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Abstract: The study of volatility is important in several fields of the financial
area and GARCH models have been frequently used in the literature, due
to their ability to capture some of the stylised facts of financial time series.
However, in some financial time series there is a change of structure in the
volatility dynamics, in which cases, GARCH models tend to be inadequate,
while Markov-switching GARCH models can be used. On the other hand,
outliers are often present in empirical data. This paper shows that the usual
estimators can be strongly affected by outliers and proposes an estimator
that is more robust to outliers. Simulations show that the proposed robust
estimator outperforms the traditional estimators in forecasting the volatility
and VaR.
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1 Introduction

Volatility is one of the most intensely studied aspects in financial econo-
metrics in recent decades. From an empirical point of view, several authors
have observed that financial time series present some stylised facts (Francq
and Zakoian, 2019, Section 1.3, pg. 7). In this scenario, Engle (1982) pro-
posed a conditionally heteroscedastic autoregressive (ARCH) model, but like
in several series, when estimating ARCH models, high orders were observed ,
Bollerslev (1986) presented an extension of the ARCH model, the Generalised
ARCH (GARCH) model.

The most popular GARCH estimator is the quasi-maximum likelihood
(QML). Francq and Zakoian (2019) (Section 7, pg. 175) showed that, under
certain conditions, these estimators have excellent asymptotic properties,
such as consistency. However, this estimator is not robust to outliers.

Two approaches are frequently used to deal with outliers: the first is to
detect outliers and treat them in some appropriate way; and the second is to
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use estimators robust to outliers. Hotta and Tsay (2012), based on ARCH(p)
and GARCH(1,1) models, studied the impact of outliers on maximum likeli-
hood estimation as well as proposing a method for detecting outliers. Several
authors have presented robust methods to estimate GARCH models. For ex-
ample, Sakata and White (1998) used S-estimators; Muler and Yohai (2008)
presented an estimator based on M-estimators combined with a robust fil-
ter mechanism to reduce the effect of outliers on conditional variances, and
Boudt et al. (2013) proposed a modification of the objective function of the
M-Estimator and the mechanism used by Muler and Yohai (2008). In the
presence of outliers these estimators have a significant gain over the non-
robust estimators, as shown by Carnero et al. (2012) for the estimator of
Muler and Yohai (2008). Additionally Trućıos et al. (2017) presented a mod-
ification for robust prediction of volatility in GARCH models.

On the other hand, financial time series often have structural breaks
over time, usually associated with political events and/ or financial crises,
such as the subprime crisis in 2008-9. Thus, especially in long series, it
is not suitable to assume that the same parameters of the GARCH model
explain the series for the whole period. In the presence of structural breaks,
such models become inappropriate, Hillebrand (2005) pointed out that this
adverse effect is independent of the estimation method. For instance, Hwang
and Valls Pereira (2008) showed that the estimated persistence of conditional
volatility in large samples can be excessive, especially in the presence of
structural breaks in the ARCH and GARCH parameters.

Hamilton (1989) and Cai (1994) proposed the conditional heteroscedastic
autoregressive model with Markov-switching (MS-ARCH) regime. By allow-
ing switching between different regimes, this model is able to capture more
complex dynamic patterns. Because the regimes are not observable, in the
maximum likelihood estimation of the model, one needs to infer the proba-
bility of being in a given regime in time. For this, the mechanism used is the
Hamilton (1989) filter.

When extending this method to GARCHMarkov-switching (MS-GARCH)
models, it was observed that the maximum-likelihood estimation was unfea-
sible because it depended on all possible path combinations. This problem
can be circumvented via Bayesian estimation, as shown by Das et al. (2004)
and Bauwens et al. (2010). In the traditionl approach, Gray (1996) was the
first author who dealt with the path dependency problem making maximum
likelihood estimation possible. Later, Haas et al. (2004) presented a new
approach to MS-GARCH models, with a new interpretation of the model
presented by Gray (1996).

MS-GARCH models have become popular in the literature because in
many cases they have a better performance than single-regime GARCH mod-
els. For instance, Ardia et al. (2018) found that MS-GARCH models provide
better predictions of VaR and expected shortfall compared to GARCH mod-
els with a single-regime in several cases. Furthermore, they observed that the
improvements were more pronounced when the Markov switching mechanism
was applied to simple specifications, such as the GARCH-Normal model.

However, like other usual filters, Hamilton (1989)’s filter performs poorly
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in the presence of outliers as shown by Calvet et al. (2015). Thus, the ob-
jective of this work is to present robust alternatives to maximum-likelihood
estimators of MS-GARCH models. To do this, we suggest some modifica-
tions, for instance the use of robust filters presented by Petrus (1999) and
Calvet et al. (2015), always having in mind the robustness objectives, (Huber
and Ronchetti, 2009, Section 1.2, pg. 5), namely that the estimator must
have a reasonably good efficiency in the assumed model; it should be robust
in the sense that small deviations from the model’s assumptions hurt per-
formance only marginally; and slightly larger deviations from the model do
not cause a catastrophe. In this sense, other modifications in the estimation
methods of MS-GARCH models are suggested.

As far as we know, there is no work in the literature dealing with the
robust estimation MS-GARCH models. The goal of the paper is to show the
effect of outliers on the estimation of MS-GARCHmodels and then to propose
a robust alternative. In Section 2, the GARCH model and non-robust and
robust estimation methods are presented, in particular the robust methods
of Muler and Yohai (2008) and Boudt et al. (2013). In Section 3, MS-
GARCH models are presented along with their properties, interpretation and
advantages in relation to GARCH models in certain scenarios. Among the
different specifications of MS-GARCH models, we present the model of Haas
et al. (2004). In addition, we describe an alternative robust estimation that
consists of adapting the techniques used by Boudt et al. (2013) to the case of
regime-switching models. Section 4 presents a Monte Carlo simulation study
to evaluate the performance of the estimators of the MS-GARCH models.
We evaluate both the quasi-likelihood estimation through Hamilton (1989)’s
filter and robust alternatives. In this section we focus on evaluating the
accuracy of the parameter estimates and the ability of the filter to identify
the regimes. We observe that, in general, the QML estimators using the t-
Student (QML-t) and the robust Hamilton filter perform reasonably well in
identifying regimes, unlike the QML using the normal distribution (QML-n).
On the other hand, when estimating the conditional variance parameters,
we note that the estimators tend to estimate some parameters well, but not
others. Finally, in Section 5 the main conclusions found in the simulations
and applications in relation to the considered estimators are discussed.

