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Abstract: The main aim of this paper is to verify whether there is short or long memory behaviour in returns 

and volatilities and whether the behaviour is similar for two groups of companies listed on IBOVESPA: higher 

and lower price-earnings (𝑃/𝐸) ratios in December 2019. It is considered the period from 01 January, 2016 to 

31 December, 2022. The fractionally integrated parameter (𝑑) is used to check for short or long memory. In 

general, for returns and volatilities, the results are very similar for both groups of companies (higher 𝑃/𝐸 or 

lower 𝑃/𝐸). The long-memory behaviour, when occurs, especially for volatilities, is not constant over time, 

transitory and disappears. Moreover, even in periods of possible above-average, as in the case of the COVID-

19 pandemic, this is not possible without the investor incurs above-average risks. 
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1. Introduction 

 

Measuring and managing financial market risks are critical factors for market participants. Investors, especially 

traders, are aware of the potential losses that can arise due to market fluctuations. In this context, taking into 

account, among other issues, the different results of several studies, with regard to market efficiency or 

inefficiency, studying whether or not stock markets are efficient (Efficient Market Hypothesis – EMH) remains 

a challenging and very important task. 

 

The main aim of this research is to verify whether the returns and volatilities of some Brazilian companies 

listed on the São Paulo Stock Exchange Index (IBOVESPA) exhibit short or long-memory behaviour, and 
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whether the behaviour is similar, in the period from 01 January, 2016 to 31 December, 2022 (daily data). These 

companies were selected based on price-earnings (𝑃/𝐸) ratios, considering two sets of companies: higher 𝑃/𝐸 

and lower 𝑃/𝐸. The contribution of this paper is to analyse whether, taking into account the 𝑃/𝐸 ratio of 

December 2019, that is, before the COVID 19 pandemic, both groups of companies behaved similarly or 

differently after the start of the pandemic, in terms of log-range dependence. Two hypotheses are formulated: 

i) behaviour varies over time, especially in periods of turbulence such as the COVID-19 pandemic; and ii) 

there is a similar behaviour in both groups of companies. To the best of knowledge, there are so far no similar 

studies for the Brazilian stock market.  

 

As stated by Lakonishok, Shleifer and Vishny (1994), for many years, researchers and investment 

professionals have claimed that value strategies outperform the market. Here, the idea is for buying stocks that 

have low prices regarding to earnings, dividends, historical prices, book assets, or other measures of value. In 

this context, value strategies have also gained prominence. For example, Basu (1977), Jaffe, Keim and 

Westerfield (1989), Chan, Hamao and Lakonishok (1991) and Fama and French (1992) demonstrate that stocks 

with low price-earnings (𝑃/𝐸) ratios earn higher returns (𝑃/𝐸 ratio is indicator of the future investment 

performance of a stock); low 𝑃/𝐸 stocks will tend to outperform high 𝑃/𝐸 stocks. In this context, according 

to Wong (2021), the so-called behavioural financial economics is an important milestone in the development 

of modern theory in financial economics, because many studies have shown that there are some anomalies and 

paradoxes and many financial phenomena (Shiller, 2000), that traditional theories of financial economics 

cannot explain.  

 

Unlike, authors as Daniel and Titman (1997) show that anomalies3 such that BM and size only represent the 

preference of investors, and do not determine stock returns. To Fama (1998), even in the scenario of anomalies 

and paradoxes, the EMH still holds, since the anomalies documented in several studies are not persistent and 

disappear when the model, sample or data frequencies change. To Fama (1998), recent finance literature, such 

as behavioural finance, seems to produce many long-term return anomalies. Although, consistent with the 

efficiency market hypothesis that anomalies are the result of chance, apparent overreaction of stock prices to 

information is as common as underreaction. In addition, post-event continuation of pre-event abnormal returns 

 
3 To Woo, Mai an McAleer (2020), there are several anomalies that can affect the financial market, and which are contrary to the 

EMH, as for example: winner-loser effect, reversal effect; momentum effect; calendar anomalies (as instance January effect, 

weekend effect, and reverse weekend effect); book-to-market (BM) effect; value anomaly; size effect; disposition effect; equity 

premium Puzzle; herd effect and ostrich effect; bubbles; among others. 
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is almost as frequent as post-event reversal. Even more important, long-term return anomalies are fragile and 

tend to disappear. 

 

In addition, to Malkiel (2003)4, as long as stock markets exist, the collective judgment of investors will 

sometimes make mistakes. Undoubtedly, some market participants are demonstrably less than rational. As a 

result, pricing irregularities and even predictable patterns in stock returns can appear over time and even persist 

for short periods. Moreover, the market cannot be perfectly efficient, or there would be no incentive for 

professionals to discover the information that is reflected so quickly in market prices, a point emphasized by 

Grossman and Stiglitz (1980). However, Malkiel (2003, p. 80) points out that “... I suspect that the end result 

will not be the abandonment of the belief of many in the profession that the stock market is remarkably efficient 

in the use of information”. 

 

In this context, as highlighted by Lekhal and Oubani (2020), in addition to the methodological problems 

highlighted by Fama (1998), the controversial conclusions can be attributed to the fact that the arguments of 

both EMH and behavioural finance are partially valid. Thus, one can switch from one paradigm to another at 

any time, depending on changes in market conditions. In this way, the two paradigms can be reconciled to 

provide a convincing explanation of market behaviour. 

 

In this perspective, as described by Hull and Mcgroarty (2014), alternative theories of market dynamics for 

EMH are emerging. These new approaches see efficiency as something the market tends to, rather than a state 

that automatically maintains itself at all times. One of the first alternatives refers to the Fractal Market 

Hypothesis (FMH), which is a theory of market behaviour proposed by Peters (1991, 1994), which aims to 

explain the fractal characteristics of market prices. A second alternative to EMH concerns the Heterogeneous 

Market Hypothesis (HMH), proposed by Dacorogna et al. (2001), which describes how prices arise from the 

interaction of market participants with different investment horizons. Furthermore, similar characteristics to 

the HMH are observed in another alternative to the EMH, called the Adaptive Market Hypothesis (AMH), 

proposed by Lo (2004, 2005), which combines behavioural finance concepts with the dynamics of evolution. 

Unlike EMH, these two alternative hypotheses of market dynamics, HMH and AMH, allow for the possibility 

of serial dependency, at least for some time. As described by Lo (2004), it is as if AMH could reconcile EMH 

with all its behavioural alternatives. 

 
4 Interesting describe that Malkiel (2003, p. 2) presents a different concept of Fama (1970, 1991) for market efficiency: “At first, it 

is important to make clear what I mean by the term “efficiency”. I will use the definition of efficient financial markets as those that 

do not allow investors to obtain above-average returns without accepting above-average risks”. 
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Here, to analyse the behaviour of efficiency or not of the financial market, the concept of long memory is 

adopted. This concept was used, in the financial context, first by Lo (1991). For Lo (1991), the presence of 

long memory in the returns would distance the market from the Random Walk Hypothesis (RWH). It is worth 

mentioning that time series with long-term memory exhibit an unusually high degree of persistence, such that 

observations in the remote past are non-trivially correlated with observations in the distant future, even when 

the time interval between the two observations increases. Besides, it is important to mention that the presence 

of long memory components in asset returns has important implications for many of the paradigms used in 

modern financial economics5.  

 

In this paper, the question of long-range dependency is investigated by means of the fractionally integrated 

parameter (𝑑). First, in all estimates the Geweke and Porter-Hudak (GPH) estimator (Geweke and Porter-

Hudak, 1983) is adopted. To ensure the robustness of the results, in some estimates, two other estimators are 

used, namely: Exact Local Whittle (ELW) (Shimotsu and Phillips, 2005) and Two-Step Exact Local Whittle 

(2SELW). In addition, since the estimated fractionally integrated parameter may vary over time, rolling 

estimation is adopted to capture the time-variation of �̂� . 

 

The structure of this paper is as follows. In addition to this introduction, Section 2 provides a literature review. 

Section 3 presents the data and methodology. In Section 4, the results and discussion are presented. Finally, 

the concluding remarks are presented in Section 5. 

 

2. Literature review 

 

This section provides a literature review of works that aim to verify the efficiency of financial markets, 

highlighting the presence or absence of long memory behaviour (in asset returns and asset price volatility), 

some of which are specific to the Brazilian economy and others for the COVID-19 pandemic. A couple of 

studies specifically address the 𝑃/𝐸 ratio. To the best of knowledge, so far, no study has examined the 

 
5 For example, optimal consumption/savings and portfolio decisions can become extremely sensitive to the investment horizon if 

stock returns are long-term dependent. Problems also arise in pricing derivative securities (such as options and futures) with 

martingale methods, as the most commonly employed class of continuous-time stochastic processes is inconsistent with the presence 

of long memory (see Maheswaran (1990), Maheswaran and Sims (1990) and Sims (1984), for example). In addition, the traditional 

tests of the capital asset pricing model and the arbitrage pricing theory are no longer valid, since the usual forms of statistical 

inference do not apply to time series that exhibit such persistence. And, the conclusions of more recent tests of hypotheses of 

“efficient” markets or stock market rationality also depend precariously on the presence or absence of long-term memory. 
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efficiency or not of the Brazilian stock market considering companies with higher and lower values for the 

𝑃/𝐸 ratio, and adopting a period before e after the COVID-19 pandemic, which is the main contribution of the 

present study to the empirical financial literature. 

 

The available empirical evidence of long-range dependence is somewhat mixed. Long-memory evidence is 

found by Mandelbrot (1972), Greene and Fielitz (1977), Booth, Kaen and Koveos (1982), Niu and Wang 

(2013), Abbritti et al. (2016), Caporale, Gil-Alana and Plastun (2019), among others. Conversely, the 

following works do not find long-memory behaviour: Lo (1991), Jacobsen (1995), Berg and Lyhagen (1998), 

Crato and Ray (2000), Malkiel (2003), Serletis and Rosenberg (2007), Lu and Perron (2010). This controversy 

may be because the degree of persistence of the series can vary over time, as presented by Corazza and 

Malliaris (2002), Glenn (2007), Bennett and Gartenberg (2016), due to structural breaks (Charfeddine and 

Guégan, 2012) or even due to the models and statistical methods used (Fama, 1998). 

