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Abstract: This work investigates the impact of code optimization techniques on the scalability and training
time of deep reinforcement learning (DRL) agents applied to stochastic and slow-dynamic industrial
process control environments. DRL combines deep learning and reinforcement learning to address
high-dimensional decision-making problems, but it often demands significant computational resources and
time, especially in complex industrial scenarios. To address these challenges, this research explores the use
of vectorization, parallelism, and hyperparameter optimization via Optuna to improve performance and
training efficiency. Experiments were conducted using the “TempControl-v0” environment from the
PIDGym library, simulating thermal inertia processes akin to industrial furnaces. Key metrics analyzed
include total training time, average episode reward, and CPU/GPU utilization. The results demonstrate
that strategic code optimization can significantly enhance the performance and scalability of DRL agents,
making their application more feasible in real-world industrial contexts.

Keywords: Code Optimization. Deep Reinforcement Learning. Hyperparameter Tuning. Industrial Process
Control. Parallel Computing.

1.Introduction However, Reinforcement Learning (RL)

combined with Deep Learning (DL) can become
Artificial Intelligence is a branch of computer costly as the problem size increases. First, as

science that seeks to build mechanisms, physical argued by Bianchi and Costa (2004),

or digital, that simulate the human ability to unfortunately, the convergence of RL algorithms

think and make decisions. (Barbosa, Portes, can only be achieved after extensive exploration

2019, p.17). These mechanisms  generally of the state-action space, which is generally

traini testi t ild thei . . .
depend on training and testing to build their time-consuming. Moreover, DL algorithms are

knowledge and application in different areas. highlighted by Aratjo (2024) as “one of the

In this context, within the field of Artificial . . ’
most resource- and energy-intensive tasks,

Intelli ific traini h k . . .
nICHISEnce, a spectiic aling approach Knowh £, ther warning that training without hardware

as Deep Reinforcement Learning (DRL) stands accelerators can take several days.

out. According to Arulkumaran et al. (2017), With this, performance bottlenecks can be

this technique has made it possible to solve critical when combining both methods to

problems that were previously intractable due to generate deep reinforcement learning. Especially

the 1 f ible stat tions. . - :
¢ large number of possible states and actions when applied to slow and stochastic industrial
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process routines. According to Silva (2024), a

stochastic ~ process is characterized by
uncertainty and the description of the future in
terms of probabilities that model the presence of
randomness in the system. Subsequently,
Cendron (2022) corroborates the idea that
manufacturing industries face dynamic and
stochastic production environments. That is,
with random industrial environments, deep
reinforcement learning may face long training
periods due to the high rate of variables or states
in process routines to be learned, promoting a
slow learning dynamic to achieve a small error.
Parallel to the previous context, code
optimization stands out. Passos et al. (2022)
highlight in their study that in various
applications, the need emerges to build a
solution that is fast or that makes maximum use
of available hardware, thus demanding
performance optimization techniques. From this,
the idea of optimizing code and/or system
algorithms stands out, such as those of deep
reinforcement learning in industrial processes, to
improve performance, speed, and accuracy.
Therefore, the general objective of this research
is to analyze the impact of code optimization on
the scalability and training time of deep
reinforcement learning agents applied to the
control of slow and stochastic industrial
processes. Additionally, the following specific
objectives are highlighted for the development
of this research: (i) to investigate vectorization,
parallelism, and parameter tuning applicable to

deep reinforcement learning algorithms, (ii) to
ISSN: 2357-7592

evaluate the impact of these strategies on
training time and agent performance through
experiments, and (iii) to analyze the scalability
of the optimized algorithms in different

simulated industrial scenarios with varying

levels of complexity.

