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Abstract: This work investigates the impact of code optimization techniques on the scalability and training 
time of deep reinforcement learning (DRL) agents applied to stochastic and slow-dynamic industrial 
process control environments. DRL combines deep learning and reinforcement learning to address 
high-dimensional decision-making problems, but it often demands significant computational resources and 
time, especially in complex industrial scenarios. To address these challenges, this research explores the use 
of vectorization, parallelism, and hyperparameter optimization via Optuna to improve performance and 
training efficiency. Experiments were conducted using the “TempControl-v0” environment from the 
PIDGym library, simulating thermal inertia processes akin to industrial furnaces. Key metrics analyzed 
include total training time, average episode reward, and CPU/GPU utilization. The results demonstrate 
that strategic code optimization can significantly enhance the performance and scalability of DRL agents, 
making their application more feasible in real-world industrial contexts. 
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1.Introduction 
 

Artificial Intelligence is a branch of computer 

science that seeks to build mechanisms, physical 

or digital, that simulate the human ability to 

think and make decisions. (Barbosa, Portes, 

2019, p.17). These mechanisms generally 

depend on training and testing to build their 

knowledge and application in different areas. 

In this context, within the field of Artificial 

Intelligence, a specific training approach known 

as Deep Reinforcement Learning (DRL) stands 

out. According to Arulkumaran et al. (2017), 

this technique has made it possible to solve 

problems that were previously intractable due to 

the large number of possible states and actions. 

However, Reinforcement Learning (RL) 

combined with Deep Learning (DL) can become 

costly as the problem size increases. First, as 

argued by Bianchi and Costa (2004), 

unfortunately, the convergence of RL algorithms 

can only be achieved after extensive exploration 

of the state-action space, which is generally 

time-consuming. Moreover, DL algorithms are 

highlighted by Araújo (2024) as “one of the 

most resource- and energy-intensive tasks,” 

further warning that training without hardware 

accelerators can take several days. 

With this, performance bottlenecks can be 

critical when combining both methods to 

generate deep reinforcement learning. Especially 

when applied to slow and stochastic industrial 
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process routines. According to Silva (2024), a 

stochastic process is characterized by 

uncertainty and the description of the future in 

terms of probabilities that model the presence of 

randomness in the system. Subsequently, 

Cendron (2022) corroborates the idea that 

manufacturing industries face dynamic and 

stochastic production environments. That is, 

with random industrial environments, deep 

reinforcement learning may face long training 

periods due to the high rate of variables or states 

in process routines to be learned, promoting a 

slow learning dynamic to achieve a small error. 

Parallel to the previous context, code 

optimization stands out. Passos et al. (2022) 

highlight in their study that in various 

applications, the need emerges to build a 

solution that is fast or that makes maximum use 

of available hardware, thus demanding 

performance optimization techniques. From this, 

the idea of optimizing code and/or system 

algorithms stands out, such as those of deep 

reinforcement learning in industrial processes, to 

improve performance, speed, and accuracy. 

Therefore, the general objective of this research 

is to analyze the impact of code optimization on 

the scalability and training time of deep 

reinforcement learning agents applied to the 

control of slow and stochastic industrial 

processes. Additionally, the following specific 

objectives are highlighted for the development 

of this research: (i) to investigate vectorization, 

parallelism, and parameter tuning applicable to 

deep reinforcement learning algorithms, (ii) to 

evaluate the impact of these strategies on 

training time and agent performance through 

experiments, and (iii) to analyze the scalability 

of the optimized algorithms in different 

simulated industrial scenarios with varying 

levels of complexity. 

 

2.Theoretical Foundation 

2.1.Code Optimization Techniques 

Among the aforementioned code optimization 

strategies, parallelism stands out as a primary 

approach. According to Wilkinson and Allen 

(2005), parallel programming, within the 

computational context, aims at executing 

multiple tasks or different parts of the same task, 

concurrently, leveraging multiple processing 

cores to enhance program execution and solve 

complex problems more efficiently in terms of 

time. 