 

Here it is important to say that there is also a debate between the presence of long-range dependence for returns 

and for volatility. According to Engle (1982) and Bollerslev (1986), among others, the volatility of financial 

returns may present a strong autocorrelation structure, while the returns show no memory and random-walk 

behaviour. For example, Crato and Ray (2000) examine the memory of future returns using a modified version 

of the R/S statistic developed by Lo (1991), as well as a test based on the GPH estimator of the long-memory 

parameter. The results demonstrate no long-memory behaviour in future returns. However, when the analysis 

considers volatility (squared log returns), the findings reveal overwhelming evidence of persistence, consistent 

with the works of Ding, Granger and Engle (1993), Bollerslev and Mikkelsen (1996), Baillie, Bollerslev and 

Mikkelsen (1996), and Breidt, Crato and Lima (1998). For Bhattacharya, Bhattacharya and Guhathakurta 

(2018), there is a consensus among the financial community that long memory is a characteristic of asset price 

volatility, which does not occur for asset returns. 

 

Another relevant point to be highlighted refers to that described by Hull and McGroarty (2014): market 

efficiency is expected to be related to the level of economic development. The results reveal strong evidence 

of long memory in volatility clustering and weak evidence of long memory in returns, including for Brazil. 

Besides, the estimates show greater efficiency in returns and volatility for “advanced” emerging markets. As 

point out by Barkoulas, Baum and Travlos (2000), emerging capital markets (ECM) tend to exhibit different 

characteristics from those observed in developed capital markets. Biases due to market thinness and 

nonsynchronous trading should be expected to be more severe in the case of ECM. In addition, unlike 
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developed capital markets which are highly efficient in terms of the speed of information reaching all traders, 

investors in emerging capital markets tend to react slowly and gradually to new information. 

 

Regarding to the period of the COVID-19 pandemic, one of the world’s biggest health crises in recent time, 

pandemic’s immediate effects has been a substantial increase in volatility. Here, Vera-Valdés (2021) analyze 

the long-term effects of COVID-19 on the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) 

and realized variances for several international markets. The authors consider the period from January 2018 to 

January 2021, for daily data. GPH and ELW estimators are adopted as methodology. The results show that 

volatility measures for most countries experienced increases in the degrees of memory following the pandemic. 

Besides, several volatility measures became nonstationary, signaling the start of a period with higher and more 

persistent financial volatility. Gil-Alana and Claudio-Quiroga (2020) verify the impact that the COVID-19 on 

three Asian stock markets: Korean SE Kospi Index, Japanese Nikkei 225 and Chinese Shanghai Shenzhen CSI 

300 Index. The daily data cover the sample July 2006 to September 2020. By means of fractional integration 

methods, the estimates indicate that mean reversion and thus transitory effects of shocks occurred in the Nikkei 

225 index. However, for the Kospi and Shanghai Shenzhen indices, this hypothesis is rejected, implying that 

shocks are permanent. 

 

In the case of the Brazilian stock market, Resende and Teixeira (2002) is one of the first studies on the subject. 

The authors study the long-memory behaviour of the IBOVESPA index, considering sub-periods before and 

after the Real Stabilization. The results demonstrate the existence of short memory for both periods, despite 

the so-called reforms that the Brazilian economy underwent in the 1990s and, in particular, after the Real Plan. 

Costa e Vasconcelos (2003) analyse the possible presence of long-range correlations of the IBOVESPA, 

spanning over 30 years of data from January 1968 up to May 2001. The results show the existence of long-

term dependence (persistence) which lasted for up to six months. In particular, the paper find that the structural 

reforms set off after 1990 (Collor Plan in the early 1990’s and Real Plan in 1994) leaded to a more efficient 

stock market in Brazil. 

  

Cajueiro and Tabak (2004), considering the stock returns of the indices of the countries of Latin America and 

Asia, suggest that emerging markets are becoming more efficient, except for Brazil, Philippines and Thailand. 

In another research, Cajueiro and Tabak (2005) employ a rolling methodology to estimate Hurst exponents for 

emerging markets of the Latin America and Asia, considering squared and absolute returns (United States and 

Japan are included for comparison purposes). The estimations show that these markets present strong long-
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range dependence in volatility. In addition, empirical results suggest that Asian equity markets are more 

efficient than those of Latin America and that the US is the most efficient country. 

 

Cavalcante and Assaf (2005) investigate the long-memory property in returns and volatility of the Brazilian 

stock market from 03.01.1994 to 17.05.2002. Estimates reveal significant long-memory behaviour in the 

volatility measures, while there is little evidence of long memory in the returns themselves. Thus, during the 

study period, the Brazilian stock market had an underlying fractal structure, contrary to EMH. Ely (2011) 

search evidence of predictability in the Brazilian stock market, using portfolios grouped by sector and company 

size, taking into account the period from 1999 to 2008. The results reveal that: i) the stocks of the industrial 

sector are highly predictable; ii) the stocks of small companies tend to be more predictable than those of large 

companies; and, iii) the Brazilian stock market had an increase in efficiency from 1994 to 2008. 

 

Chen and Metghalchi (2012) investigate the predictive power of several trading rules with different 

combinations of the most popular indicators in technical analysis for IBOVESPA, in the period from 

05.01.1996 to 03.01.2011. The results strongly support the weak form of market efficiency for the Brazilian 

stock market. Carvalho, Suen and Gallo (2016) use intraday stock returns and mandatory disclosures of 

material facts by publicly traded companies on the BM&FBOVESPA to assess market efficiency in Brazil, 

considering the period from November 2012 to February 2014. The results show that relevant facts, informed 

by companies, in fact reveal unexpected information to investors. The speed of price response to new 

information and the observed magnitudes of cumulative returns indicate that market participants can benefit 

from profit opportunities in the minutes close to the release of material facts. 

 

Finally, regarding to 𝑃/𝐸 ratio, as previously described, Basu (1977) verifies empirically whether the 

investment performance of common stocks is related to their 𝑃/𝐸 ratios. The data base represents over 1.400 

industrial firms traded on the NYSE between September 1956 and August 1971. According to results, 𝑃/𝐸 

ratio information is not “fully reflected” in stock prices in as rapid a manner as postulated by the semi-strong 

form of the efficient market hypothesis. Otherwise, it seems that disequilibria persisted in capital markets 

during the period studied. To Campbell and Shiller (1998), initial 𝑃/𝐸 ratios explain as much as 40 percent of 

the variance of future returns. Other authors also reach these results, such as Nicholson (1960) and later 

confirmed by Ball (1978). At the Brazilian level, Amorim and Camargos (2021), considering the period from 

December 2004 to June 2018, demonstrate that the price-earnings index based on IBOVESPA present a non-

linear trend and mean reversion, which contrasts with the EMH. As claimed by Malkiel (2003), these findings 
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are consistent with the views of behavioralists that investors tend to be overconfident of their ability to project 

high earnings growth and thus overpay for “growth” stocks (for instance, Kahneman and Riepe, 1998). 

 

3. Data and empirical methodology 

 

3.1. Data 

 

The data set analyzed in this paper is the daily closing price (𝑃𝑡) of the stock of 10 companies listed on the 

São Paulo Stock Exchange Index (IBOVESPA Index). The series used in this study are described in Table 1. 

The study considers the period from 01 January, 2016 to 31 December, 2022, using daily data. The data source 

is the Investing.com (www.investing.com). The daily returns 𝑟 𝑡 are obtained by calculating the first 

logarithmic difference of the stock market price 𝑃𝑡 at day 𝑡, 𝑟𝑡  =  𝑙𝑜𝑔 (𝑃𝑡)  −  𝑙𝑜𝑔 (𝑃𝑡−1), for each time series.  

 

As previously mentioned, this research works with two sets of companies, higher 𝑃/𝐸 and lower 𝑃/𝐸, 

considering as a basis the companies listed on the IBOVESPA on the date in December 2019, a little before 

the COVID-19 pandemic. The 𝑃/𝐸 ratio is also reports in Table 1. It is important to highlight that companies 

with a negative 𝑃/𝐸 ratio were removed from the sample, as well as companies with a large percentage of 

daily returns equal to zero and those that were among the companies with higher or lower 𝑃/𝐸 ratios, but that 

do not have data for the entire analysis period. 

 

Table 1 – Variables, unit, acronym, 𝑃/𝐸 ratio and source 

Variable Units Ticker 𝑃/𝐸 Source 

Higher 𝑃/𝐸 

CVC Brasil Operadora e Agência de Viagens S.A. Price CVCB3 144.44 Investing.com 

BRF Brasil Foods S.A. Price BRFS3 96.10 Investing.com 

Cogna Educação S.A. Price COGN3 79.89 Investing.com 

Ultrapar Participacões S.A. Price UGPA3 75.91 Investing.com 

Natura &Co Holding S.A. Price NTCO3 67.97 Investing.com 

Usinas Siderúrgicas de Minas Gerais S.A. Price USIM5 55.88 Investing.com 

Lower 𝑃/𝐸 

Transmissora Aliança de Energia Elétrica S.A. Price TAEE11 10.72 Investing.com 

Petróleo Brasileiro S.A. Price PETR4 10.40 Investing.com 

Banco do Brasil S.A. Price BBAS3 9.23 Investing.com 

Companhia Energética do Estado de Minas Gerais S.A. Price CMIG4 6.43 Investing.com 

Centrais Elétricas Brasileiras S.A. Price ELET6 4.84 Investing.com 

Equatorial Energia S.A. Price EQTL3 1.90 Investing.com 

Note: 𝑃/𝐸 ratio considers as a basis the companies listed on the IBOVESPA on the date in December 2019. 

Source: Own elaboration. 

 

http://www.investing.com/
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According to Fama and French (1988), daily returns adopted as the sample sizes from such short return 

horizons are sufficiently large to generate precise estimates for the statistical tests. Bollerslev and Wright 

(2000) demonstrate that increasing the sample size beyond the daily frequency does not significantly improve 

the accuracy of the time dependency estimates. To Ray and Tsay (2000), the log transformation becomes a 

problem when zero or very small returns are encountered. To mitigate this problem, following Perron and Qu 

(2010), it is adopted 𝑟𝑡 +  0.001. The conclusions remain the same if the returns with absolute magnitudes 

below 0.001 were eliminated. Besides, squared log returns are used as measure for volatility, as adopted by: 

Taylor (1986), Crato and Lima (1994), Starica and Granger (2005), Bentes et al. (2008), Hull and McGroarty 

(2014), among others. 

 

Table 2 shows the basic descriptive statistics of the daily returns (first difference of the natural logarithms). 