2.Theoretical Foundation

2.1.Code Optimization Techniques

Among the aforementioned code optimization
strategies, parallelism stands out as a primary
approach. According to Wilkinson and Allen
(2005), within the

parallel programming,

computational context, aims at executing
multiple tasks or different parts of the same task,
concurrently, leveraging multiple processing
cores to enhance program execution and solve
complex problems more efficiently in terms of
time.
When considering the context of Deep
Reinforcement Learning (DRL), there is clear
evidence of success in solving problems that
were once considered intractable. However,

solving such problems imposes a high
computational cost due to the large number of
possible variables. According to Arulkumaran et
al. (2017), “Deep learning enables RL to scale to
decision-making problems that were previously
intractable, i.e., settings with high-dimensional
state and action spaces.” The training of these
deep learning models not only demands
computational and energy resources, but can
also take a long time without proper hardware

support, as previously mentioned by Aragjo et
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al. (2024). This highlights the importance of

using GPUs and TPUs as strategies for
optimizing time and resource consumption, as
they are designed for performing massive
operations simultaneously.

Considering the issues mentioned above, it is
evident that the performance bottleneck can
become even more critical when implementing
DRL in the context of industrial processes
and slow in

characterized as stochastic

dynamics. These processes involve uncertainty
and high variability, requiring extensive
exploration of the state and action space, which
results in long training times. Therefore, code
optimization through parallelism becomes
essential for the scalability and feasibility of
these agents in complex industrial environments.
From this perspective, vectorization can be
addressed. Allen and Kennedy (1984) approach
vectorization as a transformation of serial code
reordering, adapting it to be executed more
efficiently on architectures that support vector
operations, allowing a

single  processor

instruction to operate on multiple data
simultaneously, thus enabling the processor to
process a set of elements in a single step,
offering significant performance gains. Aragjo et
al. (2024) address the idea that DRL models,
especially those with deep neural networks,
a massive volume of numerical

the

execute

operations, making importance  of
vectorization in optimizing this process notable,
particularly based on observations made by

Nuzman and Henderson (2005), who understand
ISSN: 2357-7592

the effectiveness of vectorization when applied
to repetitive operations, such as mathematical
calculations on arrays and matrices.

Finally, parameter adjustments are evidenced
through Optuna, which Akiba et al. (2019) break
down its dynamic structure (define-by-run):
formulates  the

"Optuna hyperparameter

optimization as a process of
minimizing/maximizing an objective function
that takes a set of hyperparameters as an input
and returns its (validation) score". This approach
is essential for dealing with complex and
dynamic environments, allowing the
construction of search spaces that evolve
according to the experiment. Another point to be
highlighted is its efficient optimization with

"pruning", which enables scalability, since it

drastically reduces the time spent on
unpromising episodes, as it prematurely
interrupts experiments that present
unsatisfactory performance, saving

computational resources and accelerating agent

convergence.

2.2.Deep reinforcement learning (DRL)

It is considered that deep reinforcement learning

is the wunion of reinforcement learning

techniques with deep learning. In this sense,
Kaelbling, Littman and Moore (1996) state that
reinforcement learning (RL) is "the problem
faced by an agent that must learn behavior

through trial-and-error interactions with a

dynamic environment," that is, a behavior

learning training based on trial-and-error

iterations in a dynamic environment. In the
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study on the use of RL in mobile robots, Faria
and Romero (2002) highlight that this learning is
based on the idea that if an action is followed by
satisfactory states, or by an improvement in the
state, then the tendency to produce this action is
increased, that is, reinforced.

The action of a satisfactory state is increased or
decreased from the numerous trial-and-error
iterations within the state space and, sometimes,
propagated through time. However, one of the
necessary conditions in which RL algorithms
can find an action policy is the complete
exploration of the state space, normally
impossible in practical situations (Faria and
Romero, 2002). Practical situations such as in
random industrial processes or those with slow
dynamics can become challenges for RL,
considering that the random state space is large
and dynamic with high risk in industries with
large-scale routines.

Regarding the second object of the DRL union,
deep learning is described by Bochie et al.
(2020) as an area of machine learning
characterized by the extraction of complex
representations from simpler representations.
Pereira (2017) corroborates the concept by
stating that this area can be considered as an
of neural

intersection between the areas

networks, graphical modeling, optimization,
pattern recognition, and signal processing.

