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Abstract: The control process of a nonlinear robotic system is a complex task that has been the subject of
study in the literature. The ability to identify a dynamic system of a Piecewise Constant Curvature Soft
Robot (PCC) with respect to the robot's trajectory over time has shown potential to improve when
applying Machine Learning techniques, which positively affects the ability to control the system. In this
work, both a state-space-based neural network approach and a Long Short-Term Memory (LSTM)
approach are proposed to verify their potential in predicting sequential time series data using simulated
PCC trajectory datasets. The results provide a comparison between the two proposed models’
performances, presenting positive findings for both approaches, and basis for future studies and

applications.
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1. Introduction

The control and identification of dynamic
systems in Soft Robots have been widely studied
due to their complexity and potential
applications. A frequent modeling approach is
the Piecewise Constant Curvature (PCC) model,
which simplifies continuous dynamics by
segmenting the robot into constant-curvature
parts. Despite its efficiency, this model faces
challenges due to system nonlinearity and
real-world factors like resistance forces [1,6],
making robust identification methods essential
[3].

Since soft robotic manipulators follow
time-sequenced positions, the problem is
inherently sequential, which aligns with the
strengths of machine learning methods,
especially Recurrent Neural Networks (RNNs)

[4]. Within this category, Long Short-Term
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Memory (LSTM) networks have proven
effective in identifying complex systems [5].

In parallel, state-space-based neural networks
have also shown promising results in data-driven
modeling of dynamic systems [7]. A
complementary approach involves state-space
modeling with L-BFGS-B optimization to
identify linear and nonlinear systems, notably in
industrial  robotics, integrating LI and
group-Lasso regularizations to handle nonlinear
complexity [6].

This study contributes to the state of the
art by exploring both state-space-based neural
networks and LSTM techniques to identify a
nonlinear two-segment Soft Robot manipulator.
The identification is based on sequential time
series data derived from a simulated 3D
trajectory using the PCC model. The objective is
to assess how well each technique captures the

manipulator's dynamics and to analyze their
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performance based on the results.

This work contributes mainly with

literature ~ review  proposed  approaches,
state-space-based neural Network and LSTM for
soft robot dynamic system identification, and
provides a comparative discussion of the results.

This work has 4 sections. Section 2
presents the methodology used to structure the
experiments and resulting analyses. Section 3
explores and discusses the results and Section 4

presents a final conclusion.

2. Methodology

In this section, the implementation method used

for both approaches is presented.
2.1 Approach Using LSTM

As mentioned, due to its proven effectiveness
for time-series prediction problems, the LSTM
approach was investigated in this work.

The data collection was gathered based
on the trajectory simulation of a 2-segment Soft
Robot manipulator. The trajectory was obtained
by numerically solving an ODE (Equation 1)
based on a PCC model [6] that described the

dynamics and kinematics of the system.

M@)q + C(g9)q+Dg +Kg=1 (1)

where: q € R"is the vector of generalized

coordinates (the curvatures of the segments).
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M(q) € R™" is the configuration-dependent

mass-inertia matrix; C(q, q) € R™" is the

matrix of Coriolis and centrifugal forces;

D € R"" is the material damping matrix;
nxn . . . .

K eR is the material stiffness matrix;
nxn . .

TER is the vector of actuation torques

applied to the system.

The simulated robot consists of two
segments, each with a length of 0.1036 m and a
mass of 1.0 kg, operating exclusively in the
negative Z region of Cartesian space. The
experiment involves a sequence of movements
generated by the PCC model over defined
timesteps, with the goal of predicting the next
set of manipulator actions. The dataset includes
4 input values representing applied torque and
12 output values corresponding to the X, y, and z
coordinates

of 4 marker points along the

manipulator, as shown in Figure 1.

Figure 1. LSTM prediction on a simulation
frame compared to the ground truth (PCC

model).
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The hyperparameters used to train the
LSTM model are listed at Table 1. In order to
obtain the dataset, it was necessary to input
initial values for the curvature angle (6) and the
azimuthal angle (@) as well as the torque (T)

applied to the robot.

Table 1. Summary of training parameters for the

LSTM-based model.

Parameter Value

Scaler range [-1, 1]
Time steps 500
n,.. (Dense layer size) 800
Epochs 200

N (Minimum learning rate) 5x 10-5

Decay factor 0.2
LSTM units 256
Batch size 500

Stateful TRUE

Return sequences TRUE
Dropout 0.2

Figure 2 presents a sample of dataset
values throughout time where the upper plot
represents the T values applied to the system and
the lower plot represents the end-effector marker
point output trajectory.

Tests were carried out using training
datasets ranging from 12,000 to 64,000 samples
with static hyperparameters to determine the
optimal data volume for training the LSTM
model.

The data was normalized according to
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the scaler range in Table 1, and a grid search
was performed to minimize validation loss and
improve the R2-score. The test dataset was fixed
at 2,000 samples to ensure consistent evaluation
The model’s

of training set size effects.

prediction effectiveness was also assessed.