For several returns, the distributions appear to be asymmetric, since there are positive and negative estimates 

of skewness. All returns series have heavy tails and show a strong deviation from normality (the skewness and 

kurtosis coefficients are all different from those of the standard normal distribution, which are 0 and 3, 

respectively). In addition, Jarque-Bera (JB) test rejected the null hypothesis of normality at a significance level 

of 5%. To Maldelbrot (1963) and Fama (1965), excess kurtosis and nonnormality are stylized facts regarding 

financial returns.  

 

Table 2 – Descriptive statistics, Jarque-Bera (JB) test and unit roots tests 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Mean 0.0004 -0.0001 0.0002 0.0006 0.0010 0.0019 0.0016 0.0018 0.0017 0.0019 0.0019 0.0018 

Median 0.0003 -0.0003 -0.0016 0.0010 0.0003 0.0000 0.0015 0.0023 0.0018 0.0010 0.0017 0.0018 

Std. dev. 0.0393 0.0281 0.0336 0.0271 0.0309 0.0381 0.0160 0.0336 0.0275 0.0281 0.0313 0.0177 

Min. -0.4264 -0.2190 -0.2341 -0.2393 -0.2766 -0.2378 -0.1963 -0.3514 -0.2367 -0.2339 -0.2136 -0.1138 

Max. 0.2816 0.1518 0.1790 0.2111 0.1595 0.3075 0.0845 0.2017 0.1592 0.1660 0.2792 0.0816 

Skewness -1.3105 -0.4880 -0.4606 -0.5486 -0.5794 0.3403 -1.2860 -2.0422 -0.7200 -0.6065 0.1702 -0.2905 

Kurtosis 19.707 8.099 6.646 12.439 9.135 5.873 15.634 20.364 10.997 9.376 8.627 4.165 

JB 28614 4820 3261 11291 6141 2533 18175 31230 8908 6474 5399 1282 

ADF -17.835 -26.744 -28.964 -15.589 -29.607 -28.611 -30.348 -22.380 -29.591 -29.228 -29.334 -29.542 

PP -40.871 -40.405 -42.990 -48.072 -43.395 -40.428 -43.750 -42.403 -42.604 -42.368 -41.281 -45.223 

KPSS 0.5152 0.0896 0.2137 0.0653 0.4084 0.3003 0.0901 0.0947 0.1614 0.0355 0.0973 0.1252 

N. obs. 1733 1733 1733 1733 1733 1733 1733 1733 1733 1733 1733 1733 

Note1: 1) The normality test is the Jarque-Bera test which has a 𝜒2 distribution with 2 degrees of freedom under the null 

hypothesis of normally distributed errors. The 5% critical value is equal to 5.99; 2) ADF, PP and KPSS denote the statistics of 

Augmented Dickey-Fuller, Phillips-Perron and Kwiatkowski, Phillips, Schmidt and Shin unit root tests, respectively. Critical 

values of the ADF, PP and KPSS tests, at the 5% level of significance, are equal to −1.95, −2.86 and 0.463, respectively. 

Source: Own elaboration. 
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Besides, Table 2 presents the results for three unit roots tests: Augmented Dickey-Fuller – ADF (Dickey and 

Fuller, 1981), Phillips-Perron – PP (Phillips and Perron, 1988) and Kwiatkowski-Phillips-Schmidt-Shin – 

KPSS (Kwiatkowski et al., 1992). Results revealed that all daily returns are stationary, i.e., the hypothesis of 

unit root is rejected at 5% significance level. As described by Hull and McGroarty (2014), according to 

Henry (2002), stationarity in a time series does not exclude the possibility of serial correlation. 

 

3.2. Empirical methodology 

 

3.2.1. Long memory 

 

According to Morettin (2006), the phenomenon known as long memory (long-range dependence) originated 

with the works of Hurst (1951, 1957), Mandelbrot and Wallis (1968) and McLeod and Hipel (1978), in 

problems related to studies in the area of hydrology. Long memory models are also used in climatological 

research. In financial economic literature, the concept of long memory began to be studied by Granger (1980), 

Granger and Joyeux (1980) and Hosking (1981). 

 

As described by Tsay (2010), the autocorrelation function (ACF) for a stationary time series decays 

exponentially to zero as lag increases. In the other hand, when the time series presents a unit root (i.e., it is 

nonstationary), the sample ACF converges to one for all fixed lags as the sample size increases (see, Chan and 

Wei (1988) and Tiao and Tsay (1983)). However, for some time series, the ACF slowly decays to zero at a 

polynomial rate as the lags increase. These processes are known to exhibit long-memory behaviour. Baillie 

(1996) provided an excellent review about long-range dependence in econometrics.  

 

To Baillie (1996), a wider definition of long memory is presented as follows. Given a discrete time series 

process (𝑥𝑡), 𝑡 =  1, . . . , 𝑇, with autocovariance function 𝛾ℎ, at lag ℎ, in the time domain, the process presents 

long-range dependence if 

 

𝛾ℎ ≈ Ξ(ℎ)ℎ2𝑑−1, as ℎ → ∞,                                                                                                                          (1) 

 

where ≈ denotes approximate equality for large ℎ, 𝑑 ≠ 0 is the fractional long-memory parameter, Ξ(ℎ) is a 

slowly varying function at infinity. As a consequence, the autocorrelation function presents slow and 

hyperbolic decay. 
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In addition, in the frequency domain, considering 𝑓(𝜆) as the spectral density of the long memory series (𝑥𝑡), 

with 𝑡 =  1, . . . , 𝑇,  at frequency 𝜆, then, 

 

𝑓(𝜆) ~ 𝑐𝜆−2𝑑, as 𝜆 → 0,                                                                                                                                (2)  

   

where 𝑐 is a constant. That is, 𝑓(𝜆) is unbounded when the frequency is near zero (Baillie (1996), Charfeddine 

(2016), among others). 

 

In this context, the following definitions regarding the behaviour of the process {𝑥𝑡} can be described: 𝑑 = 0, 

short memory (or white noise); ii) 0 < 𝑑 < 0.5, stationary with long memory; iii) 0.5 ≤ 𝑑 < 1, the process is 

mean reverting, even though it is not covariance stationary; and, iv) if 𝑑 ≥ 1, nonstationary and does not 

present mean reversion. In the particular case of 𝑑 = 1, there is a non-stationary process, characterized by the 

presence of a unit root. Besides, the process has an anti-persistence behaviour when 𝑑 ∈ (−0.5;  0). 

 

In the literature, there are several estimators of the fractionally integrated parameter (𝑑), which can be 

classified as parametric and semi-parametric. The former involves the simultaneous estimation of the 

parameters of the so-called autoregressive fractionally integrated moving average (𝐴𝑅𝐹𝐼𝑀𝐴) model 

(introduced independently by Granger and Joyeux (1980) and Hosking (1981)), generally using the maximum 

likelihood method; see, e.g., Dahlhaus (1989), Fox and Taqqu (1986) and Sowell (1992). In semi-parametric 

procedures, the estimation of the model parameters is carried out in two steps: first, the long memory parameter 

𝑑 is estimated, for example, through a regression model of the logarithm of the periodogram function and, 

subsequently, the autoregressive and moving average parameters are estimated.  

 

One of the most popular estimators in the class of semi-parametric estimators is the Geweke and Porter-Hudak 

(GPH) estimator (Geweke and Porter-Hudak, 1983). In this work, this estimator is used in all estimates of the 

fractionally integrated parameter (𝑑). To ensure the robustness of the results, in some estimates, two other 

estimators are used, namely: Exact Local Whittle (ELW) (Shimotsu and Phillips, 2005) and Two-Step Exact 

Local Whittle (2SELW). In addition, since the estimated fractionally integrated parameter may vary over time, 

rolling estimation is adopted to capture the time-variation of �̂�. In this case, the estimated parameter �̂� is 

calculated one first time window, and then the sample is rolled forward one point by eliminating the first 
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observation and adding the next one, and then recalculating the parameter �̂�. The rolling method has some 

shortcomings, but the technique provides a good first proxy of the time-variation of �̂�.  

 

3.2.2. The 𝐆𝐏𝐇 estimator (𝐆𝐏𝐇) 

 

Be 𝑓(𝜆) the function defined in Equation (2). The GPH employs the periodogram function 𝐼(𝜆𝑗) as an estimate 

of the spectral density function in Equation (2), at frequency 𝜆𝑗 =
2𝜋𝑗

𝑇
, 𝑗 = 0,1, … , ⌊

𝑇

2
⌋, where 𝑇 is the sample 

size and ⌊∙⌋ denotes the integer part function. In this case, considering frequencies close to zero,  

Geweke and Porter-Hudak (1983) suggest the following approximation to estimate 𝑑 (see, Molinares, Reisen 

and Cribari-Neto (2009), Charfeddine and Guégan (2012) and Charfeddine (2016)), 

 

ln{𝐼(𝜆𝑗)} = 𝛽 − 𝑑𝑙𝑛 {4𝑠𝑖𝑛2 (
𝜆𝑗

2
)} + 𝜀𝑗, 𝑗 = 1,2, … , 𝑔,                                                                                  (3) 

 

where {𝜀𝑗} is the white noise and 𝑔 is the bandwidth (𝑔 = 𝑇𝛼, with 𝑇 equal to the number of observations), 

which corresponds to the number of frequencies used in the regression of Equation (3). In this paper, the 

following bandwidths is considered: 𝑔 = 𝑇0.7 (details of the choice of bandwidth can be consulted at Reisen 

(1994), Lee and Robinson (1996), Hurvich, Deo and Brodsky (1998) and Diebold and Inoue (2001)). Other 

bandwidths, such as 𝑔 = 𝑇0.5, 𝑔 = 𝑇0.6 and 𝑔 = 𝑇0.8, generate similar results. Under some conditions, the 

GPH estimator is consistent and asymptotically normally distributed. To see some asymptotic properties of the 

estimator, see Hurvich, Deo and Brodsky (1998) and Velasco (2000). 