2 GARCH models

According to Bollerslev (1986), yt follows a GARCH(p,q) model if:

yt =
√
htzt,

ht = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j,
(1)

where {zt} is a sequence of independent and identically distributed (i.i.d.)
random variables with mean 0 and variance 1; and α0 > 0, αi ≥ 0, and βj ≥ 0
are the sufficient conditions for ht to be positive. Stationary conditions can
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be found, for instance, in Francq and Zakoian (2019) (Section 2.2.2) and in
the Supplementary Materials.

2.1 Estimators

Various methods exist to estimate GARCH models. For instance, Bail-
lie and Chung (2001) estimated the GARCH(1,1) model using a minimum
distance estimator for the squared process autocorrelations and Pérez-Cruz
et al. (2003) used the support vector machine method. Aknouche and Guer-
byenne (2006) develop three recursive online algorithms based on a two-stage
least squares scheme, while (Ardia, 2008, Section 3) presented methods for
Bayesian estimation. From a frequentist approach, the most common esti-
mation is by QML.

2.1.1 Quasi-maximum likelihood estimator

Denote yT = {y1, y2, . . . , yT}, θ′ = (α′,β′)′, with α = (α0.α1, . . . , αp)
′

and β = (β1, . . . , βq)
′, so that it belongs to the parametric space of the form

Θ ⊂ (0. + ∞) × [0.∞)p+q - often the space in which the GARCH model is
stationary. To obtain the likelihood of the GARCH(p,q) model defined in (1),
it is necessary to specify the distribution of {zt}. The name quasi-likelihood
comes from the fact that one distribution is used, even when knowing that
this distribution is not correct. For the normal case, given the initial values,
for example, ϕ0 = {y0. . . . , y1−p, h0, ..., h1−q}, the quasi-likelihood can be
expressed as:

L(θ|yT ,ϕ0) =
T∏
t=1

f(yt|Ft−1,θ,ϕ0) =
T∏
t=1

1√
2πht

exp

{
− y2t
2ht

}
, (2)

where ht can be obtained recursively through (1). Thus, the QML estimate
θ̂, when we assume the standard normal distribution (QML-n), is given by:

θ̂ = arg max
θ∈Θ

L(θ|yT ,ϕ0). (3)

Or by maximising the log-likelihood:

ℓ(θ|yT ,ϕ0) = log(L(θ|yT ,ϕ0)) ∝ −1

2

T∑
t=1

[
ln(ht) +

y2t
ht

]
. (4)

Under certain conditions, the QML estimator is consistent and the dis-
tribution converges (Francq and Zakoian, 2019, Seção 7.1.1), i.e.,

√
T (θ̂ − θ)

L−→ N
(
0, (κz − 1)J−1

)
, where

J := E

(
∂2l(θ|yt,ϕ0)

∂θθ′

)
.

The choice of initial values in finite samples can produce different values
of the estimates, especially when the sample size is small. Pelagatti and Lisi
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(2009) showed the accuracy of the QML-n estimates for the GARCH(1,1)
model under different initial value choices.

2.2 Robust estimation of GARCH models

There are numerous methods to robustify estimators of GARCH models,
focusing mainly on additive outliers. We highlight Basu et al. (1998); Sakata
and White (1998); Park (2002); Lee and Song (2009); Hotta and Trućıos
(2018) and Crosato and Grossi (2019). However, Muler and Yohai (2008)
pointed out that the estimates of the robust methods cited above may not
be robust in the presence of a fraction of outliers in the sample, since they are
based on conditional variance, which is very sensitive to outliers. Therefore,
they presented a modification of the M-Estimators and a modified specifica-
tion of the conditional variance of the GARCH model to decrease the effect
of outliers.

2.2.1 BIP-GARCH model

Muler and Yohai (2008) proposed a mechanism similar to robust filter-
ing to estimate the conditional variance. This mechanism, called BIP (
bounded innovation propagation ), restricts the propagation of the outliers’
effect present at time t − 1 in the conditional variance of time t. For the
GARCH(p,q) model ht is calculated as:

h∗t = α0 +

p∑
i=1

αih
∗
t−irk

(
y2t−i

h∗t−i

)
+

q∑
i=1

βjh
∗
t−i,

rk(u) =

{
u, if u ≤ k

k∗, if u > k,

(5)

with k∗ = k. However, Boudt et al. (2013) observed in their simulations that
when using the BIP specification in (5), the estimates of the parameters of the
GARCH model showed small biases. So they introduced a correction factor
ckδ , to guarantee that the expectation of ckδh

(k)
t−1rkδ(y

2
t−1/h

(k)
t−1), conditional

on Ft−2, is equal to the conditional expectation of y2t−1, when there is no
outlier. Ft−2 is the set of all available information up to time t−2. Equation
(5) becomes

h∗t = α0 +

p∑
i=1

αih
∗
t−ickδrkδ

(
y2t−i

h∗t−i

)
+

q∑
i=1

βjh
∗
t−i,

rkδ(u) =

{
u, if u ≤ kδ

k∗δ if u > kδ.

ckδ =
E[W ]

E[rkδ(W )W ]
=

1

Fχ2
3
(kδ) + (1− δ)kδ

,

(6)

where k∗δ = kδ, and W is a chi-square random variable with one degree of
freedom, Fχ2

3
(.) is the cumulative distribution function of the chi-square dis-
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tribution with 3 degrees of freedom and kδ is the δ quantile of the chi-square
distribution with one degree of freedom. The notation kδ was introduced
to clarify the meaning of the threshold, from which one suspects that the
observed value is affected by an outlier. Table 1 of the article by Boudt et al.
(2013) presents the values of ckδ .

Other authors have proposed different values of k∗ and k∗δ in (5) and (6),
respectively. Carnero et al. (2012) proposed to use k∗ = 1. i.e., when there
is an atypical observation, it is replaced by E[y2t−1] = ht−1. For cases where
another value for kδ is used in (6), when u > kδ, say kδ∗ , we have that the
value of ckδ is given by ckδ = [Fχ2

3
(kδ) + kδ∗(1 − FW (kδ))]

−1. For the case of
Carnero et al. (2012), where it is replaced by 1, we have that δ∗ = 0.6827.