Figure 2. Dataset sample chart (500 timesteps).
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In the LSTM approach, the input phase

specifies the data format, including batch size,
number of features, and time steps to align with
the training structure. The LSTM phase
processes the time series using a set number of
LSTM cells possibly stacked and a tanh
activation function for cell state updates,
allowing the network to learn temporal patterns
and internal states.

The dense phase uses a fully connected
layer with 20% dropout and a ReLU activation
function to introduce non-linearity, prevent
vanishing gradients, and enforce non-negative
outputs. The compiler phase sets the loss
functions (mse and mae), the Adam optimizer,

and the R?-score as the evaluation metric. Lastly,
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the output phase produces a multi-step sequence
of predicted robot positions, increasing the

complexity of the task.

2.2 Approach using State-space-based Neural
Network

Following the same procedure as with the
LSTM, tests were conducted using identical
training dataset sizes and fixed hyperparameters
to assess how data quantity affects the
performance of the state-space nonlinear model.
This method combines linear and nonlinear
components, with the nonlinear part modeled by
a Neural Network, forming a gray-box approach
in contrast to the black-box nature of LSTM.

The Jax-sysid package [5] was used to
define and train the neural state-space model,
leveraging just-in-time (JIT) compilation,
automatic differentiation, and GPU acceleration,
all of which support efficient training of
dynamic  models with  high-dimensional
parameter spaces.

The input, compiler and output phases
are analog to the ones described in the LSTM
section. The definition phase, related to the State
Function & Output Function, describes how the
model hypothesis is formed along, defining the
model structure. The initialization phase defines
the parameters initialization regarding the

structure ~ of  the  state-space  system

representation and weights of the neural

network.
ISSN: 2357-7592
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The system identification model
combines linear state-space components with
neural network-based nonlinearities, represented
by Equations 1 and 2:

Xph = Axk + Buk + W3 G(Wlxk +

X, +W2uk+b1) +b2 (@)

yszxk+W50(W4xk+b3)+b4 3)
n_ L
where x, € R * is the state vector, u, ER"is

n
the input vector, y, ER ’ is the output vector,

and o represents the sigmoid activation function.
The matrices were initialized with small scales
to ensure stable training by avoiding exploding

gradients. System matrix A initialized as O‘SIn

X

to provide moderate state persistence. Input
matrix B had random initialization with X(0,0.1)
weights. Output matrix C had Random
initialization with 8(0,0.1) weights. Neural

network weights W 1-W5 initialized with scales

between 0.1 and 0.5 to balance linear and

nonlinear contributions. Bias terms b 1-b .

initialized to zero as common practice

To ensure reproducible convergence, a
seed was used to control for the randomness in
the matrix initialization process. The learning

rate was kept at n, = 0. 01. The sampling time

was also set as constant, T = 100 ms. The

regularization parameters were fixed at
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p. = p_ = 0.00001. The model order was
0 X

chosen as n_ = 24. With respect to the test data,
X, was reconstructed by performing 100 epochs

of Rauch-Tung-Striebel (RTS) smoothing [7].
For the optimization of the algorithm, the
L-BFGS-B and Adam methods were used while
varying their respective iterations to find the

best results.

Table 2.  Hyperparameters used for
State-space-based training and evaluation.
Hyperparameter Value
Seed usage Yes
Sampling time (T ) 100 ms
Learning rate (nss) 0.01
Regularization (p6 , px) 0.00001
Model order (nx) 24
RTS smoothing epochs 100

3. Results and Discussions

In this section, the relevant results found by both

approaches are presented.

3.1 LSTM Approach

For the LSTM approach, the results showed
effectiveness using a training dataset size of
23500 and a testing dataset size of 2000, 256
LSTM units, 800 dense layer neurons, 5x107° as
the initial learning rate with decay over time,
and only Adam as the optimizer. The best model
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found had a validation loss of 0.0227 and a
training loss of 0.0095.

Table 3 presents an overview of the R
-score values obtained from the LSTM model

after test predictions.

Table 3. Test Rz-scores for each marker

coordinate using LSTM

Marker Point R2-score (X, Y, 2)
Marker 1 (10.04%, 8.37%, 24.09%)
Marker 2 (12.41%, 18.29%, 25.04%)
Marker 3 (90.29%, 13.22%, 27.73%)
Marker 4 (38.44%, 16.68%, 17.16%)

3.1.1 Overall Performance and Interpretation

During training, the LSTM model

performs very well for x-coordinates (R?
between 85% and 90%), showing it effectively
captures longitudinal motion. For z-coordinates,
performance is moderate (R* between 13% and
28%), suggesting partial learning of vertical
motion, possibly due to limited lateral
movement, data imbalance, or complex lateral
dynamics.