 

3.2.3. The 𝐄𝐋𝐖 estimator (𝐄𝐋𝐖) 

 

Shimotsu and Phillips (2005) develop a semiparametric estimator namely Exact Local Whittle (ELW) 

estimator, to estimate the fractionally integrated parameter (𝑑). This estimator is consistent and has the same 

𝑁(0, 1 4⁄ ) limit distribution for all values of 𝑑 if the optimization covers an interval of width less than 9/2 

and the mean (initial value) of the process is known (Shimotsu, 2010). In this context, ELW offers a good 

general-purpose estimation procedure for the memory parameter that is applied throughout the stationary and 

nonstationary regions of 𝑑. Thus, ELW is a better estimator than Local Whittle (LW; for instance, Kunch, 

1987) and also GPH, which are not a good general-purpose when the value of 𝑑 may take on values in the 

nonstationary zone beyond 3 4⁄  (see, Kim and Phillips (1999) and Shimotsu and Phillips (2005)). 
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The idea is to estimate (𝐺, 𝑑) by minimizing the objective function 

 

𝑄𝑔(𝐺, 𝑑) =
1

𝑔
∑ [ln(𝐺𝜆𝑗

−2𝑑) +
1

𝐺
𝐼Δ𝑑𝑥𝑡

(𝜆𝑗)]
𝑔
𝑗=1 ,                                                                                            (4) 

 

where 𝐼Δ𝑑𝑥(𝜆𝑗) =
1

2𝜋𝑇
|∑ Δ𝑑𝑥𝑡

𝑇
𝑖=1 exp (𝑖𝜆𝑗𝑡)| is the periodogram of Δ𝑑𝑥𝑡,  Δ𝑑 = (1 − 𝐵)𝑑 and 𝐵 is the lag 

operator. 

 

Concentrating 𝑄𝑚(𝐺, 𝑑) with respect to 𝐺, the estimated value for 𝑑 (�̂�𝐸𝐿𝑊) obtained by means of this method 

is 

 

�̂�𝐸𝐿𝑊 = arg min
𝑑∈[𝑑1,𝑑2]

𝑅(𝑑),                                                                                                                                  (5) 

 

where 𝑑1 and 𝑑2 are the lower and upper bounds of the admissible values of 𝑑 so that −∞ < 𝑑1 < 𝑑2 < ∞. 

Furthermore,  

 

𝑅(𝑑) = 𝑙𝑛 �̂�(𝑑) − 2𝑑
1

𝑔
∑ 𝑙𝑛 𝜆𝑗

𝑔
𝑗=1  and �̂�(𝑑) =

1

𝑔
∑ 𝐼Δ𝑑𝑥𝑡

(𝜆𝑗)
𝑔
𝑗=1 ,                                                               (6) 

 

where 𝑔 is the truncation parameter. This paper considers 𝑔 = 𝑇0.7 (other values for 𝑔 presented similar 

results). The ELW estimator has been shown to be consistent and asymptotically normally distributed. 

 

3.2.4. Two-Step Exact Local Whittle (2SELW) 

 

Shimotsu (2010) propose the Two-Step Exact Local Whittle (2SELW) to accommodate an unknown mean and 

a polynomial time trend. The author showed that the two-step ELW estimator, which is based on a modified 

ELW objective function using a tapered Local Whittle estimator in the first stage, has an 𝑁(0, 1 4⁄ ) asymptotic 

distribution for 𝑑 ∈  (− 1 2⁄ , 2) (or 𝑑 ∈ (−1 2⁄ , 7 4⁄ ) when the data have a polynomial trend). Also, 

Shimotsu (2010) demonstrated that the two-step ELW estimator inherits the desirable properties of the ELW 

estimator. 

 

Following Shimotsu (2010) and Charfeddine and Khediri (2016), two-step ELW estimator (�̂�2𝑆𝐸𝐿𝑊) can be 

obtained by minimization of the objective function: 

 

𝑄𝑔(𝐺𝑆, 𝑑) =
1

𝑔
∑ [ln(𝐺𝑆𝜆𝑗

−2𝑑) +
1

𝐺𝑆
𝐼Δ𝑑(𝑥𝑡−�̂�(𝑑))(𝜆𝑗)]

𝑔
𝑗=1 .                                                                            (7) 
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Then, based on Equation (7), Shimotsu (2010) defined the resulting two-step ELW estimator as 

 

�̂�2𝑆𝐸𝐿𝑊 = arg min
𝑑∈[𝑑1,𝑑2]

𝑅𝑆(𝑑),                                                                                                                              (8) 

 

where 𝑑1 and 𝑑2 are the lower and upper bounds of the admissible values of 𝑑 so that −∞ < 𝑑1 < 𝑑2 < ∞.  

 

Besides,  

 

𝑅𝑆(𝑑) = 𝑙𝑛 �̂�𝑆(𝑑) − 2𝑑
1

𝑔
∑ 𝑙𝑛 𝜆𝑗

𝑔
𝑗=1  and �̂�𝑆(𝑑) =

1

𝑔
∑ 𝐼Δ𝑑(𝑥𝑡−�̂�(𝑑))(𝜆𝑗)

𝑔
𝑗=1 ,                                                (9) 

 

where 𝐼Δ𝑑(𝑥𝑡−�̂�(𝑑))(𝜆𝑗) =
1

2𝜋𝑇
|∑ Δ𝑑(𝑥𝑡 − �̂�(𝑑))𝑇

𝑖=1 exp (𝑖𝜆𝑗𝑡)| is the periodogram of Δ𝑑(𝑥𝑡 − �̂�(𝑑)).  

 

According to Shimotsu (2010), the resulting estimator encounters the difficulty in proving its global 

consistency for certain values of 𝑑. Thus, he applies two-step estimation to circumvent this difficulty. Let  

�̃� denote this first-stage estimator. Then, two-step ELW estimator can be expressed as 

 

�̂�2𝑆𝐸𝐿𝑊 = �̃� −
𝑅𝑠

′(�̃�)

𝑅𝑠
′′(�̃�)

,                                                                                                                                       (10) 

 

where 𝑅𝑆(𝑑) is the objective function defined in Equation (9), ′ and ′′ denote the first and second-order 

derivatives, respectively. Iterating and updating the estimator of Equation (10) can substantially improve its 

finite-sample properties. 

 

This paper considers 𝑔 = 𝑇0.7 (other values for 𝑔 presented similar results). For more details, including the 

estimators of the unknown mean that can be acceptable, see Shimotsu (2010). 

 

4. Results 

 

As previously described, most of the estimates of the fractional parameter 𝑑 were performed using the GPH 

estimator. To ensure the robustness of the results, in some cases, the estimators ELW and 2SELW also are 

used. Furthermore, since the fractionally integrated parameter estimated may vary over time, rolling estimation 

is adopted to capture the time-variation of �̂�. In this way, with the window rolling forward, it is possible to 

verify the evolution of the estimated fractional integration parameter. Since it is impossible to report the 
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estimated parameter (�̂�) for each rolling window, the results are presented through graphical depiction, and 

tables with the annual average and general descriptive statistics. The section is divided into two subsections: 

estimates for returns and estimates for volatilities6. 

 

4.1. Estimates for returns 

 

Firstly, Figures 1 and 2 present time-varying fractional coefficient (�̂�), for the returns of companies with higher 

𝑃/𝐸 and lower 𝑃/𝐸, respectively. Here, GPH is adopted. As can be seen, the parameter �̂� is time varying in 

nature, which is unsurprising. However, in general, for both groups of companies, the estimated value of 𝑑 is 

close to zero and the long-range dependence hypothesis can be rejected, did not find long-memory behaviour 

in the most of the time. Few exceptions occur for the most turbulent period of the COVID-19 pandemic, in 

which the possibility of long-range dependency for the returns of some companies (as instance, CVCB3 and 

BRFS3, from the group with higher 𝑃/𝐸) was not rejected. However, even in these cases, the estimated 

parameter is in the range from 0 to 0.5 (0 < �̂� < 0.5), indicating mean reversion and transitory effects.  

 

Figure 1 – Time-varying fractional parameter (�̂�) using rolling estimation and confidence interval (here, 

GPH is used) for the returns of companies with higher 𝑃/𝐸 

 
Note: 1) In the estimates of 𝑑, 𝑔 = 𝑇0.7 is considered, with 𝑇 equal to the number of observations; and 2) Dashed lines (and red) 

corresponding to 95% confidence interval. 

Source: Own elaboration. 

 
6 For information, Appendix A present the time-varying fractional parameter (�̂�) using rolling estimation and confidence interval 

(GPH is used) for returns and volatility of IBOVESPA index. 
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Figure 2 – Time-varying fractional parameter (�̂�) using rolling estimation and confidence interval (here, 

GPH is used) for the returns of companies with lower 𝑃/𝐸 

 
Note: 1) In the estimates of 𝑑, 𝑔 = 𝑇0.7 is considered, with 𝑇 equal to the number of observations; and 2) Dashed lines (and red) 

corresponding to 95% confidence interval. 

Source: Own elaboration. 

 

In addition, in the Table 3, it is demonstrated the annual average of the time-varying fractional parameter (�̂�) 

for returns (also for companies with higher 𝑃/𝐸 and lower 𝑃/𝐸). It is important to say that in this case, the 

estimators GPH, ELW and 2SELW present similar results. As in Figures 1 and 2, the long-memory hypothesis 

could be rejected in most cases, both considering each year specifically and aggregating all years. Again, in 

the few cases where long-memory behaviour is significant, this behaviour disappears.  

 

Furthermore, Table 4 shows the descriptive statistics of the estimated time-varying long memory parameter 

(�̂�), considering the whole period. The idea is complementary the analysis of long-range dependence for 

returns. It is observed that, although some maximum values are close to 0.5, which occurred during periods of 

turbulence, such as election periods and the COVID-19 pandemic, the medians are very close to zero (medians 

are more interesting than means due to the fact that the estimated parameter �̂� is not normally distributed). In 

addition, even observing the values of the third quartile, the estimated values are still very close to zero. 

 

In general, the results for returns, whether for companies with higher 𝑃/𝐸 or those with lower 𝑃/𝐸, are similar 

to those found in the literature; see, for example, Assaf and Cavalcante (2005), Hull and McGroarty (2014) 

and Bhattacharya, Bhattacharya and Guhathakurta (2018). These authors do not find (or find little evidence) 
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of long memory for return series in emerging markets, including Brazil (estimates for the IBOVESPA index). 

Other works, which took into account several international stock markets, also do not find evidence (or strong 

evidence) of long-memory behaviour, namely: Lo (1991), Jacobsen (1995), Berg and Lyhagen (1998), Crato 

and Ray (2000), Serletis and Rosenberg (2007), Lu and Perron (2010).  