As stated by LeCun, Bengio, and Hinton (2015),
deep learning “is making major advances in
solving problems that have resisted the best

attempts of the artificial intelligence community
ISSN: 2357-7592

for many years.” The authors explain that, ten
years ago, this learning model began solving
problems that had long resisted all attempts by
the artificial intelligence community,
highlighting the vast potential for applications in
current problems that are still in the discovery
phase.

However, regarding the challenges of deep
learning, Bochie et al. (2020) state that typically,
deep learning requires models that capture the
non-linearities of the problem, making the
modeling relatively more complex. This means
that despite the advantages of deep learning, its
application demands more complex models and
longer training processes, resulting in higher
computational requirements and additional
difficulties in development.

Deep reinforcement learning is presented in the
study by Arulkumaran et al. (2017) as
"represents a step toward building autonomous
systems with a higher-level understanding of the
visual world". This statement emphasizes that
DRL goes beyond simple visual data processing,
developing a broader understanding of the
environment that allows autonomous systems to
make more effective decisions in complex
situations.

Finally, Arulkumaran et al. (2017) highlight that
"DRL can deal efficiently with the curse of
dimensionality, unlike tabular and traditional
nonparametric methods". The "curse of
dimensionality" represents one of the main
obstacles in traditional reinforcement learning

problems, where the number of possible states
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grows exponentially with the dimensionality of
the problem. DRL overcomes this limitation
through the ability of deep neural networks to
approximate complex functions in
high-dimensional spaces, enabling applications
in real-world problems that would be intractable

with conventional methods.

3.Methodology

3.1.Environment Structure

To investigate the impact of code optimization
on the scalability of training deep reinforcement
learning agents, a custom environment named
“TempControlEnv” was developed using the
“Gymnasium” library. The environment models
the evolution of temperature over time based on
the action applied by the agent, with variations
that include efficient heating, thermal loss,
external disturbances.

random noise, and

Aiming  to incorporate high-precision

computational bottlenecks, the environment
assigns a quadratic term (temp_ diff**2) to heat
loss and a temperature update using the
4th-order Runge-Kutta method, which increases
the complexity and computational cost of
execution. Additionally, at each simulation step,
matrix multiplication and singular value
decomposition are performed to create a heavy
and constant CPU workload.

The action space has one dimension and is
continuous, represented by a value between -1
and 1, thus corresponding to the intensity of
cooling or heating. It can vary according to the

enabled configurations, having in its basic form
ISSN: 2357-7592

two main variables: the temperature error
relative to the setpoint and the derivative of the
error, allowing the modulation of the
environment’s complexity, making it suitable for
comparative performance testing of algorithms.

The environment features a reward function
composed of a penalty proportional to the
absolute error, an additional penalty for large
variations between sequential actions, extra
reward when the error is below a precision
threshold, and an additional penalty for
oscillation, based on the standard deviation of
the error history.

3.2.Comparison Metrics

The metrics used for analysis within this
environment are the training time to demonstrate
the effectiveness of optimizations and the
average reward per episode, mentioned by Kayal
et al. (2025) as fundamental for measuring the
agent’s convergence and effectiveness by
summing the total rewards received by the agent
throughout an episode, along with the reward
standard deviation to measure control stability
and penalize oscillations.

Aratjo et al. (2024) address another analysis
point that involves the variation in
computational performance based on GPU/CPU
usage, since the chosen optimization techniques
aim to result in better CPU core utilization and
better hardware bandwidth usage, which should
directly impact CPU usage rate and reduce the
average load on the GPU/CPU.