The constant δ works as a trade-off between robustness and efficiency, if
the chosen value is too high h∗t , tends to coincide with ht, while for small
values h∗t becomes more robust to outliers.

Boudt et al. (2013) proposed to use variance target, that is, α0 is repa-
rameterized as ĥ(1 − α1 − β1) - with ĥ being a consistent estimator of the
unconditional variance h is estimated before the other parameters. Without
outliers ĥ can be obtained simply by the sample variance, but this estimator
is greatly affected by the presence of outliers. A robust estimator for the un-
conditional variance is the reweighted variance estimator proposed by Boudt
et al. (2013). The reweighted variance estimator, when zt ∼ N(0.1), is given
by:

ĥ = 1.318

∑T
i=1 ytJt∑T
i=1 Jt

Jt = I
[

y2t
MAD2

t

≤ χ2
1(95%)

]
,

such that I(.) is the indicator function and the MAD of a sequence of observa-
tions y1, . . . , yT is defined as 1.486×mediani(|yi−medianj(yj)|), where 1.486
is a correction factor to ensure that the MAD is a consistent scale estimator
of the normal distribution.

Finally, Boudt et al. (2013) estimated the parameters of the BIP-GARCH
model using an estimator that minimises an objective function ρ evaluated
for the logarithm of the squared standardised observations. This is,

θ̂ = arg min
θ∈Θ

1

T

T∑
t=1

ρ

(
ln
y2t
ht

)
. (7)

Based on the comparison of several ρ candidate functions, Boudt et al.
(2013) recommended one associated with the t-Student density with 4 degrees
of freedom. For the most general case, associated with the t-Student density
with ν degrees of freedom we have

ρ(z) = −z + σνρtν (exp(z)), (8)

ρtν (u) = (1 + ν) log

(
1 +

u

ν − 2

)
, (9)
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σν =
1

E[ρ
′
tν (W )W ]

. (10)

2.3 Volatility prediction

For the sake of simplicity and notation, here we will consider the GARCH(1,1)
model, given by (1), to illustrate how volatility forecast τ steps forward is
given. Suppose the model has been estimated over the time period t =
1, 2, . . . , T . The τ steps ahead volatility forecast at T , given the information
up to this time, denoted by hT+τ |T , with least mean squared error, is given
by

hT+τ |T =α0 + α1y
2
T+τ−1|T + β1hT+τ−1|T (11)

where, similarly, y2T+τ |T is the forecast of y2t τ -steps ahead, conditional on

FT ; that is, y
2
T+τ |T ≡ E[y2T+τ |FT ]. θ = (α0.α1, β1)

′ can be estimated by (3).
As with parameter estimation, the presence of outliers affects the volatility
forecast. To deal with this, an alternative to the forecast τ steps ahead of
the conditional variance, as presented by Boudt et al. (2013), is given by:

hT+τ |T = α0 + α1ckδhT+τ−1|T rkδ(y
2
T+τ−1|T/hT+τ−1|T ) + β1hT+τ−1|T , (12)

where rkδ(.) is the function defined in (6). And, as mentioned by Boudt
et al. (2013), in the presence of outliers, y2t is not observed, and is replaced
by ht when using the rkδ mechanism. Thus, the effect of these outliers on
future variations is unlimited in (11), but limited in (12). Additionally,
Carnero et al. (2012) observed that, in the presence of outliers, non-robust
estimators of the parameters of the GARCH model generally lead to biases
in the estimated of volatilities.

3 Markov-switching GARCH models

Lamoureux and Lastrapes (1990), Horváth et al. (2006) and other authors
have provided empirical evidence of structural changes of stock returns. In
this scenario, as cited by Gray (1996), many popular models produce poor
results when fitted to the data. Lamoureux and Lastrapes (1990), Hille-
brand (2005), Hwang and Valls Pereira (2008) and other authors have shown
that in the presence of structural breaks in the parameters of the ARCH
and GARCH processes, when adjusting the GARCH model, the estimated
persistence, even in large samples, may be excessive. Furthermore, Hille-
brand (2005) stated that this negative effect is independent of the estimation
method of the GARCH model. Additionally, some authors have observed
this fact empirically, such as Mikosch and Stărică (2004), who estimated a
GARCH model in a sample that exhibits structural changes in its condi-
tional variance and obtained persistence practically equal to that of Billio
et al. (2016).

To deal with this situation, Cai (1994) and Hamilton and Susmel (1994)
proposed MS-ARCH models. The idea of the MS approach to modelling
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heteroscedasticity is that the distribution of the ARCH process depends on
an unobserved state. The MS-ARCH model presented by Cai (1994), for
example, is given by:

yt =
√
htzt,

ht = α
(∆t)
0 +

p∑
i=1

αiy
2
t−i,

where ∆t is a homogeneous ergodic Markov chain on a finite set S = {1, . . . , K}.
However, the extension of this specification to MS-GARCH was not fea-

sible. Due to the dependence of the model path, the likelihood function for
a sample size T requires integration over all KT possible combinations up to
the T -th observation, which is impracticable.

Gray (1996) was the first author who dealt with the problem of path
dependency. First, he observed that the conditional density of yt is a mixture
of normals with mixture weight (pt−1(∆t = j)) varying over time, i.e

f(yt|Ft−1) =
K∑
k=1

pt−1(∆t = j)fN(yt|Ft−1,∆ = k)

where fN(.) represents the density of a normal distribution. In order to

facilitate the notation, consider that h
(k)
t is the conditional variance when

∆t = k, that is,

h
(k)
t = α

(k)
0 + α

(k)
1 y2t−1 + β

(k)
1 h

(k)
t−1. (13)

Hence, the conditional variance of yt−1 given Ft−2 is given by ht−1 =
K∑
k=1

pt−2(∆t−1 =

k)h
(k)
t−1. Gray (1996) replaced h

(k)
t−1 with ht−1 in Equation (13). Thus, the spe-

cific conditional variance of each regime is given by:

h
(k)
t = α

(k)
0 + α

(k)
1 y2t−1 + β

(k)
1 ht−1. (14)

and now ht−1 is not path dependent, so the likelihood estimation is tractable.
Abramson and Cohen (2007) showed some inferential results of this model.