 

Specifically considering the period of the COVID-19 pandemic, the results of this research are in part similar 

to those found by some international works, at least for the returns of some companies. In other words, in some 

cases, there was an increase in persistence (increase in the value of the fractional parameter), but the long 

memory disappears. Gil-Alana and Claudio-Quiroga (2020), for example, considering three financial markets 

in Asia, show that for Japanese stock market (Nikkei 225 index) there is mean reversion and thus transitory 

effects of shocks during the pandemic.  
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Table 3 – Annual average of the time-varying fractional parameter (�̂�) for returns 

 2017 2018 2019 2020 2021 2022 All years 

 GPH CI GPH CI GPH CI GPH CI GPH CI GPH CI GPH CI 

CVCB3 -0.131 (-0.34, 0.07) -0.045 (-0.26, 0.16) -0.039 (-0.24, 0.16) 0.201 (0.00, 0.40) 0.051 (-0.16, 0.26) -0.03 (-0.23, -0.03) 0.001 (-0.20, 0.20) 

BRFS3 -0.095 (-0.35, 0.16) -0.045 (-0.26, 0.17) -0.041 (-0.26, 0.17) 0.303 (0.10, 0.50) -0.037 (-0.25, 0.18) 0.067 (-0.13, 0.07) 0.025 (-0.19, 0.24) 

COGN3 0.025 (-0.2, 0.25) -0.052 (-0.28, 0.18) -0.061 (-0.28, 0.16) 0.032 (-0.17, 0.23) 0.017 (-0.19, 0.22) 0.075 (-0.15, 0.08) 0.006 (-0.21, 0.22) 

UGPA3 -0.061 (-0.27, 0.15) -0.089 (-0.32, 0.14) -0.105 (-0.32, 0.11) 0.127 (-0.08, 0.33) 0.074 (-0.13, 0.27) -0.097 (-0.32, -0.1) -0.025 (-0.24, 0.19) 

NTCO3 0.069 (-0.15, 0.28) -0.065 (-0.30, 0.17) -0.022 (-0.23, 0.19) 0.032 (-0.16, 0.22) -0.097 (-0.28, 0.09) -0.124 (-0.32, -0.12) -0.034 (-0.24, 0.17) 

USIM5 0.013 (-0.2, 0.22) 0.037 (-0.18, 0.25) -0.111 (-0.33, 0.11) 0.039 (-0.18, 0.26) 0.044 (-0.16, 0.25) -0.092 (-0.29, -0.09) -0.011 (-0.22, 0.2) 

TAEE11 -0.096 (-0.32, 0.13) -0.131 (-0.33, 0.06) -0.212 (-0.41, -0.02) 0.001 (-0.19, 0.19) 0.025 (-0.17, 0.22) 0.004 (-0.20, 0.00) -0.068 (-0.27, 0.13) 

PETR4 -0.008 (-0.22, 0.21) 0.182 (-0.02, 0.39) 0.096 (-0.09, 0.28) 0.094 (-0.12, 0.30) -0.009 (-0.2, 0.19) -0.071 (-0.28, -0.07) 0.048 (-0.16, 0.25) 

BBAS3 -0.054 (-0.26, 0.15) 0.012 (-0.22, 0.24) 0.026 (-0.19, 0.24) 0.056 (-0.16, 0.27) -0.061 (-0.26, 0.14) -0.001 (-0.21, 0.00) -0.004 (-0.22, 0.21) 

CMIG4 -0.067 (-0.29, 0.15) -0.071 (-0.28, 0.14) 0.014 (-0.18, 0.2) 0.057 (-0.13, 0.24) -0.018 (-0.21, 0.18) 0.054 (-0.14, 0.05) -0.005 (-0.20, 0.19) 

ELET6 0.041 (-0.15, 0.24) -0.075 (-0.26, 0.11) -0.060 (-0.25, 0.13) 0.081 (-0.09, 0.25) -0.020 (-0.23, 0.19) -0.029 (-0.22, -0.03) -0.010 (-0.20, 0.18) 

EQTL3 -0.117 (-0.34, 0.11) -0.077 (-0.29, 0.14) 0.023 (-0.20, 0.25) 0.035 (-0.16, 0.23) -0.019 (-0.22, 0.19) -0.04 (-0.25, -0.04) -0.033 (-0.25, 0.18) 

 2017 2018 
2017 

2019 2020 2021 2022 All years 

 ELW CI ELW CI ELW CI ELW CI ELW CI ELW CI ELW CI 

CVCB3 -0.147 (-0.29, -0.01) -0.033 (-0.18, 0.11) -0.027 (-0.17, 0.11) 0.179 (0.04, 0.32) 0.029 (-0.11, 0.17) -0.013 (-0.16, -0.01) -0.002 (-0.14, 0.14) 

BRFS3 -0.085 (-0.23, 0.06) -0.052 (-0.19, 0.09) -0.017 (-0.16, 0.13) 0.299 (0.16, 0.44) 0.044 (-0.1, 0.19) 0.073 (-0.07, 0.07) 0.044 (-0.1, 0.19) 

COGN3 -0.033 (-0.17, 0.11) -0.070 (-0.21, 0.07) -0.093 (-0.24, 0.05) 0.037 (-0.11, 0.18) -0.008 (-0.15, 0.13) 0.061 (-0.08, 0.06) -0.018 (-0.16, 0.12) 

UGPA3 -0.065 (-0.21, 0.08) -0.047 (-0.19, 0.1) -0.051 (-0.19, 0.09) 0.087 (-0.05, 0.23) 0.047 (-0.09, 0.19) -0.018 (-0.16, -0.02) -0.008 (-0.15, 0.13) 

NTCO3 0.093 (-0.05, 0.23) -0.016 (-0.16, 0.13) -0.026 (-0.17, 0.12) 0.049 (-0.09, 0.19) -0.083 (-0.23, 0.06) -0.070 (-0.21, -0.07) -0.009 (-0.15, 0.13) 

USIM5 0.022 (-0.12, 0.16) 0.025 (-0.12, 0.17) -0.082 (-0.22, 0.06) 0.035 (-0.11, 0.18) 0.069 (-0.07, 0.21) -0.111 (-0.25, -0.11) -0.007 (-0.15, 0.14) 

TAEE11 -0.122 (-0.26, 0.02) -0.168 (-0.31, -0.03) -0.163 (-0.31, -0.02) 0.015 (-0.13, 0.16) 0.048 (-0.09, 0.19) 0.005 (-0.14, 0.01) -0.064 (-0.21, 0.08) 

PETR4 0.014 (-0.13, 0.16) 0.169 (0.03, 0.31) 0.103 (-0.04, 0.24) 0.103 (-0.04, 0.25) -0.007 (-0.15, 0.13) -0.046 (-0.19, -0.05) 0.056 (-0.09, 0.20) 

BBAS3 -0.053 (-0.20, 0.09) 0.041 (-0.10, 0.18) 0.040 (-0.10, 0.18) 0.033 (-0.11, 0.18) -0.014 (-0.16, 0.13) 0.038 (-0.10, 0.04) 0.014 (-0.13, 0.16) 

CMIG4 -0.017 (-0.16, 0.13) -0.063 (-0.20, 0.08) 0.013 (-0.13, 0.16) 0.061 (-0.08, 0.20) 0.060 (-0.08, 0.20) 0.041 (-0.10, 0.04) 0.016 (-0.13, 0.16) 

ELET6 0.029 (-0.11, 0.17) -0.093 (-0.24, 0.05) -0.042 (-0.18, 0.10) 0.074 (-0.07, 0.22) -0.023 (-0.17, 0.12) -0.006 (-0.15, -0.01) -0.010 (-0.15, 0.13) 

EQTL3 -0.091 (-0.23, 0.05) -0.040 (-0.18, 0.10) 0.032 (-0.11, 0.17) 0.037 (-0.10, 0.18) -0.046 (-0.19, 0.1) -0.059 (-0.20, -0.06) -0.028 (-0.17, 0.11) 

 2017 2018 
2017 

2019 2020 2021 2022 All years 

 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 

CVCB3 -0.117 (-0.26, 0.03) -0.021 (-0.16, 0.12) -0.026 (-0.17, 0.12) 0.167 (0.03, 0.31) 0.002 (-0.14, 0.14) -0.017 (-0.16, -0.02) -0.002 (-0.14, 0.14) 

BRFS3 -0.187 (-0.33, -0.05) -0.061 (-0.20, 0.08) 0.037 (-0.1, 0.18) 0.310 (0.17, 0.45) 0.030 (-0.11, 0.17) 0.072 (-0.07, 0.07) 0.033 (-0.11, 0.18) 

COGN3 -0.054 (-0.20, 0.09) -0.063 (-0.20, 0.08) -0.087 (-0.23, 0.06) 0.040 (-0.10, 0.18) -0.014 (-0.16, 0.13) 0.038 (-0.10, 0.04) -0.023 (-0.17, 0.12) 

UGPA3 -0.075 (-0.22, 0.07) -0.075 (-0.22, 0.07) -0.179 (-0.32, -0.04) 0.078 (-0.06, 0.22) 0.040 (-0.1, 0.18) 0.004 (-0.14, 0.00) -0.035 (-0.18, 0.11) 

NTCO3 0.043 (-0.10, 0.18) -0.016 (-0.16, 0.13) -0.049 (-0.19, 0.09) 0.093 (-0.05, 0.23) -0.238 (-0.38, -0.1) -0.054 (-0.20, -0.05) -0.037 (-0.18, 0.11) 

USIM5 -0.088 (-0.23, 0.05) 0.089 (-0.05, 0.23) -0.082 (-0.22, 0.06) 0.011 (-0.13, 0.15) 0.097 (-0.04, 0.24) -0.096 (-0.24, -0.1) -0.011 (-0.15, 0.13) 

TAEE11 -0.112 (-0.25, 0.03) -0.119 (-0.26, 0.02) -0.114 (-0.26, 0.03) 0.016 (-0.13, 0.16) -0.030 (-0.17, 0.11) -0.009 (-0.15, -0.01) -0.061 (-0.20, 0.08) 

PETR4 0.000 (-0.14, 0.14) 0.163 (0.02, 0.3) 0.078 (-0.06, 0.22) 0.103 (-0.04, 0.24) -0.055 (-0.2, 0.09) -0.042 (-0.18, -0.04) 0.041 (-0.10, 0.18) 

BBAS3 -0.081 (-0.22, 0.06) -0.009 (-0.15, 0.13) 0.050 (-0.09, 0.19) 0.023 (-0.12, 0.17) -0.064 (-0.21, 0.08) 0.031 (-0.11, 0.03) -0.008 (-0.15, 0.13) 

CMIG4 -0.023 (-0.16, 0.12) -0.137 (-0.28, 0.00) 0.002 (-0.14, 0.14) 0.060 (-0.08, 0.2) 0.033 (-0.11, 0.17) 0.035 (-0.11, 0.04) -0.005 (-0.15, 0.14) 

