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ABSTRACT

A unified framework for sequential parameter learning in state space models is proposed. This frame-
work is capable of accommodating several other algorithms found in the literature as special cases, and
this generality is achieved mainly by providing an alternative formalism to the role of regularization in
this setting. In order to illustrate its flexibility, three algorithms are developed within this framework,
including an improved and fully-adapted version of the celebrated Liu and West filter. These regulariza-
tion techniques are associated with efficient resampling schemes, and their use is illustrated in challenging
nonlinear settings with both synthetic and real-world data.
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1 Introduction

In this paper we deal with Bayesian inference for a discrete-time State-Space Model (SSM) defined
by a Markovian transition

Xt|(X0:t−1 = x0:t−1, θ) =
d Xt|(Xt−1 = xt−1, θ) ∼ f(xt|xt−1, θ) (1)

with initial distribution X0 ∼ ν(x0|θ) and a conditional independence property

Yt|(X0:t = x0:t, Y1:t−1 = y1:t−1, θ) =
d Yt|(Xt = xt, θ) ∼ g(yt|xt, θ) (2)

holding for all t = 1, 2, . . .. Here z1:j denotes the sequence (z1, . . . , zj) for positive integer j, “=d”
denotes equality in distribution and θ ∈ Θ ⊆ Rdθ is a vector of parameters indexing the model. For
each t, (Xt, Yt) ∈ X × Y, where X ⊆ Rdx and Y ⊆ Rdy , with dθ := dim(θ), dx := dim(Xt) and
dy := dim(Yt). We refer to the components of the Markov chain (Xt)t≥0 as the states of the model and
to the conditionally independent (given each Xt) sequence (Yt)t≥1 as the observations.

Since typically in state space models only a sequence Y1:t of observations is available for inference, the
states are usually thought of as being “hidden”, leading to SSMs sometimes being called Hidden Markov
Models. The states are frequently conceptualized as dynamic parameters in the model, and θ as the
vector of static parameters, since θ is assumed to be fixed (albeit usually unknown). Classic references
on the general theory of discrete-time state space models include West and Harrison (1997), Cappé et al.
(2005) and Durbin and Koopman (2012).

In this paper, we focus on the problem of performing inference for static parameters in an online
setting, i.e. in which estimates are required to be updated sequentially as new observations are made. This
is usually referred to as the sequential parameter learning problem in the literature. Within the Bayesian
inferential paradigm, this can essentially be reduced to computing the marginal posterior distribution
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31270-901, Brazil. Email: felipe.silva@bancointer.com.br.

3Department of Statistics, Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627, Belo Horizonte MG,
31270-901, Brazil. Email: duczmal@est.ufmg.br.

4Department of Mathematics, Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627, Belo Horizonte
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p(θ|y1:t) for each t conditional on data Y1:t = y1:t and prior information θ ∼ p(θ). For simplicity, here we
will adopt the terms “distribution” and “density” interchangeably when confusion is not possible, and
implicitly assume that suitable sigma-finite dominating measures exist for all densities associated with
(Xt)t≥0 and (Yt)t≥1 to be well-defined.

Sequential parameter learning techniques usually involve at some stage the computation of the pos-
terior distribution of the states X0:t given the observations Y1:t = y1:t and a (fixed) value of θ = θ∗,
i.e. p(x0:t|y1:t, θ∗). This subproblem is often solved with the use of Sequential Monte Carlo (SMC) tech-
niques, also known as Particle Filters (see Doucet and Johansen, 2009, for a full survey). Particle filters
work by sequentially propagating samples (known as particles, hence the name) of the states over time
and assigning probabilities to each of these samples, yielding an empirical distribution approximating
the desired posterior.

Given the success and popularity of SMC methods, there is a vast body of literature on sequential
parameter learning techniques that build on these methods. Amongst these we highlight Kitagawa
(1998), Andrieu et al. (1999), BøLviken et al. (2001), Liu and West (2001), Gilks and Berzuini (2001),
Chopin (2002), Fearnhead (2002), Storvik (2002), Vercauteren et al. (2005), Polson et al. (2008), Flury
and Shephard (2009), Carvalho et al. (2010), Chopin et al. (2013) and Fulop and Li (2013). Collectively,
the variety of fields in which SMC-based techniques are used to deal with sequential parameter learning
problems arising in empirical settings also illustrate the effectiveness of this approach. Examples range
from tracking (Wang et al., 2009; Ghaeminia et al., 2010; Liang and Piché, 2010; Nemeth et al., 2013) to
epidemiology (Rodeiro and Lawson, 2006; Dukic et al., 2012; Lin and Ludkovski, 2014; Liu et al., 2015),
ecology (Peters et al., 2010), econometrics (Golightly and Wilkinson, 2006; Carvalho and Lopes, 2007;
Fulop and Li, 2013), finance (Yümlü et al., 2015; Jacquier et al., 2016; Warty et al., 2018; Virbickaitė
et al., 2019) and even psychometrics (Reichenberg, 2018).

Ubiquitous as they might be, however, sequential Monte Carlo methods inherently suffer from the
unavoidable drawback of weight degeneracy (Kong et al., 1994). In essence, degeneracy leads to an ever-
decreasing efficiency of the method, as over time the probabilities (weights) of newly-generated samples
become increasingly concentrated on a fewer set of distinct values. In order to mitigate degeneracy, SMC
methods typically incorporate a resampling strategy, which replicates sampled points according to their
weights and thus prevents the filter’s support from collapsing to a single point.

Although in pratice resampling is very effective at mitigating weight degeneracy, it gives rise to
another problem: sample impoverishment. As sampled points get successively resampled, their corre-
sponding paths coalesce, resulting into very poor approximations of p(xl:t|y1:t, θ) for l≪ t. In the SMC
context, sample impoverishment is also known as path degeneracy (Andrieu et al., 2005). It is especially
damaging in sequential parameter learning, where we usually rely on approximations of functionals of
the entire state path X0:t.

In this paper we introduce a unified framework that includes most of the methods mentioned above for
sequential parameter learning as special cases. The level of generality achieved by this framework is made
possible only due to the introduction of an alternative formalism for performing regularization (Musso
et al., 2001) within the sequential parameter learning setting (Liu and West, 2001). As a part of this
unified framework, we also propose three algorithms, which by combining regularization, full adaptation
(Petetin and Desbouvries, 2013) and minimal entropy resampling methods (Crisan and Lyons, 2002),
actively attempt to minimize path degeneracy and consequently its detrimental effects on parameter
estimation.

The paper is organized as follows: Section 2 briefly reviews particle filters, Section 3 introduces the
unified framework for sequential parameter learning, Section 4 provides different simulation and real-
data experiments to assess the performance of the discussed techniques and Section 5 contains some
concluding remarks. The paper also has a Supplement showing how the unified framework proposed
here can accomodate many of the already existing methods for sequential parameter learning in the
literature as special cases.

2 Particle Filters

At a first stage, assume that we have complete knowledge about the static parameter θ. Upon
observing Y1:t = y1:t, we thus only need to concern ourselves with the estimation of the states X0:t.
Usually, since only an estimate of the filtering distribution p(xt|y1:t, θ) is required for each t, this is
commonly referred to as the pure filtering problem. However, given that this density is just a marginal of
the joint distribution p(x0:t|y1:t, θ), here we will actually focus on the latter, since most of our motivation
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and results are based on the entire sequence X0:t|(Y1:t, θ). Throughout this entire section, dependence
on θ is suppressed to simplify notation.

The pure filtering problem can be fundamentally described by the recursion

p(x0:t|y1:t) =
p(yt|x0:t, y1:t−1)p(xt|x0:t−1, y0:t−1)p(x0:t−1|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)

= p(x0:t−1|y1:t−1)
f(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)

∝ p(x0:t−1|y1:t−1)f(xt|xt−1)g(yt|xt), (3)

where p(xt|x0:t−1, y1:t−1) = f(xt|xt−1) follows from the Markov property (1) and p(yt|x0:t, y1:t−1) =
g(yt|xt) follows from the conditional independence property (2).

Although apparently simple, the density function (3) cannot be evaluated analytically in general
scenarios i.e. most non-linear and non-Gaussian models, and usually has to be approximated. A popular
and flexible approach to accomplish this is to rely on Particle Filters, also known as Sequential Monte
Carlo (SMC) methods. Particle filters rely on a Monte Carlo (MC) approximation to the joint distribution
p(x0:t|y1:t) of the form

p̂(dx0:t|y1:t) :=
N∑
i=1

wi
tδxi

0:t
(dx0:t), (4)

where each xi
0:t (usually called a particle, trajectory or path) is drawn from a distribution q approximating

p, (wi
t)

N
i=1 satisfy wi

t ≥ 0 for each i with
∑N

i=1 w
i
t = 1, and δa(dx) := dδa(x)/dx, with δa denoting Dirac

measure (point mass) at the point a.
The estimator (4) falls into the class of Importance Sampling (IS) methods, and the wi

t’s are called
importance weights. In essence, SMC methods are importance samplers that exploit the sequential nature
of state space models in order to efficiently sample particles (xi

0:t)
N
i=1 and compute their corresponding

importance weights (wi
t)

N
i=1. The basic assumption in SMC is that the proposal distribution q from which

we draw samples (xi
0:t)

N
i=1 from satisfies

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t). (5)

A direct implication of (5) is that each xi
t can be drawn marginally from q(xt|xi