Haas et al. (2004) pointed out that the interpretation of the model pro-
posed by Gray (1996) is problematic. As they mentioned, when one specifies
a model with regime switching, the interest is to capture the dynamics in
the conditional variance in periods of high and low volatility throughout the
series. Therefore, we are interested in the relationship of the parameters of
the GARCH model corresponding to the variance of its regime h

(j)
t , similar

to the GARCH model with a single regime described in Section 2. However,
when using the conditional variance (14), β

(k)
1 cannot be interpreted as being

the inertia of h
(k)
t , since ht is defined as the average of the conditional vari-

ances of all K regimes with respect to the probabilities of being in the k−th
regime. And since β ̸= 0, h

(k)
t will be affected by shocks as ht varies even if

α
(k)
1 is equal to zero.
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In view of this, Haas et al. (2004) presented a new approach to MS-
GARCH models with a clear interpretation in relation to the conditional
variance of the regime and with feasible estimation.

3.1 Haas, Mittnik and Paolella (2004)’model

Haas et al. (2004) presented a new approach to univariate to MS-GARCH
models with a clear interpretation in relation to the conditional variance of
the regime and feasible estimation. The MS(K)-GARCH(1,1) model pro-
posed by Haas et al. (2004) can be expressed as:

yt =

√
h
(∆t)
t zt, (15)

h
(k)
t = α

(k)
0 + α

(k)
1 y2t−1 + β

(k)
1 h

(k)
t−1, (16)

where h
(k)
t are the conditional variances of regime k. Note that, in this

definition, the term accompanying the parameter β
(k)
1 , that is, h

(k)
t−1, is what

differentiates this model from the one proposed by Gray (1996). α
(k)
0 > 0,

α
(k)
1 ≥ 0, β

(k)
1 ≥ 0 for all k = 1, . . . , K are the sufficient conditions for

h
(k)
t to be positive; {zt} is a sequence of independent random variables with

mean 0 and variance 1, commonly chosen as N(0.1). Finally, ∆t is a Markov
chain with finite state space S = {1, . . . , K} and a transition matrix K ×K
P := [pij], where pij = P (∆t = j|∆t−1 = i), with the sum of each row equal
to 1 and all elements of the matrix pij greater than zero. Assuming that
the Markov chain is irreducible and aperiodic, the stationary distribution
π∞ = (π

(1)
∞ , π

(2)
∞ , . . . , π

(K
∞ )′ can be obtained by π∞ = (A

′
A)−1A

′
v, where

A =

[
Ik − P

1
′

k

]
and v =

[
0k

1k

]
, (17)

Ik is the k× k identity matrix, and 0k and 1k are k× 1 vectors of zeros and
ones, respectively.

Note that, in this model, the conditional variance h
(k)
t depends only on

the respective parameters of its regime k, in contrast to the one given by
Gray (1996) in (14). Therefore, if max{β(1)

1 , . . . , β
(K)
1 } < 1, like the GARCH

models with a single regime, we have that α
(k)
1 represents the impact of a

shock at t−1 on h
(k)
t ; β

(k)
1 represents the memory in h

(k)
t ; and α

(k)
1 (1−β(k)

1 )−1

reflects the total impact of a unit shock on future variations of the regime k.
To study the second-order stationarity of the model, first, consider the

K2×K2 matrix M = [Mij], where Mij = pij(β+α1e
′

k) are K×K matrices,

β = diag(β
(1)
1 , β

(2)
1 , . . . β

(K)
1 )′, α1 = (α

(1)
1 , α

(2)
1 , ..., α

(K)
1 )

′
, pij denotes the tran-

sition probabilities and e
′

k is a K×1 vector that contains zeros, except in the
k−th element. According to Haas et al. (2004), the process is weakly station-
ary if and only if ρ(M ) < 1, where ρ(.) is the largest eigenvalue in modulus
of the matrix M . Although, the strict stationarity condition is complicated,
Liu (2006) presented the conditions for strict stationarity. Haas et al. (2004)
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stated that, a necessary condition for the weak stationarity of the MS(K)-

GARCH(1,1) process is that, for all k, β
(k)
1 < 1, while Abramson and Cohen

(2007) presented the conditions of strict and second-order stationarity for
MS(K)-GARCH(p,q). More information on the stationarity and properties
of the model can be found in the Supplementary Material.

3.2 Non-robust estimators

Here we are interested in maximum likelihood estimator, more specifically
in the model defined by Haas et al. (2004). For this, we aim to maximize:

L(θ|yT ) =
T∏
t=1

f(yt|Ft−1,θ) =
T∏
t=1

K∑
k=1

[f(yt|∆t = k,Ft−1,θ)P (∆t = k|Ft−1)] ,

(18)
where θ = (α0,α1,β1, p11, . . . , pkk)

′ and f(.) is the conditional density of yt.
However, as the regime is unobserved, we need to infer the probability of be-
ing in time t in a given regime P (∆t = k|Ft−1). For this, the mechanism used
here is the Hamilton (1989) filter, which is a nonlinear iterative filter to es-
timate state probabilities of an autoregressive model with Markov-switching
regime.

3.2.1 Estimation via Hamilton filter

Define ξt as the vector of conditional probabilities of being in each regime
at time t, that is ξt = (P (∆t = 1|Ft−1), . . . , P (∆t = K|Ft−1))

′
and ht

as the vector of the conditional variances of each regime, that is, ht =
(h

(1)
t , . . . , h

(K)
t )

′
. So, given the initial values (y0.h0, ξ0)

′ (or (y1,h1, ξ1)
′), the

estimation of ξt by the Hamilton filter proceeds as follows:

1) Given the vector of conditional probabilities ξt−1:

ξi,t−1 = P (∆t−1 = i|Ft−1). (19)

2) Calculate the conditional variances of each regime:

h
(k)
t = α

(k)
0 + α

(k)
1 y2t−1 + β

(k)
1 h

(k)
t−1. (20)

Under the normality assumption, calculate the conditional densities of
each regime.

