

Desenvolvimento e avaliação *in vitro* de formulações fotoprotetoras contendo extratos vegetais obtidos de plantas medicinais secas comerciais: *Matricaria recutita, Baccharis genistelloides e Camellia sinensis*

Jhully R. de O. Goncalves (PG)^{1*}; Maria Clara N. Piva (G)¹; Viviane M. R. dos Santos (PO)¹; Andréa M. do Nascimento (PO)¹

- ¹ Departamento de Química-DEQUI, Instituto de Ciências Exatas e Biológicas-ICEB, Universidade Federal de Ouro Preto-UFOP.
- *jhully.goncalves@aluno.ufop.edu.br

RESUMO

Protetores solares são produtos de interesse crescente para a prevenção de danos induzidos pela radiação solar. Este trabalho avaliou o potencial fotoprotetor *in vitro* de extratos brutos de *Matricaria Recutita* (camomila), *Baccharis genistelloides* (carqueja) e *Camellia sinensis* (banchá), obtidos em etanol 95% e acetato de etila. Quatro dos seis extratos apresentaram Fator de Proteção Solar (FPS) ≥ 6, sendo os de camomila (acetato de etila) e carqueja (etanol 95%) os mais promissores. As formulações tópicas com Gel Pemulen TR-1 demonstraram eficácia mesmo com 1% de extrato em sua composição. A triagem fitoquímica revelou a presença de flavonoides, fenóis/taninos e terpenoides, variando conforme o solvente. Compostos fenólicos, particularmente flavonoides, conferem fotoproteção, reforçando os extratos vegetais como alternativas viáveis na prevenção de danos induzidos por radiação UV. Ensaios adicionais de teor fenólico total, viabilidade celular e atividade antimicrobiana estão em andamento.

Palavras-chave: Fotoproteção, extratos brutos, plantas medicinais, radiação solar, compostos fenólicos.

Introdução

O uso de produtos naturais (metabólitos secundários) de plantas, é uma prática antiga que tem ganhado destaque pelo potencial de prevenir os danos cutâneos causados pela radiação ultravioleta B (UV-B) (290–320 nm), como eritema, envelhecimento precoce e neoplasias. O Fator de Proteção Solar (FPS), expresso nos rótulos de protetores solares, é o parâmetro utilizado para avaliar a eficácia desses produtos frente à radiação UV-B (1).

Compostos fenólicos são substâncias naturais das plantas que conseguem absorver a luz do sol e combater radicais livres, substâncias nocivas formadas no corpo humano, ajudando a reduzir os danos causados pelo sol. Dessa maneira, estes compostos podem ser integrados em formulações, gerando fitocosméticos de caráter inovador (2).

Experimental

Material Vegetal

As amostras de plantas medicinais secas, disponibilizadas à venda pela marca Kitt-Med Laboratórios, foram adquiridas no comércio local do município de Ouro Preto - MG.

Preparação dos Extratos Brutos

As amostras foram submetidas a extração individual, por maceração à temperatura ambiente, em frascos Erlenmeyers e como solventes o acetato de etila e o etanol 95%. Foram utilizados aproximadamente 5 g da amostra para 120 mL de solvente. Realizando duas extrações consecutivas com cada um dos solventes, com tempo de sete dias por extração. As soluções obtidas foram filtradas e concentradas sob pressão reduzida utilizando um evaporador rotativo (Quimis®).

Triagem Fitoquímica

Para identificar as classes de metabólitos secundários presentes, foram analisadas a presença de saponinas (Teste de Espuma), flavonoides (teste de reagente alcalino), fenóis/taninos (teste de

cloreto férrico) e terpenóides (Teste de Salkowski) nos extratos, como descrito na literatura (3).

Determinação do Fator de Proteção Solar (FPS)

A determinação do FPS dos extratos obtidos foi realizada *in vitro* conforme a metodologia proposta por Mansur et al. (1986) (4).

$$SPF = CF \sum_{290}^{320} EE(\lambda).I(\lambda).Abs(\lambda),$$

Os extratos foram diluídos em seus respectivos solventes (1mg/1mL) para obtenção de soluções nas concentrações de 0,020; 0,030; 0,050; 0,070 e 0,100 mg/mL. As absorbâncias dos extratos foram medidas em triplicata na faixa UV-B com o espectrofotômetro Genesys 10S UV-Vis®. Os FPS foram expressos pela média das três leituras.

Incorporação dos extratos na formulação

Para cada extrato, 0,04 g foram solubilizados em etanol 95% e propilenoglicol (1:1) e incorporados ao Gel Pemulen TR-1 sem filtro, com agitação por 25 minutos e transferidos para um balão volumétrico de 10 mL. A formulação final continha 1% de extrato, 10% de etanol 95%, 10% de propilenoglicol e gel base q.s.p. 100%. Também foi preparada uma formulação para controle negativo com apenas o Gel Pemulen TR-1 sem filtro. As amostras foram analisadas em triplicata por espectrofotometria UV-Vis (200–800 nm) para cálculo do FPS.

Resultados e Discussão

Foram usadas os capítulos florais da camomila (*Matricaria recutita*), as folhas da carqueja (*Baccharis genistelloides*) e as folhas e talos do banchá (*Camellia sinensis*). A extração foi feita usando solventes em ordem crescente de polaridade, para obter diferentes tipos de compostos conforme sua solubilidade.