0:t−1, y1:t), thus
yielding an O(N) complexity procedure1 by conditioning on xi

0:t−1 instead of the O(tN) required for
jointly sampling xi

t and xi
0:t−1. The particle produced by SMC is then given by xi

0:t = (xi
0:t−1, x

i
t),

and its corresponding importance weight wt ≡ w(x0:t, y1:t) := p(x0:t|y1:t)/q(x0:t|y1:t) can be recursively
evaluated by

wt =
p(x0:t|y1:t)
q(x0:t|y1:t)

∝ p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

f(xt|xt−1)g(yt|xt)

q(xt|x0:t−1, y1:t)
= wt−1

f(xt|xt−1)g(yt|xt)

q(xt|x0:t−1, y1:t)
. (6)

To ensure that the weights all sum to 1 and to avoid dealing with the proportionality constant (given
here by p(yt|y1:t−1), i.e. the predictive distribution of Yt given Y1:t−1 = y1:t−1 and which is also typically
not available in closed form), we evaluate the weights with (6) for each i and then divide each of them
by the overall sum of weights (i.e. across all indices i = 1, . . . , N). In an obvious abuse of notation,

we accomplish this by letting wi
t = wi

t/
∑N

j=1 w
j
t , where wi

t ≡ w(xi
0:t, y1:t) is the importance weight

associated with the particle xi
0:t. The set (xi

0:t, w
i
t)

N
i=1 produced by this procedure defines a discrete

distribution that approximates the true law of X0:t|Y1:t arbitrarily well as N → +∞; see e.g. Crisan and
Doucet (2002).

An essential feature of SMC methods is that a resampling step is often required to mitigate the
so-called weight degeneracy (Kong et al., 1994) phenomenon inherent in sequential importance sampling.
As time progresses, weight degeneracy implies (in probability) that the weights of the most important
particles will be increasingly larger, until eventually only one particle remains in the system. Resam-
pling essentially mitigates this effect by replicating particles according to their importance and therefore
increasing (in probability) diversity in the long run. Note however that degeneracy is ultimately un-
avoidable: with the exception of trivial settings, the particle system (xi

0:t, w
i
t)

N
i=1 eventually degenerates

1Technically, for the procedure of drawing from q(xt|xi
0:t−1, y1:t) to be exactly O(N), a fixed-dimensional set of sufficient

statistics depending on (xi
0:t−1, y1:t) and which can be updated recursively must also exist. Otherwise, the complexity

of the procedure will also increase over time – not from sampling each particle xi
t itself, but rather from computing the

conditional distribution of Xt|(Xi
0:t−1, Y1:t) under q prior to sampling.
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to a single point for large enough t (see e.g. Chopin et al., 2004). Nevertheless, in practice resampling is
usually effective enough to ensure that SMC methods perform satisfactorily well in most scenarios.

A convenient, popular and quite general theoretical framework for explicitly including resampling
into SMC algorithms is the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999). The authors
introduced into their filter additional auxiliary variables (At)t≥0 (hence the name) taking values in
{1, . . . , N}, and formulate resampling as drawing a set (ait)

N
i=1 and then setting the ait’s as the indices of

the corresponding sampled particle (here, each ait is a realized value of the random variable At). More
specifically, for each t we sample ait−1 with replacement from {1, . . . , N} with probability λi

t (more on

λi
t below), set xi

0:t−1 ← x
ai
t−1

0:t−1 and then sample xi
t from q conditional on both x

ai
t−1

0:t−1 and y1:t for each

i = 1, . . . , N . The ith generated particle in the APF is therefore set to xi
t := (x

ai
t−1

0:t−1, x
i
t).

It is important to point out that in APF resampling is done prior to sampling a new particle, and
that is why here we denote the set of auxiliary variables (ait−1)

N
i=1 with a time index of t−1, even though

each of them are sampled at time t. Some authors refer to this class of method as a resample-propagate
filter, and within the APF framework this is essentially done to ensure that the procedure is general (see
below) and adapted, meaning that we can include information from the most recent observation Yt not
only when sampling the states Xt but also when resampling past trajectories X0:t−1. In the terminology
and notation of Andrieu et al. (2010), ait−1 is called the “ancestor” or “parent” index at time t − 1 of

particle xi
0:t, since when resampling we effectively replace xi

0:t−1 with x
ai
t−1

0:t−1.
Whenever confusion is not possible, to alleviate the notation here we will denote the sample values of

the ancestor indices At’s without explicit reference to their particle indices, i.e. we denote ait generically
by at. The same is done for functions of these indices and all other random variables in the particle

filter, i.e. we write z
at−1

t instead of z
ai
t−1

t (here the zt’s are realizations of Zt). We also write sequences

of resampled values generically as either Z
At−1

0:t−1 or as z
at−1

0:t−1 for the corresponding realizations.
Formally, resampling in the APF framework can be seen as an additional importance sampling step

performed when sampling the states at time t. More specifically, since here we sample x
ai
t−1

0:t−1 from the
set (xi

0:t−1)
N
i=1 with probabilities λi

t and, since each xi
0:t−1 is weighted by wi

t−1 in the approximation

p̂(dx0:t−1|y1:t) given in (4), the new importance weight assigned to each x
ai
t−1

0:t−1 in the resampling step is

then w
ai
t−1

t−1 /λ
ai
t−1

t−1 . This is equivalent to assuming that the marginal proposal for drawing ait−1 conditional

on (xi
0:t−1, y1:t) and then xi

t conditional on (x
ai
t−1

0:t−1, y1:t) is proportional to λ
ai
t−1

t−1 q(xt|xat−1

0:t−1, y1:t). If we
omit the particle indices for simplicity, the weight recursion in the APF is therefore given by

wt ∝
w

at−1

t−1

λ
at−1

t

f(xt|xat−1

t−1 )g(yt|xt)

q(xt|xat−1

0:t−1, y1:t)
. (7)

Starting with xi
0 ∼ ν(x0) and wi

0 ∝ 1 for all i = 1, . . . , N , an APF step from time t−1 to t is summarized
in Algorithm 1.

Algorithm 1: Auxiliary Particle Filter

for i = 1 to N do
sample ait−1 from {1, . . . , N} with probability λi

t

draw xi
t ∼ q(xt|x

ai
t−1

0:t−1, y1:t)

compute and normalize wi
t ∝

w
ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x

ai
t−1

t−1 )g(yt|xi
t)

q(xi
t|x

ai
t−1

0:t−1,y1:t)

end

It is important to point out that another equivalent way to define the APF is as a filter that
targets a different sequence of distributions, i.e. that does not target {p(x0:t|y1:t)}t≥1 directly (Jo-
hansen and Doucet, 2008; Doucet and Johansen, 2009). If at time t − 1 we have a weighted sample
(xi

0:t−1, w
i
t−1)

N
i=1, the APF targets an intermediate distribution proportional to λi

t−1q(xt|xi
0:t−1, y1:t).

Since p(xt, x
i
0:t−1|y1:t) ∝ wi

t−1f(xt|xi
t−1)g(yt|xt), the resulting incremental weights are given by the ratio

between wi
t−1f(xt|xi

t−1)g(yt|xt) and λi
t−1q(xt|xi

0:t−1, y1:t), yielding the same weight recursion as in (7).
Now, there are two basic design choices one must make within the APF framework: the choice of

intermediate weights λt and of the state proposal density q(xt|x0:t−1, y1:t). Usually, these choices are
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made in order to keep the importance weights wt as constant as possible, since then the variance of wt

(conditional on both X0:t−1 and Y1:t) is minimal (Doucet et al., 2000). The optimal choice in this sense
is to let λt ∝ wt−1p(yt|xt−1) and q(xt|x0:t−1, y1:t) = p(xt|xt−1, yt), since in this case the weight recursion
(7) becomes

wt ∝
w

at−1

t−1

w
at−1

t−1 p(yt|xat−1

t−1 )

f(xt|xat−1

t−1 )g(yt|xt)

p(xt|xat−1

t−1 , yt)
=

1

p(yt|xat−1

t−1 )

f(xt|xat−1

t−1 )g(yt|xt)

f(xt|x
at−1
t−1 )g(yt|xt)

p(yt|x
at−1
t−1 )

= 1. (8)

In the terminology of Pitt and Shephard (1999), a filter such that (8) holds is said to be fully-adapted
(FA) (the converse is a blind procedure, i.e. one that does not incorporate any information about the
most recent observation yt). Note that in the above derivation we have used that p(xt|xt−1, yt) =
f(xt|xt−1)g(yt|xt)/p(yt|xt−1), directly deduced from (1-2).

The main problem associated with full adaptation is that it requires simulating from p(xt|xt−1, yt)
and being able to evaluate p(yt|xt−1) pointwise, both of which might be unfeasible in practice. In this
case, Pitt and Shephard (1999) proposed approximating these densities by taking λt ∝ wt−1g(yt|µt) and
q(xt|x0:t−1, y1:t) = f(xt|xt−1), where µt := µ(X0:t−1) is any prediction of X0:t−1, such as the one-step-
ahead conditional expectation, median or mode of Xt|X0:t−1. This so-called “lookahead” strategy is in
principle readily appliable to any SSM, and if µt is close to Xt−1 the resulting intermediate weights will
be close to the optimal ones.

The weight recursion (7) for the lookahead strategy becomes

wt ∝
w

at−1

t−1

w
at−1

t−1 g(yt|µat−1

t )

f(xt|xat−1

t−1 )g(yt|xt)

f(xt|xat−1

t−1 )
=

g(yt|xt)

g(yt|µat−1

t )
. (9)

From (9), we can see that the closer g(yt|µt) is to g(yt|xt), the closer wt is to being constant, which
means that the lookahead strategy is most successful whenever the observations are very informative.
Note here that although µt is denoted at time t, it is actually a function of x0:t−1, and therefore when
we resample we also assign to µt the ancestor index at−1.

