

Optimization of code for scalability of deep reinforcement learning agents in slow and

stochastic industrial process patterns

Guilherme Peniche Cordeiro1*, Eduardo Mansur Ferreira Bittencourt Júnior2, Michell Thompson Ferreira
Santiago3

1 Jorge Amado University Center, Computer Science, Camaçari, Bahia, Brazil; guipeniche@hotmail.com
2 Federal University of Bahia, Control and Process Automation Engineering, Lauro de Freitas, Bahia, Brazil;

educof33@gmail.com

3 Federal University of Bahia, Electrical and Computer Engineering, Salvador, Bahia, Brazil;
michell.thompson@ufba.br

Abstract: This work investigates the impact of code optimization techniques on the scalability and training
time of deep reinforcement learning (DRL) agents applied to stochastic and slow-dynamic industrial
process control environments. DRL combines deep learning and reinforcement learning to address
high-dimensional decision-making problems, but it often demands significant computational resources and
time, especially in complex industrial scenarios. To address these challenges, this research explores the use
of vectorization, parallelism, and hyperparameter optimization via Optuna to improve performance and
training efficiency. Experiments were conducted using the “TempControl-v0” environment from the
PIDGym library, simulating thermal inertia processes akin to industrial furnaces. Key metrics analyzed
include total training time, average episode reward, and CPU/GPU utilization. The results demonstrate
that strategic code optimization can significantly enhance the performance and scalability of DRL agents,
making their application more feasible in real-world industrial contexts.

Keywords: Code Optimization. Deep Reinforcement Learning. Hyperparameter Tuning. Industrial Process
Control. Parallel Computing.

1.Introduction

Artificial Intelligence is a branch of computer

science that seeks to build mechanisms, physical

or digital, that simulate the human ability to

think and make decisions. (Barbosa, Portes,

2019, p.17). These mechanisms generally

depend on training and testing to build their

knowledge and application in different areas.

In this context, within the field of Artificial

Intelligence, a specific training approach known

as Deep Reinforcement Learning (DRL) stands

out. According to Arulkumaran et al. (2017),

this technique has made it possible to solve

problems that were previously intractable due to

the large number of possible states and actions.

However, Reinforcement Learning (RL)

combined with Deep Learning (DL) can become

costly as the problem size increases. First, as

argued by Bianchi and Costa (2004),

unfortunately, the convergence of RL algorithms

can only be achieved after extensive exploration

of the state-action space, which is generally

time-consuming. Moreover, DL algorithms are

highlighted by Araújo (2024) as “one of the

most resource- and energy-intensive tasks,”

further warning that training without hardware

accelerators can take several days.

With this, performance bottlenecks can be

critical when combining both methods to

generate deep reinforcement learning. Especially

when applied to slow and stochastic industrial

ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

process routines. According to Silva (2024), a

stochastic process is characterized by

uncertainty and the description of the future in

terms of probabilities that model the presence of

randomness in the system. Subsequently,

Cendron (2022) corroborates the idea that

manufacturing industries face dynamic and

stochastic production environments. That is,

with random industrial environments, deep

reinforcement learning may face long training

periods due to the high rate of variables or states

in process routines to be learned, promoting a

slow learning dynamic to achieve a small error.

Parallel to the previous context, code

optimization stands out. Passos et al. (2022)

highlight in their study that in various

applications, the need emerges to build a

solution that is fast or that makes maximum use

of available hardware, thus demanding

performance optimization techniques. From this,

the idea of optimizing code and/or system

algorithms stands out, such as those of deep

reinforcement learning in industrial processes, to

improve performance, speed, and accuracy.

Therefore, the general objective of this research

is to analyze the impact of code optimization on

the scalability and training time of deep

reinforcement learning agents applied to the

control of slow and stochastic industrial

processes. Additionally, the following specific

objectives are highlighted for the development

of this research: (i) to investigate vectorization,

parallelism, and parameter tuning applicable to

deep reinforcement learning algorithms, (ii) to

evaluate the impact of these strategies on

training time and agent performance through

experiments, and (iii) to analyze the scalability

of the optimized algorithms in different

simulated industrial scenarios with varying

levels of complexity.

