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Abstract: The control process of a nonlinear robotic system is a complex task that has been the subject of 
study in the literature. The ability to identify a dynamic system of a Piecewise Constant Curvature Soft 
Robot (PCC) with respect to the robot's trajectory over time has shown potential to improve when 
applying Machine Learning techniques, which positively affects the ability to control the system. In this 
work, both a state-space-based neural network approach and a Long Short-Term Memory (LSTM) 
approach are proposed to verify their potential in predicting sequential time series data using simulated 
PCC trajectory datasets. The results provide a comparison between the two proposed models’ 
performances, presenting positive findings for both approaches, and basis for future studies and 
applications.  
Keywords: Control. Soft robot. Neural Network. System Identification. 
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1. Introduction 
 

The control and identification of dynamic 

systems in Soft Robots have been widely studied 

due to their complexity and potential 

applications. A frequent modeling approach is 

the Piecewise Constant Curvature (PCC) model, 

which simplifies continuous dynamics by 

segmenting the robot into constant-curvature 

parts. Despite its efficiency, this model faces 

challenges due to system nonlinearity and 

real-world factors like resistance forces [1,6], 

making robust identification methods essential 

[3].​

​ Since soft robotic manipulators follow 

time-sequenced positions, the problem is 

inherently sequential, which aligns with the 

strengths of machine learning methods, 

especially Recurrent Neural Networks (RNNs) 

[4]. Within this category, Long Short-Term 

Memory (LSTM) networks have proven 

effective in identifying complex systems [5].​

In parallel, state-space-based neural networks 

have also shown promising results in data-driven 

modeling of dynamic systems [7]. A 

complementary approach involves state-space 

modeling with L-BFGS-B optimization to 

identify linear and nonlinear systems, notably in 

industrial robotics, integrating L1 and 

group-Lasso regularizations to handle nonlinear 

complexity [6].​

​ This study contributes to the state of the 

art by exploring both state-space-based neural 

networks and LSTM techniques to identify a 

nonlinear two-segment Soft Robot manipulator. 

The identification is based on sequential time 

series data derived from a simulated 3D 

trajectory using the PCC model. The objective is 

to assess how well each technique captures the 

manipulator's dynamics and to analyze their 
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performance based on the results.​

​ This work contributes mainly with 

literature review proposed approaches, 

state-space-based neural Network and LSTM for 

soft robot dynamic system identification, and 

provides a comparative discussion of the results.​

​ This work has 4 sections. Section 2 

presents the methodology used to structure the 

experiments and resulting analyses. Section 3 

explores and discusses the results and Section 4 

presents a final conclusion. 

2. Methodology 

In this section, the implementation method used 

for both approaches is presented. ​

 

2.1 Approach Using LSTM 

 

As mentioned, due to its proven effectiveness 

for time-series prediction problems, the LSTM 

approach was investigated in this work. 

The data collection was gathered based 

on the trajectory simulation of a 2-segment Soft 

Robot manipulator. The trajectory was obtained 

by numerically solving an ODE (Equation 1) 

based on a PCC model [6] that described the 

dynamics and kinematics of the system.  

 

   (1) 𝑀(𝑞) 𝑞̈ +  𝐶(𝑞, 𝑞̇) 𝑞̇ + 𝐷𝑞̇ + 𝐾𝑞 = τ  

 

where: is the vector of generalized 𝑞 ∈ ℝ𝑛 

coordinates (the curvatures of the segments).

 is the configuration-dependent 𝑀(𝑞) ∈ ℝ𝑛×𝑛

mass-inertia matrix;  is the 𝐶(𝑞,  𝑞̇) ∈ ℝ𝑛×𝑛

matrix of Coriolis and centrifugal forces;

  is the material damping matrix;𝐷 ∈ ℝ𝑛×𝑛

  is the material stiffness matrix;𝐾 ∈ ℝ𝑛×𝑛

  is the vector of actuation torques τ ∈ ℝ𝑛×𝑛

applied to the system.​

​ The simulated robot consists of two 

segments, each with a length of 0.1036 m and a 

mass of 1.0 kg, operating exclusively in the 

negative Z region of Cartesian space. The 

experiment involves a sequence of movements 

generated by the PCC model over defined 

timesteps, with the goal of predicting the next 

set of manipulator actions. The dataset includes 

4 input values representing applied torque and 

12 output values corresponding to the x, y, and z 

coordinates of 4 marker points along the 

manipulator, as shown in Figure 1. 

