how platforms respond to exposure choices, with its associated impact between platforms

defined as the exposure elasticity of demand. Platform decisions, regarding aggregate exposures to

retail investors among available mutual funds, are explored in Section 4.3, where I investigate the

interplay between equity portfolio models and the demand of retail investors for exposure. I explore a

key comparison between asset returns from non-arbitrage pricing models (Ross, 1976) and a dynamic

factor model for platform exposures. Lastly, Section 4.4 introduces a dynamic factor model to access

investors’ equity exposure demand, facilitating the monitoring of investment platform dynamics over

time.

4.1 Exposure Market

The market for equity exposure consists of the supply of exposure from investment platforms and the

demand for exposure from retailer investors. The demand for exposure is always a demand for market

participation. The key point is that market participation, in this case, exposure, is not limited to

direct participation in the outstanding shares. The exposure market is an intermediary market that

exposes investors to stocks through a network of funds. Only a few specific funds buy shares directly

in the market, but because funds buy stakes in each other’s funds, all funds are exposed to fluctuations

in share prices. In this way, an investment platform is always a network of funds that, when made

available to the retail market, can create exposure to the stock market.

Consider a set M = {1, . . . ,M} of investment platforms. The exposure of a representative retailer

investor of a platform in a stock is the amount Em,t. Thus, the total exposure of the set M is

Et =
∑
m
Em,t. The demand for exposure from investors on each platform E

(d)
m,t is represented by a

demand for market share

E
(d)
m,t

Et

= Sm,t(1 + em,t), (6)

with the market share given by Sm,t = Em,t /
∑
m
Em,t = Em,t / Et, and defining the total exposure

market for this set of platforms by
∑
m
Sm,t = 1. The term (1 + em,t) is a deviation factor from a trend
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Et and therefore represents a percentage change in exposure em,t = (Em,t − Et) / Et.
9 The trend of

the random variable total exposure, denoted as Et, captures the dynamics of its average, as exposures

are not constant random variables over time. The trends at each time point are estimated using the

information available up to the previous period. If the deviation in Equation (6) is em,t ̸= 0, this

indicates that platform m has investors who demand a change in their market share: E
(d)
m,t /Et ≠ Sm,t−1

at time t.

Thus, a demand for exposure could also be represented by Equation (7), in which percentage price

changes pt, platform-specific controls Xm,t, and latent demand of an idiosyncratic nature τm,t would

be able to induce changes in market share through an assumed linear relationship

em,t = Empt + δ′mXm,t + τm,t, (7)

where Em is the price elasticity of demand for platform m. This means that variations in 1% in price

cause variations of Em% in the exposure of the platforms.

It should be noted that the lowercase notation for price pt represents a percentage change in price

relative to a trend: pt = (Pt − P t) / P t. So pt is not a price, but a price variation.10 Since any trend is

measurable with the information present in the data up to the previous period, if the best estimate

of the price trend is Pt−1, then pt could be interpreted as the return of the stock. In this way, the

demand for exposure is described by a model of changes in investor exposure on each platform. While

in the market for direct stock ownership, the price adjusts due to the quantities traded, the exposure

market studies the variability of prices.

In principle, in addition to the set of platforms, there are the general equilibrium effects of the

rest of the market. Since the exposures supplied by the set of platforms have risk premiums associated

with the multiplier effects,11 it is always possible to assume that the demand shocks from the rest of

the market are negligible. I assume that the rest of the market has exposure shocks et = 0 and is

therefore a price taker.

The model allows for controls for each platform. An example of a control for investor demand

would be the percentage change in the value of the platform’s assets under management aumm,t caused

by investor flows.12 Other examples of signals would be expected stock returns and the correlation

between those returns. Finally, latent demand would include the vector of common demand shocks

across platforms.

Therefore, the total demand for exposure of the set of platforms E
(d)
t is the total demand for

exposure that changes over time only due to changes in exposure, weighted by the market shares of

each platform,

E
(d)
t =

∑
m

E
(d)
m,t = Et

(
1 +

∑
m

Sm,tEm,t

)
= Et

(
1 + e

(s)
t

)
, (8)

and so the aggregate demand curve, minus the specific controls of each platform, is the relationship

between percentage changes in stock prices and percentage changes in total market exposure, represented

9When logarithms of the variables are used, lowercase letters represent random variables that can also be interpreted

as proportional changes.
10Which may not be the best possible notation. Since I will use lowercase to represent any percentage change, I prefer

to keep this choice for pt.
11I discuss the multiplier effects in detail in Ferraresi and Urbano (2025)
12Note that this term contains the prices of all assets in the platform’s funds.
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by Equation (9)

E
(d)
t

Et

= 1 +
∑
m

Sm,t (Empt + τm,t)

E
(d)
t

Et

= 1 +
∑
m

Sm,tEmpt +
∑
m

Sm,tτm,t

E
(d)
t

Et

= 1 + Ept + τ
(s)
t

e
(s)
t = Ept + τ

(s)
t , (9)

where the price elasticity of aggregate demand E and the latent shocks to aggregate demand τ
(s)
t are

E =
∑
m
Sm,tEm and τ

(s)
t =

∑
m
Sm,tτm,t.

Finally, the other side of the exposure market is the supply of exposure. Supply is the dilemma

between the marginal benefit of the network offering exposure, given by percentage price changes, and

the marginal cost to platforms of expanding or contracting their network of funds, given by negative

supply shocks. Thus, the total exposure supplied E
(o)
t is given by

E
(o)
t = Et

(
1 +

pt − ut
ψ

)
, (10)

where the aggregate parameters E and ψ are not identified due to the correlation between the supply

and price shock E[utpt] ̸= 0, which would not allow the parameter ψ to be identified. Note that even

if E[ptτ
(s)
t ] = 0 in Equation (9), the parameter E of the price elasticity of aggregate demand is not

identifiable due to the simultaneity between supply and aggregate demand.

Given the demand, Equation (8), and supply, Equation (10), the next step is to study the

equilibrium price and aggregate exposure. To discuss the problems related to the non-identification of

the aggregate elasticity parameters E and ψ, I will present the idea of a granular instrumental variable

proposed by Gabaix and Koijen (2024), already adapted to the context of an equity exposure market.

4.2 Granular-Based Pricing

The price equation for a stock in the exposure market is derived from the equilibrium. The idea is to

explain how the change in the stock price is affected by changes in the exposure of the platforms. To

determine a price change equation, consider the equilibrium in the exposure market with the pricing

equation (11)

Et

(
1 + e

(s)
t

)
= Et

(
1 +

pt − ut
ψ

)
pt = ψe

(s)
t + ut. (11)

The change in stock price pt depends on both the change in aggregate exposure e
(s)
t and the supply

shock ut. A fundamental problem is that it is not possible to estimate the parameter ψ in Equation

(11) by OLS, because

E[ute
(s)
t ] ̸= 0. (12)

The estimation of the aggregate parameters E and ψ is based on the idea of a granular instrumental

variable in Gabaix and Koijen (2024). The main assumption of a granular instrument is that idiosyn-

cratic shocks are independent of aggregate shocks. In principle, a linear combination of idiosyncratic
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shocks affecting the platforms τ
(s)
t =

∑
m
Sm,tτm,t could be used as an instrumental variable, since by

hypothesis E[τ
(s)
t ut] = 0.13.

The example discussed by Gabaix and Koijen (2024) in Appendix D.2 shows how to recover the

parameters of aggregate elasticities in this simpler case, assuming the granular variable τ
(s)
t . The

expressions for aggregate demand and supply are rewritten in terms of Equations (13) and (14),

E
(d)
t

Et

− 1 = Ept + τ
(s)
t

e
(s)
t = Ept + τ

(s)
t , (13)

E
(o)
t

Et

− 1 =
1

ψ
pt −

1

ψ
ϵt

e
(o)
t =

1

ψ
pt −

1

ψ
ϵt, (14)

therefore, it is possible to obtain “pass-through” expressions between linear combinations of idiosyncratic

platform shocks and prices in (15)) and total equilibrium exposure in (16). Starting from the market

equilibrium,

e
(s)
t = e

(o)
t

Ept + τ
(s)
t =

1

ψ
pt −

1

ψ
ϵt

τ
(s)
t +

1

ψ
ϵt =

(
1

ψ
− E

)
pt

pt = µ(p)τ
(s)
t + ϵ

(p)
t , (15)

e∗t = µ(e)τ
(s)
t + ϵ

(e)
t , (16)

where µ(p) = ψ / (1 − ψE) is the effect of shocks on pt, and µ(e) = 1 / (1 − ψE) is the effect

of shocks on equilibrium total exposure changes e∗t . Note that the errors ϵ
(p)
t =

(
µ(p) / ψ

)
ϵt and

ϵ
(e)
t = (µ(p) / ψ2 − 1 / ψ)ϵt depend only on the aggregate supply shock ϵt and the parameters, and thus

the parameters µ(p) and µ(e) are identified under the assumption that τ
(s)
t ⊥⊥ ϵt. The recovery of the

original aggregate parameters of the supply and demand curves is possible because Equation (15) is

the first stage of a two-stage instrumental variable estimation to recover the parameter ψ in (11), and

thus the parameter E is also identified.14

More caution is needed when using a linear combination of idiosyncratic platform shocks as an

instrument. The price change is not the only aggregate shock that can explain the demand for exposure.

If other possibilities of aggregate shocks are considered, it is necessary to evaluate the effect of these

other shocks on the linear combinations made with the observations of exposures in order to obtain

only idiosyncratic shocks in the variable to be used as an instrument.