2.Theoretical Foundation

2.1.Code Optimization Techniques

Among the aforementioned code optimization

strategies, parallelism stands out as a primary

approach. According to Wilkinson and Allen

(2005), parallel programming, within the

computational context, aims at executing

multiple tasks or different parts of the same task,

concurrently, leveraging multiple processing

cores to enhance program execution and solve

complex problems more efficiently in terms of

time.

When considering the context of Deep

Reinforcement Learning (DRL), there is clear

evidence of success in solving problems that

were once considered intractable. However,

solving such problems imposes a high

computational cost due to the large number of

possible variables. According to Arulkumaran et

al. (2017), “Deep learning enables RL to scale to

decision-making problems that were previously

intractable, i.e., settings with high-dimensional

state and action spaces.” The training of these

deep learning models not only demands

computational and energy resources, but can

also take a long time without proper hardware

support, as previously mentioned by Araújo et
ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

al. (2024). This highlights the importance of

using GPUs and TPUs as strategies for

optimizing time and resource consumption, as

they are designed for performing massive

operations simultaneously.

Considering the issues mentioned above, it is

evident that the performance bottleneck can

become even more critical when implementing

DRL in the context of industrial processes

characterized as stochastic and slow in

dynamics. These processes involve uncertainty

and high variability, requiring extensive

exploration of the state and action space, which

results in long training times. Therefore, code

optimization through parallelism becomes

essential for the scalability and feasibility of

these agents in complex industrial environments.

From this perspective, vectorization can be

addressed. Allen and Kennedy (1984) approach

vectorization as a transformation of serial code

reordering, adapting it to be executed more

efficiently on architectures that support vector

operations, allowing a single processor

instruction to operate on multiple data

simultaneously, thus enabling the processor to

process a set of elements in a single step,

offering significant performance gains. Araújo et

al. (2024) address the idea that DRL models,

especially those with deep neural networks,

execute a massive volume of numerical

operations, making the importance of

vectorization in optimizing this process notable,

particularly based on observations made by

Nuzman and Henderson (2005), who understand

the effectiveness of vectorization when applied

to repetitive operations, such as mathematical

calculations on arrays and matrices.

Finally, parameter adjustments are evidenced

through Optuna, which Akiba et al. (2019) break

down its dynamic structure (define-by-run):

"Optuna formulates the hyperparameter

optimization as a process of

minimizing/maximizing an objective function

that takes a set of hyperparameters as an input

and returns its (validation) score". This approach

is essential for dealing with complex and

dynamic environments, allowing the

construction of search spaces that evolve

according to the experiment. Another point to be

highlighted is its efficient optimization with

"pruning", which enables scalability, since it

drastically reduces the time spent on

unpromising episodes, as it prematurely

interrupts experiments that present

unsatisfactory performance, saving

computational resources and accelerating agent

convergence.

2.2.Deep reinforcement learning (DRL)

It is considered that deep reinforcement learning

is the union of reinforcement learning

techniques with deep learning. In this sense,

Kaelbling, Littman and Moore (1996) state that

reinforcement learning (RL) is "the problem

faced by an agent that must learn behavior

through trial-and-error interactions with a

dynamic environment," that is, a behavior

learning training based on trial-and-error

iterations in a dynamic environment. In the
ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

study on the use of RL in mobile robots, Faria

and Romero (2002) highlight that this learning is

based on the idea that if an action is followed by

satisfactory states, or by an improvement in the

state, then the tendency to produce this action is

increased, that is, reinforced.