 

Figure 1. LSTM prediction on a simulation 

frame compared to the ground truth (PCC 

model). 

​
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The hyperparameters used to train the 

LSTM model are listed at Table 1. In order to 

obtain the dataset, it was necessary to input 

initial values for the curvature angle ( ) and the θ

azimuthal angle ( ) as well as the torque ( ) φ τ

applied to the robot.​

 

Table 1. Summary of training parameters for the 

LSTM-based model. 

Parameter Value 

Scaler range [−1, 1] 

Time steps 500 

 (Dense layer size) 𝑛
𝑑𝑒𝑛𝑠𝑒 800 

Epochs 200 

 (Minimum learning rate) η
𝑚𝑖𝑛 5 × 10−5 

Decay factor 0.2 

LSTM units 256 

Batch size 500 

Stateful TRUE 

Return sequences TRUE 

Dropout 0.2 

 

Figure 2 presents a sample of dataset 

values throughout time where the upper plot 

represents the  values applied to the system and τ

the lower plot represents the end-effector marker 

point output trajectory. 

Tests were carried out using training 

datasets ranging from 12,000 to 64,000 samples 

with static hyperparameters to determine the 

optimal data volume for training the LSTM 

model.​

​ The data was normalized according to 

the scaler range in Table 1, and a grid search 

was performed to minimize validation loss and 

improve the R²-score. The test dataset was fixed 

at 2,000 samples to ensure consistent evaluation 

of training set size effects. The model’s 

prediction effectiveness was also assessed. 

 

Figure 2. Dataset sample chart (500 timesteps).​

 

 

 

 

 

 

 

 

 

In the LSTM approach, the input phase 

specifies the data format, including batch size, 

number of features, and time steps to align with 

the training structure. The LSTM phase 

processes the time series using a set number of 

LSTM cells possibly stacked and a tanh 

activation function for cell state updates, 

allowing the network to learn temporal patterns 

and internal states. 

The dense phase uses a fully connected 

layer with 20% dropout and a ReLU activation 

function to introduce non-linearity, prevent 

vanishing gradients, and enforce non-negative 

outputs. The compiler phase sets the loss 

functions (mse and mae), the Adam optimizer, 

and the R²-score as the evaluation metric. Lastly, 
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the output phase produces a multi-step sequence 

of predicted robot positions, increasing the 

complexity of the task. 

 

2.2 Approach using State-space-based Neural 

Network 

 

Following the same procedure as with the 

LSTM, tests were conducted using identical 

training dataset sizes and fixed hyperparameters 

to assess how data quantity affects the 

performance of the state-space nonlinear model. 

This method combines linear and nonlinear 

components, with the nonlinear part modeled by 

a Neural Network, forming a gray-box approach 

in contrast to the black-box nature of LSTM. 

The Jax-sysid package [5] was used to 

define and train the neural state-space model, 

leveraging just-in-time (JIT) compilation, 

automatic differentiation, and GPU acceleration, 

all of which support efficient training of 

dynamic models with high-dimensional 

parameter spaces. 

The input, compiler and output phases 

are analog to the ones described in the LSTM 

section. The definition phase, related to the State 

Function & Output Function, describes how the 

model hypothesis is formed along, defining the 

model structure. The initialization phase defines 

the parameters initialization  regarding the 

structure of the state-space system 

representation and weights of the neural 

network.  

The system identification model 

combines linear state-space components with 

neural network-based nonlinearities, represented 

by Equations 1 and 2:​

 

     𝑥
𝑘+1

 =  𝐴𝑥
𝑘

+ 𝐵𝑢
𝑘

+  𝑊
3
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where  is the state vector,  is 𝑥
𝑘