When considering the context of Deep 

Reinforcement Learning (DRL), there is clear 

evidence of success in solving problems that 

were once considered intractable. However, 

solving such problems imposes a high 

computational cost due to the large number of 

possible variables. According to Arulkumaran et 

al. (2017), “Deep learning enables RL to scale to 

decision-making problems that were previously 

intractable, i.e., settings with high-dimensional 

state and action spaces.” The training of these 

deep learning models not only demands 

computational and energy resources, but can 

also take a long time without proper hardware 

support, as previously mentioned by Araújo et 
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al. (2024). This highlights the importance of 

using GPUs and TPUs as strategies for 

optimizing time and resource consumption, as 

they are designed for performing massive 

operations simultaneously. 

Considering the issues mentioned above, it is 

evident that the performance bottleneck can 

become even more critical when implementing 

DRL in the context of industrial processes 

characterized as stochastic and slow in 

dynamics. These processes involve uncertainty 

and high variability, requiring extensive 

exploration of the state and action space, which 

results in long training times. Therefore, code 

optimization through parallelism becomes 

essential for the scalability and feasibility of 

these agents in complex industrial environments. 

From this perspective, vectorization can be 

addressed. Allen and Kennedy (1984) approach 

vectorization as a transformation of serial code 

reordering, adapting it to be executed more 

efficiently on architectures that support vector 

operations, allowing a single processor 

instruction to operate on multiple data 

simultaneously, thus enabling the processor to 

process a set of elements in a single step, 

offering significant performance gains. Araújo et 

al. (2024) address the idea that DRL models, 

especially those with deep neural networks, 

execute a massive volume of numerical 

operations, making the importance of 

vectorization in optimizing this process notable, 

particularly based on observations made by 

Nuzman and Henderson (2005), who understand 

the effectiveness of vectorization when applied 

to repetitive operations, such as mathematical 

calculations on arrays and matrices. 

Finally, parameter adjustments are evidenced 

through Optuna, which Akiba et al. (2019) break 

down its dynamic structure (define-by-run): 

"Optuna formulates the hyperparameter 

optimization as a process of 

minimizing/maximizing an objective function 

that takes a set of hyperparameters as an input 

and returns its (validation) score". This approach 

is essential for dealing with complex and 

dynamic environments, allowing the 

construction of search spaces that evolve 

according to the experiment. Another point to be 

highlighted is its efficient optimization with 

"pruning", which enables scalability, since it 

drastically reduces the time spent on 

unpromising episodes, as it prematurely 

interrupts experiments that present 

unsatisfactory performance, saving 

computational resources and accelerating agent 

convergence. 

2.2.Deep reinforcement learning (DRL) 

It is considered that deep reinforcement learning 

is the union of reinforcement learning 

techniques with deep learning. In this sense, 

Kaelbling, Littman and Moore (1996) state that 

reinforcement learning (RL) is "the problem 

faced by an agent that must learn behavior 

through trial-and-error interactions with a 

dynamic environment," that is, a behavior 

learning training based on trial-and-error 

iterations in a dynamic environment. In the 
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study on the use of RL in mobile robots, Faria 

and Romero (2002) highlight that this learning is 

based on the idea that if an action is followed by 

satisfactory states, or by an improvement in the 

state, then the tendency to produce this action is 

increased, that is, reinforced. 

The action of a satisfactory state is increased or 

decreased from the numerous trial-and-error 

iterations within the state space and, sometimes, 

propagated through time. However, one of the 

necessary conditions in which RL algorithms 

can find an action policy is the complete 

exploration of the state space, normally 

impossible in practical situations (Faria and 

Romero, 2002). Practical situations such as in 

random industrial processes or those with slow 

dynamics can become challenges for RL, 

considering that the random state space is large 

and dynamic with high risk in industries with 

large-scale routines. 

Regarding the second object of the DRL union, 

deep learning is described by Bochie et al. 

(2020) as an area of machine learning 

characterized by the extraction of complex 

representations from simpler representations. 

Pereira (2017) corroborates the concept by 

stating that this area can be considered as an 

intersection between the areas of neural 

networks, graphical modeling, optimization, 

pattern recognition, and signal processing. 