Gabaix and Koijen (2024) present in detail how to construct a granular variable that is a linear

combination of idiosyncratic shocks, assuming other common aggregate shocks across countries in the

oil market. I will briefly discuss the idea of the article, which has already been adapted to the context

of the exposure market. Consider the exposure of a platform to a single stock without taking into

account other controls, written as

em,t = Empt + λ′ηt + τm,t,

13Note that a bit more care is needed when making such a statement because the responses to aggregate shocks λ′
nηt

are included in the idiosyncratic shocks of each platform. In addition, a single combination of idiosyncratic errors would

not be sufficient, as the instrument must depend on the observed variables
14under the condition that ψE ≠ 1
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with λ′ ∈ R1×P and ηt ∈ RP representing the P possibilities of joint demand shocks. The idea behind

the construction of an instrumental variable is the existence of a vector of weights Γt ∈ RM , which

would make it possible to construct a random variable zt from idiosyncratic shocks only

zt = Γ′
tet, (17)

with vector et ∈ RM , which is composed of the percentage changes in exposure to a stock on each

platform in the set.15. Thus, consider the factor loading matrix Λ ∈ RM×P , where each loading is the

sensitivity of each platform to common demand shocks in the stock ηt ∈ RP . The two hypotheses for

zt to be a valid instrument are

Γ′
tΛ = 0,

Γ′
tιM = 0,

because if the price elasticity of demand is the same for each platform, it is possible to verify that

zt = Γ′
t (ιMEpt +Ληt + τ t)

= Γ′
tτ t,

with τ t ∈ RM are the idiosyncratic shocks of each platform in the stock n. Therefore, the variable zt

can be used to identify µ(p) and µ(e) in Equations (15) and (16). Gabaix and Koijen (2024) discuss in

more detail how to obtain a vector of optimal weights Γ∗
t based on two-stage statistical procedures

since it will be essential to take into account estimates of loadings and factors.

Assuming only a single common factor ηt and a load vector Λ = ιM , i.e. a time-fixed effect has

absorbed the aggregate shocks, it is possible to use a known form for the vector of weights Γt

Γt = St −
1

M
ιM , (18)

with St ∈ RM . The weights are the difference between the arithmetic and share-weighted averages of

the platforms. Gabix and Koijen (2024) show that assuming idiosyncratic shocks are independent across

platforms, ∀m ̸= j, τm,t ⊥⊥ τj,t and homoscedastic σ2τ > 0, the vector of weights given by Equation (18)

is optimal.16

The granular variable zt is built to identify the aggregate parameters E and ψ. How can we

identify specific parameters for each platform using the same idea? Assuming that the idiosyncratic

shocks of different platforms are independent of each other, each platform can be reinterpreted as an

“asset insulator” (Chodorow-Reich, Ghent, and Haddad, 2021). In an environment of competition for

exposure, where each platform responds strategically to the others, platforms compete for quantity,

and the most relevant variable for understanding their decisions would be the spillovers between them.

Using the granular variable zt to identify µ(p) and µ(e) in Equations (15) and (16) opens up the

possibility of using only part of the variability of zt to identify the effects of other platforms µ
(p)
̸=m and

µ
(e)
̸=m on price changes and exposure changes. In this way, it is always possible to subtract a platform’s

own idiosyncratic shock and thus obtain a new granular variable, which I call the granular network

variable,

gm,t =
∑
j ̸=m

(
S̃j,t −

1

M − 1

)
ej,t

gm,t = Γ′
̸=m,te̸=m,t, (19)

15The above expression could be identified by zn,t = Γ′
n,ten,t, since it depends on which stock n we are evaluating.

To be consistent with my notation, I prefer not to make the dependence on variables or matrices explicit so as not to

overwhelm the reader
16Lowest asymptotic variance for the aggregate parameter estimates E and ψ among any other vector of weights.
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where Γ ̸=m,t = S̃t − (1 / (M − 1))ιM−1 ∈ RM−1, e̸=m,t ∈ RM−1 and
∑
j ̸=m

S̃j,t = 1. In this way, the

granular network variable gm,t makes it possible to study the effects on price changes and changes in

aggregate exposures caused by other platforms from the perspective of the platform m.

Before presenting the model of exposure on the part of the investment platforms, in Section 4.4, I

address the fact that the exposures are of equities, and, therefore, it is necessary to include peculiarities

related to risk and return in the discussion.

4.3 Factor-Based Exposure Portfolio

Is it possible to relate the demand for exposure given by Equation (7) to stock portfolio models? It is

common knowledge in finance that any model that explains the percentages of stocks that investors

choose to hold in their investment portfolios is a demand model. The first example in finance literature

was Markowitz (1952), in which the demand of a representative risk-averse investor with quadratic

utility would choose an optimal portfolio that depends on the correlations between stock returns and

the expected values of returns at each point in time.

Portfolio models are dynamic. It is unreasonable to assume an independent choice process over

time. Therefore, rewriting a static portfolio problem in terms of percentage changes is the simplest

way to represent it dynamically. To arrive at a portfolio model associated with percentage changes in

exposures, prices, and assets under management, we start with Markowitz’s solution of an investment

platform with constant risk aversion and quadratic preferences,

ωm,t =
1

γm
Σ−1

r,t µm,t, (20)

where the portfolio ωm,t ∈ RN is a vector of exposure weights. The weights are explained by the risk

aversion γm, the expected value of the stock returns µm ∈ RN of each platform, and the covariance

matrix of returns common to all platforms Σr,t ∈ RN×N .

To obtain expressions for the expected returns and an analytical solution for the inverse of the

covariance matrix, I use the APT risk model proposed by Ross (1976). In that model, stock returns

rt ∈ RN are explained by a vector of risk factors ζt ∈ RK with premiums given by the vector E[ζt] ∈ RK .

The relationship between returns and these factors is given by a pricing error vector, α ∈ RN , and a

risk factor loading matrix, β′ ∈ RN×K . Therefore, the expressions representing the APT model are

rt+1 = α+ β′ζt+1 + ϵt+1,

rt+1|ζt+1 ∼ N
(
α+ β′ζt+1;σ

2
ϵ IN

)
,

ζt ∼ N (E[ζt];Σζ,t) ,

ϵt ∼ N
(
0;σ2ϵ IN

)
,

ζt ⊥⊥ ϵt,

and thus the expected value of the returns E
(m)
t [rt+1] = µm, and the covariance matrix of the returns

Σr,t, respectively,

µm = αm + β′ E[ζt], (21)

Σr,t = β′Σζ,tβ + σ2ϵ IN , (22)

where the vector of pricing errors α is given by the weights of the average platform shares of each
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pricing error α = S′αm.17 Note that if the vector of risk factors is correctly specified, the value of the

pricing error vector is α = 0, and a zero-sum game can represent the investment platforms interactions.

To obtain an analytical form for the inverse of the covariance of returns, I use Woodbury’s identity

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1,

with the following matrix definitions,

A = σ2ϵ IN ∈ RN×N ,

Ct = Σζ,t ∈ RK×K ,

U = β ∈ RN×K ,

V = β′ ∈ RK×N ,

so, I rewrite Markowitz’s solution in the form of a dynamic factor model, using a factor loading matrix

per platform Λm ∈ RN×K , a vector of factors κm,t ∈ RK , and a platform fixed effect ξm ∈ RN ,

1

γm
Σ−1

r,t µm =
1

γm

[
σ2ϵ IN + βΣζ,tβ

′]−1
µm

=
1

γm

{
σ−2
ϵ IN − σ−2

ϵ INβ
[
Σ−1

ζ,t + β′σ−2
ϵ INβ

]−1
β′σ−2

ϵ IN

}
µm

=
1

γmσ2ϵ
µm − 1

γmσ2ϵ
β
[
σ2ϵΣ

−1
ζ,t + β′β

]−1
β′µm

=
1

γmσ2ϵ
µm − 1

γmσ2ϵ
βκm,t

= ξm + λmκm,t,

with the platform fixed effect, factor loadings, and dynamic factors being written, respectively, by

ξm =
1

γmσ2ϵ
µm = Amµm, (23)

λm = − 1

γmσ2ϵ
β = −Amβ, (24)

κm,t =
[
σ2ϵΣ

−1
ζ,t + β′β

]−1
β′µm = Btµm, (25)

with the linear transformation matrices Am ∈ RN×N and Bt ∈ RK×N of the above expressions written

as

Am =
1

γmσ2ϵ
IN , (26)

Bt =
[
σ2ϵΣ

−1
ζ,t + β′β

]−1
β′. (27)

Therefore, based on a risk model and beliefs about stock pricing errors, it is possible to define

two linear transformation matrices, Am and Bt, which summarize the expected returns, taking into

account a fixed effect per platform (average latent demand for exposure) and a dynamic factor model

(due to the volatility of risk factors). Thus, Markowitz’s equation (20) can be written in the form of a

dynamic factor model:

ωm,t = ξm,t + λmκm,t.

17Although the shares are time-dependent, given an order of platforms by size that is constant over time, considering

the average shares of platforms is the simplest way to arrive at a constant α parameter
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For didactic purposes, consider only the weight of a single exposure in the portfolio and a single-factor

dynamic factor model. To rewrite the weight vector as a number

ωm,t = ξm,t + λmκm,t,

and, rewriting the left side of the above expression in terms of percentage changes in exposure, price,

and AUM of the platform, it is possible to obtain an expression for the demand for factor-based

exposure

Em,tPm,t

AUMm,t
= ξm + λmκm,t

Em,t (1 + em,t)Pm,t (1 + pm,t)

AUMm,t (1 + aumm,t)
= ξm + λmκm,t

ωm (1 + em,t + pm,t − aumm,t) ≃ ξm + λmκm,t

em,t + pm,t ≃ ξm + λmκm,t

ωm
− 1 + aumm,t

em,t = ξm − pm,t + λmκm,t + τm,t. (28)

where ωm,t = ωm represents a constant base scenario, e.g., diversification with equally weighted 1/N

weights.18

Note that the term (ξm + λmκm,t) / ωm − 1 represents the percentage difference between the

weights chosen by a factor model and the weights chosen by a base scenario ωm. This weight of the base

scenario can be included in the fixed effect of the platform and factor loading simply by substituting

a new coefficient of risk aversion of the platform γm = ωγ∗m in Equations (23) and (24). In addition,

because the weights chosen by the factor model are very extreme,19 I include a latent demand term

τm,t that incorporates changes in assets under management so that the resulting percentage changes

on the left-hand side of Equation (28) do not become so extreme.

Finally, let us return to the case of a platform with a portfolio exposed to N stocks. The demand

(in percentage terms) for this platform’s exposure can be written as

em,t = ξm − pt + λmκm,t + τm,t, (29)

where τm,t ∼ N
(
0;σ2mIN

)
and κm,t ⊥⊥ τm,t, since I assume an exact decomposition of latent demand.

Platform exposure changes em,t, stock price changes pt, and latent demand shocks τm,t are decided

simultaneously. Equation (29) reflects the fact that these simultaneous decisions can be written by a

model of dynamic factors that refer only to percentage changes.