∈ 𝑅
𝑛

𝑥 𝑢
𝑘

∈ 𝑅
𝑛

𝑢

the input vector,  is the output vector, 𝑦
𝑘

∈ 𝑅
𝑛

𝑦

and  represents the sigmoid activation function. σ

The matrices were initialized with small scales 

to ensure stable training by avoiding exploding 

gradients. System matrix A initialized as 0.5  𝐼
𝑛

𝑥

to provide moderate state persistence. Input 

matrix B  had random initialization with (0,0.1) ℵ

weights. Output matrix C had Random 

initialization with (0,0.1) weights. Neural ℵ

network weights -  initialized with scales 𝑊
1

𝑊
5

between 0.1 and 0.5 to balance linear and 

nonlinear contributions. Bias terms -  𝑏
1

𝑏
4

initialized to zero as common practice​

​ To ensure reproducible convergence, a 

seed was used to control for the randomness in 

the matrix initialization process. The learning 

rate was kept at . The sampling time η
𝑠𝑠

= 0. 01

was also set as constant,  ms. The 𝑇 = 100

regularization parameters were fixed at 
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. The model order was ρ
θ
 =  ρ

𝑥
 =  0. 00001

chosen as . With respect to the test data, 𝑛
𝑥

= 24

 was reconstructed by performing 100 epochs 𝑥
0

of Rauch-Tung-Striebel (RTS) smoothing [7]. 

For the optimization of the algorithm, the 

L-BFGS-B and Adam methods were used while 

varying their respective iterations to find the 

best results.​

​

Table 2. Hyperparameters used for 

State-space-based training and evaluation.  

Hyperparameter Value 

Seed usage Yes 

Sampling time (T ) 100 ms 

Learning rate ( ) η
𝑠𝑠 0.01 

Regularization (ρθ , ρx) 0.00001 

Model order ( ) 𝑛
𝑥 24 

RTS smoothing epochs 100 

 

3. Results and Discussions 

 

In this section, the relevant results found by both 

approaches are presented. 

 

3.1 LSTM Approach​

 

For the LSTM approach, the results showed 

effectiveness using a training dataset size of 

23500 and a testing dataset size of 2000, 256 

LSTM units, 800 dense layer neurons,  as 5𝑥10⁻⁵

the initial learning rate with decay over time, 

and only Adam as the optimizer. The best model 

found had a validation loss of 0.0227 and a 

training loss of 0.0095.  

Table 3 presents an overview of the 𝑅2

-score values obtained from the LSTM model 

after test predictions.​

 

Table 3. Test -scores for each marker 𝑅2

coordinate using LSTM 

Marker Point R2-score (x, y, z) 

Marker 1 (10.04%, 8.37%, 24.09%) 

Marker 2 (12.41%, 18.29%, 25.04%) 

Marker 3 (90.29%, 13.22%, 27.73%) 

Marker 4 (38.44%, 16.68%, 17.16%) 

 

3.1.1 Overall Performance and Interpretation 

During training, the LSTM model 

performs very well for x-coordinates (R² 

between 85% and 90%), showing it effectively 

captures longitudinal motion. For z-coordinates, 

performance is moderate (R² between 13% and 

28%), suggesting partial learning of vertical 

motion, possibly due to limited lateral 

movement, data imbalance, or complex lateral 

dynamics. 

In the test phase, generalization varies: 

for the x-axis, three out of four markers show 

large R² drops (e.g., from 88% to 10%), 

suggesting overfitting, while Marker 3 retains 

strong generalization (R² of 90.29%). For 

z-coordinates, R² remains moderate (17% to 

28%), similar to or slightly better than training. 

Interestingly, y-coordinate predictions improve 

during testing (R² between 8 and 18), unlike the 
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poor or negative values during training, possibly 

due to less noisy or more structured lateral 

motion in the test sequence. 

 

3.1.2 Axis-Wise and Marker-Wise Analysis 

 

To better understand the model’s performance, 

Table 4 summarizes the approximate average  𝑅2

scores across all markers for each axis. 

 