ELET6 0.023 (-0.12, 0.17) -0.146 (-0.29, -0.01) -0.067 (-0.21, 0.08) 0.066 (-0.08, 0.21) -0.122 (-0.26, 0.02) -0.030 (-0.17, -0.03) -0.046 (-0.19, 0.10) 

EQTL3 -0.047 (-0.19, 0.10) -0.089 (-0.23, 0.05) 0.027 (-0.11, 0.17) -0.035 (-0.18, 0.11) -0.089 (-0.23, 0.05) -0.175 (-0.32, -0.18) -0.068 (-0.21, 0.07) 

Source: Own elaboration. 
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Table 4 – Descriptive statistics of the estimated time-varying long memory parameter (�̂�) for returns 

GPH 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median -0.0112 -0.0151 0.0141 -0.0410 -0.0198 -0.0004 -0.0594 0.0554 -0.0056 0.0065 -0.0333 -0.0294 

Mean 0.0012 0.0252 0.0057 -0.0251 -0.0344 -0.0115 -0.0684 0.0476 -0.0038 -0.0052 -0.0101 -0.0326 

Minimum -0.3206 -0.2633 -0.3610 -0.2885 -0.3028 -0.2940 -0.4311 -0.3910 -0.2349 -0.3849 -0.2985 -0.3644 

Maximum 0.5581 0.4850 0.2373 0.3009 0.2821 0.2916 0.1270 0.3241 0.3648 0.2566 0.4271 0.1813 

1. Quartile -0.0987 -0.0931 -0.0530 -0.1100 -0.1106 -0.0803 -0.1376 -0.0713 -0.0717 -0.0715 -0.0860 -0.0961 

3. Quartile 0.0667 0.0825 0.0711 0.0840 0.0342 0.0545 0.0179 0.1693 0.0562 0.0625 0.0452 0.0324 

Variance 0.0182 0.0266 0.0077 0.0131 0.0094 0.0096 0.0120 0.0207 0.0074 0.0080 0.0115 0.0076 

Stdev 0.1350 0.1630 0.0879 0.1144 0.0971 0.0982 0.1095 0.1438 0.0862 0.0896 0.1072 0.0873 

Skewness 0.5931 0.9059 -0.3850 0.0546 -0.1389 -0.2700 -0.6767 -0.1073 0.1771 -0.4323 0.8214 -0.2106 

Kurtosis 0.1111 -0.2219 0.0193 -1.0053 -0.3257 -0.2468 0.1751 -0.8395 -0.0312 0.1488 0.4486 -0.2893 

JB 88.062 206.45 36.798 62.933 11.204 21.740 115.55 46.155 7.821 47.791 180.03 16.047 

ELW 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median -0.0008 0.0038 -0.0160 -0.0241 0.0013 0.0039 -0.0656 0.0320 0.0242 0.0389 -0.0222 -0.0464 

Mean -0.0021 0.0436 -0.0180 -0.0078 -0.0087 -0.0067 -0.0642 0.0561 0.0140 0.0160 -0.0104 -0.0278 

Minimum -0.2665 -0.1619 -0.1935 -0.1692 -0.2278 -0.2106 -0.2446 -0.3106 -0.2164 -0.1751 -0.2053 -0.3066 

Maximum 0.5383 0.4291 0.2277 0.1831 0.2373 0.2285 0.1395 0.4296 0.3797 0.2479 0.4332 0.1866 

1. Quartile -0.0803 -0.0677 -0.0786 -0.0617 -0.0723 -0.0715 -0.1543 -0.0395 -0.0167 -0.0466 -0.0680 -0.0850 

3. Quartile 0.0384 0.0957 0.0509 0.0520 0.0574 0.0525 0.0320 0.1280 0.0477 0.0786 0.0391 0.0425 

Variance 0.0152 0.0206 0.0056 0.0049 0.0074 0.0069 0.0093 0.0147 0.0032 0.0052 0.0069 0.0054 

Stdev 0.1232 0.1435 0.0752 0.0700 0.0862 0.0830 0.0962 0.1212 0.0569 0.0719 0.0830 0.0736 

Skewness 0.4931 1.0407 0.0175 0.4175 -0.1101 -0.0858 -0.0358 0.2491 -0.0880 -0.4844 0.8801 0.1104 

Kurtosis 0.0583 -0.0391 -0.7618 -0.9709 -0.5292 -0.5008 -1.5774 -0.8329 3.2550 -0.7863 1.1146 -0.6517 

JB 60.550 268.69 35.697 101.22 20.117 17.134 153.90 58.015 660.89 96.165 269.723 29.051 

2SELW 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median -0.0024 0.0110 -0.0239 -0.0261 -0.0048 -0.0178 -0.0655 0.0311 0.0226 0.0290 -0.0374 -0.0490 

Mean -0.0019 0.0335 -0.0235 -0.0348 -0.0368 -0.0114 -0.0614 0.0412 -0.0083 -0.0049 -0.0458 -0.0679 

Minimum -0.4950 -0.5426 -0.2356 -0.5326 -0.5510 -0.4900 -0.5343 -0.4883 -0.5231 -0.4926 -0.4999 -0.5484 

Maximum 0.4614 0.4598 0.2058 0.3463 0.4538 0.5205 0.1435 0.4103 0.4466 0.2399 0.4506 0.3042 

1. Quartile -0.0750 -0.0585 -0.0773 -0.0729 -0.0849 -0.0858 -0.1140 -0.0481 -0.0255 -0.0543 -0.0968 -0.1045 

3. Quartile 0.0393 0.1011 0.0394 0.0640 0.0565 0.0502 0.0307 0.1263 0.0485 0.0711 0.0423 0.0296 

Variance 0.0146 0.0345 0.0058 0.0204 0.0253 0.0212 0.0113 0.0180 0.0118 0.0121 0.0194 0.0224 

Stdev 0.1206 0.1856 0.0761 0.1427 0.1591 0.1454 0.1065 0.1341 0.1088 0.1101 0.1393 0.1497 

Skewness 0.1901 -0.1672 -0.1653 -1.5259 -1.2236 0.9033 -1.4374 -0.3631 -2.0656 -1.9860 -0.9352 -1.1713 

Kurtosis 1.0951 1.2291 -0.5550 3.5086 2.1736 3.1783 3.6955 0.6971 5.9806 5.0964 2.2580 1.8985 

JB 83.914 101.28 25.609 1343.0 665.54 830.68 1361.5 63.188 3280.3 2592.1 534.33 564.84 

Source: Own elaboration. 

 

4.2. Estimates for volatilities 

 

This subsection presents the results for volatilities (as previously described, here represented by square 

returns). In Figures 3 and 4 is possible to see the time-varying fractional coefficient (�̂�), for the volatilities 
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of companies with higher 𝑃/𝐸 and lower 𝑃/𝐸, respectively (GPH is used). As in the case of returns, note 

that the fractional parameter also varies with time. However, for volatility there is a substantial difference. 

In many cases, the estimated parameter is far from zero and it is statistically significant, that is, the long-

range dependence hypothesis cannot be rejected. Thus, in some periods there is long-memory behavior. 

Specifically, these requests correspond to times of turmoil, whether internal to the Brazilian economy 

(presidential elections, cases of corruption or political interference in companies linked to the government, 

for example), or external, such as the recent crisis generated by the COVID-19 pandemic. Import to say that 

during COVID-19 pandemic the estimated parameter �̂� reached significant values between 0.5 and 1 (0.5 ≤

�̂� < 1), revealing periods in which volatility did not show stationary covariance, but with men reversion; the 

long-range dependence is transitory and disappears. 

 

Figure 5 – Time-varying fractional parameter (�̂�) using rolling estimation and confidence interval for 

volatilities of companies with higher 𝑃/𝐸 (here, GPH is used) 

 
Note: 1) In the estimates of 𝑑, 𝑔 = 𝑇0.7 is considered, with 𝑇 equal to the number of observations; and 2) Dashed lines (and red) 

corresponding to 95% confidence interval. 

Source: Own elaboration. 
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Figure 6 – Time-varying fractional parameter (�̂�) using rolling estimation and confidence interval for 

volatilities of companies with lower 𝑃/𝐸 (here, GPH is used) 

 
Note: 1) In the estimates of 𝑑, 𝑔 = 𝑇0.7 is considered, with 𝑇 equal to the number of observations; and 2) Dashed lines (and red) 

corresponding to 95% confidence interval. 

Source: Own elaboration. 

 

Table 5 presents the annual average of the time-varying fractional parameter (�̂�) for volatilities (also for 

companies with higher 𝑃/𝐸 and lower 𝑃/𝐸). The results here are similar to those found for Figures 5 and 6, 

even using different estimators (GPH, ELX and 2SELW). Looking at the annual averages, more periods with 

long memory behavior are observed than in the case of returns, but, again, the highlight is the year 2020, 

which presented the highest estimated values (�̂�) for the fractional parameter, again, due to the COVID-19 

pandemic. Still looking at Figures 3 and 4 and Table 6, it can be seen that, even with the strong increase in 

persistence in 2020, already in 2021, for several companies, there was a reduction in the magnitude of the 

value of the fractional parameter, making are even statistically insignificant. At the latest, such a reduction 

and non-significance occurred in the year 2022. 

 

In Table 6 are demonstrated the descriptive statistics of the estimated time-varying long memory parameter 

(�̂�), for volatilities, considering the whole period. One can observe much higher median values than for the 

returns, and, in relation to the maximum value of the fractional parameter, for almost all companies, it 

presented a result higher than 0.5 (0.5 ≤ �̂� < 1), again, largely due to the pandemic of the COVID-19. For 
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some estimators, values were even greater than unity (�̂� > 1). The third quartile also showed expressive 

values, and they are higher than those observed for returns. 

 

In summary, for both groups of companies, the results seem to reveal that, in periods of turbulence, whether 

internal or external to the Brazilian economy, volatility presents a significant long-memory behaviour, while 

in periods of non-turbulence, the behaviour does not exist (since the estimated parameter was not significant 

in most periods of non-turbulence.) Also, while for returns, only for a few companies and periods, there is a 

long-range dependence during the COVID-19 pandemic, in the case of volatility, the COVID-19 pandemic 

heightens the level of persistence. The results of this research are in line with some works that find evidence 

of persistence in volatility in some financial markets, especially in periods of turmoil (see Ding, Granger and 

Engle (1993); Bollerslev and Mikkelsen (1996); Baillie, Bollerslev and Mikkelsen (1996); Breidt, Crato and 

Lima (1998); Crato and Ray (2000); Caporale, Gil-Alana and Plastun (2018), among others).  