In the last subsection, I discuss which exposure model would be most appropriate for investment

platforms, given that exposure changes and their effect on prices are the result of equilibrium in the

exposure market. The main idea to be discussed is the importance of spillover effects between platforms,

both for demanders and providers of exposure.

4.4 Exposure-Based Demand

Retail investors seek exposure through investment platforms that form an exposure market. Here,

investment platforms behave as an oligopoly of exposure providers. The choices these platforms make

18The fact that the three trends are time-dependent while the base scenario is not is consistent with the fact that the

three stochastic processes are cointegrated.
19A feature inherited from the Markowitz model
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regarding exposure influence stock prices and are determined simultaneously across platforms. Because

price adjustments happen more rapidly than exposure changes, these investment platforms engage in

competition for exposures that resemble a Cournot oligopoly.

Suppose that the set of platforms provides a stock exposure that is considered homogeneous

by investors. The platforms simultaneously choose which exposures to produce. Thus, the stock

market adjusts prices so that the aggregate demand for exposures by investors equals the aggregate

supply of exposures by platforms. In this way, a residual demand curve becomes of great interest

for the platforms. The residual demand corresponds to all possible combinations of exposure and

equilibrium price that a platform can observe, taking into account the exposures of the other platforms.

Assuming the existence of marginal cost and revenue curves, it is possible to obtain reaction curves

between platforms that represent the optimal supply decisions of each platform depending on changes

in the exposures of the other platforms. The granular network variable gm,t constructed to assess the

interactions of the platform would identify both the slopes of these response curves and the slopes of

the residual demand of each platform.

I propose a dynamic model of demand for exposure across various platforms, where investors do

not focus on market prices but rather on the impact of latent demand shocks between these platforms.

If the stock were chosen by a mutual fund manager, it would be logical to treat stock prices as

their primary decision variable. The key point is that, from the perspective of exposure choices, the

opportunity cost of resource allocation decisions depends on how each platform responds to shocks

from others. Thus, exposure-based demand is a reduced form, as my goal is not to estimate the price

elasticity of demand in this exposure market. The allocation of resources to investment platforms

should be viewed as a form of passive investment, where the exposure portfolio of the fund network can

be interpreted as an investment strategy. This concept has been elaborated in Ferraresi and Urbano

(2025) by comparing investment platforms with ETFs. It is possible to develop strategies that focus on

exposure to these platforms. These strategies aim to exploit the risk premium associated with the

multiplier network of the platforms (Ferraresi and Urbano, 2025).

4.4.1 State Space Model

Exposure-based demand is the state space model representing retail investor demand from a specific

platform

em,t = ξm + δmgm,t + λmκm,t + τm,t, (30)

κm,t+1 = Φmκm,t + νm,t, (31)

where ξm ∈ RN , λm ∈ RN×K , and κm,t ∈ RK given by Equations (23), (24), and (25), respectively.

The transition matrix in the dynamics of the factors is Φ ∈ RK×K . I define the exposure elasticity of

demand as the diagonal elements of the matrix δm ∈ RN×N . The cross-exposure elasticity is zero as

an assumption. This exposure elasticity parameter is related to the vector of inter-platform spillovers,

also known as the granular network variable gm,t ∈ RN represented by,

gm,t =


g
(1)
m,t
...

g
(N)
m,t

 =


∑
j ̸=m

(
S̃
(1)
j,t − 1

M−1

)
e
(1)
j,t

...∑
j ̸=m

(
S̃
(N)
j,t − 1

M−1

)
e
(N)
j,t

 ,
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and, finally, the following hypotheses about errors,

τm,t ∼ N
(
0;σ2mIN

)
,

νm,t ∼ N (0; IK) ,

τm,t ⊥⊥ νm,t.

The model to be estimated, using a methodology discussed in the next chapter and the results

discussed in the empirical analysis chapter, is an exposure demand in the form of a state-space model

with only a single factor, K = 1. I represent, for one stock, the observation and state transition

equations, respectively, by:

em,t = ξm + δmgm,t + λmκm,t + τm,t, (32)

κm,t = ϕmκm,t−1 + νm,t, (33)

with the following assumptions about the errors

τm,t ∼ N
(
0, σ2m

)
,

νm,t ∼ N (0, 1) ,

τm,t ⊥⊥ νm,t.

4.4.2 Exposure Elasticity

The impact of spillovers between platforms is assessed from the point of view of investors in platform m

through the use of the parameter δm. This parameter represents the gradient of the response curve of

the platform m’ to unique demand fluctuations originating from other platforms. Consequently, a 1%

variation in the granular network metric gm,t results in a δm% variation in the demand for exposure on

the platform m. Since idiosyncratic shocks across platform demands are presumed to be independent,

the parameter δm is a causal parameter linked to the granular network variable gm,t.

I define the parameter δm as the exposure elasticity of demand. The concept of inter-platform

exposure elasticity, which refers to how sensitive positions on one platform are to changes in exposures

on other platforms, serves as a measure of the interconnectedness and fragility of the network of

market-participating platforms. Despite this measure does not directly represent price elasticity, it

can be related to broader market variables as price, returns, volatility, and systemic risk. This paper

concentrates on replicant risk, a type of systematic risk that I discuss more thoroughly in the empirical

analysis section, where I explain how the results for the vectors δm ∈ RN for each platform in the

study can be used to uncover replicant behavior.

Some conceptual approaches can already establish links between exposure elasticity and the

aggregate market variables mentioned in the previous paragraph.20 First, there is a relationship

between exposure elasticity and equity prices/returns. If the elasticity of exposure across platforms is

high, changes in one platform’s portfolio can lead to significant adjustments in the portfolios of others.

In a market context, this can amplify price movements. For example, if one large investment platform

reduces its exposure to a stock, others affected by that move may also reduce their exposure, creating

a herding effect.

This aggregated behavior can increase the selling pressure, leading to higher price declines or

more volatile returns. Thus, estimates of inter-platform exposure elasticities can reveal an important

20price, return, volatility, and systemic risk
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transmission mechanism for the propagation of platform behavior to prices and returns. High-exposure

elasticities may be associated with replicant behavior. This type of behavior is often associated with

more pronounced up/down cycles, as everyone tends to enter and exit the asset at the same time,

affecting returns and potentially creating price distortions relative to fundamentals. The relationship

between elasticity-exposure and volatility is important because of the possibility of stock price shocks

being amplified. If the network of funds is highly sensitive internally (i.e., if there is high elasticity

exposure), an initial shock (e.g., a price drop due to an idiosyncratic event) may be amplified as the

other platforms adjust their positions, increasing volatility. The volatility of the stock would depend

not only on news or external shocks but also on the internal dynamics of the fund network. The greater

the sensitivity, the greater the likelihood of endogenous fluctuations, i.e. volatility generated by the

platforms’ own architecture and reallocation decisions.

Elasticity exposure can also be interpreted as a measure of the fragility of the financial network.

By relating it to traditional risk measures such as Value at Risk (VaR), Expected shortfall, or stress

tests, it is possible to see whether platforms with greater internal sensitivity would need to hold larger

capital buffers, or whether a given shock would have a greater aggregate impact, leading to higher

levels of systemic risk. In this way, the elasticity exposure acts as a link between the microstructural

dimension (fund portfolios and their mutual sensitivity) and the macro dynamics of the market (prices,

volatility, and systemic risk).

There exists a link between exposure elasticity and systemic risk. Exposure elasticity serves as

a measure of the contagiousness of positions among participants. Networks characterized by high

exposure elasticity are more prone to contagion, where a disturbance on one platform can significantly

impact the exposures of other platforms, potentially leading to systemic risk. Consequently, assessing

exposure elasticity allows us to gauge the financial system’s susceptibility to localized shocks. This

paper examines a single aspect of exposure elasticity: when exposure elasticity is positive within an

investment platform, this procyclical tendency is labeled as a replicant behavior.

In situations where platforms are unable to synchronize their exposure choices over time, copying

the behavior of others is disadvantageous, as it subjects the platform to counterpart risk. The key insight

from this study is that in scenarios where platforms engage in coordination, the risk previously termed

as counterparty risk is now referred to as replicant risk. Replicant risk refers to the unpredictability

associated with the herding of other platforms within a coordinated environment. To be able to

measure this risk, it is necessary to infer the parameters of this model for each platform in the sample.

This inference problem will be discussed in the next section.

5 High-Dimensional Inference of Exposure Based Demand

The exposure-based demand model, as formulated by Equations (30) and (31), is assessed for each

investment platform using Bayesian inference techniques. Given that the exposure portfolio em,t ∈ RN

of a platform is N-dimensional, the parametric space can be viewed as being high-dimensional, leading

to potentially hundreds of parameters in the inference process. The parameters that require estimation

are the elements of Θm-set

Θm = Pm ∪ {κm,1; . . . ;κm,T }

Θm = {ξm, δm;σ2m;Φm;λm;κm,1; . . . ;κm,T }

30



where the elements of the parameters set P are ξm; δm ∈ RN , Λm ∈ RN×K , Φm ∈ RK×K , and σ2m.

The factors κm,1, . . . ,κm,T ∈ RK . So #Θm = 2N +K(T + N) +K2 + 1.21 Take, for example, the

scenario where the average exposure across platforms within the IBRX-100 index investment universe is

approximately N ∼ 50, and the data spans around T ∼ 72 months. Considering a single-factor model

(K = 1), with the transition parameter for the factor dynamics and the observational variance error,

the parametric space for each platform would encompass ∼ 225 dimensions. I will elaborate on how to

conduct Bayesian inference on this parameter set for each platform to derive posterior distributions for

the model parameters using the framework proposed in Ward et al. (2019) and discussed in Section

5.2.22 The parameter estimates for 15 platforms are presented in Appendix D.

5.1 Beliefs

In Bayesian approach, there is an analogy between parameter inference and updating prior beliefs in

the form of posterior beliefs. This article is the first to deal with investors’ demand for exposure to a

set of funds in the form of a ‘spoke-hub’ network. These investment platforms are competing to offer

exposure to investors and thus formulate beliefs about the parameters of the model proposed in the

previous section. The a prior probability of the set of parameters is considered to be the same for all

platforms and is written as

π
(
P
)

= π(ξ)π(δ)π(σ2)π(Φ)π(λ) (34)

the without prior beliefs, with ξ, δ ∝ 1. Polson and Scott (2011) argues that the half-Cauchy distribution

should replace the inverse-Gamma distribution as a default prior for a top-level scale parameter in

Bayesian hierarchical models; at least for cases where a proper prior is necessary, I adopt a similar

idea for the error variance π(σ2) ∼ Half-t3(0, 1). For the transition parameter in factor dynamics and

loadings, I adopt, respectively, π(Φ) ∼ N (0, IK), π(λ) ∼ N (0, IK) as in traditional Gaussian dynamic

factor models.