As mentioned before, the APF framework is quite general, and it includes most particle filters in
the literature as special cases. Classical examples are the Bootstrap Filter of Gordon et al. (1993),
which can be obtained by taking q(xt|x0:t−1, y1:t) = f(xt|xt−1) and λt = wt−1, and the more general
Sampling Importance Resampling (SIR) algorithm (Doucet et al., 2000), obtained by taking λt = wt−1

and choosing q(xt|x0:t−1, y1:t) freely.
Finally, although resampling complicates the dynamics of the particle system considerably, estimators

p̂(f) of the form (4) can still be proven to converge to p(f) almost surely for a large class of test functions
f under suitable regularity conditions (Del Moral, 2004).

3 Sequential Parameter Learning

We now turn to the general situation in which θ is unknown and has to be inferred from the data.
As stated previously, our problem is to learn about θ ∈ Θ sequentially, i.e. to compute p(θ|y1:t) for all t.
In Sections 3.1 and 3.2 we introduce a unified class of algorithms for dealing with this problem, and in
Section 3.3 we illustrate the flexibility allowed by this unified framework by proposing three algorithms
for sequential parameter learning.

In the Supplement we also show how the unified framework proposed in this paper accomodates many
of the commonly found methods for sequential parameter learning in the literature as special cases.

3.1 A Unified Framework

Let θt denote the inference for θ at time t, i.e. the parameter associated with the posterior p(θ|y1:t).
Although θ is still inherently static, keeping track of the inference for it across time allows us to implicitly
define a sequence (θt)t≥0 with initial distribution given by the prior θ0 ∼ p(θ). The joint posterior for
(X0:t, θ0:t) given Y1:t = y1:t admits the recursion

p(x0:t, θ0:t|y1:t) = p(θt|x0:t, θ0:t−1, y1:t)p(yt|x0:t, θ0:t−1, y1:t−1)·

p(xt|x0:t−1, θ0:t−1, y1:t−1)
p(x0:t−1, θ0:t−1|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
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= p(θt|xt, x0:t−1, θ0:t−1, y1:t)g(yt|xt, θt−1)f(xt|xt−1, θt−1)
p(x0:t−1, θ0:t−1|y1:t−1)

p(yt|y1:t−1)

∝ p(x0:t−1, θ0:t−1|y1:t−1)f(xt|xt−1, θt−1)g(yt|xt, θt−1)p(θt|xt, x0:t−1, θ0:t−1, y1:t). (10)

In the above derivation we implicitly assume that all marginal distributions of (Xt, Yt)t≥0 depend only
on the most recent value of θ. Analogous to the APF terminology, this property is sometimes referred
to as a perfect adaptation of the law of (Xt, Yt)t≥0 to the most recent value of the sequence (θt)t≥0, as
in e.g. Andrieu et al. (2010).

Without resampling, if we assume that the proposal for drawing (X0:t, θ0:t) satifies

q(x0:t, θ0:t|y1:t) = q(x0:t−1, θ0:t−1|y1:t−1)·
q(θt|xt, x0:t−1, θ0:t−1, y1:t)q(xt|x0:t−1, θ0:t−1, y1:t), (11)

we then have the weight recursion

wt :=
p(x0:t, θ0:t|y1:t)
q(x0:t, θ0:t|y1:t)

∝ p(x0:t−1, θ0:t−1|y1:t−1)

q(x0:t−1, θ0:t−1|y1:t−1)

f(xt|xt−1, θt−1)g(yt|xt, θt−1)p(θt|xt, x0:t−1, θ0:t−1, y1:t)

q(θt|xt, x0:t−1, θ0:t−1, y1:t)q(xt|x0:t−1, θ0:t−1, y1:t)

= wt−1
f(xt|xt−1, θt−1)g(yt|xt, θt−1)

q(xt|x0:t−1, θ0:t−1, y1:t)

p(θt|xt, x0:t−1, θ0:t−1, y1:t)

q(θt|xt, x0:t−1, θ0:t−1, y1:t)
. (12)

With resampling, under the APF framework, we assign ancestor indices at−1 to all quantities from 0
to t− 1 (i.e. the sequences x0:t−1 and θ0:t−1, the importance weights wt−1 and the intermediate weights
λt). Taking into account the resampling weights λt, the weight recursion (12) becomes

wt ∝
w

at−1

t−1

λ
at−1

t

f(xt|xat−1

t−1 , θ
at−1

t−1 )g(yt|xt, θ
at−1

t−1 )

q(xt|xat−1

0:t−1, θ
at−1

0:t−1, y1:t)

p(θt|xt, x
at−1

0:t−1, θ
at−1

0:t−1, y1:t)

q(θt|xt, x
at−1

0:t−1, θ
at−1

0:t−1, y1:t)
. (13)

Similar to the APF, the sequential parameter learning framework proposed above can also be inter-
preted as a procedure that targets an intermediate distribution proportional to λi

t q(xt|xi
0:t−1, θ

i
0:t−1, y1:t)

q(θt|xt, x
i
0:t−1, θ

i
0:t−1, y1:t) (note that the filter is now a function of both xt and θt). Given that we can

decompose p(xt, x
i
0:t−1, θt, θ

i
0:t−1|y1:t) ∝ wi

t−1f(xt|xi
t−1, θ

i
t−1)g(yt|xt, θ

i
t−1)p(θt|xt, x

i
0:t−1, θ

i
0:t−1, y1:t), the

resulting incremental weights satisfy the same recursion (13).
Now, unlike in the APF, pointwise evaluation of the weight recursion (13) requires the ability of

not only evaluating the usual ratios wi
t−1/λ

i
t and f(xi

t|xi
t−1, θ

i
t−1)g(yt|xi

t, θ
i
t−1)/p(x

i
t|xi

0:t−1, θ
i
0:t−1, y1:t)

for each i, but also the ratio p(θit|xi
t, x

i
0:t−1, θ

i
0:t−1, y1:t)/q(θt|xt, x

i
0:t−1, θ

i
0:t−1, y1:t), at least up to a pro-

portionality constant. This usually requires making additional assumptions about the specific (or ap-
proximate) form of p(θt|xt, x0:t−1, θ0:t−1, y1:t) and, as illustrated below in Section 3.3, this is essentially
what differentiates one sequential parameter learning algorithm from the other.

The fundamental design choices in the framework proposed here are the intermediate weights λt and
the state and static parameter proposals q(xt|x0:t−1, θ0:t−1, y1:t) and q(θt|xt, x0:t−1, θ0:t−1, y1:t). Starting
with θi0 ∼ p(θ), xi

0 ∼ ν(x0|θi0) and wi
0 ∝ 1 for i = 1, . . . , N , a sequential parameter learning step from

time t−1 to t is summarized in Algorithm 2. It should be clear that the class proposed here also contains
the APF described in Algorithm 1 (i.e. without any parameter learning) by simply taking θt to be a
fixed quantity θ∗ for all t, or equivalently by assuming that p(θ) = δθ∗(dθ) and p(dθt|xt, x0:t−1, y1:t) =
δθ∗(dθt) for all t.

The main output from Algorithm 2 is the approximation

p̂(dx0:t, dθ0:t|y1:t) :=
N∑
i=1

wi
tδ(xi

0:t,θ
i
0:t)

(dx0:tdθ0:t), (14)

which is typically referred to as the histogram-based estimator of the joint posterior distribution of
(X0:t, θ0:t) given Y1:t = y1:t. To obtain an approximation to the target p(θ|y1:t), we can simply integrate
(14) over the support of (X0:t, θ0:t−1), yielding

p̂(dθt|y1:t) :=
∫
X t+1×Θt

p̂(dx0:t, dθ0:t|y1:t)dx0:tdθ0:t−1 =

N∑
i=1

wi
tδθi

t
(dθt). (15)
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Algorithm 2: Sequential Parameter Learning

for i = 1 to N do
sample ait−1 from {1, . . . , N} with probability λi

t

draw xi
t ∼ q(xt|x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1, y1:t)

draw θit ∼ q(θt|xt, x
ai
t−1

0:t−1, θ
ai
t−1

0:t−1, y1:t)

compute and normalize wi
t ∝

w
ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x

ai
t−1

t−1 ,θ
ai
t−1

t−1 )g(yt|xi
t,θ

ai
t−1

t−1 )

q(xi
t|x

ai
t−1

0:t−1,θ
ai
t−1

0:t−1,y1:t)

p(θi
t|x

i
t,x

ai
t−1

0:t−1,θ
ai
t−1

0:t−1,y1:t)

q(θi
t|xi

t,x
ai
t−1

0:t−1,θ
ai
t−1

0:t−1,y1:t)

end

Proceeding analogously, estimators of any marginal of p(x0:t, θ0:t|y1:t) can be obtained by integrating
(14) accordingly. In particular, integrating over the entire path of the static parameters θ0:t results in
the state posterior (4) obtained in the pure filtering context.