As stated by LeCun, Bengio, and Hinton (2015), 

deep learning “is making major advances in 

solving problems that have resisted the best 

attempts of the artificial intelligence community 

for many years.” The authors explain that, ten 

years ago, this learning model began solving 

problems that had long resisted all attempts by 

the artificial intelligence community, 

highlighting the vast potential for applications in 

current problems that are still in the discovery 

phase. 

However, regarding the challenges of deep 

learning, Bochie et al. (2020) state that typically, 

deep learning requires models that capture the 

non-linearities of the problem, making the 

modeling relatively more complex. This means 

that despite the advantages of deep learning, its 

application demands more complex models and 

longer training processes, resulting in higher 

computational requirements and additional 

difficulties in development. 

Deep reinforcement learning is presented in the 

study by Arulkumaran et al. (2017) as 

"represents a step toward building autonomous 

systems with a higher-level understanding of the 

visual world". This statement emphasizes that 

DRL goes beyond simple visual data processing, 

developing a broader understanding of the 

environment that allows autonomous systems to 

make more effective decisions in complex 

situations. 

Finally, Arulkumaran et al. (2017) highlight that 

"DRL can deal efficiently with the curse of 

dimensionality, unlike tabular and traditional 

nonparametric methods". The "curse of 

dimensionality" represents one of the main 

obstacles in traditional reinforcement learning 

problems, where the number of possible states 
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grows exponentially with the dimensionality of 

the problem. DRL overcomes this limitation 

through the ability of deep neural networks to 

approximate complex functions in 

high-dimensional spaces, enabling applications 

in real-world problems that would be intractable 

with conventional methods. 

 

3.Methodology 

3.1.Environment Structure 

To investigate the impact of code optimization 

on the scalability of training deep reinforcement 

learning agents, a custom environment named 

“TempControlEnv” was developed using the 

“Gymnasium” library. The environment models 

the evolution of temperature over time based on 

the action applied by the agent, with variations 

that include efficient heating, thermal loss, 

random noise, and external disturbances. 

Aiming to incorporate high-precision 

computational bottlenecks, the environment 

assigns a quadratic term (temp_diff**2) to heat 

loss and a temperature update using the 

4th-order Runge-Kutta method, which increases 

the complexity and computational cost of 

execution. Additionally, at each simulation step, 

matrix multiplication and singular value 

decomposition are performed to create a heavy 

and constant CPU workload. 

The action space has one dimension and is 

continuous, represented by a value between -1 

and 1, thus corresponding to the intensity of 

cooling or heating. It can vary according to the 

enabled configurations, having in its basic form 

two main variables: the temperature error 

relative to the setpoint and the derivative of the 

error, allowing the modulation of the 

environment’s complexity, making it suitable for 

comparative performance testing of algorithms. 

The environment features a reward function 

composed of a penalty proportional to the 

absolute error, an additional penalty for large 

variations between sequential actions, extra 

reward when the error is below a precision 

threshold, and an additional penalty for 

oscillation, based on the standard deviation of 

the error history. 

3.2.Comparison Metrics 

The metrics used for analysis within this 

environment are the training time to demonstrate 

the effectiveness of optimizations and the 

average reward per episode, mentioned by Kayal  

et al. (2025) as fundamental for measuring the 

agent’s convergence and effectiveness by 

summing the total rewards received by the agent 

throughout an episode, along with the reward 

standard deviation to measure control stability 

and penalize oscillations. 

Araújo et al. (2024) address another analysis 

point that involves the variation in 

computational performance based on GPU/CPU 

usage, since the chosen optimization techniques 

aim to result in better CPU core utilization and 

better hardware bandwidth usage, which should 

directly impact CPU usage rate and reduce the 

average load on the GPU/CPU. 

To develop the evaluation of the impact based 

on training time and performance, timing 
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functions were used to record the total training 

time. Regarding the reward per episode, as 

mentioned by Kayal et al. (2025), the rewards 

are accumulated from each episode for all 

parallel actors and then averaged across the 

actors. 

As for GPU/CPU usage metrics, performance 

analysis is conducted using the Python libraries 

“psutil” and “pynvml,” with “psutil” responsible 

for monitoring the average CPU usage 

throughout agent training and execution, and 

“pynvml” enabling access to GPU utilization 

metrics. These tools allow for a correlation 

between the applied optimizations and the 

computational resources used, enabling a 

detailed analysis of the performance of the 

applied techniques. 