ηit = f(yt|∆t = i,Ft−1) = (2πh
(i)
t )−1/2 exp

{
−y2t /(2h

(i)
t )
}
. (21)

The normality assumption is not the only option. For instance, Paolella
et al. (2012) used the t-Student distribution. And, if the distribution of inno-
vations is not normal, but leptokurtic, the use of normality in the regime can
seriously affect the identification of the state of the regime and, consequently,
also the estimation of the parameters for each regime. That is, the model
with normal distribution in regimes will tend to detect regime changes very
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frequently due to an atypical observation (Paolella et al., 2012).

3) Calculate the conditional density of the t-th observation as:

f(yt|Ft−1) =
k∑

i=1

k∑
j=1

pijP (∆t−1 = i|Ft−1)ηjt = 1
′
(Pξt−1 ⊙ ηt), (22)

where ⊙ represents the Hadamard product and P is the transition matrix.

4) Update the probabilities of being in each regime as:

ξt =
Pξt−1 ⊙ ηt

1′(Pξt−1 ⊙ ηt)
. (23)

As a result of iterating from 1) to 4), we can compute the conditional
quasi-likelihood function over the entire sample. Thus, the estimate of θ is
obtained by maximizing the likelihood or log-likelihood through some nu-
merical method. In such a way that:

θ̂ arg max
θ∈Θ

T∑
t=2

log f(yt|Ft−1) = arg max
θ∈Θ

T∑
t=2

log(1
′
(Pξt−1 ⊙ ηjt)). (24)

As with single-regime models, the choice of initial values can influence
parameter estimates. For the initial values of ξ1, the estimated stationary
distribution of the Markov chain is often used (17), or else considered to be
equiprobable, or considered to be parameters and estimated by QML. For
the values of h1, we can assume that they are a function of the parameters,
such that for the regime k we have that hk1 = α0k/(1− α1k − β1k).

3.2.2 Notes on quasi-maximum likelihood estimation

As of the writing, we are unaware of any asymptotic properties, such as
consistency and asymptotic distribution of the QML estimator for the MS-
GARCH model that follows the specification proposed by Haas et al. (2004).

Paolella et al. (2012) pointed out that, similar to the GARCH mixing
models, log-likelihood maximisation (24) is often performed by an optimi-
sation method based on the Hessian matrix with numerically determined
derivatives. Because there may be several plausible local maxima of the
likelihood function, only by using various initial values one can obtain the
possible the global maximum. For a slightly different model, Augustyniak
(2014) also highlighted the impact of initial values on parameter estimates
and proposed an algorithm that can reduce the sensitivity to initial values.
Another point is that, due to the nature of the likelihood function as a mix-
ture, it may have singularities (infinite likelihood values).

Andreou and Ghysels (2009) showed different statistical methods to look
for the number of regimes. However, Paolella et al. (2012) stated that these
standard tests and also tests based on likelihood ratios do not perform well,
while information criteria such as AIC and BIC are reasonably good in this
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context. On the other hand, in empirical problems, taking into account
interpretability, the number of regimes chosen is usually 2, since with K > 2,
at least one of the regimes tends to have a very small stationary probability,
so its parameters are subject to large estimation errors (Paolella et al., 2012).

3.3 Robust estimation and prediction

We propose a robust estimator that uses three modifications of the one
presented previously: i) the BIP method given by Equation (6) in Section
2.2 to minimise the effect of outliers on the conditional variance estimates
of each regime; ii) the use of the t-Student distribution with 4 degrees of
freedom in the conditional densities; and iii) the objective function proposed
by Boudt et al. (2013) for the univariate case.

The motivation of using the BIP is the same as for the single-regime
case. The use of the t-Student distribution with 4 degrees of freedom in
the conditional densities, is based on the techniques used in robust filters.
Different authors have mentioned that the usual filters, as well as Hamilton’s,
are not robust. Even in the mildest cases they have unsuitable performance.
Petrus (1999), Zou et al. (2000), and Calvet et al. (2015) showed the poor
performance of several filters such as least squares and Bayesian, for example,
in the presence of outliers.

To understand the representation of outliers in filters, we follow Cal-
vet et al. (2015). Let yt ∈ R be the observation with conditional density
f(yt|∆t,Ft−1). As in (23), by Bayes’ rule, the probabilities of being in each
regime inferred by the filter satisfy:

λ(∆t|yt,Ft−1) =
f(yt|∆t,Ft−1)λ(∆t|Ft−1)

f(yt|Ft−1)
, (25)

where f(yt|Ft−1) =
∫
f(yt|∆t,Ft−1)λ(∆t|Ft−1)d∆t. Thus, let a family of ob-

servation densities contaminated by outliers be denoted by fcont(.|∆t,Ft−1, ω),
parameterised by ω, where ω belongs to an interval D on the real line contain-
ing zero. If ω = 0, the contaminated density coincides with the uncontami-
nated observation density, that is, fcont(yt|∆t,Ft−1, ω = 0) = f(yt|∆t,Ft−1)
for all ∆t and Ft−1. When contamination is not taken into account, the naive
application of the Bayes rule leads to formula (25).

To robustify the filter, Calvet et al. (2015) and Petrus (1999) used ro-
bust densities. Calvet et al. (2015) used one based on the limitation of the
derivative of the log density and Petrus (1999) employed one based on Hu-
ber’s objective function, ρ(u) = u2I(|u| ≤ k) + k|u|I(|u| < k). Analogously
to Boudt et al. (2013), we use a t-Student distribution with 4 degrees of
freedom.

Therefore, the robust estimation proposal will modify the estimation pre-
sented in Subsection 3.2.1 in such a way that, in step 2) we will use the
BIP mechanism to minimise the effect of outliers on the conditional variance
estimates of each regime and we will use the t-distribution with 4 degrees of
freedom to calculate of the conditional density of each regime; and, finally,
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instead of maximising the log-likelihood as in (24), we will use a modification
of it combined with the function ρ given in (8). Thus, the estimate of θ is
obtained by minimising:

θ̂ = arg min
θ∈Θ

T∑
t=1

log

 k∑
i=1

k∑
j=1

pijP (∆t−1 = i|Ft−1)
1√
h
(j)
t

(
1 +

y2t

2h
(j)
t

)− (1+4)σ4
2

 .
(26)

where σ4 is given by (10).
To estimate the one-step ahead volatility, we propose to use the robust

BIP mechanism given by Equation (6). For more than one-step-ahead pre-
diction we can use the procedure of Paolella et al. (2012), which is given in
the Supplementary Material, because from the second-step we use the ex-
pected values, which are not affected by outliers. Using the one-step-ahead
conditional distribution of each state, we can use numerical methods or path
simulations to estimate the one-step-ahead VaR. For two or more steps ahead
we have to use path simulations.