The action of a satisfactory state is increased or

decreased from the numerous trial-and-error

iterations within the state space and, sometimes,

propagated through time. However, one of the

necessary conditions in which RL algorithms

can find an action policy is the complete

exploration of the state space, normally

impossible in practical situations (Faria and

Romero, 2002). Practical situations such as in

random industrial processes or those with slow

dynamics can become challenges for RL,

considering that the random state space is large

and dynamic with high risk in industries with

large-scale routines.

Regarding the second object of the DRL union,

deep learning is described by Bochie et al.

(2020) as an area of machine learning

characterized by the extraction of complex

representations from simpler representations.

Pereira (2017) corroborates the concept by

stating that this area can be considered as an

intersection between the areas of neural

networks, graphical modeling, optimization,

pattern recognition, and signal processing.

As stated by LeCun, Bengio, and Hinton (2015),

deep learning “is making major advances in

solving problems that have resisted the best

attempts of the artificial intelligence community

for many years.” The authors explain that, ten

years ago, this learning model began solving

problems that had long resisted all attempts by

the artificial intelligence community,

highlighting the vast potential for applications in

current problems that are still in the discovery

phase.

However, regarding the challenges of deep

learning, Bochie et al. (2020) state that typically,

deep learning requires models that capture the

non-linearities of the problem, making the

modeling relatively more complex. This means

that despite the advantages of deep learning, its

application demands more complex models and

longer training processes, resulting in higher

computational requirements and additional

difficulties in development.

Deep reinforcement learning is presented in the

study by Arulkumaran et al. (2017) as

"represents a step toward building autonomous

systems with a higher-level understanding of the

visual world". This statement emphasizes that

DRL goes beyond simple visual data processing,

developing a broader understanding of the

environment that allows autonomous systems to

make more effective decisions in complex

situations.

Finally, Arulkumaran et al. (2017) highlight that

"DRL can deal efficiently with the curse of

dimensionality, unlike tabular and traditional

nonparametric methods". The "curse of

dimensionality" represents one of the main

obstacles in traditional reinforcement learning

problems, where the number of possible states
ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

grows exponentially with the dimensionality of

the problem. DRL overcomes this limitation

through the ability of deep neural networks to

approximate complex functions in

high-dimensional spaces, enabling applications

in real-world problems that would be intractable

with conventional methods.

3.Methodology

3.1.Environment Structure

To investigate the impact of code optimization

on the scalability of training deep reinforcement

learning agents, a custom environment named

“TempControlEnv” was developed using the

“Gymnasium” library. The environment models

the evolution of temperature over time based on

the action applied by the agent, with variations

that include efficient heating, thermal loss,

random noise, and external disturbances.

Aiming to incorporate high-precision

computational bottlenecks, the environment

assigns a quadratic term (temp_diff**2) to heat

loss and a temperature update using the

4th-order Runge-Kutta method, which increases

the complexity and computational cost of

execution. Additionally, at each simulation step,

matrix multiplication and singular value

decomposition are performed to create a heavy

and constant CPU workload.

The action space has one dimension and is

continuous, represented by a value between -1

and 1, thus corresponding to the intensity of

cooling or heating. It can vary according to the

enabled configurations, having in its basic form

two main variables: the temperature error

relative to the setpoint and the derivative of the

error, allowing the modulation of the

environment’s complexity, making it suitable for

comparative performance testing of algorithms.

The environment features a reward function

composed of a penalty proportional to the

absolute error, an additional penalty for large

variations between sequential actions, extra

reward when the error is below a precision

threshold, and an additional penalty for

oscillation, based on the standard deviation of

the error history.

3.2.Comparison Metrics

The metrics used for analysis within this

environment are the training time to demonstrate

the effectiveness of optimizations and the

average reward per episode, mentioned by Kayal

et al. (2025) as fundamental for measuring the

agent’s convergence and effectiveness by

summing the total rewards received by the agent

throughout an episode, along with the reward

standard deviation to measure control stability

and penalize oscillations.