Besides the usual histogram-based estimator defined in (15), an alternative estimator of p(dθt|y1:t)
can be obtained via Rao-Blackwellization (Liu and Chen, 1998; Doucet et al., 2000). First, note that we
can rewrite the target distribution as

p(θt|y1:t) =
∫
X t+1×Θt

p(θt, x0:t, θ0:t−1|y1:t)dx0:tdθ0:t−1

=

∫
X t+1×Θt

p(θt|x0:t, θ0:t−1, y1:t)p(x0:t, θ0:t−1|y1:t)dx0:tdθ0:t−1

= Ep(X0:t,θ0:t−1|Y1:t)[p(θt|X0:t, θ0:t−1, Y1:t)], (16)

i.e. as the expectation of p(θt|x0:t, θ0:t−1, y1:t) taken with respect to p(x0:t, θ0:t−1|y1:t). Now, we can obtain
a direct Monte Carlo approximation to (16) by simply replacing p(x0:t, θ0:t−1|y1:t) with p̂(dx0:t, dθ0:t−1|y1:t)
in the corresponding integral. This gives

p̄(dθt|y1:t) :=
∫
X t+1×Θt

p(dθt|x0:t, θ0:t−1, y1:t)p̂(dx0:t, dθ0:t−1|y1:t)dx0:tdθ0:t−1

=

∫
X t+1×Θt

p(dθt|x0:t, θ0:t−1, y1:t)

N∑
i=1

wi
tδ(xi

0:t,θ
i
0:t−1)

(dx0:tdθ0:t−1)dx0:tdθ0:t−1

=

N∑
i=1

wi
tp(dθt|xi

0:t, θ
i
0:t−1, y1:t). (17)

The resulting expression for p̄(dθt|y1:t) given in (17) is then known as the Rao-Blackwellized estimator
of the posterior p(θt|y1:t).

The Rao-Blackwellized estimator (17) is typically (Liu and Chen, 1998) more efficient than the
histogram-based estimator (15) whenever interest lies in approximating only the posterior p(θt|y1:t),
i.e. the typical setting for sequential parameter learning. However, this comes at the cost of having
to evaluate p(θt|x0:t, θ0:t−1, y1:t) pointwise. Moreover, if interest lies in the moments and/or general
functionals of θt|Y1:t, analytical solutions to the required integrals might be much more involved and
sometimes unnatainable when compared to the simpler histogram-based estimator.

Finally, note that we could have also defined our framework to be a propagate-resample one, i.e.
in which we first sample the states/parameters and then perform the resampling step. However, this

might be undesirable since then the resampled sequences X
Ai

t−1

0:t−1 and θ
Ai

t−1

0:t−1 will not benefit from current
information on Yt, i.e. the procedure will be blind in APF terminology. Works comparing propagate-
resample and resample-propagate frameworks from a theoretical standpoint include e.g. Petetin and
Desbouvries (2013), and from an empirical standpoint include e.g. Lopes and Tsay (2011). Also, although
in Algorithm 2 we first sample the states Xt and only then the parameters θt, the procedure is general
enough to accomodate methods that have the reverse sampling order, such as Liu and West (2001)’s and
Storvik (2002)’s filters; see the Supplement for more details.

3.2 Regularization

Due to the unavoidable degeneracy inherent in sequential importance sampling methods, the re-
sampling step is an integral part of SMC. Despite its benefits, however, resampling has an important
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drawback: sample impoverishment, also known as path degeneracy (Andrieu et al., 2005).
Path degeneracy manifests itself as the coalescence of particles’ paths ocurring from successive resam-

pling steps. As an example, consider a functional Zl:t−1 defined for integer 0 ≤ l ≤ t−1 of (Xl:t−1, θl:t−1)

computed recursively along the filter’s trajectory. At time t, (z
ai
t−1

l:t−1)
N
i=1 is the set resampled from the re-

alizations (zil:t−1)
N
i=1 and, due to some zil:t−1’s naturally having lower weights than others, the resampled

set (z
ai
t−1

l:t−1)
N
i=1 will have fewer distinct values than (zil:t−1)

N
i=1. At time t+ 1, we resample (z

ai
t

l:t)
N
i=1 from

(zil:t)
N
i=1 and, since each zil:t = (z

ai
t−1

l:t−1, z
i
t), the z

ai
t−1

l:t−1’s are going to be resampled again, given that (z
ai
t

l:t)
N
i=1

= (z
a
ai
t

t−1

l:t−1, z
ai
t

t )Ni=1, and take even fewer distinct values than before. Over time, this is compounded and

the paths zil:t degenerate (hence the name) to a single point.
By the same argument above, path degeneracy is also progressively worse as l is closer to 0. Whenever

l = t − 1, however, (i.e. when only Zt−1 is of interest), sample impoverishment is minimal since the
transition from Zt−1 to Zt essentially “replenishes” the number of distinct values the functional Zt−1

can take from one step to another. This is why path degeneracy can be mostly ignored whenever interest
lies only in state filtering, since the state transition from Xt−1 to Xt will usually allow for a proper
exploration of the state space even when the number of distinct values Xt−1 is small.

Whenever the state transition does not allow for a proper exploration of the state space, however,
path degeneracy can become problematic even if l = t−1. This is especially true for sequential parameter
learning, since the static parameters for which we are trying to perform inference for usually have no
“natural” dynamic. Here, even if we are only interested in the most recent value θt, if the parameters
are static we implicitly have θt = θt−1 for all t and eventually θt = θ0, meaning that at each time t we
only resample from an ever-decreasing set of distinct values drawn from the prior p(θ).

In an attempt to mitigate path degeneracy, several authors have proposed variants of a technique that
can be generally defined as regularization (Musso et al., 2001). In essence, regularization is a modification
of the resampling step to allow for resampled particles to assume values other than the ones specified by
the set of current particles. In the above example, this means that with regularization the set of unique

values in (z
ai
t−1

l:t−1)
N
i=1 is different of (and usually contains) the set of unique values in (zil:t−1)

N
i=1, increasing

diversity. This also allows for additional exploration of the state space, which is especially important for
static parameters, since their support will no longer be limited to a subset of values initially drawn from
the prior.

As mentioned before, under the auxiliary variable interpretation presented so far in Section 2, resam-
pling in an APF framework can be understood as sampling ancestor indices (ait−1)

N
i=1 from {1, . . . , N}

with probabilities (λi
t)

N
i=1 and then setting zil:t−1 ← z

ai
t−1

l:t−1. This is equivalent to drawing a set (žl:t−1)
N
i=1

with replacement from the empirical distribution

p̌(dzl:t−1|y1:t) :=
N∑
i=1

λi
tδzi

l:t−1
(dzl:t−1), (18)

where each žil:t−1 := z
ai
t−1

l:t−1 (recall that the probability of each ait−1 is proportional to λi
t and, although

each zil:t−1 is weighted by wi
t−1 – implying that the importance weights associated with resampling are

going to be proportional to wi
t−1/λ

i
t for each i – the resampling weights themselves are given by λi

t).
A regularized version of the empirical resampling distribution (18) is defined as the convolution of

p̌(dzl:t−1|y1:t) with a regularization kernel (Silverman, 1986) K(·), i.e.

p̃(dzl:t−1|y1:t) :=
∫

K(dzl:t−1 − dz∗l:t−1)p̌(dz
∗
l:t−1|y1:t)dz∗l:t−1

=

∫
K(dzl:t−1 − dz∗l:t−1)

N∑
i=1

λi
tδzi

l:t−1
(dz∗l:t−1)dz

∗
l:t−1

=

N∑
i=1

λi
tK(dzl:t−1 − zil:t−1). (19)

Traditionally, K(·) is assumed to be the probability density of a continuous random variable with zero
mean and finite second moment taking values in R(t−1−l)×dz , where dz := dim(Zt). If we denote the ith
draw of p̃(dzl:t−1|y1:t) by z̃il:t−1, it is then clear that the set of possible values assumed by each z̃il:t−1 is

no longer limited to the finite set (zil:t−1)
N
i=1, but rather the uncountable image set of K(·). Therefore, by
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regularizing resampled draws, we end up with a set of values (z̃il:t−1)
N
i=1 which is more diverse than the

original set of resampled values (z
ai
t−1

l:t−1)
N
i=1, alleviating the effects of path degeneracy. Note that dz∗l:t−1

in the above derivation is only an integration variable; the density p̌ in the first and second integral is
still (18).

As mentioned before, regularization is especially effective in sequential parameter learning due to the
fact that it allows for exploration of the parameter space by otherwise static parameters. The first widely
succesful example of this is the method proposed by Liu and West (2001), which relies on a Gaussian
kernel with location and scale determined by past parameter values and an additional user-defined scale
specified via discount factors (see also the Supplement and Section 3.3.1). In order to obtain a more
general framework, however, here we will assume that K(·) is any probability distribution density.

We incorporate regularization within the framework we developed in Section 3.1 as an extra impor-
tance sampling step performed after resampling and prior to sampling states and parameters. More

specifically, after resampling (xi
0:t−1, θ

i
0:t−1)

N
i=1 to (x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
N
i=1, for each i = 1, . . . , N we draw

the regularized particles (x̃i
0:t−1, θ̃

i
0:t−1) from K

(
(dx0:t−1, dθ0:t−1) − (x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)
and, conditional

on (x̃i
0:t−1, θ̃

i
0:t−1), draw the current states xi

t from q(xt|x̃i
0:t−1, θ̃

i
0:t−1, y1:t) and parameters θit from

q(θt|xi
t, x̃

i
0:t−1, θ̃

i
0:t−1).