To develop the evaluation of the impact based

on training time and performance, timing
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4.Results
Table 1 - Results for each method

functions were used to record the total training

time. Regarding the reward per episode, as

mentioned by Kayal et al. (2025), the rewards Configurat | Average Average | Average
are accumulated from each episode for all ion Reward time(s) | CPU(%)
parallel actors and then averaged across the | Bage -36298.78 |310,9 36,7
actors. Optuna | -358234 2824  |453
As for GPU/CPU usage metrics, performance
.. ) o Paralelo -37111.97 | 153,7 53
analysis is conducted using the Python libraries
“psutil” and “pynvml,” with “psutil” responsible Paralelo + | -37174.18 | 120,1 21,7
Optuna
for monitoring the average CPU usage
throughout agent training and execution, and L
8 8 8 Standard deviation of rewards was also
“pynvml” enabling access to GPU utilization .
calculated across configurations. The Base

metrics. These tools allow for a correlation

model had the highest deviation with 919.69,
while Optuna had the lowest with 661.35. The
Parallel and Parallel + Optuna models had

between the applied optimizations and the

computational resources used, enabling a

detailed analysis of the performance of the o .
deviations close to the base, with 898.89 and

applied techniques.
3.3.Models for Testing

907.11 respectively.

From the table, the impact of optimization

For this study, four models were selected: the ) o .
strategies on training efficiency can be observed.

“Base” model without any optimizations; the ) ) . .,
It shows that the version using “Optuna

“Optuna” model using the tool of the same name . )
achieved a higher average reward and lower
along  with  simple  vectorization via

variability in standard deviation. On the other

“DummyVecEnv”; the “Paralle]” model usin ) .
Y 8 hand, “Parallelism + Optuna” was the fastest in

the aforementioned parallelism technique in o ) . .
training time, while the “Parallelism” test had

combination with vectorization implemented
the lowest CPU usage (5.34%).

through the “SubprocVecEnv” (Subprocess

Vectorized Environment) tool; and finally, the . .
S.Discussion

“Parallel + Optuna” model combining both o o )
S5.1. Impact of Optimizations on Training Time

Based on the results obtained, a drastic reduction

methods.

in training time is evident in the approaches
using parallelism, clearly demonstrating the
influence of parallel environments on training

time reduction, with a clear decrease compared
ISSN: 2357-7592
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to the baseline. This approach proves essential

for scaling DRL agents in complex
environments.
S.2.Impact of Optimizations on Agent
Performance

Another noteworthy point is the performance

gain through hyperparameter optimization
(Optuna test), resulting in more effective control
and outperforming the baseline as indicated by
the average reward and standard deviation
values.

5.3.Speed vs. Quality

Given the results presented, there is an evident
trade-off between training time efficiency and
the final performance of the agent. The
hyperparameter optimization approach achieved
reward and lowest standard

the highest

deviation, while the approaches using
parallelism did not reach this performance
despite being faster. This is likely due to the way
experiences are collected. In sequential training,
although slower, exploration is more focused
since the gradient used to update the neural
network is based on experiences from a more
consistent policy, favoring higher-quality
convergence. In parallel training, experiences
are collected simultaneously from different
trajectories and time steps, which speeds up data
collection but may result in poorer gradients,
causing the agent to converge to a good solution,

but not necessarily the best possible one.

ISSN: 2357-7592

6.Conclusion
In conclusion, this work achieves its main

objective of investigating the impact of code

optimization techniques—specifically
parallelism, hyperparameter tuning, and
vectorization—on the scalability and

performance of deep reinforcement learning
agents when applied to industrial environments
slow and  stochastic

with dynamics.

Hyperparameter optimization via Optuna,
combined with simple vectorization, proved to
be crucial for improving the agent's final
performance, resulting in a more effective and
stable control policy, as evidenced by the
average reward and standard deviation.
Parallelism, in turn, implemented through a
complex vectorized environment, proved to be
an indispensable tool for scalability, drastically
reducing training time. Another key point is the
identification of a trade-off between training
speed and solution quality, where fast,
parallelism-based approaches did not produce
agents with satisfactory final rewards.

It is therefore understood that the choice of
optimization strategies is contextual to the
project’s priorities. When rapid prototyping and
agile interaction are desired, parallelism is the
superior approach; however, for maximum

performance extraction, hyperparameter

optimization becomes more advantageous.

These findings have direct implications for the
practical  application of DRL, where
development time and final control effectiveness

are critical factors.
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