 

As described previously, according to Engle (1982) and Bollerslev (1986), the volatility of financial returns 

may present a strong autocorrelation structure. To Bhattacharya, Bhattacharya and Guhathakurta (2018), 

there is a consensus that long memory is a characteristic of asset price volatility, which does not occur in the 

case of asset returns. Hull and McGroarty (2014), under study for 22 financial markets (advanced and 

secondary emerging markets), including Brazil, find strong evidence of long memory persistence in volatility 

over time. Furthermore, the authors found weak evidence of long memory in returns. 
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Table 5 – Annual average of the time-varying fractional parameter (�̂�) for volatilities 

 2017 2018 2019 2020 2021 2022 All years 

 GPH CI GPH CI GPH CI GPH CI GPH CI GPH CI GPH CI 

CVCB3 0.128 (-0.01, 0.27) 0.364 (0.17, 0.56) 0.241 (0.06, 0.42) 0.527 (0.42, 0.64) 0.275 (0.08, 0.47) 0.160 (-0.04, 0.16) 0.283 (0.11, 0.45) 

BRFS3 0.062 (-0.14, 0.27) 0.080 (-0.03, 0.19) -0.006 (-0.19, 0.17) 0.595 (0.42, 0.77) 0.160 (-0.03, 0.35) 0.060 (-0.12, 0.06) 0.159 (-0.01, 0.33) 

COGN3 0.039 (-0.16, 0.24) 0.068 (-0.12, 0.25) 0.056 (-0.13, 0.24) 0.518 (0.36, 0.67) 0.317 (0.13, 0.51) 0.056 (-0.14, 0.06) 0.176 (-0.01, 0.36) 

UGPA3 0.009 (-0.19, 0.21) 0.061 (-0.14, 0.26) 0.084 (-0.13, 0.29) 0.440 (0.34, 0.54) 0.269 (0.10, 0.44) 0.105 (-0.09, 0.11) 0.161 (-0.02, 0.34) 

NTCO3 -0.045 (-0.23, 0.14) 0.007 (-0.21, 0.23) 0.076 (-0.13, 0.28) 0.279 (0.18, 0.38) 0.083 (-0.07, 0.24) 0.026 (-0.16, 0.03) 0.071 (-0.1, 0.25) 

USIM5 0.166 (-0.03, 0.37) 0.106 (-0.11, 0.33) 0.222 (0.02, 0.42) 0.465 (0.26, 0.67) 0.206 (-0.01, 0.42) 0.231 (0.02, 0.23) 0.233 (0.02, 0.44) 

TAEE11 0.289 (0.11, 0.47) 0.037 (-0.15, 0.23) 0.100 (-0.10, 0.30) 0.260 (0.15, 0.38) 0.055 (-0.06, 0.17) 0.090 (-0.1, 0.09) 0.139 (-0.03, 0.31) 

PETR4 0.018 (-0.17, 0.20) 0.443 (0.29, 0.60) 0.397 (0.19, 0.61) 0.325 (0.18, 0.47) 0.088 (-0.01, 0.19) 0.065 (-0.12, 0.07) 0.223 (0.06, 0.39) 

BBAS3 0.046 (-0.06, 0.16) 0.156 (0.01, 0.31) 0.307 (0.13, 0.48) 0.474 (0.31, 0.64) 0.190 (0.05, 0.33) 0.176 (-0.01, 0.18) 0.225 (0.07, 0.38) 

CMIG4 0.025 (-0.11, 0.16) 0.004 (-0.15, 0.16) 0.186 (0.03, 0.34) 0.355 (0.25, 0.46) 0.098 (-0.08, 0.28) 0.071 (-0.14, 0.07) 0.123 (-0.03, 0.28) 

ELET6 0.092 (-0.06, 0.24) 0.063 (-0.09, 0.21) 0.244 (0.06, 0.43) 0.569 (0.41, 0.72) 0.191 (0.01, 0.38) 0.111 (-0.10, 0.11) 0.212 (0.04, 0.39) 

EQTL3 0.122 (-0.09, 0.33) 0.219 (0.02, 0.41) 0.118 (-0.11, 0.34) 0.537 (0.39, 0.69) 0.278 (0.09, 0.46) 0.131 (-0.08, 0.13) 0.234 (0.04, 0.43) 

 2017 2018 

2017 
2019 2020 2021 2022 All years 

 ELW CI ELW CI ELW CI ELW CI ELW CI ELW CI ELW CI 

CVCB3 0.144 (0.01, 0.29) 0.349 (0.21, 0.49) 0.223 (0.08, 0.36) 0.541 (0.40, 0.68) 0.280 (0.14, 0.42) 0.144 (0.01, 0.14) 0.280 (0.14, 0.42) 

BRFS3 0.035 (-0.11, 0.18) 0.077 (-0.06, 0.22) -0.018 (-0.16, 0.12) 0.570 (0.43, 0.71) 0.167 (0.03, 0.31) 0.051 (-0.09, 0.05) 0.147 (0.01, 0.29) 

COGN3 0.095 (-0.05, 0.24) 0.086 (-0.06, 0.23) 0.077 (-0.06, 0.22) 0.490 (0.35, 0.63) 0.251 (0.11, 0.39) 0.068 (-0.07, 0.07) 0.178 (0.04, 0.32) 

UGPA3 0.050 (-0.09, 0.19) 0.104 (-0.04, 0.25) 0.147 (0.01, 0.29) 0.456 (0.31, 0.6) 0.269 (0.13, 0.41) 0.086 (-0.06, 0.09) 0.186 (0.04, 0.33) 

NTCO3 0.005 (-0.14, 0.15) 0.073 (-0.07, 0.21) 0.092 (-0.05, 0.23) 0.285 (0.14, 0.43) 0.094 (-0.05, 0.24) 0.057 (-0.08, 0.06) 0.101 (-0.04, 0.24) 

USIM5 0.156 (0.01, 0.30) 0.115 (-0.03, 0.26) 0.192 (0.05, 0.33) 0.405 (0.26, 0.55) 0.187 (0.05, 0.33) 0.230 (0.09, 0.23) 0.214 (0.07, 0.36) 

TAEE11 0.272 (0.13, 0.41) 0.057 (-0.08, 0.20) 0.077 (-0.06, 0.22) 0.248 (0.11, 0.39) 0.073 (-0.07, 0.21) 0.087 (-0.05, 0.09) 0.136 (-0.01, 0.28) 

PETR4 0.106 (-0.04, 0.25) 0.454 (0.31, 0.6) 0.392 (0.25, 0.53) 0.342 (0.2, 0.48) 0.110 (-0.03, 0.25) 0.053 (-0.09, 0.05) 0.243 (0.10, 0.38) 

BBAS3 0.104 (-0.04, 0.25) 0.148 (0.01, 0.29) 0.277 (0.14, 0.42) 0.466 (0.32, 0.61) 0.199 (0.06, 0.34) 0.170 (0.03, 0.17) 0.227 (0.09, 0.37) 

CMIG4 0.049 (-0.09, 0.19) 0.045 (-0.10, 0.19) 0.188 (0.05, 0.33) 0.348 (0.21, 0.49) 0.125 (-0.02, 0.27) 0.069 (-0.07, 0.07) 0.138 (0.01, 0.28) 

ELET6 0.118 (-0.02, 0.26) 0.053 (-0.09, 0.19) 0.220 (0.08, 0.36) 0.538 (0.40, 0.68) 0.187 (0.05, 0.33) 0.068 (-0.07, 0.07) 0.198 (0.06, 0.34) 

EQTL3 0.143 (0.01, 0.28) 0.168 (0.03, 0.31) 0.055 (-0.09, 0.2) 0.506 (0.36, 0.65) 0.243 (0.10, 0.38) 0.124 (-0.02, 0.12) 0.206 (0.07, 0.35) 

 2017 2018 

2017 
2019 2020 2021 2022 All years 

 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 2SELW CI 

CVCB3 0.145 (0.01, 0.29) 0.349 (0.21, 0.49) 0.170 (0.03, 0.31) 0.505 (0.36, 0.65) 0.287 (0.15, 0.43) -0.002 (-0.14, 0.00) 0.243 (0.1, 0.38) 

BRFS3 0.038 (-0.10, 0.18) 0.054 (-0.09, 0.2) -0.027 (-0.17, 0.11) 0.494 (0.35, 0.63) 0.090 (-0.05, 0.23) 0.060 (-0.08, 0.06) 0.118 (-0.02, 0.26) 

COGN3 0.027 (-0.11, 0.17) 0.093 (-0.05, 0.23) 0.066 (-0.08, 0.21) 0.405 (0.26, 0.55) 0.155 (0.01, 0.30) 0.069 (-0.07, 0.07) 0.136 (-0.01, 0.28) 

UGPA3 -0.011 (-0.15, 0.13) 0.097 (-0.04, 0.24) 0.135 (-0.01, 0.28) 0.416 (0.27, 0.56) 0.285 (0.14, 0.43) 0.085 (-0.06, 0.08) 0.168 (0.03, 0.31) 

NTCO3 0.009 (-0.13, 0.15) 0.072 (-0.07, 0.21) 0.067 (-0.07, 0.21) 0.259 (0.12, 0.4) 0.008 (-0.13, 0.15) 0.064 (-0.08, 0.06) 0.080 (-0.06, 0.22) 

USIM5 0.040 (-0.10, 0.18) 0.114 (-0.03, 0.26) 0.176 (0.03, 0.32) 0.310 (0.17, 0.45) 0.022 (-0.12, 0.16) 0.121 (-0.02, 0.12) 0.130 (-0.01, 0.27) 

TAEE11 0.271 (0.13, 0.41) 0.045 (-0.10, 0.19) 0.079 (-0.06, 0.22) 0.367 (0.23, 0.51) 0.106 (-0.04, 0.25) 0.080 (-0.06, 0.08) 0.158 (0.02, 0.30) 

PETR4 0.098 (-0.04, 0.24) 0.368 (0.23, 0.51) 0.340 (0.20, 0.48) 0.320 (0.18, 0.46) 0.111 (-0.03, 0.25) -0.044 (-0.19, -0.04) 0.199 (0.06, 0.34) 

BBAS3 0.108 (-0.03, 0.25) 0.142 (0.01, 0.28) 0.276 (0.13, 0.42) 0.394 (0.25, 0.54) 0.125 (-0.02, 0.27) 0.152 (0.01, 0.15) 0.200 (0.06, 0.34) 