Now, assuming that we can draw exactly from K(·), the importance weights from the regulariza-
tion procedure are then proportional to the ratio between K

(
(dx0:t−1, dθ0:t−1) − (x̃i

0:t−1, θ̃
i
0:t−1)

)
and

K
(
(dx0:t−1, dθ0:t−1) − (x̃i

0:t−1, θ̃
i
0:t−1)

)
, i.e. proportional to 1. This is a case of perfect sampling, and

aside from a specific application shown in the Supplement, in practice this assumption usually holds
(although we can generalize the procedure slightly by assuming that the “true” or target regularization
kernel is given by K(·) and we can only sample from Kq(·), resulting in importance weights that must
then be multiplied by the ratio K(·)/Kq(·)).

Finally, the weight recursion of our sequential parameter learning filter with regularization is

wt ∝
w

ai
t−1

t−1

λ
ai
t−1

t

K
(
(dx0:t−1, dθ0:t−1)− (x̃i

0:t−1, θ̃
i
0:t−1)

)
K
(
(dx0:t−1, dθ0:t−1)− (x̃i

0:t−1, θ̃
i
0:t−1)

) ·
f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

=
w

ai
t−1

t−1

λ
ai
t−1

t

f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)
. (20)

Algorithm 3 summarizes a step from t−1 to t for the procedure proposed here. This procedure effectively
generalizes the sequential parameter learning filter without regularization described in Section 3.1 by

taking K
(
(dx0:t−1, dθ0:t−1)− (x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)
= δ

(x
ai
t−1

0:t−1,θ
ai
t−1

0:t−1)
(dx0:t−1dθ0:t−1), since then Algorithm 3 is

equivalent to Algorithm 2 with x̃i
0:t−1 replaced by x

ai
t−1

0:t−1 and θ̃i0:t−1 replaced by θ
ai
t−1

0:t−1.

Algorithm 3: Sequential Parameter Learning with Regularization

for i = 1 to N do
sample ait−1 from {1, . . . , N} with probability λi

t

draw (x̃i
0:t−1, θ̃

i
0:t−1) ∼ K

(
(x0:t−1, θ0:t−1)− (x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)

draw xi
t ∼ q(xt|x̃i

0:t−1, θ̃
i
0:t−1, y1:t)

draw θit ∼ q(θt|xt, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t)

compute and normalize wi
t ∝

w
ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x̃

i
t−1,θ̃

i
t−1)g(yt|xi

t,θ̃
i
t−1)

q(xi
t|x̃i

0:t−1,θ̃
i
0:t−1,y1:t)

p(θi
t|x

i
t,x̃

i
0:t−1,θ̃

i
0:t−1,y1:t)

q(θi
t|xi

t,x̃
i
0:t−1,θ̃

i
0:t−1,y1:t)

end

Note that we can once again interpret the sequential parameter learning filter with regularization
as a filter targeting, at time t, an intermediate distribution proportional to λi

tK
(
(dx0:t−1, dθ0:t−1) −

(x̃i
0:t−1, θ̃

i
0:t−1)

)
q(xt|x̃i

0:t−1, θ̃
i
0:t−1, y1:t)q(θt|xt, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t). Since p(xt, x̃

i
0:t−1, θt, θ̃

i
0:t−1|y1:t)∝ wi

t−1

K
(
(dx0:t−1, dθ0:t−1)− (x̃i

0:t−1, θ̃
i
0:t−1)

)
f(xt|x̃i

t−1, θ̃
i
t−1)g(yt|xt, θ̃

i
t−1)p(θt|xt, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t), the result-

ing incremental weights yield the same weight recursion in (20).
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Now, it is important to point out that the ideas of introducing artificial dynamics for parameters,
including θ within the state component or even performing Gibbs sampling conditional on sufficient
statistics along the filter’s trajectory are not novel. The same can be said for employing regularization
in order to mitigate path degeneracy; the linkage between these ideas were established as early as Liu
and West (2001). However, to our knowledge no effort so far has been made use both these ideas
simultaneously, making for 2 distinct sources of dynamics for the parameters θ, and as a result allowing
for greater generality and also for the combination of advantages from different algorithms.

As an example, take the filters of Liu and West (2001) (LW filter) and Carvalho et al. (2010) (called
Particle Learning, or PL). Both methods are set within an APF framework, but in the former we first
sample θt and then Xt, and in the latter we first sample Xt and then θt. Further, the LW filter relies
on regularization-type dynamics for θt and on a general lookahead strategy, and even in cases in which
we know p(yt|xt−1, θt−1) analytically, full adaptation is not possible due to the sampling order adopted.
On the other hand, PL always assumes a fully adapted APF framework, and relies on Gibbs-type moves
conditional on sufficient statistics for θt.

Although the difference between both the LW filter and PL might seem irreconcilable, both of them
can be seen as special cases of the sequential parameter learning filter with regularization developed here
(see the Supplement for details). Furthermore, within our framework we can also develop a fully adapted
version of the LW filter (see Section 3.3.1) and a regularized version of PL (see Section 3.3.2), allowing
for both methods to take advantage of the strongest points of the other.

Finally, an important aspect of mitigating path degeneracy is executing the resampling step as effi-
ciently as possible. Specifically, here we advocate the use of the tree-based branching algorithm of Crisan
and Lyons (2002), proven to have minimal variance amongst all unbiased (i.e. such that the expected
number of offspring ξit of particle zil:t−1 equals N · λi

t) resampling methods. We also advocate the use
of fully-adapted procedures whenever possible, since in most cases full adaptation can drastically reduce
the variance of the resampling weights.

3.3 Three particular cases

We now illustrate the flexibility allowed by the unified framework proposed here by introducing three
algorithms for sequential parameter learning.

3.3.1 Fully-adapted Liu and West’s Filter

The first method proposed will be hereafter referred to as Fully-adapted Liu and West’s (FALW) filter.
As its name implies, this method consists of choosing a similar regularization kernel to that of the Liu
and West (2001) (LW) filter (see also the Supplement), but adopts a fully-adapted framework instead of
the original lookahead APF one. By relying on optimality results from kernel density estimation theory
(Silverman, 1986; see also Musso et al., 2001 for a specific application of these results in the context
of particle filters), we also select kernel bandwidths automatically and independently of the adoption of
discount factors as in the original method.

More specifically, let

K
(
(dx0:t−1, dθ0:t−1)− (x

ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)
=

= dN
(
(dxt−1, dθt−1)|m

ai
t−1

t−1 , h2Vt−1

)
· δ

(x
ai
t−1

0:t−2,θ
ai
t−1

0:t−2)
(dx0:t−2dθ0:t−2), (21)

where dN (dx|µ,Σ) denotes the probability density at dx of a Gaussian random variable with mean µ
and variance Σ, and

mi
t−1 := azit−1 + (1− a)z̄t−1,

z̄t−1 :=

N∑
i=1

wi
t−1z

i
t−1,

Vt−1 :=

N∑
i=1

wi
t−1[z

i
t−1 − z̄t−1][z

i
t−1 − z̄t−1]

T , (22)

with zt−1 := (xt−1, θt−1), h := {4/[N · (2 + dz)]}1/(dz+4), a :=
√
1− h2, dz := dim(zt−1) and AT

denoting the transpose of matrix A. Note that in this method a is always well defined for N ≥ 2, since
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then 0 ≤ h ≤ 1. The rule for definining the bandwidth h is usually referred to as Silverman (1986)’s
“rule-of-thumb”.

In order to achieve full adaptation, in FALW we choose the optimal intermediate weights λi
t ∝

wi
t−1p(yt|xi

t−1, θ
i
t−1) and optimal state proposal q(xt|x̃i

0:t−1, θ̃
i
0:t−1, y1:t) = p(xt|x̃i

t−1, θ̃
i
t−1, yt). By also

assuming that
p(dθt|xi

t, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t) = δθ̃i

t−1
(dθt), (23)

and that q(θt|xi
t, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t) = p(θt|xi

t, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t), the corresponding importance weights

(20) are then

wi
t ∝

w
ai
t−1

t−1

w
ai
t−1

t−1 p(yt|x̃i
t−1, θ̃

i
t−1)

f(xi
t|x̃i

t−1, θ̃
i
t−1)g(yt|xi

t, θ̃
i
t−1)

p(xi
t|x̃i

t−1, θ̃
i
t−1, yt)

δθ̃i
t−1

(dθt)

δθ̃i
t−1

(dθt)
= 1. (24)

Note that unlike in the LW filter, in FALW we also regularize past states xi
t−1 along with past parameters

θit−1, striving for reducing path degeneracy in state and parameter trajectories (xi
0:t−1, θ

i
t−1)

N
i=1 even

further.
Although at first sight the modifications to the original method by Liu and West (2001) that define

FALW here might not warrant the definition of an entire new algorithm, we highlight from the discussion
at the end of Section 3.1 that full adaptation in this case is only possible due to the formalization of LW
moves as draws from a regularization kernel, which essentially allows us to reverse the original sampling
order from θt first and then xt to xt first and then θt. This is a situation which we have not encountered
outside of our work.

3.3.2 Regularized Particle Learning

The second method introduced in this paper is a regularized version of the Particle Learning (PL)
algorithm of Carvalho et al. (2010; see also the Supplement), hereafter referred to as Regularized Particle
Learning (RPL). The theoretical reasoning for RPL is that, in addition to sampling current parameters
conditional on sufficient statistics, regularizing past states, past parameters and even past sufficient
statistics would mitigate path degeneracy in their past trajectories even further (see e.g. Chopin et al.,
2010, for a specific discussion on path degeneracy in sufficient statistics and its effect on inference over
time).

The regularization kernel adopted in RPL is analogous to that of the FALW method, but here we
also explicitly include past trajectories of sufficient statistics S0:t−1 for resampling and regularization,
i.e.