How different prior specifications can markedly influence the accuracy, computational efficiency,

and predictive performance of these models? A central takeaway from the literature is that thoughtfully

chosen priors help stabilize parameter estimates and improve forecasts in settings where a multitude of

unobserved factors drive financial or macroeconomic time series. For instance, work by Amir-Ahmadi,

Matthes, and M.-C. Wang (2020) demonstrates how Inverse Wishart and Inverse Gamma priors reduce

forecast errors, whereas Bai and P. Wang (2015) highlight the robustness of Jeffrey’s diffuse priors

in sampling latent factors for dynamic factor models. Both studies underscore that switching from

diffuse or fixed hyperparameter approaches to more carefully tailored distributions can reduce root

mean squared errors and increase the reliability of inference.

Various authors investigate the versatility of alternative prior distributions to address different

modeling challenges. Kastner, Frühwirth-Schnatter, and Lopes (2016) use normal priors for factor

loadings in a multivariate factor stochastic volatility model and show that the resulting parameter

estimates converge substantially faster in the Monte Carlo sampling of the Markov chain, sometimes by

several orders of magnitude relative to the baseline approaches. Other contributions emphasize how the

incorporation of threshold structures or latent processes can further refine these models. Nakajima and

M. A. West (2013) propose a latent threshold dynamic factor model that combines normal, uniform,

beta, and gamma priors, illustrating that such a rich specification delivers sharper estimates of factor

loadings and improved predictions over multiple classes of financial assets.

21Factors can also represent uncertainty similar to parameters, so they might be considered parameters as well.
22The inference methodology using the Hamiltonian Monte Carlo algorithm is also discussed in Appendix C.
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In addition to improvements in estimation accuracy, the choice of priors significantly affects

computational considerations. Researchers like Bai and P. Wang (2015) demonstrate how carefully

tuned priors can stabilize the Gibbs sampling procedure, enabling tens of thousands of iterations within

a matter of minutes. Similarly, Amir-Ahmadi, Matthes, and M.-C. Wang (2020) present a tractable

approach to estimating hyperparameters in time-varying parameter models, showing that well-chosen

priors can mitigate the inherent computational burden. In contrast, studies that do not specify their

priors or rely solely on diffuse assumptions often face slower convergence and occasional identification

pitfalls, hinting that thoughtful prior design is central to efficiency gains.

Empirical performance in diverse financial settings provides further support for using carefully

selected priors in dynamic factor models. Young et al. (2015) compare weakly informative Bayesian

methods with Kalman filters and principal component-based approaches, concluding that weakly

informative priors achieve estimation results on par with standard filters when evaluating factor

correlations, coverage intervals, or variance decompositions. Meanwhile, research on large-dimensional

data, such as exchange rates, commodity prices, or equity returns, shows that normal priors for factor

loadings can shorten estimation times even in high dimensions (Kastner, Frühwirth-Schnatter, and

Lopes, 2016). Additionally, non-parametric priors, such as the truncated Dirichlet process investigated

by Chow et al. (2011), provide flexibility in modeling heterogeneous or shifting market conditions,

further demonstrating the breadth of prior choices.

The unifying conclusion is that priors can be tailored to address structural complexities, data

peculiarities, and computational burdens, thus improving inference and forecasting. From inverse

distributions for covariance parameters to weakly informative or diffuse forms for latent factors, these

approaches underscore the essential role of priors in shaping model behavior, ensuring robust inference,

and promoting efficient estimation across a wide spectrum of financial applications.

5.2 Updating Beliefs

As all investment platforms have the same a prior beliefs about the parameters, updating these beliefs

will be based on each likelihood function. The results of this belief updating process will be done in a

single step, resulting in the posterior distributions of the parameters. These posterior distributions of

the parameters will be considered hypotheses of common knowledge between the platforms. Therefore,

to compute the posterior of the parameters, it is necessary to assume a likelihood function. The

log-likelihood function is the Equation (35),

ℓ
(
e1:T | g1:T ;κ1:T ;P

)
= log

{
T∏
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2π

)−N
2
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∥et − Et[et | g1:T ;κ1:T ;P]∥2, (35)

where

Et[et | g1:T ;κ1:T ;P] = ξ + δ Et[gt | κt;P] + λEt[κt | P] (36)

Et[κt | P] = Φκt−1 (37)

Êt[gt | κt;P] =
1

T

T∑
t=1

gt. (38)
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Implicit in Equations (36), (37) and (38) is the assumption of weak exogeneity (Engle, Hendry,

and Richard, 1983) of the granular network variable gt relative of parameters of interest.23 It is not

necessary to specify a complete joint distribution between all random variables e1:T , g1:T , and κ1:T ,

thus excluding likelihood ℓ
(
g1:T |κ1:T ;P

)
the purposes of estimating the parameters of interest it entails

no loss of information to confine one ones attention to the conditional distribution.

Adopting the assumption of Gaussian errors νm,t ∼ N (0; IK) also for the factor dynamics error

allows a second log-likelihood function to be written for the factor vector

ℓ
(
κ1:T | P

)
= log

T∏
t=1

(
2π
)−K

2 exp

{
− 1

2

(
κt − Et[κt | P]

)′(
κt − Et[κt | P]
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log
(
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2

(
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)}

= −KT
2

log
(
2π
)
− 1

2

T∑
t=1

∥κt − Et[κt | P]∥2. (39)

Given the likelihood functions (35) and (39), the posterior distributions of the parameters are

log π
(
κ1:T | e1:T ;g1:T ;P

)
∝ ℓ

(
e1:T | g1:T ;κ1:T ;P

)
+ ℓ
(
κ1:T | P

)
(40)

log π
(
P | e1:T ;g1:T ;κ1:T

)
∝ ℓ

(
e1:T | g1:T ;κ1:T ;P

)
+ ℓ
(
κ1:T | P

)
+ log π

(
P
)
. (41)

This study implements an algorithm that diverges from conventional forward filtering backward

sampling by avoiding the generation of the sample in sequential blocks.24 To obtain samples from the

non-normalized posteriors in Equations (41) and (40), I use the algorithm implemented in STAN, a

software for Bayesian data analysis (Carpenter et al., 2017).

The initial point contains κ0 ∼ N (0, IK) and for each element in the set Θ, create another set

Θ∗, where the elements are θ∗ ∼ N (0;Σ∗).

logH(Θ;Θ∗) = − log π
(
κ1:T | e1:T ;g1:T ;P

)
− log π

(
P | e1:T ;g1:T ;κ1:T

)
+

1

2
θ∗′ (Σ∗)−1 θ∗, (42)

which allow to write the following Hamiltonian equations

dθ∗

dt
= ∇κ log π

(
κ1:T | e1:T ;g1:T ;P

)
+∇P log π

(
P | e1:T ;g1:T ;κ1:T

)
, (43)

dθ

dt
= (Σ∗)−1 θ∗. (44)

It is possible to adopt the Leapfrog algorithm, which modifies Euler’s discretization method by

using a discrete step size ϵ individually for θ∗ and θ, with a full step ϵ in θ sandwiched between two

haf steps ϵ / 2 for θ∗ (Ruth, 1983). The algorithm performs L sequential steps, Equations (45), (46),

and (47), before reaching a new point in the parametric space.

θ∗
(
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ϵ

2

)
= θ∗(t) +

ϵ

2

[
∇κ log π

(
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)
+∇P log π
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, (45)

θ(t+ ϵ) = θ + ϵ (Σ∗)−1 θ∗
(
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ϵ

2

)
, (46)

θ∗(t+ ϵ) = θ∗
(
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ϵ

2

)
+
ϵ

2

[
∇κ log π

(
κ1:T | e1:T ;g1:T ;P

)
+∇P log π

(
P | e1:T ;g1:T ;κ1:T

)]
.(47)

where the step size ϵ, the number of leapfrog steps L and the covariance matrix Σ∗. At the end of each

L step, the acceptance of the new point uses the same idea as the Metropolis Hastings algorithm25

23more than weak exogeneity I also assume gt ⊥ τ t,∀t
24Carter and Kohn (1994), Frühwirth-Schnatter (1994), or De Jong and Shephard (1995)
25Metropolis-Hastings, developed in the early 1950s, is an algorithm well-explained in Chib and Greenberg’s work

(1995).
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5.3 Convergence of Beliefs

This subsection addresses the convergence of four Hamiltonian Monte Carlo (HMC) chains used to

estimate 240 parameters in the Itau investment platform model. Convergence is verified through

multiple diagnostics, such as the potential scale reduction factor R̂, principal component projections,

effective sample sizes, integrated autocorrelation times, correlation structures, and trace plots. These

methods jointly provide a detailed view of the sampling behavior in a high-dimensional setting.

For example, in Figure 9 I present 240 parameter estimations from Itau’s platform. 56 stocks

with intensive margin during March 2016 and December 2021. The Figure 10 illustrates the R̂ values

for each parameter by integrating data from all four chains. When R̂ is near 1, it indicates that

the variance between chains is equivalent to the variance within chains, implying that all chains are

sampling from the same posterior distribution. The majority of parameters displayed in this figure

have R̂ values beneath the usual thresholds, confirming that the sampler has reached a stable state.

Figure 11 examines the chain trajectories using principal component (PC) projections. This technique

reduces the high-dimensional parameter space to its most critical variability directions, enabling a

visual assessment of how thoroughly each chain explores the posterior. Overlapping trajectories along

these principal components suggest that the chains do not become isolated in separate regions, which

is generally an indicator of effective mixing.

The following figures categorize parameters based on their conceptual roles within the model. These

categories are analyzed regarding effective sample size (Neff), the Neff to integrated autocorrelation

time (IACT) ratio, and the correlation structure. A large Neff value suggests that each chain produces

numerous uncorrelated samples, thereby enhancing the precision of posterior estimates. Additionally,

the Neff/IACT ratio serves as another measure to evaluate sample independence, with higher values

indicating more efficient sampling.

