

SÍNTESE E CARACTERIZAÇÃO DE MIP PARA ANÁLISE DE ACEBUTOLOL EM SALIVA

Thays R. Parreiras^{1*} (PG), Camila A. Nascimento¹ (PG), Daiane D. M. Paula¹ (PG), Clebio S. Nascimento Jr¹ (PQ), Keyller B. Borges¹ (PQ)

¹ Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas 36301-160 – São João del-Rei, MG-Brasil

*E-mail: thays.r.parreiras@gmail.com; keyller@ufsj.edu.br

RESUMO

Este trabalho apresenta a síntese e caracterização de um Polímero Molecularmente Impresso (MIP) com seletividade para fármacos em meio aquoso. O MIP foi obtido por polimerização radicalar com acebutolol como molécula molde, ácido metacrílico como monômero funcional, EGDMA como agente de ligação cruzada e 4,4′-azo-bis como iniciador, em meio clorofórmio:tolueno (5:5). Após polimerização a 80 °C por 24 h e remoção da molécula molde com metanol:ácido acético (9:1), o material foi caracterizado por FTIR, MEV/EDS e determinação do ponto de carga zero (PCZ). Os resultados indicam a formação de um material heterogêneo, com morfologia irregular, PCZ em ~2,13 e composição elementar compatível com a estrutura esperada, contendo C, O e traços de N. Esses dados sugerem que o MIP apresenta potencial para aplicações em adsorção seletiva de contaminantes farmacêuticos.

Palavras-chave: Polimero molecularmente impressos, Infravermelho por Transformada de Fourier, MEV, EDS.

Introdução

Os polímeros molecularmente impressos (MIPs) são materiais sintéticos desenvolvidos para reconhecer e se ligar de forma seletiva a uma molécula-alvo específica. Isso é possível devido à presença de cavidades tridimensionais na matriz polimérica, que possuem forma, tamanho e orientação complementares à molécula de interesse, funcionando de maneira semelhante à interação entre anticorpos e antígenos (1-2).

A síntese de um MIP começa com a formação de um complexo entre a molécula molde (MM) e os monômeros funcionais (MFs), geralmente por meio de interações não covalentes, como ligações de hidrogênio. Em seguida, adiciona-se um agente de ligação cruzada (ALC), que promove a copolimerização e dá estrutura e estabilidade ao material. O solvente atua como meio para a reação, mantendo as interações MM–MFs intactas durante a formação do polímero. Um iniciador de radicalar (IR) é utilizado para gerar radicais livres que iniciam o processo de polimerização (1-3).

Após a polimerização, a MM é removida com um solvente adequado, deixando para trás cavidades específicas capazes de reconhecer e reter seletivamente moléculas semelhantes à MM. Esse processo confere aos MIPs alta seletividade e capacidade de reconhecimento molecular (1-3).

Experimental

O trabalho experimental de síntese do MIP foi realizado em conjunto com o laboratório de química teórica da universidade, onde cálculos baseados na *Density Functional Theory* (DFT) foram empregados para determinar os compostos mais adequados e otimizar as condições ideais de complexação e polimerização.

Sintese do material

Foram utilizados 1mmol de Acebutolol (ACE) e 4mmol de ácido metacrilico. Os materiais foi adicionado a 20 mL de uma solução de clorofórmio e tolueno (5:5) e foi levada ao ultrasson por 10min. Posteriormente foram então adicionados 20mmol de etilenoglicol de dimetacrilato (EDGMA) e 84mg do IR (4,4-azo-bis), transferidos para um frasco âmbar, submetido a ultrasson por 20min e aquecida a 80 °C mantida sob agitação por 24 h. Após resfriamento, o sólido foi macerado e lavado com uma solução de metanol:ácido acético (9:1) até a completa retirada do fármaco. O Polímero não impresso (NIP) foi preparado da mesma forma que o MIP, porém sem a presença da MM.

Caracterização do Material

Após as sinteses dos materiais adsorventes, as seguintes caracterizações foram realizadas: Infravermelho por Transformada de Fourier (FTIR), Microscopia Eletronica de Varredura (MEV)/ Espectroscopia de Disperção de Energia (EDS) e ponto de carga zero (PCZ).

FTIR

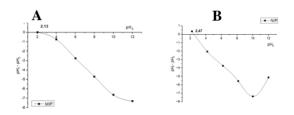
As análises de FTIR foram feitas por um espectrômetro Perkin Elmer Spectrum 400, utilizando o método convencional de pastilhas de KBr e os espectros foram registrados na região de 4000-600 cm⁻¹.

MEV

As análises de MEV foram realizadas por meio de um microscópio TM3000 Hitachi Analítica Table Top com aceleração de tensão variando entre -5 kV a 15 kV, equipado por um detector de dispersão de energia, onde foi possível realizar o ensaio de EDS.

Determinação do PCZ

A determinação do PCZ do MIP e NIP foi realizada utilizando 60 mg do material em contato com 5 mL de água deionizada, com



variação de pH 2, 4, 6, 8, 10 e 12. O pH dessas soluções foram ajustados com NaOH 0,1/0,01M e HCl 0,1/0,01M.