K
(
(dx0:t−1, dS0:t−1, dθ0:t−1)− (x

ai
t−1

0:t−1,S
ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)
=

= dN
(
(dxt−1, dSt−1, dθt−1)|m

ai
t−1

t−1 , h2Vt−1

)
· δ

(x
ai
t−1

0:t−2,S
ai
t−1

0:t−2,θ
ai
t−1

0:t−2)
(dx0:t−2dS0:t−2dθ0:t−2), (25)

where mi
t−1, a, h and Vt−1 are defined as in (22) but for zt−1 := (xt−1,St−1, θt−1).

In RPL we adopt a general APF framework, by choosing intermediate weights λi
t and state proposal

q(xt|x̃i
0:t−1, θ̃

i
0:t−1, y1:t) to be defined by the user. Since this method is based on Particle Learning, the

target parameter distribution is assumed to satisfy

p(θt|xi
t, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t) = p(θt|Sit), (26)

where the sufficient statistics are propagated according to Sit = S(Sa
i
t−1

t−1 , xi
t, yt), as usual (note that

it is also possible to include the update of Sit explicitly within the filter’s recursions, as done in e.g.
Carvalho et al., 2010). Finally, by additionally assuming that the parameter proposal distribution
satisfies q(θt|xi

t, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t) = p(θt|xi

t, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t), the weight recursion (20) for RPL is

wi
t ∝

w
ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x̃i

t−1, θ̃
i
t−1)g(yt|xi

t, θ̃
i
t−1)

q(xi
t|x̃i

0:t−1, θ̃
i
0:t−1, y1:t)

p(θit|Sit)
p(θit|Sit)

=
w

ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x̃i

t−1, θ̃
i
t−1)g(yt|xi

t, θ̃
i
t−1)

q(xi
t|x̃i

0:t−1, θ̃
i
0:t−1, y1:t)

. (27)

Note that the regularization of past static parameters θit−1 in RPL only affects the importance
weights wi

t and current sampled states xi
t, since the current parameters θit are sampled independently

from p(θ|Sit). This method also allows for full adaptation by choosing optimal importance weights
λi
t ∝ wi

t−1p(yt|xi
t−1, θ

i
t−1) and optimal state proposal q(xt|x̃i

0:t−1, θ̃
i
0:t−1, y1:t) = p(xt|x̃i

t−1, θ̃
i
t−1, yt).
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3.3.3 Hybrid FALW-RPL Filter

The last method introduced here is a hybrid between the FALW and RPL algorithms of the two
previous sections, and that we thus name as Hybrid FALW-RPL algorithm. Inspired by the Hybrid LW-
PL algorithm of Chen et al. (2010; see also the Supplement), which is a hybrid between the original Liu
and West and Particle Learning methods, this technique has the benefit of allowing for Gibbs updates
whenever sufficient statistics are available for a subset φi

t of the static parameter vector θit, while also
allowing regularization-based inference for the rest of the parameters. Similar to RPL, past states,
parameters and even sufficient statistics are regularized in this method, and, similar to FALW, a fully-
adapted APF framework is adopted. All of these choices contribute to an effort of mitigating path
degeneracy as much as possible.

Let θ = (ϕ, φ), where ϕ is the subset for which we perform LW-type regularization moves and φ is
the subset for which p(φ|St) is available. The regularization kernel adopted here is the same as in RPL,
i.e.

K
(
(dx0:t−1, dS0:t−1, dθ0:t−1)− (x

ai
t−1

0:t−1,S
ai
t−1

0:t−1, θ
ai
t−1

0:t−1)
)
=

= dN
(
(dxt−1, dSt−1, dθt−1)|m

ai
t−1

t−1 , h2Vt−1

)
· δ

(x
ai
t−1

0:t−2,S
ai
t−1

0:t−2,θ
ai
t−1

0:t−2)
(dx0:t−2dS0:t−2dθ0:t−2), (28)

since we regularize both ϕi
t−1 and φi

t−1, i.e. the complete set θit−1. Similar to RPL, the definitions of
mi

t−1, a, h and Vt−1 are analogous to those in (22) but for zt−1 := (xt−1,St−1, θt−1), and sufficient

statistics are propagated according to Sit = S(S
ai
t−1

t−1 , xi
t, yt),

Now, in order to obtain a fully-adapted procedure here we must choose the optimal intermediate
weights λi

t ∝ wi
t−1p(yt|xi

t−1, θ
i
t−1) and optimal state proposal q(xt|x̃i

0:t−1, θ̃
i
0:t−1, y1:t) = p(xt|x̃i

t−1, θ̃
i
t−1, yt).

Since in this method we perform LW-type moves for ϕ and PL moves for φ, the target parameter distri-
bution is the same as in Chen et al. (2010), i.e.

p(dθt|xi
t, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t) = δϕ̃i

t−1
(dϕt)p(dφt|Sit). (29)

Finally, by taking q(θt|xi
t, x̃

i
0:t−1, θ̃

i
0:t−1, y1:t) = p(θt|xi

t, x̃
i
0:t−1, θ̃

i
0:t−1, y1:t), we have the following impor-

tance weights (20):

wi
t ∝

w
ai
t−1

t−1

λ
ai
t−1

t

f(xi
t|x̃i

t−1, ϕ̃
i
t−1, φ̃

i
t−1)g(yt|xi

t, ϕ̃
i
t−1, φ̃

i
t−1)

q(xi
t|x̃i

0:t−1, ϕ̃
i
0:t−1, φ̃

i
t−1, y1:t)

δϕ̃i
t−1

(dϕt)p(φt|Sit)

δϕ̃i
t−1

(dϕt)p(φt|Sit)

=
w

ai
t−1

t−1

w
ai
t−1

t−1 p(yt|x̃ki
t−1, ϕ̃

i
t−1, φ̃

i
t−1)

f(xi
t|x̃i

t−1, ϕ̃
i
t−1, φ̃

i
t−1)g(yt|xi

t, ϕ̃
i
t−1, φ̃

i
t−1)

p(xi
t|x̃i

t−1, ϕ̃
i
t−1, φ̃

i
t−1, yt)

= 1. (30)

4 Experiments

In this section we illustrate the performance of the three methods proposed in this paper within the
unified framework by means of numerical experiments with both simulation-based and real-world data.

Given that efficient resampling techniques often prove imperative to mitigate path degeneracy (see
e.g. Andrieu et al., 1999, 2005, 2010; Chopin et al., 2010; Kantas et al., 2015), we adopted the minimal-
entropy branching resampling scheme of Crisan and Lyons (2002) for all the experiments performed
here.

4.1 Ecological Model

For the first experiment, we illustrate the difference in performance in sequential parameter estimation
that might result from full adaptation. This is done by comparing the LW filter (Liu and West, 2001;
see also the Supplement) with its fully-adapted counterpart introduced here in Section 3.3.1, the Fully
Adapted Liu and West (FALW) filter. Our target for inference is the θ-logistic model (Peters et al.,
2010), also known as the θ-Ricker model (Polansky et al., 2009). Here we adopt the parameterization of
Polansky et al. (2009) in favor of the one in Peters et al. (2010) in order to ensure that the state process
(Xt)t≥0 has a stable equilibrium/stationary distribution.
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Let

Xt = Xt−1 + r

{
1−

[
exp(Xt−1)

K

]τ}
+ σUUt, Ut ∼ N (0, 1), (31)

Yt = Xt + σV Vt, Vt ∼ N (0, 1), (32)

with priors

X0 ∼ N (0, 4), r =d τ ∼ G(2, 10), K ∼ G(1, 0.1), σ2
U =d σ2

V ∼ IG(2, 1),

where N (µ, σ2) denotes a Normal distribution with mean µ and variance σ2, G(a, b) denotes a Gamma
distribution with shape a and rate b (i.e. with expectation a/b), and IG(c, d) denotes an Inverse-Gamma
distribution with shape c and scale d. Here we also assume that X0, (Ut)t≥1 and (Vt)t≥1 are mutually
and serially independent. The prior distributions chosen here for each component of θ are similar to
those used by Chopin et al. (2013, supplement).

The state space for this model is X = R := (−∞,+∞) and the static parameter is (note the
inclusion of the initial state, X0, as a fixed parameter) given by θ = (X0, r,K, τ, σ2

U , σ
2
V ), taking values

in Θ = R× R5
+, where R+ := (0,+∞). Here, if we let

F (xi
t−1, θ

i
t−1) := xi

t−1 + rit−1

{
1−

[
exp(xi

t−1)

Ki
t−1

]τ i
t−1
}
,

we then have

f(xi
t|xi

t−1, θ
i
t−1) = dN

(
xi
t

∣∣∣F (xi
t−1, θ

i
t−1), (σ

2
U )

i
t−1

)
, g(yt|xi

t, θ
i
t−1) = dN

(
yt

∣∣∣xi
t, (σ

2
V )

i
t−1

)
.