CMIG4 0.121 (-0.02, 0.26) 0.048 (-0.09, 0.19) 0.142 (0.00, 0.28) 0.338 (0.20, 0.48) 0.096 (-0.05, 0.24) 0.067 (-0.07, 0.07) 0.136 (-0.01, 0.28) 

ELET6 0.114 (-0.03, 0.26) 0.050 (-0.09, 0.19) 0.186 (0.04, 0.33) 0.454 (0.31, 0.60) 0.110 (-0.03, 0.25) 0.068 (-0.07, 0.07) 0.164 (0.02, 0.31) 

EQTL3 0.129 (-0.01, 0.27) 0.154 (0.01, 0.30) -0.019 (-0.16, 0.12) 0.406 (0.26, 0.55) 0.093 (-0.05, 0.23) 0.120 (-0.02, 0.12) 0.147 (0.01, 0.29) 

Source: Own elaboration. 
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Table 6 – Descriptive statistics of the estimated time-varying long memory parameter (�̂�) for volatilities 

GPH 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median 0.2330 0.0790 0.1276 0.1035 0.0515 0.2223 0.0785 0.1245 0.1976 0.0879 0.1380 0.1715 

Mean 0.2828 0.1589 0.1757 0.1614 0.0710 0.2326 0.1387 0.2229 0.2248 0.1233 0.2119 0.2343 

Minimum -0.2486 -0.2187 -0.3220 -0.2170 -0.2124 -0.1587 -0.2000 -0.2360 -0.0920 -0.2662 -0.1217 -0.1782 

Maximum 0.8174 0.9348 0.7517 0.5779 0.4065 0.8229 0.7552 0.7534 0.7901 0.4258 0.9708 0.8656 

1. Quartile 0.1281 0.0332 -0.0055 0.0408 -0.0209 0.0895 0.0032 0.0388 0.1161 0.0098 0.0630 0.0974 

3. Quartile 0.4127 0.1057 0.2511 0.2382 0.1253 0.3211 0.1571 0.2914 0.3375 0.2262 0.2805 0.3088 

Variance 0.0438 0.0652 0.0582 0.0351 0.0178 0.0321 0.0411 0.0672 0.0332 0.0253 0.0523 0.0427 

Stdev 0.2092 0.2554 0.2412 0.1874 0.1335 0.1792 0.2028 0.2591 0.1822 0.1590 0.2287 0.2067 

Skewness 0.4395 1.5297 0.8895 0.7500 0.5775 0.4682 1.5611 0.8706 0.3930 0.4630 1.1330 1.0350 

Kurtosis -0.6720 0.9126 -0.1192 -0.3396 -0.3976 -0.5527 1.4651 -0.5013 -0.5856 -0.7971 0.3285 0.1441 

JB 75.571 632.41 197.05 146.47 92.306 73.035 738.29 203.32 59.280 92.17 325.24 267.03 

ELW 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median 0.2268 0.0597 0.1173 0.1294 0.0804 0.1806 0.0747 0.1102 0.1932 0.0919 0.1366 0.1516 

Mean 0.2802 0.1472 0.1779 0.1856 0.1012 0.2142 0.1359 0.2433 0.2273 0.1376 0.1976 0.2065 

Minimum -0.2497 -0.3978 -0.3965 -0.3304 -0.4071 -0.2965 -0.3436 -0.4227 -0.3618 -0.3778 -0.3061 -0.2286 

Maximum 0.8628 0.9087 0.9489 1.6732 1.0362 0.7490 0.7517 1.0896 1.8146 0.7876 1.0995 1.0170 

1. Quartile 0.1444 0.0237 0.0504 0.0839 0.0201 0.1006 0.0418 0.0661 0.1250 0.0293 0.0579 0.0742 

3. Quartile 0.3692 0.0983 0.1757 0.2194 0.1131 0.2879 0.1434 0.2807 0.3058 0.2103 0.2352 0.2244 

Variance 0.0352 0.0602 0.0395 0.0295 0.0131 0.0188 0.0274 0.0605 0.0266 0.0186 0.0428 0.0342 

Stdev 0.1876 0.2454 0.1988 0.1717 0.1144 0.1371 0.1655 0.2459 0.1631 0.1365 0.2068 0.1850 

Skewness 0.8162 1.5563 1.3798 1.4537 1.4257 0.7597 1.6685 1.0343 1.5469 0.7303 1.3216 1.3127 

Kurtosis -0.3830 0.9812 0.7167 4.3605 4.1250 -0.1339 1.7728 -0.3385 7.7677 0.0149 0.8799 0.7335 

JB 174.11 660.86 504.36 1705.9 1561.8 144.170 886.292 272.22 4340.7 132.28 481.67 461.09 

2SELW 

  CVCB3 BRFS3 COGN3 UGPA3 NTCO3 USIM5 TAEE11 PETR4 BBAS3 CMIG4 ELET6 EQTL3 

Median 0.2175 0.0599 0.0988 0.1221 0.0753 0.1130 0.0827 0.1030 0.1633 0.0897 0.1125 0.1176 

Mean 0.2429 0.1181 0.1358 0.1680 0.0798 0.1304 0.1581 0.1993 0.1997 0.1356 0.1639 0.1473 

Minimum -0.4858 -0.4327 -0.3217 -0.4884 -0.4984 -0.2632 -0.2369 -0.4732 -0.1330 -0.2134 -0.2082 -0.3449 

Maximum 0.6682 0.9927 0.6567 0.6025 0.3950 0.4898 1.1261 0.9348 0.5761 0.6780 0.8861 0.6798 

1. Quartile 0.0982 0.0182 0.0372 0.0749 0.0177 0.0625 0.0442 0.0567 0.0985 0.0237 0.0478 0.0552 

3. Quartile 0.3684 0.1038 0.1455 0.2069 0.1110 0.1926 0.1491 0.2814 0.2790 0.2070 0.1923 0.1923 

Variance 0.0558 0.0526 0.0384 0.0343 0.0173 0.0291 0.0427 0.0630 0.0232 0.0232 0.0360 0.0361 

Stdev 0.2362 0.2293 0.1959 0.1852 0.1317 0.1707 0.2067 0.2510 0.1523 0.1524 0.1898 0.1901 

Skewness -0.2424 1.6740 1.2606 0.2701 -0.1953 0.1967 1.9611 0.5954 0.7823 0.7193 1.6017 0.7757 

Kurtosis 0.4773 2.3549 1.5088 0.9847 1.7480 -0.0080 4.0714 0.6531 -0.1877 0.0208 1.8720 1.3983 

JB 28.941 1040.21 536.12 78.743 199.92 9.5901 1984.23 114.71 153.86 128.36 854.60 271.23 

Source: Own elaboration. 

 

5. General considerations 

 

The focus of this research is to verify whether there is short or long memory behaviour in returns and 

volatilities and whether the behaviour is similar for two groups of companies listed on IBOVESPA: higher 
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and lower price-earnings (𝑃/𝐸) ratios in December 2019. It is considered the period from 01 January, 2016 

to 31 December, 2022. The fractionally integrated parameter (𝑑) is used to check if there is long-range 

dependence or not. Firstly, the GPH estimator is adopted in all estimates. To ensure the robustness of the 

results, in some estimates, two other estimators are used: ELW and 2SELW. Furthermore, since the estimated 

fractionally integrated parameter may vary over time, rolling estimation is used to capture the time-variation 

of �̂� . 

 

The results reveal that: i) for returns, the estimates seem to reveal a behaviour of non-persistence and, even 

in the few cases of statistically significant persistence, as in the COVID-19 pandemic, most of the time, the 

long-memory is transitory and disappears; ii) for volatility, there is a substantial difference. In some cases, 

the estimated parameter is far from zero and it is statistically significant, that is, the long-range dependence 

hypothesis cannot be rejected. Then, in some periods there is long-memory behaviour. Specifically, these 

requests correspond to times of turmoil, whether internal to the Brazilian economy (presidential elections, 

cases of corruption or political interference in companies linked to the government, for example), or external, 

such as the recent crisis generated by the COVID-19 pandemic. During COVID-19 pandemic the estimated 

parameter �̂� reached significant values between 0.5 and 1 (0.5 ≤ �̂� < 1), revealing periods in which 

volatility did not show stationary covariance; and iii) moreover, even in periods of possible above-average 

returns (as described by the literature contrary to the HME), as the COVID-19 pandemic, this is not possible 

without the investor incurs above-average risks. 

  

In additon, for returns e volatilities, the results are very similar for both groups of companies (higher 𝑃/𝐸 or 

lower 𝑃/𝐸). The long-memory behaviour, when occurs, is not constant over time, transitory and disappears. 

Thus, the hypothesis of this research is confirmed. Especially for volatility, there seems to be a cyclical 

pattern of efficiency/inefficiency, with inefficiency arising from periods of negative turbulence (internal or 

external to the Brazilian economy). However, in all cases, there is a convergence towards efficiency, which 

can be explained, for example, by the increase in computational capacity and the speed at which information 

is disseminated to agents (Santos, Fávero, Brugni and Serra, 2023). 

 

Therefore, two main considerations can be derived from the results, and it may be said that they are in line 

with the authors who claim that AMH can reconcile EMH with all its behavioural alternatives: i) one of the 

practical implications of the AMH is that the profit opportunities arise from time to time depending on the 
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degree of market efficiency and according to market conditions. This can be seen for some periods, especially 

for volatility; and ii) as previously described, to Malkiel (2003), some market participants are demonstrably 

less than rational. Thus, pricing irregularities and even predictable patterns in stock returns can appear over 

time and even persist for short periods. However, to author, the end result will not be the abandonment of 

the belief of many in the profession that the stock market is remarkably efficient in the use of information. 

Furthermore, as previously described, Malkiel (2003) states that efficient financial markets are those that do 

not allow investors to earn above-average returns without accepting above-average risks. In this study, 

especially for volatility, there is great persistence in moments of negative turbulence, but with transitory 

persistence. 

 

A possible extension of this study is to analyse market efficiency for other groups of companies, considering 

some sectors, for example, or even using other metrics to separate groups, such as the size of dividend yields. 

Another extension of this work could be to investigate market efficiency for different frequencies (e.g., 

weekly and monthly). In addition, check for possible structural changes (structural breaks) in the time-

varying estimated fractional parameter (�̂�). 
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Appendix A 

 

Figure 1A – Time-varying fractional parameter (�̂�) using rolling estimation and confidence interval (here, 

GPH is used) for returns and volatility of IBOVESPA 

 

Source: Own elaboration. 

 

 

 