Dos seis extratos analisados quanto à atividade fotoprotetora, quatro apresentaram FPS acima de 6 na concentração de 0,100 mg/mL, valor mínimo exigido pela ANVISA (RDC nº 629/2022) (5) para que um produto seja classificado como protetor solar. Os extratos de camomila em acetato de etila e carqueja em etanol 95% mostraram os maiores valores, seguidos pelos de banchá em etanol 95% e carqueja em acetato de etila (Tabela 1). Observou-se uma relação diretamente proporcional entre a concentração dos extratos e o FPS obtido.

Tabela 1. Resultados do FPS dos extratos brutos ≥ 6 .

Plantas Medicinais	Solventes	Concentração	FPS Extrato
		(mg/mL)	Bruto
Matricaria recutita	Acetato de	0,100	$10,0017 \pm$
L.	etila		0,0116
Baccharis	Etanol 95%	0,100	$8,7292 \pm$
genistelloides			0,0215
(Lam.) Pers.			
Baccharis	Acetato de	0,100	6,2018 ±
genistelloides	etila		0,0099
(Lam.) Pers.			
Camellia sinensis	Etanol 95%	0,100	6,4508 ±
(L.) Kuntze			0,0032

Média ± desvio padrão

Os extratos incorporados ao Gel Pemulen TR-1 sem filtro mantiveram FPS promissores (Tabela 2). Comparados ao controle negativo, os valores foram 75, 61, 80 e 92 vezes maiores para os extratos de camomila em acetato de etila, carqueja em etanol 95%, carqueja em acetato de etila e banchá em etanol 95%, respectivamente. Isso mostra que mesmo com baixos teores, os extratos potencializam a fotoproteção de forma eficaz.

Tabela 2. FPS da incorporação dos extratos no Gel de Pemulen TR-1 sem filtro.

	Concentração 0,04 g/mL			
Extratos brutos	Gel de Pemulen TR-1 (sem filtro)	Extrato + Gel de Pemulen TR-1 (sem filtro)		
Matricaria recutita L. (acetato de etila)	$0,4631 \pm 0,0599$	$34,5773 \pm 0,1961$		
Baccharis genistelloides (Lam.) Pers. (etanol 95%)	0,4717 ± 0,0328	28,8340 ± 0,4720		
Baccharis genistelloides (Lam.) Pers. (acetato de etila)	$0,2743 \pm 0,0833$	$21,7280 \pm 0,7220$		
Camellia sinensis (L.) Kuntze (etanol 95%)	$0,2743 \pm 0,0833$	$25,1968 \pm 0,5328$		

Média ± desvio padrão

A triagem fitoquímica indicou variações no perfil químico conforme o solvente usado (Tabela 3). Nenhum extrato apresentou saponinas. A presença de taninos/fenóis no extrato de carqueja em acetato de etila, ausentes no extrato em etanol 95%, destaca a influência da polaridade do solvente no perfil fitoquímico. Esse resultado reforça a importância de utilizar solventes com diferentes polaridades para ampliar a extração de

metabólitos secundários e obter uma caracterização química mais abrangente da espécie. Todos os extratos apresentaram flavonoides e terpenóides, indicando um amplo potencial bioativo, pois compostos fenólicos, especialmente flavonoides, conferem fotoproteção, tornando os produtos naturais uma alternativa promissora contra danos causados pela luz UV (6).

Tabela 3. Triagem fitoquímica dos extratos brutos.

Extratos Brutos	Saponi nas	Tanino s/ Fenóis	Flavon oides	Terpen óides
Matricaria recutita L. (acetato de etila)	-	-	+	+
Baccharis genistelloides (Lam.) Pers. (etanol 95%)	-	-	+	+
Baccharis genistelloides (Lam.) Pers. (acetato de etila)	-	+	+	+
Camellia sinensis (L.) Kuntze (etanol 95%)	-	+	+	+

(-) não detectado; (+) presente

Conclusões

Os extratos avaliados apresentaram atividade fotoprotetora promissora, especialmente os de camomila e carqueja. A incorporação dos extratos em gel aumentou significativamente a atividade, mesmo em baixas concentrações. A triagem fitoquímica revelou a presença de flavonoides e terpenóides em todos os extratos, validando os valores de FPS encontrados. Os resultados indicam o potencial dos extratos para o desenvolvimento de protetores solares inovadores. Testes complementares de teor fenólico total, viabilidade celular e atividade antimicrobiana estão em andamento para ampliar a caracterização dos extratos.

Referências

- 1. HUPEL, M.; POUPART, N.; AR GALL, E. *Talanta*, **2011**, 86, 362–371
- 2. SILVA, R. V et al. *Industrial Crops and Products*, **2016**, 83, 509–514
- 3. EGWAIKHIDE, P.A.; GIMBA, C.E. *Middle East Journal of Scientific Research*, **2007**, 2, 135–138.
- 4. MANSUR, J.S.; BREDER, M.V.R.; Mansur, M.C.A.; Azulay, R.D. *Anais Brasileiros de Dermatologia*, **1986**, 61, 121–124.
- 5. ANVISA. Resolução da diretoria colegiada RDC Nº 629, de 10 de março de 2022. *Diário Oficial da União*, **2022**.
- 6. CASTRO, N. T.; MOTA, D. M.; LAIGNIER, E. C. Revista Colombiana de Ciências Químico-Farmacêuticas, **2022**, 51, 557-588.

Agradecimentos