Araújo et al. (2024) address another analysis

point that involves the variation in

computational performance based on GPU/CPU

usage, since the chosen optimization techniques

aim to result in better CPU core utilization and

better hardware bandwidth usage, which should

directly impact CPU usage rate and reduce the

average load on the GPU/CPU.

To develop the evaluation of the impact based

on training time and performance, timing
ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

functions were used to record the total training

time. Regarding the reward per episode, as

mentioned by Kayal et al. (2025), the rewards

are accumulated from each episode for all

parallel actors and then averaged across the

actors.

As for GPU/CPU usage metrics, performance

analysis is conducted using the Python libraries

“psutil” and “pynvml,” with “psutil” responsible

for monitoring the average CPU usage

throughout agent training and execution, and

“pynvml” enabling access to GPU utilization

metrics. These tools allow for a correlation

between the applied optimizations and the

computational resources used, enabling a

detailed analysis of the performance of the

applied techniques.

3.3.Models for Testing

For this study, four models were selected: the

“Base” model without any optimizations; the

“Optuna” model using the tool of the same name

along with simple vectorization via

“DummyVecEnv”; the “Parallel” model using

the aforementioned parallelism technique in

combination with vectorization implemented

through the “SubprocVecEnv” (Subprocess

Vectorized Environment) tool; and finally, the

“Parallel + Optuna” model combining both

methods.

4.Results

Table 1 - Results for each method

Configurat
ion

Average
Reward

Average
time(s)

Average
CPU(%)

Base -36298.78 310,9 36,7

Optuna -35823.4 282,4 45,3

Paralelo -37111.97 153,7 5,3

Paralelo +
Optuna

-37174.18 120,1 21,7

Standard deviation of rewards was also

calculated across configurations. The Base

model had the highest deviation with 919.69,

while Optuna had the lowest with 661.35. The

Parallel and Parallel + Optuna models had

deviations close to the base, with 898.89 and

907.11 respectively.

From the table, the impact of optimization

strategies on training efficiency can be observed.

It shows that the version using “Optuna”

achieved a higher average reward and lower

variability in standard deviation. On the other

hand, “Parallelism + Optuna” was the fastest in

training time, while the “Parallelism” test had

the lowest CPU usage (5.34%).

5.Discussion

5.1. Impact of Optimizations on Training Time

Based on the results obtained, a drastic reduction

in training time is evident in the approaches

using parallelism, clearly demonstrating the

influence of parallel environments on training

time reduction, with a clear decrease compared

ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

to the baseline. This approach proves essential

for scaling DRL agents in complex

environments.

5.2.Impact of Optimizations on Agent

Performance

Another noteworthy point is the performance

gain through hyperparameter optimization

(Optuna test), resulting in more effective control

and outperforming the baseline as indicated by

the average reward and standard deviation

values.

5.3.Speed vs. Quality

Given the results presented, there is an evident

trade-off between training time efficiency and

the final performance of the agent. The

hyperparameter optimization approach achieved

the highest reward and lowest standard

deviation, while the approaches using

parallelism did not reach this performance

despite being faster. This is likely due to the way

experiences are collected. In sequential training,

although slower, exploration is more focused

since the gradient used to update the neural

network is based on experiences from a more

consistent policy, favoring higher-quality

convergence. In parallel training, experiences

are collected simultaneously from different

trajectories and time steps, which speeds up data

collection but may result in poorer gradients,

causing the agent to converge to a good solution,

but not necessarily the best possible one.

6.Conclusion

In conclusion, this work achieves its main

objective of investigating the impact of code

optimization techniques—specifically

parallelism, hyperparameter tuning, and

vectorization—on the scalability and

performance of deep reinforcement learning

agents when applied to industrial environments

with slow and stochastic dynamics.

Hyperparameter optimization via Optuna,

combined with simple vectorization, proved to

be crucial for improving the agent's final

performance, resulting in a more effective and

stable control policy, as evidenced by the

average reward and standard deviation.