Figure 12 focuses on the exposure elasticities parameters, which may encode interactions or cross

effects within the investment platform. In the left panel, most of the parameters show robust Neff

values and favorable Neff/IACT ratios, indicating minimal autocorrelation. In the right panel, the

correlation among these parameters does not exhibit strong off-diagonal elements, suggesting that the

sampler moves freely in the associated subspace.

In Figure 13, the factor parameters are depicted as indicators of the drivers behind investment

trends. By comprehensively sampling these parameters, the latent structure they represent becomes

clearer. The left panel emphasizes that high effective sample sizes help reduce bias in estimations, while

the right panel shows that, although correlations may exist, these latent factors are not excessively

clustered, which could otherwise impede their identification. Figure 14 illustrates how loadings connect

latent factors with observed data dimensions, crucial for the empirical manifestation of factor-specific

effects. A thorough exploration by the sampler is essential to ascertain reliable relationships in factor

loadings. On the left panel, the significance of maintaining large effective sample sizes is reiterated,

and the right panel exhibits correlations that are not excessively strong, maintaining the uniqueness of

each loading parameter.

Figure 15 illustrates the intercept parameters involved in accounting for boundary effects or

additional structural elements within the Itau model. Much like prior groups, the combination of

robust Neff values, favorable Neff/IACT ratios, and a moderate correlation structure suggests these

parameters achieve efficient mixing. Furthermore, Figure 16 presents trace plots for a chosen set of 15

parameters, offering a visual inspection of the progression of each of the four chains across iterations.

Trace plots assist in determining whether a chain adequately traverses the posterior or remains confined
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(a) loading (b) exposure elasticity

(c) ϕ -0.23 CI[-0.39,-0.07] (d) factor

(e) στ 37.9% CI[37.64%,38.17%] (f) intercept

Figure 9: Itau
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Figure 10: The values of R̂ for each parameter using four chains

Figure 11: The chains trajectories through principal component (PC) projections

(a) Neff × Neff/IACT (b) autocorrelation

Figure 12: The exposure elasticity
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(a) Neff × Neff/IACT (b) autocorrelation

Figure 13: Factor-based exposure

(a) Neff × Neff/IACT (b) autocorrelation

Figure 14: The factors loadings

(a) Neff × Neff/IACT (b) autocorrelation

Figure 15: The intercept
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Figure 16: Trace plots
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within a specific range. The chains are color-coded to differentiate their trajectories, generally showing

overlapping variations around steady central tendencies. This observation reinforces the notion that

the sampling algorithm is effectively navigating the posterior landscape.

Across all these figures and diagnostics, the HMC sampler shows stable convergent behavior,

evidenced by nearly uniform R̂ values below the usual thresholds, sufficient effective sample sizes,

moderate correlation patterns, and well-overlapped principal component and trace plots. These

observations reinforce confidence in the posterior estimates, indicating that the model’s set of high-

dimensional parameter parameters has been thoroughly explored by the four chains.

6 Replicant Behavior

Estimates of the exposure elasticities of the investment platforms for the stocks that made up the

IBRX-100 index during the years 2016 and 2021 are presented in Appendix D. The elasticities are

constant values for the entire 72 months of the sample. The aggregate exposures of investment funds

from 14 investment platforms were evaluated. The criterion used to choose these platforms was to

evaluate only decisions at the intensive margin26 and thus allow the evaluation of the exposure elasticity

of at least dozens of stocks. A minimum number of stocks is required to be able to sort stocks given

the elasticity value. The number of stocks evaluated was 42, which made up the IBRX-100 index. The

investment platforms are listed in Table 1 in descending order of replicant behavior.

Platform Qtd %

Itau 21 50

Caixa 16 38

Julius Baer 15 36

BNP Paribas 13 31

Opportunity 13 31

TNA Wealth Management 13 31

BTG Pactual 12 29

XP 12 29

BB 11 26

Safra 11 26

Vinci Partners 10 24

Bradesco 4 10

Credit Suisse 4 10

Table 1: Frequency of Replicant Platforms in 42 stocks belongs to IBRX-100 index.

Replicant behavior is described by exposure elasticity δ > 0. In this case, the platform reacts to

demand shocks originating from other platforms in a pro-cyclical manner, proportionally replicating

these shocks. The estimates show a low elasticity of exposure in most cases, with δ varying between

-0.5% and 0.5%. Itau’s investment platform has replicant behavior in 21 of the 42 stocks, making it

the platform with the highest number of replicant behavior. In comparison, Santander’s investment

platform has no replicant behavior in any of the 42 stocks.

26Exposures greater than zero in all months of the sample
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Replicant behavior is a characteristic based on quantities and not prices, since exposure is a

form of quantity. Therefore, given that platforms compete for demanders’ resources for exposure,

this new information on replicant behavior reveals a new perspective for risk assessment that is not

based on stock returns. This new perspective for risk assessment depends on whether the aggregate

exposure decisions of the platforms’ funds are in a context of coordination, as this means that there is

a market premium associated with similar behavior among the platforms, whether replicant or not.

The definition of a replicant risk is the uncertainty that platforms have about the replicant behavior

of competing platforms, i.e. the difference between the risk premiums of stocks with non-replicant

behavior and stocks with replicant behavior.

That is why it is important to list in Table 2, for each of the stocks, the proportion of platforms

that have replicating behavior. The lowest proportion of replicant behavior is that of National Steel

Company (CSNA3),27 this stock has no platform with exposure elasticity δ > 0. The stock that is

subject to the highest proportion of replicant behavior is Localiza (RENT3),28 10 of the 14 platforms

have exposure elasticity δ > 0. These differences make it possible to order the shares due to the

replicant behavior of the platforms.

Consider that the stocks listed in Table 2 are in equilibrium, with prices adjusted to platform

exposures. Instead of representing the exposure-based market equilibrium by the set of stock prices

and platform exposures, I propose to represent the market equilibrium by the proportions of replicant

behavior listed in the column “p” of Table 2. This vector of proportions represents the Nash equilibrium

in mixed strategies in a context of coordination between platforms, given that positive premiums

on shares would only be related to coordinated behavior - both replicant and non-replicant (see the

example discussed in the introduction, in Figure 1). Furthermore, this equilibrium will have different

proportions of 0.5 in each share, as the premiums related to replicant behavior are lower than the

premiums related to non-replicant behavior. Share premiums in an environment of coordination

between platforms.

Only two stocks have exactly 0.5 proportions of replicant platforms. This is the ratio that

would represent the Nash equilibrium in a mixed strategy in the context of uncoordinated platforms.

Coordination or non-coordination of platforms is a conjecture at first. As a first approach, I prefer to

remove the shares of Sabesp (SBSP3)29 and JBS(JBSS3)30 from the replicating risk analysis.

One of the most relevant aspects in Table 2 is the generalized non-replicating behavior among

investment platforms. In this case, the expected returns are not explained by demand shocks due

to investors’ exposure to the platforms. The explanation lies in the negative exposure elasticity: for

any percentage of demand shocks on competing platforms, the platforms would offset these shocks by

adjusting their intensive exposure margin decisions. In a scenario where all platforms had a negative

exposure elasticity for all stocks, this would mean that the expected values of returns would not depend

on shocks to investors’ demand for exposure. It is precisely the fact that some platforms have a positive

exposure elasticity for some stocks that allows for the emergence of replicating risk and its importance

for stock pricing.

27National Steel Company is the largest fully integrated steel producer in Brazil and one of the largest in Latin America

in terms of crude steel production.
28Localiza is a Brazilian car rental company founded in 1973 and is the largest car rental in Latin America and one of

the largest in the world by size of the fleet and market capitalization.
29Sabesp is a Brazilian water and waste management company headquartered in Sao Paulo. It is the largest water and

waste management company in Latin America
30JBS S.A. is a Brazilian multinational company that is the largest meat processing enterprise in the world, producing

factory processed beef, chicken, salmon, sheep, pork, and also selling by-products from the processing of these meats
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Stock p 1-p Replicant Non-replicant

CSNA3 0.00 1.00 BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

BBDC4 0.07 0.93 XP BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners

HYPE3 0.07 0.93 XP BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners

LAME4 0.07 0.93 Itaú BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

PETR3 0.07 0.93 Itaú BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

QUAL3 0.07 0.93 Caixa BB, BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

USIM5 0.07 0.93 Itaú BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

LREN3 0.14 0.86 BNP Paribas, Caixa BB, Bradesco, BTG Pactual, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

MRFG3 0.14 0.86 Safra, TNA Wealth Management BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Santander, Vinci Partners, XP

MRVE3 0.14 0.86 Itaú, Vinci Partners BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, XP

MULT3 0.14 0.86 Opportunity, Safra BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Santander, TNA Wealth Management, Vinci Partners, XP

SANB11 0.14 0.86 Itaú, Julius Baer BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

ABEV3 0.21 0.79 BNP Paribas, Opportunity, Vinci Partners BB, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Safra, Santander, TNA Wealth Management, XP

BRML3 0.21 0.79 BNP Paribas, Safra, XP BB, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Santander, TNA Wealth Management, Vinci Partners

BBAS3 0.21 0.79 BTG Pactual, Itaú, Julius Baer BB, BNP Paribas, Bradesco, Caixa, Credit Suisse, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

BRFS3 0.21 0.79 Itaú, Opportunity, Vinci Partners BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Safra, Santander, TNA Wealth Management, XP

CCRO3 0.21 0.79 BB, BNP Paribas, BTG Pactual Bradesco, Caixa, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

CSAN3 0.21 0.79 BNP Paribas, Julius Baer, XP BB, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners

EMBR3 0.21 0.79 Caixa, Itaú, Safra BB, BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Julius Baer, Opportunity, Santander, TNA Wealth Management, Vinci Partners, XP

EQTL3 0.21 0.79 BNP Paribas, Caixa, Vinci Partners BB, Bradesco, BTG Pactual, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, XP

GOAU4 0.21 0.79 Caixa, Credit Suisse, Itaú BB, BNP Paribas, Bradesco, BTG Pactual, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

ITUB4 0.21 0.79 BNP Paribas, Julius Baer, Safra BB, Bradesco, BTG Pactual, Caixa, Credit Suisse, Itaú, Opportunity, Santander, TNA Wealth Management, Vinci Partners, XP

KLBN11 0.21 0.79 BB, Itaú, Opportunity BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