3.3.Models for Testing 

For this study, four models were selected: the 

“Base” model without any optimizations; the 

“Optuna” model using the tool of the same name 

along with simple vectorization via 

“DummyVecEnv”; the “Parallel” model using 

the aforementioned parallelism technique in 

combination with vectorization implemented 

through the “SubprocVecEnv” (Subprocess 

Vectorized Environment) tool; and finally, the 

“Parallel + Optuna” model combining both 

methods. 

 

 

 

 

 

4.Results 

Table 1 - Results for each method 

Configurat
ion 

Average 
Reward 

Average 
time(s) 

Average 
CPU(%) 

Base -36298.78 310,9 36,7 

Optuna -35823.4 282,4 45,3 

Paralelo -37111.97 153,7 5,3 

Paralelo + 
Optuna 

-37174.18 120,1 21,7 

 

Standard deviation of rewards was also 

calculated across configurations. The Base 

model had the highest deviation with 919.69, 

while Optuna had the lowest with 661.35. The 

Parallel and Parallel + Optuna models had 

deviations close to the base, with 898.89 and 

907.11 respectively. 

From the table, the impact of optimization 

strategies on training efficiency can be observed. 

It shows that the version using “Optuna” 

achieved a higher average reward and lower 

variability in standard deviation. On the other 

hand, “Parallelism + Optuna” was the fastest in 

training time, while the “Parallelism” test had 

the lowest CPU usage (5.34%). 

 

5.Discussion 

5.1. Impact of Optimizations on Training Time 

Based on the results obtained, a drastic reduction 

in training time is evident in the approaches 

using parallelism, clearly demonstrating the 

influence of parallel environments on training 

time reduction, with a clear decrease compared 
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to the baseline. This approach proves essential 

for scaling DRL agents in complex 

environments. 

5.2.Impact of Optimizations on Agent 

Performance 

Another noteworthy point is the performance 

gain through hyperparameter optimization 

(Optuna test), resulting in more effective control 

and outperforming the baseline as indicated by 

the average reward and standard deviation 

values. 

5.3.Speed vs. Quality 

Given the results presented, there is an evident 

trade-off between training time efficiency and 

the final performance of the agent. The 

hyperparameter optimization approach achieved 

the highest reward and lowest standard 

deviation, while the approaches using 

parallelism did not reach this performance 

despite being faster. This is likely due to the way 

experiences are collected. In sequential training, 

although slower, exploration is more focused 

since the gradient used to update the neural 

network is based on experiences from a more 

consistent policy, favoring higher-quality 

convergence. In parallel training, experiences 

are collected simultaneously from different 

trajectories and time steps, which speeds up data 

collection but may result in poorer gradients, 

causing the agent to converge to a good solution, 

but not necessarily the best possible one. 

 

 

 

6.Conclusion 

In conclusion, this work achieves its main 

objective of investigating the impact of code 

optimization techniques—specifically 

parallelism, hyperparameter tuning, and 

vectorization—on the scalability and 

performance of deep reinforcement learning 

agents when applied to industrial environments 

with slow and stochastic dynamics. 

Hyperparameter optimization via Optuna, 

combined with simple vectorization, proved to 

be crucial for improving the agent's final 

performance, resulting in a more effective and 

stable control policy, as evidenced by the 

average reward and standard deviation. 

Parallelism, in turn, implemented through a 

complex vectorized environment, proved to be 

an indispensable tool for scalability, drastically 

reducing training time. Another key point is the 

identification of a trade-off between training 

speed and solution quality, where fast, 

parallelism-based approaches did not produce 

agents with satisfactory final rewards. 

It is therefore understood that the choice of 

optimization strategies is contextual to the 

project’s priorities. When rapid prototyping and 

agile interaction are desired, parallelism is the 

superior approach; however, for maximum 

performance extraction, hyperparameter 

optimization becomes more advantageous. 

These findings have direct implications for the 

practical application of DRL, where 

development time and final control effectiveness 

are critical factors. 
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