For the robust method the volatility prediction can be found by simulating
paths of the returns using the estimated robust model.
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3.4 Expected shortfall estimation

Consider that a model predict that the return on time t will come from
a mixture of K distributions with density fk(.), each one with weight pk =
P (∆t = k), k = 1, ..., K, For the t-th observation, the VaR at the α risk
level, denoted by V aRα , is given by

P [yt < −V aRα] =
K∑
k=1

P (∆t = k)Fk(−V aRα)

where Fk(.) is the distribution function of the k-th regime.
The expected shortfall at the α risk level, denoted by ESα is defined as

−E(yt|y(t) < −V aRα), i.e.,

ESα = −E(yt|y(t) < −V arα) = −α−1

K∑
k=1

pk

∫ −V aRα

−∞
zfk(z)dz

For the Gaussian case, where the distribution for each regime is N(0, h(k)),
the ES is given by

ESα = −
K∑
k=1

pk
1√

2πh
(k)
t

∫ −V aRα

−∞
z exp

(
−z2

2h
(t)
k

)
dz

= −α−1

K∑
k=1

pk

√
h
(k)
t ψ(Φ−1(−V aRα/

√
h
(k)
t ) (27)

where Φ(.) and ψ(.) are the distribution and probability density function of
the standard normal distribution, respectively.

For the t-Studennt case where the degree of freedom of each regime is
given by νk, the ES is given by

ESα = −α−1

K∑
k=1

pk

νk +

(
V aRα√

h
(k)
t

√
νk/(νk − 2)

)2

νk − 1
tνk

V aRα√
h
(k)
t

√
νk/(νk − 2)

 ,

(28)
Note that for the robust method, besides using the robust estimates we

use the BIP mechanism given by Equation (6) to estimate the variances for
each regime. The estimation of the ES for two or more steps-ahead can be
done by simulating paths.
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4 Simulation

In this Section we discuss the performance of the estimators of the MS-
GARCH models in the presence or absence of additive outliers. We use
GARCH(1,1) models for both regimes. As cited by Francq and Zakoian
(2019) (Section 8.5, page 235), the reason for choosing GARCH(1,1) models
is that they are by far the most widely used by professionals who want to
estimate the volatility of daily returns, a practice motivated by the common
belief that GARCH(1,1) is sufficient to capture the properties of financial
series and higher order models can be unnecessarily complicated.

4.1 Data generator process

We consider a sample size of T = 3000 and 1000 Monte Carlo replications.
Given the choices p11 = 0.96 and p22 = 0.98, the stationary distribution of
the Markov chain is π∞ = (1/3, 2/3)

′
such that, the average numbers of

observations in each regimen are 1000 and 2000. The observed series y∗t ,
with additive outliers, is defined as:

y∗t = yt + sign(yt)IA(t) dt

√
h
(∆t)
t ,

where yt is given by (15), sign(.) represents the sign function, IA(t) is an
indicator variable representing the position of the outliers, with A being
the set of observations affected by outliers, dt is a constant belonging to
R+ indicating the size of the outliers in terms of conditional volatility, and√
h
(∆t)
t is defined as (16).
Some authors use isolated and consecutive outliers at strategic points,

such as at the beginning, middle and end of the series, to assess their re-
spective impacts. As in Muler and Yohai (2008) and Boudt et al. (2013),
we evaluate the estimators when a fraction of observations is contaminated.
The fraction, say ϵ, are given by ϵ = 1%, ϵ = 5%, ϵ = 10% and ϵ = 0% when
there are no outliers. The positions of the outliers are randomly sampled
without replacement. Finally, we consider two values for d, 3 and 5. The
data generating process is:

yt =

√
h
(∆t)
t zt (29)

h
(1)
t = 2.0 + 0.10 y2t−1 + 0.6 h

(1)
t−1 (30)

h
(2)
t = 0.3 + 0.35 y2t−1 + 0.2 h

(2)
t−1, (31)

where zt ∼ N(0, 1). In each replication, a burn-in of 500 observations is
considered. Although the models are not exactly the same, we use for the
simulations the same parameter values of the generating process presented
by Bauwens et al. (2010), Augustyniak (2014) and Billio et al. (2016).

The unconditional variance of the first regime is 10 times greater than
that of the second. That is, we have α

(1)
0 /(1 − α

(1)
1 − β

(1)
1 ) = 20/3 and

α
(2)
0 /(1− α

(2)
1 − β

(2)
1 ) = 2/3.
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4.2 Estimators

A robust estimator i) must have a reasonably good efficiency (optimal
or almost optimal) if the assumed model is true; ii) must be robust, in the
sense that small deviations from the model’s assumptions should only slightly
affect the estimates; and iii) must not have catastrophic performance with
slightly larger deviations from the model. We consider three estimators in
the simulation: QML-n and QML-t estimators defined in Section 3.2, and
the robust (Rob) estimator defined in Section 3.3. A modification was intro-
duced in the function rkδ,1(u), defined in Equation (6), so that the estimators
produce better results in estimating the parameters. In the literature, some
authors propose replacing the value of kδ,1 when x > kδ,1, like Muler and
Yohai (2008) and Boudt et al. (2013), for example. However, others suggest
using 1 (expected value) when x > kδ,1, such as Carnero et al. (2012). This
value corresponds to approximately k0.69,1. We use the midpoint between
δ = 0.95 and 0.69. Thus, when x > kδ,1, we replace it with k0.82,1.

