

APLICAÇÃO DA METODOLOGIA D₀E NA EXTRAÇÃO DE COMPOSTOS BIOATIVOS DA CASCA DO CAFÉ: UM ESTUDO DE OTIMIZAÇÃO

*Lucas R. M. de Jesus $(PG)^1$, Aline A. Caetano $(PQ)^2$, Tatiana S. J. de Moraes $(PQ)^2$, Luciana L. S. Pereira $(PQ)^1$, Vânia A. Silva $(PQ)^2$, Meline O. Santos $(PQ)^2$, Barbara S. Bellete $(PQ)^1$.

¹ Universidade Federal de Lavras (UFLA), Departamento de Química (DQI) / Instituto de Ciências Naturais – ICN – Lavras – MG, Brasil, CEP 37200-900

² Empresa de Pesquisa Agropecuária de Minas Gerais- EPAMIG SUL

*lucas.jesus5@estudante.ufla.br,

RESUMO

O café, amplamente consumido no mundo, gera resíduos que, se mal gerenciados, causasm serios impactos ambientais. A casca do café contém compostos bioativos com propriedades antioxidantes, anti-inflamatórias e antimicrobianas, relevantes para aplicações industriais. Este estudo visou modelar e otimizar uma extração verde de metabólitos secundários da casca do café, agregando valor a esse resíduo. Para isso, aplicaramse o Delineamento de Experimentos (DoE) e a Metodologia de Superfície de Resposta (RSM). Após os experimentos, as condições ótimas de extração para o Teor de Fenólicos Totais foram: 6,9 g de casca, 52 h de extração e 53,8% de água na solução etanólica. Enquanto para o rendimento total foram: 3,97 g de casca, 56 h e 51,7% de água. Os resultados mostraram eficiência na extração e sugerem o potencial dos resíduos da casca para uso industrial, promovendo sustentabilidade e inovação na cadeia do café.

Palavras-chave: Extração Verde, Design de Experimento, Superfície de Resposta, Bioativos do café, Sustentabilidade no café.

Introdução

O café é amplamente consumido em todo o mundo e sua produção gera grandes volumes de resíduos, como a casca, que podem causar impactos ambientais se descartados inadequadamente (1). Esses resíduos, no entanto, contêm compostos bioativos com propriedades antioxidantes, anti-inflamatórias e antimicrobianas, com potencial para aplicações industriais.(1)(2). A extração eficiente desses compostos depende de estratégias otimizadas, como o uso do Delineamento de Experimentos (DoE) e da Metodologia de Superfície de Resposta (RSM), que permitem melhorar o rendimento, reduzir custos e agregar valor a subprodutos agrícolas.

Experimental

Delineamento de Experimentos(DoE)

O planejamento experimental foi conduzido com base em um delineamento fatorial 2³ (três fatores com dois níveis), totalizando 8 experimentos principais .Para ampliar a precisão do modelo, foram incluídos 6 pontos axiais e 5 repetições no ponto central (tabela 1).As

variáveis independentes avaliadas foram: massa da casca (g), tempo de extração (h) e proporção de água (%) no solvente etanólico. O planejamento foi realizado com o auxílio do software Minitab.

Análise de Fenólicos Totais(TFT) e Rendimento

Para quantificação dos compostos fenólicos totais foi utilizada metodologia de Folin-Ciocalteu adaptado(2). Para cada análise foram adicionados 0,25 mL do reagente de Folin-Ciocalteu (50%), 2,5 mL de água destilada e 1 mL dos extratos (concentração 3mg.mL⁻¹). Após agitação, adicionou-se 0,50 mL de Na₂CO₃ (5%), mantendo a reação por 1 hora. As leituras de absorbância foram realizadas a 760 nm em um espectrofotômetro. Foi construída uma curva de calibração com ácido gálico como padrão externo (5, 10, 30, 50 e 70 μg·mL⁻¹), relacionando os valores de absorbância às concentrações padrão.

O rendimento do extrato foi calculado com base na quantidade de extrato obtido em relação à massa inicial da casca de

café utilizada. Essa medida indica a eficiência do processo de extração.

Amostra	Massa (g)	Tempo (h)	% de	TFT	Rendimento
			H_2O	$(\mu g.mL^{-1})$	(%)
1	5	24	35	42,34	19,4
2	8	24	35	36,62	19,7
3	5	24	65	48,30	25
4	8	24	65	47,10	12,7
5	5	48	35	46,25	28,2
6	8	48	35	44,42	21,5
7	5	48	65	52,33	25,2
8	8	48	65	50,08	14,4
9	6,5	15	50	44,06	21,2
10	6,5	56	50	42,73	23,9
11	3,97	36	50	39,85	26,7
12	9,02	36	50	44,74	NC
13	6,5	36	25	44,23	19,42
14	6,5	36	75	37,87	14,15
15	6,5	36	50	47,96	20,5
16	6,5	36	50	45,61	25,2
17	6,5	36	50	46,61	20,3
18	6,5	36	50	49,22	18
19	6,5	36	50	45,58	21,5

*NC: não consta leitura

Tabela 1: Planejamento de cubo centrado (CCD) de três fatores e cinco níveis para metodologia de superfície de resposta (RSM) com seus valores descodificados.

Resultados e Discussão

Com base nos parâmetros de rendimento e teor de fenólicos totais (TFT), foi possível construir gráficos de superfície de resposta (RSM), que permitiram avaliar o comportamento das variáveis independentes nas amostras e analisar sua influência no processo de

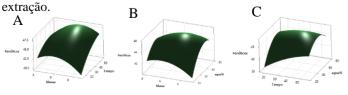
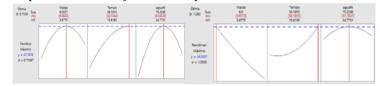



Figura 1. Gráficos de Superfície de Resposta em função do Teor de

Compostos Fenólicos Totais (TFT): (A) TFT em função da massa de amostra (g) e do tempo de extração (h);(B) TFT em função da massa de amostra (g) e da concentração de solvente (%);(C) TFT em função do tempo de extração (h) e da concentração de solvente.

Após a avaliação das superfícies de resposta, foram determinadas as condições ótimas que proporcionaram a melhor otimização do rendimento do extrato e do teor de compostos fenólicos totais. Essas condições permitiram maximizar a eficiência do processo de extração de forma precisa e eficaz.

Figura 2. Condições ótimas de extração para maximização do teor de compostos fenólicos totais (TFT) e do rendimento do extrato.

Conclusões

A extração otimizada de compostos fenólicos da casca de café, via RSM, apresentou alta eficiência. Para o rendimento, as melhores condições foram 3,97 g de casca, 56 h de extração e 51,8% de água; para o teor de fenólicos totais, 6,9 g, 52 h e 53,8% de água. Os resultados superaram valores da literatura e destacam o potencial da casca como fonte sustentável de compostos bioativos.

Agradecimentos

Referências

- 1 .Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš. Utilization of waste from coffee production. Journal of Environmental and Engineering Chemistry, v. 25, n. 40, **2017**.
- 2. Dos Santos, É. M.; De Macedo, L. M.; Ataide, J. A.; et al. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic. Scientific Reports, v. 14, p. 4453, **2024.**