In the test phase, generalization varies:
for the x-axis, three out of four markers show
large R? drops (e.g., from 88% to 10%),
suggesting overfitting, while Marker 3 retains
strong generalization (R?> of 90.29%). For
z-coordinates, R? remains moderate (17% to
28%), similar to or slightly better than training.
Interestingly, y-coordinate predictions improve

during testing (R? between 8 and 18), unlike the
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poor or negative values during training, possibly
due to less noisy or more structured lateral

motion in the test sequence.
3.1.2 Axis-Wise and Marker-Wise Analysis

To better understand the model’s performance,

. : 2
Table 4 summarizes the approximate average R

scores across all markers for each axis.

Table 4. Average R’-scores by axis across all

that will change the future

markers
Axis | Avg. R2 Performance comment
Moderate, possibly affected by
X 38% overfitting
y 13% Low predictive power
z 24% Regular

From a spatial perspective, Marker 3
emerges as the most consistently predicted
across both training and testing phases,
especially for the x and z coordinates. This
suggests that the motion at this location is more
regular or less prone to non-linear effects than at
other markers, making it more learnable by the
LSTM. Conversely, Marker 1 and Marker 2
show particularly poor generalization for the x
and y coordinates, possibly because they are
located in more dynamic regions of the robot's
body where deformations are more nonlinear

and harder to model.

ISSN: 2357-7592

3.1.3 Discussion on Soft Robot Dynamics and

Model Behavior

The soft robot’s nonlinear,

behavior challenges modeling. While the LSTM

time-dependent

captures main longitudinal trends, it struggles
with lateral and vertical motions, likely due to
limited training data, sequence length, or model
capacity.

The LSTM’s poor y-axis performance
likely stems from data imbalance or small, noisy
displacements, while overfitting in x indicates
memorization of training sequences rather than
true generalization. Incorporating physics-based
and prior could

regularization knowledge

improve convergence and overall model

performance.

3.2 State-Space Based Approach

After a grid search of the appropriate dataset

size for the present dynamical system
identification problem, the training dataset size
of 23500 and the testing dataset size of 2000
were chosen along with 5000 iterations of the
L-BFGS-B and Adam optimizers and the seed =
42 for the repeatability of initialization of the

matrices, weights and bias parameters.
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Figure 3. Best coordinate R2-Score comparison between ground truth and prediction made by LSTM

(a), and state-space based neural network (b).

3.3 Quantitative and Qualitative Analysis

The R?score values show that the
State-space-based model effectively learns and
generalizes the 3D behavior of the soft robot
with high accuracy. Unlike traditional models
that depend on physical simplifications, this
data-driven  approach  captures nonlinear
dynamics, particularly along the horizontal axes.

For all marker points, x and y predictions
perform strongly, with R?-scores mostly above
70% and many surpassing 80%, indicating
structured, repeatable horizontal behavior. For
example, Marker 3 achieves 79.73% (x) and
83.24% (y), reflecting stable and learnable
dynamics in that region. However, performance
in the vertical (z) axis is more variable. While
Markers 2 and 3 show good results (65.59% and
76.25%, respectively), Marker 1 performs
poorly in z, with a score of 29.86%, possibly due

to complex

ISSN: 2357-7592

Table 5. Test Rz-scores for each marker

coordinate using State-space-based NN.

Marker Point Test R2-Score (x, y, z)
Marker 1 (82.45%, 79.37%, 29.86%)
Marker 2 (79.68%, 82.38%, 65.59%)
Marker 3 (79.73%, 83.24%, 76.25%)
Marker 4 (70.59%, 64.76%, 54.38%)

deformation near the base or insufficient training

data on vertical transitions.

Figure 3 presents a plot of Rz-Score,
illustrating the proximity between the ground
truth (blue line) and the best prediction (orange
line) over time for each approach.

Notably, the State-space-based model
shows greater consistency across markers and
axes compared to the LSTM model, which had
issues like overfitting and negative R? in y. In
contrast, even the lowest z-score in
State-space-based is positive, and all coordinates
across all markers present a meaningful level of

predictive performance. Table 6 summarizes the
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state-space-based performance based on R?

SCOre average across markers.

Table 6. Average R2-scores by coordinate axis

across all markers.

that will change the future

Axis | Avg. R2 Performance Comment
X 78.61% Consistent across markers
y 77.81% Best overall performance;
z 56.52% Potentially higher nonlinearity

Analyzing the standard deviation of the R?
score, it's noted that the z-axis not only has
lower mean R? (56.52%) but also the highest
variability (+17.22%), confirming instability in

predictions compared to x and y.

4. Conclusions

Soft Robot control has been evolving, offering
new possibilities for implementation and
advancement in this research area. This work
presented results from both LSTM and
state-space-based neural network approaches for
identifying a nonlinear Soft Robot dynamic
system. Both methods demonstrated adequate
performance and learning potential, with the
state-space-based method standing out for its
effectiveness and future applicability.

A valuable direction for future work
includes training the models on Soft Robots with
varying numbers,

segment exploring

fine-tuning, applying

autoencoders for dimensionality reduction, and

hyperparameter

ISSN: 2357-7592

evaluating the models wusing different

performance metrics.
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