4.3 Initial values

As observed by Paolella et al. (2012), there may be several “plausible”
local maxima of the MS-GARCH model’s likelihood function. An alterna-
tive way to deal with this is to use several initial values to find the global
maximum. Thus, in our simulation, for each replication in which we evalu-
ate the performance of the estimators, we take into account several different
initial values and for each we evaluate the likelihood function. For the three
initial values that generate the highest likelihood (if it is a loss function, the
lowest), we estimate the parameters giving us three parameter estimates gen-
erated by three different initial values. Among these three values, we use the
following mechanism to determine which estimate corresponds to the global
maximum. The mechanism is based on the following idea: When the 3 esti-
mates converge to the same place, that is, the estimated parameters are all
the same and the final likelihood found is the same, we select the respective
value; otherwise, when the 3 estimates do not converge to the same place,
we select the one with the highest final likelihood, or the average of the 3
estimates if there is no difference between the likelihoods.

Here, we consider the parameters and the final likelihood to be different
if there is a difference greater than 10−4 either in the parameters or in the
final likelihood, except for the intercept of the high volatility regime, which
will be different if there is a difference greater than 10−2.

Those cases where the three estimates do not converge to the same place
are exceptions. For instance, we generate 1000 Monte Carlo replications
of the process defined in (31) and generated the above mechanism using
maximum likelihood estimation. Of these replications, only 27 (2.7%) did
not converge to the same place, and of these cases, only 14 (1.4%) converged
to the same likelihood value, but with different parameter values.

The performance of the Hamilton filter is analysed in Section 4.4 and the
precision in estimating the model parameters is examined in Section 4.5.
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4.4 Analysis of the filter performance

Figure 1 presents the proportion of correct classifications, in which the
data generating process is given by Equation (31), considering (a) only the
observations affected by outliers and (b) all the observations. We set a thresh-
old of 0.50 to classify whether an observation is in one regime or not. As
expected, the filters perform better in the high volatility regime and, in this
regime, the performance tends to improve with greater contamination and
larger outlier size, since the effect of outliers is to classify the observation as
generated by the high volatility regime.

For the case of the low volatility regime, with 1% contamination, when
using the QML-n estimator, the percentage of correct classification is less
than 14% of cases, even with outliers with size equal to 3, in contrast to the
QML-t and Robust estimators, when the hit rate is greater than 75% when
d = 3 and greater than 48% when d = 5. When the degree of contamination
increases to 5%, the performance of the estimators deteriorates. The perfor-
mances of the QML-t and robust estimators are still reasonable for d = 3
with more than 60% correct classification, but the percentage drops to less
than 17% when d = 5. Finally, when the proportion of outliers is 10% and
d = 3, the robust estimator performs similarly with contamination of 5% and
better than QM-t. However, when d = 5 all perform poorly.

Generally, the three estimators perform well in the high volatility regime.
In the low volatility regime, the filter with the QML-n estimator performs
poorly, and when d = 3, the filter with the robust estimator performs rea-
sonably well, better than with the QML-t estimator. When the size of the
outlier is d = 5, the performance of the filter used the three estimators is
very poor when the contamination is greater than or equal to 5%

Considering all observations, for the low volatility regime, all estimators
perform well, but, in general, the robust estimator performs slightly better
than QML estimators. As for the high volatility regime, we note the superior
performance of the QML-t and robust estimator in relation to the QML-n
estimators, except for the case in which the proportion of outliers is 10% and
d = 5.

4.5 Model, VaR and ES estimation

The bias and RMSE of the parameter model estimates of the Monte Carlo
simulation are given in the Supplementary Material, while Figures 2 and 3
present the boxplots for the parameter estimates of the MS-GARCH model
for the high and low volatility regime, respectively.

As expected, in the absence of outliers (ϵ = 0%), the QML-n estimator
performs better than the others. And as the presence of outliers increases, we
expected this relationship to reverse, which was confirmed in the simulations.
For the parameters of the variance equations of the MS-GARCH model, we
observe that, in terms of RMSE, as the fraction and size of the outliers
increase, the performance of the estimators deteriorates. Also, in general the
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QML-n estimator performs worse than the QML-t and robust estimators. We
also observe that the robust estimator stands out in most cases in estimating
these parameters.

In the high volatility regime (Figure 2), the performance of the QML-n
estimator, of 5% with d = 3 and 1% with d = 5 deteriorates substantially.
When d = 3 the robust estimator performs better than the QML-t. When
d = 5, for 5% the estimates of parameters β1, p11 and p22 deteriorate for all
estimators. When d = 5, for the parameters α0 and α1, there is no advantage
regarding the estimators.

For the low volatility regime (Figure 3), the robust and QML-t estimators
perform better than the QML-n, except for the parameter α1 when there is
1% contamination by outliers. Furthermore, the robust estimator is better
than the QML-t estimator.

Finally, the QML-t estimator obtained the best results when estimating
the probabilities of the Markov transition matrix. The RMSE of the QML-t
estimator is half that of the robust estimator, except when the proportion
of outliers is 10%. For 5% contamination, the performance of the QML-
n estimator is very poor. There is also a larger variability in the QML-n
estimates for both regimes for different windows.

The literature contains some results of Monte Carlo simulations in relation
to the estimation of the parameters of the MS-GARCH model. Augustyniak
(2014) presented the simulation results using the specification given by Gray
(1996); Billio et al. (2016) showed the simulation results of estimating the
parameters via Bayesian methods. In both cases, there was difficulty in esti-
mating the parameters α

(1)
0 , β

(1)
1 and β

(2)
1 , even in the absence of outliers. In

our simulations, we also noticed that in general, these parameters were the
most problematic. Also, the BIP mechanism tended to work better when the
percentage of outliers was higher. Furthermore, the QML-t estimator per-
formed well in estimating the Markov chain transition matrix probabilities.

Tables 1 presents the performance of the VaR and ES prediction under
different outlier contamination for different methods. We present the mean
absolute prediction error (MAPE) and the mean absolute percentage predic-
tion error (MPPE) for VaR and ES.

The robust estimator presented a good performance, except for 10% con-
tamination. When there is no contamination the QML-n presented the best
performance, as expected, while the robust estimator presented a close perfor-
mance. Even when there is no or few outliers, the robust estimator presented
a better performance than the QML-t.