RADL3 0.21 0.79 Caixa, Itaú, TNA Wealth Management BB, BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Julius Baer, Opportunity, Safra, Santander, Vinci Partners, XP

WEGE3 0.21 0.79 Itaú, Safra, XP BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Credit Suisse, Julius Baer, Opportunity, Santander, TNA Wealth Management, Vinci Partners

BBSE3 0.29 0.71 BTG Pactual, Julius Baer, Opportunity, TNA Wealth Management BB, BNP Paribas, Bradesco, Caixa, Credit Suisse, Itaú, Safra, Santander, Vinci Partners, XP

BBDC3 0.29 0.71 Credit Suisse, Opportunity, Safra, TNA Wealth Management BB, BNP Paribas, Bradesco, BTG Pactual, Caixa, Itaú, Julius Baer, Santander, Vinci Partners, XP

CMIG4 0.29 0.71 BB, Caixa, TNA Wealth Management, Vinci Partners BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, XP

CYRE3 0.29 0.71 BB, BTG Pactual, Caixa, XP BNP Paribas, Bradesco, Credit Suisse, Itaú, Julius Baer, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners

GGBR4 0.29 0.71 BNP Paribas, Caixa, Itaú, Julius Baer BB, Bradesco, BTG Pactual, Credit Suisse, Opportunity, Safra, Santander, TNA Wealth Management, Vinci Partners, XP

PETR4 0.29 0.71 BB, Bradesco, Julius Baer, TNA Wealth Management BNP Paribas, BTG Pactual, Caixa, Credit Suisse, Itaú, Opportunity, Safra, Santander, Vinci Partners, XP

BRKM5 0.36 0.64 BNP Paribas, BTG Pactual, Caixa, Julius Baer, Vinci Partners BB, Bradesco, Credit Suisse, Itaú, Opportunity, Safra, Santander, TNA Wealth Management, XP

ENBR3 0.36 0.64 BNP Paribas, BTG Pactual, Credit Suisse, Opportunity, Safra BB, Bradesco, Caixa, Itaú, Julius Baer, Santander, TNA Wealth Management, Vinci Partners, XP

UGPA3 0.36 0.64 BB, Caixa, Itaú, Opportunity, TNA Wealth Management BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Julius Baer, Safra, Santander, Vinci Partners, XP

BRAP4 0.43 0.57 BB, Bradesco, Itaú, Julius Baer, Opportunity, XP BNP Paribas, BTG Pactual, Caixa, Credit Suisse, Safra, Santander, TNA Wealth Management, Vinci Partners

ITSA4 0.43 0.57 BB, Caixa, Itaú, Opportunity, TNA Wealth Management, XP BNP Paribas, Bradesco, BTG Pactual, Credit Suisse, Julius Baer, Safra, Santander, Vinci Partners

JBSS3 0.50 0.50 Bradesco, BTG Pactual, Caixa, Itaú, Julius Baer, Safra, XP BB, BNP Paribas, Credit Suisse, Opportunity, Santander, TNA Wealth Management, Vinci Partners

SBSP3 0.50 0.50 BNP Paribas, BTG Pactual, Caixa, Itaú, Julius Baer, Opportunity, TNA Wealth Management BB, Bradesco, Credit Suisse, Safra, Santander, Vinci Partners, XP

CESP6 0.57 0.43 BTG Pactual, Credit Suisse, Julius Baer, Opportunity, Safra, TNA Wealth Management, Vinci Partners, XP BB, BNP Paribas, Bradesco, Caixa, Itaú, Santander

CIEL3 0.57 0.43 BB, BNP Paribas, BTG Pactual, Caixa, Itaú, Julius Baer, TNA Wealth Management, Vinci Partners Bradesco, Credit Suisse, Opportunity, Safra, Santander, XP

VALE3 0.64 0.36 BB, Bradesco, BTG Pactual, Itaú, Julius Baer, Opportunity, TNA Wealth Management, Vinci Partners, XP BNP Paribas, Caixa, Credit Suisse, Safra, Santander

RENT3 0.71 0.29 BB, BNP Paribas, BTG Pactual, Caixa, Itaú, Julius Baer, Safra, TNA Wealth Management, Vinci Partners, XP Bradesco, Credit Suisse, Opportunity, Santander

Table 2: Stocks sorted by non-replicant platform’s behavior.
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6.1 Replicant Risk

The ambiguity surrounding the coordination of intensive margin decisions across investment platforms

introduces a novel risk, which I define replicant risk. This risk represents the premium between stocks

exhibiting non-replicant behavior and those subject to replicant behavior, irrespective of the level of

stock market risk. By proposing a risk grounded in exposure rather than returns, this concept offers a

fresh point of view for the literature on risk factors.

Long Short

BRADESCO PN N1 - BBDC4 BRADESPAR PN N1 - BRAP4

HYPERMARCAS ON NM - HYPE3 CESP PNB N1 - CESP6

LOJAS AMERIC PN - LAME4 CIELO ON NM - CIEL3

LOJAS RENNER ON NM - LREN3 ENERGIAS BR ON NM - ENBR3

PETROBRAS ON - PETR3 ITAUSA PN N1 - ITSA4

QUALICORP ON NM - QUAL3 LOCALIZA ON NM - RENT3

SID NACIONAL ON - CSNA3 ULTRAPAR ON NM - UGPA3

USIMINAS PNA N1 - USIM5 VALE ON N1 - VALE3

Table 3: Replicant portfolio, long (Quintile 1) vs. short (Quintile 5).

Table 3 shows the composition of the replicant portfolio formed by stocks in the extremes of

the distribution of a given characteristic, with stocks in Quintile 1 on the long side and those in

Quintile 5 on the short side. This portfolio is constructed to capture the premium associated with the

characteristic in question. The allocation includes major Brazilian companies such as BRADESCO

(BBDC4), PETROBRAS (PETR3), and USIMINAS (USIM5) on the long side, and VALE (VALE3),

ITAÚSA (ITSA4), and CESP (CESP6) on the short side. The strategy aims to isolate the return

differential between the two tails of the distribution, representing a market-neutral position.

Figure 17: Replicant Risk. Blue dashed line is the premium of 0.61% per month, or 7.6% per year

with annualized standard deviation 15.47%.

Figure 17 illustrates the monthly return timeline for the replicant portfolio. The average premium

of the strategy, represented by the blue dashed line, is estimated to be 0.61% monthly or 7.6% annually.

The portfolio’s risk is signified by an annualized standard deviation of 15.47%. Despite the positive
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average return, there are significant fluctuations, with periods of substantial gains followed by marked

losses. This indicates that the strategy’s profitability is heavily influenced by market trends and the

stability of the signal used for sorting stocks into quintiles.

The Figure 18 presents the evolution of the market beta for the replicant portfolio, calculated

separately for the long and short legs using a rolling window of twelve months of returns. The beta of

each stock is estimated relative to the excess return of the market portfolio, using the average monthly

CDI rate as the risk-free benchmark.31 This dynamic approach captures time-varying sensitivities to

market movements and provides a clearer assessment of whether the portfolio maintains its intended

market neutrality over time. The beta of the long leg (red) and the short leg (turquoise) tends to move

in opposite directions, with a negative correlation of −0.50. This inverse relationship is a key feature of

a market-neutral strategy, as it helps ensure that market-wide shocks affect both sides of the portfolio

in offsetting ways. The dashed black line represents the net beta of the combined portfolio, which

remains close to zero for most of the sample period, providing evidence that the strategy effectively

neutralizes market exposure. Monitoring beta in this way is crucial to verifying that the return of the

replicant portfolio is driven by the targeted characteristic, rather than by systematic risk factors.

Figure 18: Evidence of Market Neutral Strategy. Long portfolio in red and short portfolio in turquoise.

Correlation between long e short portfolio is −0.50

In Figure 19 the characteristics of the long (red) and short (turquoise) legs of the replicant portfolio

are displayed over time, (a) the Return on Equity (ROE), (b) the price-to-book (P/B) ratio, (c) the

price–earnings (P/E) ratio, (d) the logarithm of market capitalization, (e) the dividend yield, and (f)

the annual return.

The ROE, calculated as the net income of the firms over the past twelve months divided by their

total shareholder equity, serves as a measure of the financial performance and efficiency in generating

returns from shareholders’ investments. In particular, both legs exhibit a highly synchronized pattern,

as indicated by the high positive correlation (0.82). Interestingly, while the dashed line at 15% ROE

serves as a reference point, both legs of the portfolio frequently fluctuate around this threshold,

suggesting similar profitability dynamics despite their opposing portfolio positions. The observed

pattern, particularly simultaneous peaks and sharp downturns, reinforces the notion that the replicant

portfolio not only captures differential characteristics between quintiles, but also highlights parallel

fundamental shifts in corporate profitability across market segments.

31The CDI is a very short-term security issued by banks in the Brazilian market to allow them to lend and borrow

money from each other overnight, ensuring that the cash register ends the day with a positive balance.

43



(a) ROE. Dashed line ROE = 15%. Correlation 0.82 (b) P/B ratio. Dashed line P/B = 1. Correlation 0.51

(c) P/E ratio. Dashed line P/E = 25. Correlation −0.23 (d) log market cap. Correlation 0.38

(e) dividend yield. Correlation 0.26 (f) yearly return. Correlation 0.87

Figure 19: The replicant portfolio characteristics. The correlations are between long portfolio in red

and short portfolio in turquoise
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The P/B ratio, computed as a company’s market price per share divided by its book value per

share, reflects market expectations regarding firm value relative to its underlying assets. Both legs

of the portfolio display a moderate positive correlation of 0.51, suggesting a general comovement in

market valuation trends. Interestingly, the P/B ratio of both legs decreased significantly over the

period, converging closer to the reference line (P/B = 1). This pattern indicates a reduction in

market optimism or perceived growth opportunities in both segments of the portfolio, with the long

leg consistently trading at a premium relative to the short leg. The narrowing gap towards the end of

the sample period suggests a decreasing dispersion in valuation, potentially impacting the portfolio’s

future replicant premium.

The P/E ratio, calculated as the company’s share price divided by its earnings per share over the

past 12 months, provides insight into market valuation relative to recent profitability. In particular, two

distinct spikes occur during the analyzed period, each affecting predominantly one leg of the portfolio:

first, a peak appears around early 2018 primarily impacting the long leg, followed by an even more

pronounced peak in early 2020 concentrated in the short leg. These abrupt increases suggest periods of

very low or negative earnings, which temporarily drive valuations excessively high due to diminishing

denominators. Outside of these anomalies, both legs generally trade below the benchmark line (P/E =

25), exhibiting modest volatility and low correlation (0.23), underscoring that the replicant strategy

experiences episodic valuation extremes driven by unique profitability shocks rather than persistent

common market forces.