For this simulation study, we generated a series of n = 1,000 observations of the model given by
(31-32) with X0 = log(1.27), r = 0.15, K = 6.2, τ = 0.1, σ2

U = 0.472 and σ2
V = 0.392 (these parameter

values are the same ones used in an experiment performed by Peters et al., 2010). We then performed
M = 50 independent runs of the LW and FALW filters with a support of N = 50,000 particles. We
chose δ = 0.99 for the LW filter, and adopted the rule-of-thumb bandwidth of Silverman (1986) with a
Gaussian kernel for the FALW method. In this model, full adaptation is possible by choosing

λi
t ∝ wi

t−1p(yt|xi
t−1, θ

i
t−1) = wi

t−1dN
(
yt

∣∣∣F (xi
t−1, θ

i
t−1), (σ

2
U )

i
t−1 + (σ2

V )
i
t−1

)
and

p(xi
t|xi

t−1, θ
i
t−1, yt) = dN

(
xi
t

∣∣∣∣∣ (σ2
U )

i
t−1 · yt + (σ2

V )
i
t−1 · F (xi

t−1, θ
i
t−1)

(σ2
U )

i
t−1 + (σ2

V )
i
t−1

,
(σ2

U )
i
t−1 · (σ2

V )
i
t−1

(σ2
U )

i
t−1 + (σ2

V )
i
t−1

)
,

and these are the design choices for FALW. For the LW method, a lookahead APF strategy is adopted,
with intermediate weights λi

t ∝ wi
t−1g(yt|µi

t−1,m
i
t−1) and blind state proposal q(xi

t|x̃i
0:t−1, θ̃

i
0:t−1, y1:t) =

f(xt|x̃i
t−1, θ̃

i
t−1), with µi

t−1 = F (xi
t−1,m

i
t−1) and mi

t−1 as defined in (22).
Note that since the parameter space is constrained here (i.e. Θ is a proper subset of Rdθ ) and the

Gaussian kernels actually map from Rdθ to Rdθ , we must perform regularization in a transformed scale,
i.e. by working with ř := log(r), Ǩ := log(K), τ̌ := log(τ), σ̌2

U := log(σ2
U ) and σ̌2

V := log(σ2
V ) instead of

r, K, τ , σ2
U and σ2

V directly.
Figure 1 contains the estimated marginal posteriors for each component of θ at t = 1,000 based on

both LW and FALW methods, and Figure 2 contains the corresponding posterior traces at each time
point. For both figures, we also implemented a particle Markov Chain Monte Carlo (pMCMC, Andrieu
et al. 2010) for comparison (implementation details for the pMCMC algorithm can be found in the
Supplement). Overall, we can see that for all of the parameters there is a high instability in the LW
filter estimates (we obtained similar results by varying the discount factor up to δ = 0.5), whereas for
FALW the estimates are much more consistent across runs. FALW distributions are also more consistent
with the pMCMC posteriors, and estimates for both LW and FALW seem to converge to the pMCMC
posterior means for all of the parameters.

In order to add to the visual evidence contained in Figures 1 and 2, we also estimated the Effective
Sample Size (ESS) metric of Carpenter et al. (1999) across all M = 50 runs for each parameter. The
ESS provides us with a measure of the equivalent approximate number of i.i.d. variables supporting the
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Figure 1: θ-logistic model (31-32): kernel density estimates (solid blue lines) of the posterior distributions
at t = 1,000 for X0, r, K, τ , σ2

U and σ2
V based on M = 50 independent runs of the Liu West filter (left

column) and the Fully-Adapted Liu and West filter (right column) methods. The filters were run with
N = 50,000 particles, and the true parameter values are X0 = log(1.27) ≃ 0.2391, r = 0.15, K = 6.2,
τ = 0.1, σ2

U = 0.472 ≃ 0.2209 and σ2
V = 0.392 ≃ 0.1521. Histogram bars are from the corresponding

pMCMC run, and vertical dashed lines are the pMCMC posterior means.
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Figure 2: θ-logistic model (31-32): trace plots of the posterior distributions for X0, r, K, τ , σ2
U and

σ2
V based on M = 50 independent runs of the Liu West filter (left column) and the Fully-Adapted

Liu and West filter (right column) methods. For each row, upper and lower solid green lines are the
2.5th and 97.5th posterior percentiles, and solid red lines are the posterior medians of LW or FALW at
each time point. Black dashed lines are the pMCMC posterior means, and true parameter values are
X0 = log(1.27) ≃ 0.2391, r = 0.15, K = 6.2, τ = 0.1, σ2

U = 0.472 ≃ 0.2209 and σ2
V = 0.392 ≃ 0.1521.

The filters were run with N = 50,000 particles.
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target estimate (here the posterior mean of each parameter) for each method, so that the higher the ESS
the more consistent across runs an estimate is (note that this is different from the more usual ESS metric
of Kong et al., 1994, which is computed from the importance weights and instead measures the overall
instability of the particle system). For LW, the ESS for each component of θ = (X0, r,K, τ, σ2

U , σ
2
V )

is, respectively, (1, 2, 4, 1, 2, 2) and for FALW the corresponding ESSs are (49, 53, 70, 57, 170, 110), cor-
roborating the evidence that FALW-based estimates are much more consistent than those from the LW
filter.

Regarding CPU time consumption, both methods perform equally well, with each run of FALW
taking about a second longer in average. In a Core i7 CPU 860 running at 2.80 GHz, the mean CPU
time of a LW run is 153.36 seconds and the mean CPU time of a FALW run is 181.14 seconds.

4.2 Nonlinear Seasonal Model

Next, we investigate the effect of regularization of past states, parameter values and sufficient statistics
in parameter estimates over time. We do this by comparing the Particle Learning (PL) algorithm of
Carvalho et al. (2010, see also the Supplement) with the Regularized Particle Learning (RPL) method
introduced here in Section 3.3.2 in the Nonlinear Seasonal Model (NLSM), a model that was first proposed
by Netto et al. (1978) and is widely popular as a toy example in the particle filter literature in general
(see e.g. Gordon et al., 1993; Kitagawa, 1987; Cappé et al., 2005).

Let

Xt =
Xt−1

2
+ 25

Xt−1

1 +X2
t−1

+ 8 cos(1.2t) + σV Vt, Vt ∼ N (0, 1), (33)

Yt =
X2

t

20
+ σWWt, Wt ∼ N (0, 1), (34)

with priors

X0 ∼ N (0, 5), σ2
V ∼ IG(1/2, 1/2), σ2 ∼ IG(1/2, 1/2),

where (Vt)t≥0 and (Wt)t≥0 are assumed to be mutually and serially independent, with X0 ⊥⊥ Vt and
X0 ⊥⊥Wt for all t.

The state space for the NLSM model is once again X = R, the static parameter vector is θ = (σ2
V , σ

2
W )

and the parameter space is Θ = R2
+. Here,

f(xi
t|xi

t−1, θ
i
t−1) = dN

(
xi
t

∣∣∣∣xi
t−1

2
+ 25

xi
t−1

1 + (xi
t−1)

2
+ 8 cos(1.2t), (σ2

V )
i
t−1

)
and

g(yt|xi
t, θ

i
t−1) = dN

(
yt|xi

t, (σ
2
W )it−1)

)
.

For this experiment, we take σ2
V = 10 and σ2

W = 1 as the true parameter values, simulate a series of
n = 500 observations and then perform M = 50 independent runs of the PL and RPL methods using
N = 50,000 particles. Design choices for both the PL and RPL methods here are SIR intermediate
weights λi

t = wi
t−1 and blind state proposal q(xi

t|x̃i
0:t−1, θ̃

i
0:t−1, y1:t) = f(xt|x̃i

t−1, θ̃
i
t−1).

The posterior distributions for σ2
V and σ2

W for the Gibbs sampling steps of both PL and RPL methods
are available in closed form, and are given by

σ2
V |(X0:t, Y1:t) ∼ IG(at/2, bt/2), σ2

W |(X0:t, Y1:t) ∼ IG(bt/2, ct/2),

where the sufficient statistics St = (at, bt, ct, dt), satisfy

at := a0 + t = a0 + (t− 1) + 1 = at−1 + 1,

bt := b0 +

t∑
k=1

(Xk − Fk)
2 = b0 +

t−1∑
k=1

(Yk − Fk)
2 + (Yt − Ft)

2 = bt−1 + (Yt − Ft)
2,

ct := c0 + t = c0 + (t− 1) + 1 = ct−1 + 1,

dt := d0 +

t∑
k=1

(
Yk −

X2
k

20

)2

= d0 +

t−1∑
k=1

(
Yk −

X2
k

20

)2

+

(
Yt −

X2
t

20

)2

= dt−1 +

(
Yt −

X2
t

20

)2
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for each t, with Ft := Xt−1/2 + 25Xt−1/(1 +X2
t−1) + 8 cos(1.2t) and starting at a0 = b0 = c0 = d0 = 1.

Since the parameter space Θ is once again restricted, we have to work with log-variances σ̌2
V = log(σ2

V )
and σ̌2

W = log(σ2
W ) for the regularization steps.

Figure 3 contains the estimated marginal posteriors for each component of θ at t = 500 based on
both PL and RPL methods, and Figure 4 contains the corresponding posterior traces at each time
point. Visually, both the final posterior density estimates and their traces are very similar between
both methods, with RPL showing slightly stabler estimates. The ESS, however, shows evidence of
a more pronounced difference between the methods: ESSs for θ = (σ2

V , σ
2
W ) are (16, 9) for PL and

(32, 18) for RPL (an average twofold improvement). Overall, both methods show agreement with the
pMCMC estimates, with median posterior across chains converging to the pMCMC posterior means for
all components of θ.

Regarding CPU time consumption, RPL is about three times slower than PL, with an average PL
run taking 22.37 seconds and an average RPL run taking 62.09 seconds.