5 Final remarks

The objective of this paper was to evaluate the performance of some MS-
GARCH model estimators in the presence of additive outliers. Since there
are no studies of robust techniques to estimate these models, this work con-
tributes to performance simulation studies for different outlier contamination
scenarios. The suggested method adapts the robust estimation methods pre-
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sented by Boudt et al. (2013) for the case of Markov regime switching.
The main conclusions from the simulation results are: i) the QML esti-

mator using the normal distribution as the conditional density of each regime
performs catastrophically as the proportion and size of outliers increases (the
estimator performed poorly in terms of filter classification capacity and esti-
mation accuracy); and ii) using the QML estimation with t-Student distribu-
tion with four degrees of freedom as the conditional density of each regime,
we observed a reasonable performance of the filter classification capacity and
in the estimation of some parameters of the volatility equations. As for the
robust estimation, it also had reasonable performance in the filter classifi-
cation capacity and in the estimation of some parameters of the volatility
equations.

As future works we can mention: Application to real data; study the BIP
in case of regime change; consider possible changes in the function rkδ,1(u),
defined in Equation (6), including different functional forms; study of the
behaviour of robust techniques in relation to different filters and in relation
to Bayesian estimation; consider the feasibility of putting transition proba-
bilities as time variants, as, for example, in Diebold et al. (1994); Psaradakis
and Sola (2021); Pouzo et al. (2022) and Wang et al. (2022); and compare
with the indicator saturation method developed by Santos et al. (2008) and
applied, for example, in Bauwens and Sucarrat (2010) and Pretis et al. (2018).
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(a) contaminated observations

(b) all observations

Figure 1: Proportion of correct classification of the different estimators for the
MS-GARCH model in the (a) contaminated observations (b) all observations.
The horizontal axis gives the percentage of outliers. The empty bars denote
the QML-n estimator, the bars with dots represent the QML-t estimator and
those with diagonal lines denote the robust estimator. The graphs on the
left indicate when the correct regime has high volatility, that is, regime 1,
and those on the right indicate regime of low volatility, regime 2. The upper
graphs show outliers of size 3 times the conditional standard deviation, while
the lower ones show 5 times the conditional standard deviation.
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(a) α
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Figure 2: Boxplot of parameter estimates for the high volatility regime of
the Monte Carlo replications of the MS-GARCH(1,1) model. The x-axis
represents the percentage of outliers and the y-axis represents the parameter
estimate values. The left frame contains the values of the sizes of outliers
with d = 3 and in the right d = 5. The QML-n estimator is in white, the
QML-t estimator is in light green and and the robust estimator is in dark
green. The red dashed line represents the actual value of the parameter. The
parameters in each graph are: (a) α

(2)
0 , (b) α

(2)
1 , (c) β

(2)
1 and (d) p22.
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Figure 3: Boxplot of the estimates of the parameters of the low volatility
regime of the Monte Carlo replications of the MS-GARCH(1,1) model. The
x-axis represents the percentage of outliers and the y-axis represents the
parameter estimate values. The left frame contains the values of the sizes of
outliers with d = 3 and in the right d = 5. The QML-n estimator is in white,
the QML-t estimator is in light green and and the robust estimator is in dark
green. The red dashed line represents the actual value of the parameter. The
parameters in each graph are: (a) α

(2)
0 , (b) α

(2)
1 , (c) β

(2)
1 and (d) p22.
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Table 1: Mean absolute prediction error (MAPE) and the mean absolute
percentage prediction error (MPPE) for VaR and ES. In bold are those that
presented the best results within each group.

Contami α Method VaR ES
% Hits

nation MAPE MPPE MAPE MPPE

ε = 0%

1%
QML-N 0.557 0.219 0.740 0.237 1.1
QML-t 1.365 0.487 2.500 0.655 0.3
Rob 0.936 0.341 1.792 0.474 0.8

2.5%
QML-N 0.396 0.173 0.570 0.214 2.5
QML-t 0.734 0.322 1.568 0.515 1.6
Rob 0.533 0.221 1.078 0.360 2.7

ε = 1%
d = 3

1%
QML-N 0.823 0.344 1.130 0.377 0.7
QML-t 1.522 0.558 2.773 0.745 0.2
Rob 1.022 0.373 1.927 0.511 0.8

2.5%
QML-N 0.544 0.252 0.841 0.333 2.3
QML-t 0.823 0.374 1.749 0.590 1.5
Rob 0.569 0.242 1.174 0.393 2.5

ε = 1%
d = 5

1%
QML-N 1.266 0.532 1.857 0.619 0.5
QML-t 1.641 0.616 2.991 0.823 0.3
Rob 1.032 0.379 1.942 0.518 0.8

2.5%
QML-N 0.713 0.312 1.278 0.505 1.9
QML-t 0.882 0.411 1.887 0.652 1.4
Rob 0.580 0.248 1.186 0.399 2.3

ε = 5%
d = 3

1%
QML-N 2.433 1.058 2.954 0.946 0
QML-t 2.267 0.860 3.917 1.097 0.2
Rob 1.411 0.518 2.543 0.682 0.6

2.5%
QML-N 1.61 0.832 2.349 0.943 0.7
QML-t 1.301 0.609 2.561 0.898 0.9
Rob 0.776 0.349 1.609 0.543 1.7

ε = 5%
d = 5

1%
QML-N 5.005 2.135 6.511 2.051 0
QML-t 2.852 1.148 4.818 1.425 0
Rob 1.734 0.675 3.100 0.879 0.3

2.5%
QML-N 2.913 1.540blz 4.909 1.943 0
QML-t 1.651 0.813 3.184 1.182 0.8
Rob 0.959 0.455 1.971 0.705 1.3

ε = 10%
d = 3

1%
QML-N 3.425 1.461 4.065 1.273 0
QML-t 3.212 1.241 5.287 1.508 0.1
Rob 2.034 0.759 3.513 0.964 0.3

2.5%
QML-N 2.436 1.286 3.347 1.322 0.2
QML-t 1.950 0.926 3.567 1.275 0.8
Rob 1.174 0.542 2.295 0.791 1.2

ε = 10%
d = 5

1%
QML-N 7.027 2.923 8.685 2.684 0
QML-t 5.914 2.397 9.379 2.794 0
Rob 4.867 2.095 8.062 2.512 0

2.5%
QML-N 4.801 2.473 6.949 2.690 0
QML-t 3.545 1.794 6.464 2.421 0
Rob 2.666 1.449 5.365 2.120 0
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