Market capitalization, defined as the total market value of a firm’s outstanding shares, offers a

measure of firm size and investor valuation of future profitability and growth. Noticeably, after the

onset of the COVID-19 pandemic in early 2020, the short leg exhibits a pronounced upward trend,

significantly outpacing the growth observed in the long leg. This divergence could reflect flight-to-

quality behavior among investors, favoring larger and presumably more stable firms within the short

portfolio. Alternatively, the sectors represented more heavily in the short leg may have experienced

a positive reassessment due to changing economic expectations post-pandemic. In a counterfactual

scenario where the COVID-19 crisis did not occur, one could expect a more parallel trajectory between

the two legs, potentially reducing the performance divergence and influencing the replicant strategy’s

risk and returns substantially.

The dividend yield, calculated as the total dividends paid per share divided by the initial unadjusted

price within a given period, reflects the income-generating potential relative to the share price. Although

both legs exhibit substantial variability, their correlation is relatively low (0.26). This weak correlation

arises because dividend policies vary significantly between firms and sectors, often independently of

broader market conditions. Furthermore, corporate decisions about dividend payments are based on

factors such as cash flow stability, growth opportunities, and specific strategic considerations, rather

than systematic market factors alone. Consequently, while both legs might occasionally respond

similarly to macroeconomic conditions, such as shifts in interest rates or market risk sentiment,

firm-specific dividend strategies reduce the overall coherence between the two portfolios’ yields.

The yearly return are defined as the accumulated return over the last 12 months. Unlike strictly

annual returns aligned with calendar years, these continuous yearly returns capture ongoing trends

and changes in investor sentiment over any continuous 12-month period. The high correlation (0.87)

indicates strong co-movement between the two components, signaling that both portfolios react similarly

to broader market conditions or common economic shocks. Importantly, the pattern shows evidence of

momentum and reversal effects: periods of persistent upward trends in returns (momentum) are often

followed by substantial corrections or negative reversals. But this cyclical pattern demonstrates the
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irrelevance of momentum strategies - buying recent winners and selling recent losers - and reversal

strategies, which anticipate reverting to the mean after prolonged price movements for understanding

replicant risk. Regardless of whether it doesn’t clearly follow a factor such as momentum or reversal,

understanding the dynamics of replicant risk is crucial, as it allows investment platforms to better

manage timing, risk and profitability when implementing replicant portfolio strategies.

7 Concluding Remarks

This article may appear to be just one of many other articles in the literature on risk factors, which

Cochrane (2011) called a “zoo of factors” in an annual speech to the American Finance Association. At

that point in the discussion,32 a recent literature that catalogs and verifies the capacity of new factors

in pricing shares has emerged (Harvey, Liu, and Zhu, 2016; Harvey, 2017; Fama and French, 2018;

2020, 2020; Jensen, Kelly, and Pedersen, 2023; Kozak, Nagel, and Santosh, 2018). This article does not

claim to be just a new risk factor capable of pricing stocks. This statement may seem contradictory,

since the main implication of the existence of an exposure-based demand model was to allow access to a

replicant factor through the inference of investment platforms’ exposure elasticities. The main message

of this article is that the existence of a replicant factor in the Brazilian market is the consequence of

proposing a quantitative approach to the asset price problem.

A quantitative approach to understanding asset pricing is not clearly established in the literature.

Examples of promising proposals in this direction are the recent works by Yi An, Su, and C. Wang

(2024), Lopez-Lira and Roussanov (2020) and Rostek and Yoon (2023). Any study of asset pricing

is based on market equilibrium. Equilibrium means both prices and quantities chosen by market

participants consistent with the sharing of risk between them. This article has taken a different

approach to market equilibrium: The pricing problem does not depend solely on the supply and

demand for outstanding shares because market participants are pools of investment funds. Asset

pricing depends on the balance between supply and demand for exposure between investment platforms

and retail investors. In this way, asset prices would depend on decisions about exposures by investment

platforms.

In this way, the presence of investment platforms as economic agents in market transactions

influences asset pricing due to the existence of a market equilibrium based on exposure. Quantities

in circulation and exposure are both information on quantities, but exposure is mostly indirect due

to the participation of numerous funds in the quotas of master funds considered to be hubs in the

network and which participate directly in the market. Observing a sample of exposures between

investment funds was only possible due to the availability of consolidated data on fund portfolios in

the Brazilian market. This consolidation is available in both the regulator’s database (CVM) and in

private information systems, such as the database used in this article by Quantum Axis. I consider it

an important contribution of this article to highlight the importance of collecting consolidated data for

researchers to investigate asset demand. Once again, I would like to point out that the valuation of the

outstanding shares is not enough to capture the impact of demand shocks on share prices.

Therefore, this article proposed a model that allows access to replicant behavior between platforms

in a context of imperfect competition for exposure. The replicant behavior of competing platforms

is new information for risk management. Rather than assessing the risk of portfolio positions in

32The literature on risk factors is much older than the article by Cochrane (2011), the literature on this topic dates

back to the 1960s with the works that proposed the CAPM equilibrium model (Sharpe, 1964)
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investment funds, this article offers a perspective on assessing the risk of a set of funds that have

exposure to shares. When investment platforms do not have information on their own behavior in

relation to others in a context of imperfect competition for exposure, it means that the decisions of

their groups of funds could be better coordinated. This intra-investment fund coordination does not

seem to be a concern for large financial institutions, but it seems a concern for the stock exchange

because it is the regulator of counterparty relationships between participants. This article offers a

model that can be used by financial institutions and regulators by exploring the replicant behavior of

investment platforms to contribute to the demand-based asset pricing literature by integrating insights

into financial intermediation and imperfect competition for exposure.
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A Factor

The system of equations (32) and (33) considers only one state variable to represent what would

be a vector of factors. And so for K = 1 I assumed that λ′
mκm,t = λmκm,t. The expressions were

also written only for a particular stock belonging to an exposure portfolio em,t ∈ RN×1. Thus, the

parameters in matrix form Equations (23), (24), and (25) can be written in a simpler form by

ξm,t =
µm
γmσ2ϵ

, (48)

λm = − β

γmσ2ϵ
, (49)

κm,t =

(
βσ2ζ,t

σ2ϵ + β2σ2ζ,t

)
µm. (50)

The fixed effect of the platform ξm depends on the beliefs of the platforms about the expected value

of the returns, weighted by the product of risk aversion multiplied by the variance of the idiosyncratic

error of the returns. The factor load λm is just a different way to write the risk factor load β. This

different form depends on the risk aversion of each platform and can provide an opportunity to quantify

different perceptions of a parameter that should be common to all investors. Finally, the dynamic

factor κm,t is also a way of rewriting beliefs about the expected value of a stock’s return. The dynamics

of the factor is due to the volatility of the risk factor over time σ2ζ,t.

I study the dynamics of the factor function κm,t in the Appendix B. I show the existence of fixed

points and analyze the stability of the dynamics. The implications for the estimates discussed in the

empirical analysis chapter are that the parameter governing the transition of states must be |ϕ| < 1.

With the possibility that it is either −1 < ϕ < 0 or 0 < ϕ < 1.

In a simpler case, for a single asset and a single factor, it is easy to verify that when β = 1, the

factor loadings and the dynamic factor can be written as follows

λm = − 1

γmσ2ϵ
,

κm,t =

(
σ2ζ,t

σ2ϵ + σ2ζ,t

)
µm

and thus the dynamic factor κm,t has a transformation term of the expected value of the returns that is

bounded between [0, 1], because the only bounded cases to evaluate are when σ2ϵ ≫ σ2ζ,t and σ
2
ϵ ≪ σ2ζ,t.

In the case of multiple factors, the dynamic linear transformation matrix, Bt, will depend on the

structure of the covariance matrix of the risk factors in the expression (27).

When considering an exact error decomposition with κm,t ⊥⊥ τm,t, there is an important restriction

that can be tested. If there are no heterogeneous beliefs about the expected values of the returns, then

the factor model by platform is a common demand shock model, because in this case33

κm,t =
βµσ2ζ,t

σ2ϵ + β2σ2ζ,t
,

κm,t = ηt. (51)

33This possibility of a common factor across platforms is discussed in Ferraresi (2025b).
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B Factor Dynamics

The fixed points of the factor function κm,t and their stability for the iteration given by

σ2ζ,t+1 = f(σ2ζ,t) =
βµm σ

2
ζ,t

σ2ϵ + β2 σ2ζ,t
,

where the parameters µm, β, and σ2ϵ are constants are examined. A fixed point σ2ζ satisfies

σ2ζ =
βµm σ

2
ζ

σ2ϵ + β2 σ2ζ
.

Solving this equation explicitly, I obtain:

σ2ζ
(
σ2ϵ + β2 σ2ζ

)
= βµm σ

2
ζ .

Simplifying, I have:

σ2ζ
(
σ2ϵ + β2 σ2ζ − βµm

)
= 0,

resulting in two candidate fixed points:

σ2ζ,1 = 0, and σ2ζ,2 =
βµm − σ2ϵ

β2
.

Considering the domain of interest (σ2ζ,t ≥ 0), the second point σ2ζ,2 exists and is economically

meaningful only if βµm ≥ σ2ϵ . Otherwise, this fixed point is negative and outside the relevant domain.

To determine the stability of these fixed points, I analyze the absolute value of the derivative:

f ′(σ2ζ,t) =
βµmσ

2
ϵ(

σ2ϵ + β2σ2ζ,t

)2 .
Evaluating at each fixed point yields the following:

At σ2ζ,1 = 0:

f ′(0) =
βµm
σ2ϵ

.

Thus, the stability at zero is characterized by:

|f ′(0)| =
∣∣∣∣βµmσ2ϵ

∣∣∣∣

< 1, (stable) if βµm < σ2ϵ ,

> 1, (unstable) if βµm > σ2ϵ ,

= 1, (bifurcation) if βµm = σ2ϵ .