Parallelism, in turn, implemented through a

complex vectorized environment, proved to be

an indispensable tool for scalability, drastically

reducing training time. Another key point is the

identification of a trade-off between training

speed and solution quality, where fast,

parallelism-based approaches did not produce

agents with satisfactory final rewards.

It is therefore understood that the choice of

optimization strategies is contextual to the

project’s priorities. When rapid prototyping and

agile interaction are desired, parallelism is the

superior approach; however, for maximum

performance extraction, hyperparameter

optimization becomes more advantageous.

These findings have direct implications for the

practical application of DRL, where

development time and final control effectiveness

are critical factors.
ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

References
[1]​ AKAIWA, Takuya et al. Optuna: A next-generation

hyperparameter optimization framework. In:
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining.
2019. p. 2623-2631.

[2]​ ALLEN, John R.; KENNEDY, Ken. Automatic loop
interchange. In: Proceedings of the 1984 SIGPLAN
symposium on Compiler construction. 1984. p.
233-246.

[3]​ ARAÚJO, Thiago et al. Otimizando Aplicações de
Aprendizado Profundo na Cloud. In: Escola Regional
de Alto Desempenho da Região Sul (ERAD-RS).
SBC; 2024. p. 131-132.

[4]​ ARULKUMARAN, K.; DEISENROTH, M. P.;
BRUNDAGE, M.; BHARATH, A. A. Deep
reinforcement learning: a brief survey. IEEE Signal
Processing Magazine. 2017 Nov;34(6):26-38. ISSN
1053-5888.

[5]​ BARBOSA, Lucia Martins; PORTES, Luiza Alves
Ferreira. A inteligência artificial. Revista Tecnologia
Educacional [on line]. 2023;236:16-27.

[6]​ BIANCHI, Reinaldo A. C.; COSTA, Anna H. R. Uso
de heurísticas para a aceleração do aprendizado por
reforço. In: XXV Congresso da Sociedade Brasileira
de Computação. São Paulo; 2005. p. 130-139.

[7]​ BOCHIE, Kaylani et al. Aprendizado profundo em
redes desafiadoras: Conceitos e aplicações.
Sociedade Brasileira de Computação; 2020.

[8]​ CENDRON, Jean Carlos et al. Algoritmo genético e
simulação de eventos discretos: uma abordagem
híbrida aplicada na otimização de layout e processos
industriais. 2022.

[9]​ FARIA, Gedson; ROMERO, Roseli A. Francelin.
Navegação de robôs móveis utilizando aprendizado
por reforço e lógica fuzzi. Sba: Controle &
Automação Sociedade Brasileira de Automatica.
2002;13:219-230.

[10]​ KAELBLING, Leslie Pack; LITTMAN, Michael L.;
MOORE, Andrew W. Reinforcement learning: A
survey. Journal of artificial intelligence research.
1996;4:237-285.

[11]​ KAYAL, Aya; PIGNATELLI, Eduardo; TONI,
Laura. The impact of intrinsic rewards on exploration
in Reinforcement Learning. Neural Computing and
Applications. 2025:1-35.

[12]​ LECUN, Yann; BENGIO, Yoshua; HINTON,
Geoffrey. Deep learning. Nature.
2015;521(7553):436-444.

[13]​ PASSOS, Arthur M. et al. Análise e aplicação de

técnicas de otimização de código. 2022.

[14]​ PEREIRA, Matheus de Mattos. Aprendizado
profundo: redes LSTM. Dourados, MS: Universidade
Federal da Grande Dourados; 2017. Trabalho de
Conclusão de Curso (Bacharelado em Sistemas de
Informação).

[15]​ SILVA, Júlio Cesar Martins Oliveira da et al. Cadeias
de Markov na engenharia de produção um panorama
das Aplicações. 2024.

[16]​ WILKINSON, Barry; ALLEN, Michael. Parallel
Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers. 2.
ed. Upper Saddle River, NJ: Pearson Prentice Hall;
2005.

ISSN: 2357-7592​ ​ ​ ​ ​ ​
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