Table 4. Average -scores by axis across all 𝑅2

markers 

Axis Avg. R2  Performance comment 

x 38% 
Moderate, possibly affected by 

overfitting 

y 13% Low predictive power 

z 24% Regular 

​

​ From a spatial perspective, Marker 3 

emerges as the most consistently predicted 

across both training and testing phases, 

especially for the  and  coordinates. This 𝑥 𝑧

suggests that the motion at this location is more 

regular or less prone to non-linear effects than at 

other markers, making it more learnable by the 

LSTM. Conversely, Marker 1 and Marker 2 

show particularly poor generalization for the  𝑥

and  coordinates, possibly because they are 𝑦

located in more dynamic regions of the robot's 

body where deformations are more nonlinear 

and harder to model.​

​

​

3.1.3 Discussion on Soft Robot Dynamics and 

Model Behavior​

​

The soft robot’s nonlinear, time-dependent 

behavior challenges modeling. While the LSTM 

captures main longitudinal trends, it struggles 

with lateral and vertical motions, likely due to 

limited training data, sequence length, or model 

capacity.​

​ The LSTM’s poor y-axis performance 

likely stems from data imbalance or small, noisy 

displacements, while overfitting in x indicates 

memorization of training sequences rather than 

true generalization. Incorporating physics-based 

regularization and prior knowledge could 

improve convergence and overall model 

performance.​

​

3.2 State-Space Based Approach​

 

After a grid search of the appropriate dataset 

size for the present dynamical system 

identification problem, the training dataset size 

of 23500 and the testing dataset size of 2000 

were chosen along with 5000 iterations of the 

L-BFGS-B and Adam optimizers and the seed = 

42 for the repeatability of initialization of the 

matrices, weights and bias parameters.​

​

​

​

​

 
ISSN: 2357-7592​ ​ ​ ​ ​ ​  
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY 
Quantum Technologies: The information revolution that will change the future - 2025 



            
 

Figure 3. Best coordinate R2-Score comparison between ground truth and prediction made by LSTM 

(a), and state-space based neural network (b). 

​

3.3 Quantitative and Qualitative Analysis 

​

The R²-score values show that the 

State-space-based model effectively learns and 

generalizes the 3D behavior of the soft robot 

with high accuracy. Unlike traditional models 

that depend on physical simplifications, this 

data-driven approach captures nonlinear 

dynamics, particularly along the horizontal axes. 

For all marker points, x and y predictions 

perform strongly, with R²-scores mostly above 

70% and many surpassing 80%, indicating 

structured, repeatable horizontal behavior. For 

example, Marker 3 achieves 79.73% (x) and 

83.24% (y), reflecting stable and learnable 

dynamics in that region. However, performance 

in the vertical (z) axis is more variable. While 

Markers 2 and 3 show good results (65.59% and 

76.25%, respectively), Marker 1 performs 

poorly in z, with a score of 29.86%, possibly due 

to complex  

​

Table 5. Test -scores for each marker 𝑅2

coordinate using State-space-based NN. 

Marker Point Test R2-Score (x, y, z) 

Marker 1 (82.45%, 79.37%, 29.86%) 

Marker 2 (79.68%, 82.38%, 65.59%) 

Marker 3 (79.73%, 83.24%, 76.25%) 

Marker 4 (70.59%, 64.76%, 54.38%) 

​

deformation near the base or insufficient training 

data on vertical transitions. 

Figure 3 presents a plot of -Score, 𝑅2

illustrating the proximity between the ground 

truth (blue line) and the best prediction (orange 

line) over time for each approach. 

Notably, the State-space-based model 

shows greater consistency across markers and 

axes compared to the LSTM model, which had 

issues like overfitting and negative R² in y. In 

contrast, even the lowest z-score in 

State-space-based is positive, and all coordinates 

across all markers present a meaningful level of 

predictive performance. Table 6 summarizes the 
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state-space-based performance based on R² 

score average across markers.​

 

Table 6. Average R2-scores by coordinate axis 

across all markers. 

Axis Avg. R2  Performance Comment 

x 78.61% Consistent across markers 

y 77.81% Best overall performance; 

z 56.52% Potentially higher nonlinearity 

​

Analyzing the standard deviation of the R² 

score, it's noted that the z-axis not only has 

lower mean R² (56.52%) but also the highest 

variability (±17.22%), confirming instability in 

predictions compared to x and y.  

​

4. Conclusions 

​

Soft Robot control has been evolving, offering 

new possibilities for implementation and 

advancement in this research area. This work 

presented results from both LSTM and 

state-space-based neural network approaches for 

identifying a nonlinear Soft Robot dynamic 

system. Both methods demonstrated adequate 

performance and learning potential, with the 

state-space-based method standing out for its 

effectiveness and future applicability.​

​ A valuable direction for future work 

includes training the models on Soft Robots with 

varying segment numbers, exploring 

hyperparameter fine-tuning, applying 

autoencoders for dimensionality reduction, and 

evaluating the models using different 

performance metrics.​

​
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