At the second fixed point σ2ζ,2 =
βµm−σ2

ϵ
β2 , assuming βµm > σ2ϵ :

f ′
(
βµm − σ2ϵ

β2

)
=

σ2ϵ
βµm

< 1,

indicating that whenever it exists (positive), this second fixed point is stable.

In summary, the dynamics of the factors is crucially dependent on the ratio βµm

σ2
ϵ
:
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1. For βµm < σ2ϵ , only the zero fixed point is stable, while the second fixed point is negative and

irrelevant.

2. For βµm = σ2ϵ , a bifurcation scenario with neutral stability at zero.

3. For βµm > σ2ϵ , the zero fixed point becomes unstable, and a new positive stable fixed point

emerges.

Thus, the transition at βµm = σ2ϵ constitutes a bifurcation point, marking the transition from

stable equilibrium at zero to a new positive equilibrium. Finally, the stable positive fixed point given

by σ2ζ,2 =
βµm−σ2

ϵ
β2 is relevant because real data naturally produce βµm > σ2ϵ .
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C Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) algorithm is a technique for sampling in high-dimensional

parametric spaces. Unlike traditional Monte Carlo methods based on Metropolis-Hastings, HMC

uses an approach inspired by classical mechanics to explore parametric space more efficiently. This

algorithm introduces an auxiliary moment variable for each parameter in the model, which allows the

construction of Hamiltonian dynamics to guide the sampling (Duane et al., 1987; Neal et al., 2011;

Girolami and Calderhead, 2011; Betancourt, 2017; Thomas and Tu, 2021). The basic idea of HMC is

to combine the parameter of interest, usually represented by the parametric vector θ, with the moment

variables r sampled from a standard normal distribution. The joint system has a non-normalized joint

density proportional to exp
(
log θ − 1

2r
Tr
)
. This model allows us to interpret θ and r as the position

and momentum of a fictitious particle, respectively, and log θ as the potential energy associated with

position θ.

The evolution of this system is simulated using the leapfrog integrator, which preserves the volume

and time reversibility properties of Hamiltonian dynamics. The integrator iteratively updates to

θ and r in small ϵ steps. The solution of Hamiltonian dynamics is usually addressed by Euler’s

discretization method. The process is described by three main equations that alternate between

updating the momentum based on the gradient of the potential energy and updating the position

based on the momentum. This makes it possible to simulate a trajectory in a parametric space

that approximately conserves the total energy of the system. After executing L steps of the leapfrog

integrator, a new proposal (θ̃, r̃) is generated. This proposal is accepted or rejected according to

the Metropolis probability, which depends on the energy difference between the proposed state and

the current state. Theoretically, time reversibility and volume preservation ensure that the resulting

Markov chain is ergodic and converges to the target distribution.

One of the key advantages of HMC is its ability to efficiently explore the high-dimensional

parametric space. The generated samples tend to be farther apart, reducing the autocorrelation

between samples and thus improving statistical efficiency. This feature makes HMC particularly useful

for problems where the target density has complex correlations or difficult geometries, such as highly

curved surfaces. However, the performance of the HMC is strongly dependent on the choice of the

hyperparameters ϵ (step size) and L (number of leapfrog steps). Very large values for ϵ can lead to

inaccurate simulations and high rejection rates, while very small values lead to high computational cost,

since many iterations are needed to cover the parametric space. Similarly, an inappropriate choice of L

can result in trajectories that do not sufficiently explore the parametric space, wasting computational

resources.

However, even with a good configuration of ϵ and L, traditional HMC can struggle in situations

where parametric space geometries generate long and inefficient trajectories. This limitation is

particularly relevant for target densities with multiple modes or regions of high curvature, which require

more targeted explorations. To mitigate these problems, the No-U-Turn Sampler (NUTS) algorithm

was introduced as an extension of HMC with the aim of eliminating the need to manually select the

number of L steps (Hoffman, Gelman, et al., 2014). The NUTS automatically builds trajectories

in parameter space until it detects a “reversal” in the motion. This reversal is detected when the

momentum vector r starts to point back in the initial direction, signaling that the trajectory is no

longer moving efficiently. Mathematically, this can be expressed by checking whether (θ+−θ−)Tr+ < 0,

where θ+ and θ− represent the ends of the trajectory generated so far, and r+ is the moment associated

with the final end. This adaptive approach avoids the redundancy of tracing trajectories that have
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already been explored, thus optimizing the use of computational resources.

The NUTS implements a recursive construction of binary trees to explore trajectories. At each step,

the tree is expanded simultaneously in two opposite directions using the leapfrog integrator. Suggestions

are accepted based on the probability of Metropolis, but the size of the trajectory is dynamically

adjusted to avoid redundancy. In addition, NUTS uses stopping criteria to ensure that exploration

remains within a high-probability region, reducing the need for manual parameter adjustments. Among

the advantages of NUTS is its ability to dynamically adjust the size of the trajectories, eliminating the

need to choose L beforehand. This is particularly useful for high-dimensional problems, where manually

choosing L can be difficult and inefficient. However, NUTS still relies on an appropriate choice of step

size ϵ, which can be adjusted using heuristics based on preliminary simulations. The probabilistic

programming language STAN34 uses NUTS to implement HMC as a default in any statistical model

(Carpenter et al., 2017).

Although Gibbs Sampler and Metropolis-Hastings are robust and widely applicable algorithms,

their limitations make HMC a superior alternative in certain contexts. The Gibbs sampler requires

the existence of analytically tractable complete conditional distributions for each variable. This can

be a challenge in complex or high-dimensional models, where such distributions are unknown or

computationally prohibitive. In addition, Gibbs tends to suffer from high autocorrelation in parameter

spaces with strong dependencies between variables, resulting in slower exploration. On the other hand,

Metropolis-Hastings allows greater flexibility in the choice of proposed distributions, but its efficiency

can be severely limited when the target density has high correlations or low probability regions that

must be traversed to adequately explore the parameter space. In these situations, the selection of an

appropriate proposal becomes a critical problem. HMC overcomes these difficulties by using gradients

to guide transitions, resulting in more informed and exploratory jumps, even in highly correlated

spaces.

A practical example of where HMC stands out relative to Metropolis-Hastings is illustrated in

Figure 20. Consider a posterior distribution that has a three-dimensional parametric space with

multiple modes:35

p(θ) = Aexp

(
−1

2

(
(θ21 − 4)2 + (θ22 − 4)2 + (θ3 − 2)2 − 4 cos(2πθ1)− 4 cos(2πθ2)

))

In this scenario, random walk Metropolis-Hastings may struggle to converge, while HMC takes

advantage of gradients to efficiently navigate the complex relationships between the modes. The

example was built with burning steps of 10.000 and steps after burning of 10.000 in both algorithms. I

manually adjusted the size of the steps ϵ = 0.010 and the number of jump steps L = 100 in the HMC

algorithm to produce Figure 20.

34https://mc-stan.org/about/
35The normalization constant is estimated numerically as A = 1

40.20996
using 1.000.000 Monte Carlo samples
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Figure 20: Yellow samples are RW-MH and black samples are HMC. HMC is not trapped in high

probability regions in the posterior density showing the relevance of this new type of algorithm.
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D Platforms’ Parameters

(a) loading (b) exposure elasticity

(c) ϕ 0.21 CI[0.03,0.4] (d) factor

(e) στ 24.49% CI[24.31%,24.65%] (f) intercept

Figure 21: Banco do Brasil
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(a) loading (b) exposure elasticity

(c) ϕ -0.31 CI[-0.44,-0.17] (d) factor

(e) στ 70.83% CI[79.23%,80.6%] (f) intercept

Figure 22: BNP Paribas
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(a) loading (b) exposure elasticity

(c) ϕ -0.06 CI[-0.2,0.14] (d) factor

(e) στ 48.28% CI[47.94%,48.65%] (f) intercept

Figure 23: Bradesco
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(a) loading (b) exposure elasticity

(c) ϕ -0.25 CI[-0.4,-0.12] (d) factor

(e) στ 60.86% CI[60.32%,61.38%] (f) intercept

Figure 24: BTG Pactual
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(a) loading (b) exposure elasticity

(c) ϕ 0.16 CI[0,0.32] (d) factor

(e) στ 26.64% CI[26.38%,26.85%] (f) intercept

Figure 25: Caixa
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(a) loading (b) exposure elasticity

(c) ϕ -0.3 CI[-0.41,-0.17] (d) factor

(e) στ 70.54% CI[70.06%,71.08%] (f) intercept

Figure 26: Credit Suisse
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(a) loading (b) exposure elasticity

(c) ϕ -0.23 CI[-0.39,-0.07] (d) factor

(e) στ 37.9% CI[37.64%,38.17%] (f) intercept

Figure 27: Itau
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(a) loading (b) exposure elasticity

(c) ϕ -0.3 CI[-0.44,-0.17] (d) factor

(e) στ 47.65% CI[47.27%,48.03%] (f) intercept

Figure 28: Julius Baer
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(a) loading (b) exposure elasticity

(c) ϕ -0.38 CI[-0.49,-0.27] (d) factor

(e) στ 130.5% CI[129.6%,131.7%] (f) intercept

Figure 29: Opportunity
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(a) loading (b) exposure elasticity

(c) ϕ -0.33 CI[-0.46,-0.22] (d) factor

(e) στ 72.19% CI[71.65%,72.86%] (f) intercept

Figure 30: Safra
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(a) loading (b) exposure elasticity

(c) ϕ 0.07 CI[-0.12,0.21] (d) factor

(e) στ 63.32% CI[62.84%,63.84%] (f) intercept

Figure 31: Santander
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(a) loading (b) exposure elasticity

(c) ϕ -0.35 CI[-0.45,-0.26] (d) factor

(e) στ 124.9% CI[123.2%,126.9%] (f) intercept

Figure 32: SPX Capital
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(a) loading (b) exposure elasticity

(c) ϕ -0.29 CI[-0.43,-0.17] (d) factor

(e) στ 67.10% CI[66.55%,67.72%] (f) intercept

Figure 33: TNA Wealth Management
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(a) loading (b) exposure elasticity

(c) ϕ -0.06 CI[-0.19,-0.05] (d) factor

(e) στ 95.86% CI[94.9%,96.72%] (f) intercept

Figure 34: Vinci Partners
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(a) loading (b) exposure elasticity

(c) ϕ -0.3 CI[-0.43,-0.16] (d) factor

(e) στ 98.06% CI[97.27%,99.06%] (f) intercept

Figure 35: XP
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