Os tubos foram agitados por 15 min a 175 rpm, em seguida deixados em repouso por 24h, e posteriormente foram realizadas as medições dos pHs. Todas as determinações foram feitas em duplicata e o PCZ foi determinado por meio de um gráfico.

Resultados e Discussão

O PCZ é uma propriedade que permite determinar as cargas superficiais líquidas do material em meio aquoso. A **Figura 1** mostra as curvas experimentais obtidas com os materiais sintetizados. No ensaio, o MIP apresentou valor de PCZ de 2,13 e o NIP de 2,47, indicando que ambas as soluções são neutras nesses valores.

Figura 1. (A) Representação gráfica do PCZ do MIP. (B) Representação gráfica do PCZ do NIP.

A partir da análise de FTIR foi possível reconhecer informações qualitativas com relação à composição dos materiais sintetizados. Os espectros do NIP e MIP estão descritos na **Figura 2**. Observa-se que há a presença de um pico a mais no espectro do MIP, sinalizando que a MM não foi completamente retirada antes da análise. Ademais não há diferenças percptiveis, o que é esperado, uma vez que ambos foram sintetizados com o mesmo método, com execão do ACE.

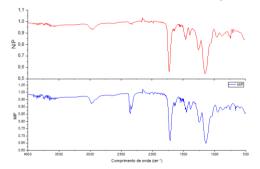
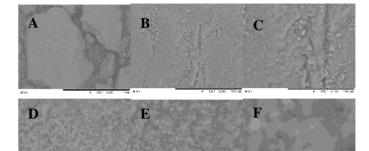



Figura 2. Espectros de FTIR do MIP e NIP

Além disso, as principais bandas dos grupos funcionais constituintes do MIP e NIP foram determinadas: uma banda intensa e delgada em 1710 cm⁻¹, caracteristica de um estiramento do grupo carbonila (C=O) proveniente do MF utilizado (ácido metacrílico). As bandas em 1155 e 1257 cm⁻¹ podem ser atribuidas ao estiramento da ligação C-O devido ao alongamento e encurtamento da ligação resultado da adição EDGMA. A banda de adsorção em 2952 cm⁻¹, caracteristica do estiramento assimetrico e simetrico do grupo C-H com hibridização sp3.

Já a banda de adsorção média em 2354 cm $^{-1}$ que só aparece no espectro do MIP, vem de uma ligação $C \equiv N$, indicando possiveis nitrilas na composição.

As informações da morfologia e da microestrutura dos materiais sintetizados foram avaliadas por meio do MEV. Na **Figura 3** é mostrado três ampliações realizadas em 100x, 500x e 1000x, para o MIP e as de 500x, 1000x e 5000x para o NIP.

Figura 3. Imagens de MEV dos materiais sintetizados. Em (A) MIP 100×; (B) MIP 500×, (C) MIP 1000×; (D) NIP 500×; (E) NIP 1000×; (F) NIP 5000×.

Conforme pode ser observado, as estruturas do MIP e NIP são heterogêneas, apresentam formas irregulares e têm formatos indefinidos. Essas características são resultantes da síntese via radicais livres que foi realizada (4).

Para avaliar a composição química dos materiais, de forma qualitativa, foi realizada a análise de EDS e os resultados estão ilustrados na **Tabela 1**. Devido ao elevado percentual de carbono e de oxigênio, presentes nas estruturas dos materiais adsorventes e as outras caracterizações realizadas, pode-se afirmar que ocorreu a formação do MIP e NIP.

O baixo percentual de nitrogenio, pode indicar resquicios do fármaco, persistentes após lavagem.

Tabela 1. Composição elementar qualitativa dos materiais sintetizados por análise de EDS

Elemento	MIP	NIP
Oxigenio	46,3	48,3
Carbono	53,2	51,7
Nitrogenio	0,6	0,0
Total %	100	100

Conclusões

O MIP sintetizado apresentou morfologia heterogênea, composição elementar compatível e PCZ em 2,13, indicando comportamento ácido em meio aquoso. As análises de FTIR, MEV e EDS confirmaram a estrutura e a presença de grupos funcionais esperados, com possível resquício da molécula molde. Os cálculos teóricos por DFT contribuíram para a escolha eficiente dos reagentes e condições de síntese. Com o material sintetizado, iniciaram os testes de preparo de amostras em saliva.

Agradecimentos

CNPq, FAPEMIG, CAPES, LASEP, FQMat e UFSJ.

Referências

- 1- T. Gupte; T. Pradeep. *In Separation Science and Technology*, Vol. 15, Chapter 3, 37–53, 2022.
- 2- S. Mishra et al. *in Progress in Molecular Biology and Translational Science*, Vol. 196, Chapter 14, 303–335, 2023.
- 3- T. Hu et al., J. Sep. Sci. 2020, 44, 274–309.
- 4- K. B. Borges; E. C. Figueiredo; M. E. C. Queiroz. *Preparo de amostras para análise de compostos orgânicos*. Rio de Janeiro: LTC, 2015.