4.3 Gamma-Poisson Model

Now, we investigate the effect full-adaptation might have in sequential parameter inference, but
combined with also regularizing past states, parameters and sufficient statistics. The algorithms we
compare in this experiment are the Hybrid LW-PL of Chen et al. (2010; see also the Supplement) and
the Hybrid FALW-RPL introduced in Section 3.3.3. The target model for inference is theGamma-Poisson
model (Jørgensen et al., 1996; Storvik, 2002).

Let

Xt|(Xt−1, θ) ∼ G(Xt−1/σ
2, 1/σ2), (35)

Yt|(Xt, θ) ∼ Pois(λXt), (36)

with priors

λ ∼ G(1, 1), σ2 ∼ IG(3, 2),

where Pois(µ) denotes a Poisson distribution with mean µ.
Here the state space is X = R+, the static parameter vector is θ = (λ, σ2), and the parameter space

is Θ = R2
+. Also,

f(xi
t|xi

t−1, θ
i
t−1) = dG

(
xi
t

∣∣∣∣ xi
t−1

(σ2)it−1

,
1

(σ2)it−1

)
, g(yt|xi

t, θ
i
t−1) = dPois

(
yt|λi

t−1 · xi
t

)
,

where dG(x|a, b) and dPois(y|µ) are the probability density functions of, respectively, G(a, b) and Pois(µ)
random variables, evaluated at x and y.

For this experiment, we take λ = 0.50 and σ2 = 0.40 as the true parameter values, simulate a series
of n = 500 observations and then perform M = 50 independent runs of the Hybrid LW-PL and Hybrid
FALW-RPL methods using N = 50,000 particles. Here, the parameter for which we perform LW-type
moves is ϕ = σ2 and the one for which we perform Gibbs-type moves is φ = λ. We chose δ = 0.99 for
the Hybrid LW-PL filter. Here, full adaptation is possible by choosing

λi
t ∝ wi

t−1p(yt|xi
t−1, θ

i
t−1) = wi

t−1dNegBin
(
yt

∣∣∣ 1

1 + (σ2)it−1 · λi
t−1

, yt +
xi
t−1

(σ2)it−1

)
and

p(xi
t|xi

t−1, θ
i
t−1, yt) = dG

(
xi
t

∣∣∣∣yt + xi
t−1

(σ2)it−1

, λi
t−1 +

1

(σ2)it−1

)
,

where dNegBin(x|p, r) denotes the probability density function of a Negative Binomial random variable
at x with probability p and size r, i.e. with expectation r · p/(1− p). For the Hybrid LW-PL method, a
lookahead APF strategy is adopted, with intermediate weights given by λi

t ∝ wi
t−1g(yt|µi

t−1,m
i
t−1, φ

i
t−1)

and blind state proposal q(xi
t|x̃i

0:t−1, θ̃
i
0:t−1, y1:t) = f(xt|x̃i

t−1, θ̃
i
t−1), with µi

t−1 = xi
t−1 andmi

t−1 as defined
in (22).

The posterior distribution for λ for the Gibbs sampling steps in both methods is available in closed
form, and is given by

λ|(X0:t, Y1:t) ∼ G(at, bt),
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where the sufficient statistics St = (at, bt), satisfy

at := a0 +

t∑
k=1

Yk = a0 +

t−1∑
k=1

Yk + Yt = at−1 + Yt,

bt := b0 +

t∑
k=1

Xk = b0 +

t−1∑
k=1

Xk +Xt = bt−1 +Xt

for each t, starting at a0 = b0 = 1. Since the parameter space Θ is again restricted, we have to work
with λ̌ = log(λ) and σ̌2 = log(σ2) for the regularization steps.

Figure 5 contains the estimated marginal posteriors for each component of θ at t = 500 based on both
Hybrid LW-PL and Hybrid FALW-RPL methods, and Figure 6 contains the corresponding posterior
traces at each time point. Here the evidence in favor of full adaptation and regularization of past
states, parameters and sufficient statistics is clearer, with the Hybrid LW-PL estimates displaying higher
variability across runs than those of the Hybrid FALW-RPL algorithm, especially for the λ parameter
(the one which we update via Gibbs-type moves). The ESS estimates corroborate this difference: ESSs
for θ = (λ, σ2) are (67, 53) for the Hybrid LW-PL and (85, 119) for the Hybrid FALW-RPL method.
Posterior for both methods show agreement with the pMCMC histograms, and chains seem to converge
to pMCMC posterior means.

Regarding CPU time consumption, an average Hybrid LW-PL run takes about 69.34 seconds, and
an average Hybrid FALW-RPL run takes about 106.37 seconds.

4.4 AR(1) + Noise Model

For the next experiment, we illustrate the performance of all 3 algorithms proposed in this paper in
the same scenario. Consider the state space model defined by

Xt = ϕXt−1 + σUUt, Ut ∼ N (0, 1) (37)

Yt = Xt + σV Vt, Vt ∼ N (0, 1) (38)

with priors

X0|σ2
U ∼ N (0, σ2

U ), ϕ|σ2
U ∼ N (0.50, σ2

U ), σ2
U =d σ2

V ∼ IG(1/2, 1/2).

Here we assume that X0 ⊥⊥ Ut ⊥⊥ Vs for all t, s, and that (Ut)t≥0 and (Vt)t≥0 are serially independent.
The state space here is X = R := (−∞,+∞) and the static parameter is θ = (ϕ, σ2

U , σ
2
V ), taking

values in Θ = R × R2
+. Since equations (37-38) describe a (Gaussian) autoregressive process (Xt)t≥0

of order 1 observed via (Yt)t≥0 with (Gaussian) noise σV Vt, the model is commonly referred to as the
(Gaussian) AR(1) + noise model. Here f(xi

t|xi
t−1, θ

i
t−1) = dN (xi

t|ϕi
t−1x

i
t−1, (σ

2
U )

i
t−1) and g(yt|xi

t, θ
i
t−1) =

dN (yt|xi
t, (σ

2
V )

i
t−1).

We reproduce here the specific configuration adopted by Nemeth et al. (2016). By taking ϕ = 0.90,
σ2
U = 0.702 and σ2

V = 1 as the true parameter values, we simulate a series of size n = 1,000 of model
(37-38) and then perform M = 50 independent runs of the FALW (Section 3.3.1), RPL (Section 3.3.2)
and Hybrid FALW-RPL (Section 3.3.3) methods, using N = 50,000 particles. Here, we adopted the
rule-of-thumb bandwidth of Silverman (1986) with a Gaussian kernel for all of the methods.

In this model, the optimal importance weights and state proposal distribution are available in closed-
form as

λi
t ∝ wi

t−1p(yt|xi
t−1, θ

i
t−1) = wi

t−1dN (ϕi
t−1x

i
t−1, (σ

2
U )

i
t−1 + (σ2

V )
i
t−1)

and

p(xt|xi
t−1, θ

i
t−1, yt) = dN

(
xt

∣∣∣∣ (σ2
U )

i
t−1 · yt + (σ2

V )
i
t−1 · ϕi

t−1x
i
t−1

(σ2
U )

i
t−1 + (σ2

V )
i
t−1

,
(σ2

U )
i
t−1 · (σ2

V )
i
t−1

(σ2
U )

i
t−1 + (σ2

V )
i
t−1

)
.

We adopt these weights and state proposals for all FALW, RPL and Hybrid FALW-RPL methods.
The posterior distributions for ϕ, σ2

U and σ2
V given the states and observations are also available in

closed-form, and are given by

ϕ|(X0:t, Y1:t, σ
2
U ) ∼ N (mt, σ

2
U · Ct), σ2

U |(X0:t, Y1:t) ∼ IG(at/2, bt/2), σ2
V |(X0:t, Y1:t) ∼ IG(ct/2, dt/2),

where the sufficient statistics St = (mt, Ct, at, bt, ct, dt) satisfy, for t ≥ 1,

mt := mt−1 +
1

Dt
Ct−1Ft(Xt − Ftmt−1),
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Ct := Ct−1 −
1

Dt
C2

t−1F
2
t ,

at := at−1 + 1,

bt := bt−1 +
1

Dt
(Xt − Ftmt−1)

2,

ct := ct−1 + 1,

dt := bt−1 + (Yt −Xt)
2,

with Ft = Xt−1 and Dt = Ct−1F
2
t + 1, and initial conditions m0 = 0.50, C0 = 1 and a0 = b0 = c0 =

d0 = 1. See Storvik (2002) for a complete derivation of these recursions.
Since the parameter space Θ in this model is also restricted, we work with the transformed parameters

σ̌2
U = log(σ2

U ) and σ̌2
V = log(σ2

V ). Finally, for the Hybrid FALW-RPL method we chose to perform Gibbs-
type moves for (ϕ, σ2

U ) and LW-type moves for σ2
V , and therefore for this method we only compute and

regularize the sufficient statistics mt, Ct, at and bt.
Figure 7 contains the estimated marginal posteriors for each component of θ at t = 1,000 based on

the FALW, Hybrid-FALW and RPL methods, and Figure 8 contains the corresponding posterior traces
at each time point. Qualitatively, the performance for the three algorithms is strikingly similar, with
FALW showing a slightly greater variability compared to the other ones. All of the methods agree with
the pMCMC posterior distributions, and converge to the pMCMC posterior means.

The ESSs show a numerical difference between all three methods, with RPL being more consistent
across runs. Respectively, for θ = (ϕ, σ2

U , σ
2
V ), the ESSs for FALW are (128, 80, 140), the ESSs for

Hybrid FALW-RPL are (173, 102, 164) and the ESSs for RPL are (178, 105, 202). This is consistent with
previous findings (see e.g. Carvalho et al. 2010 for some examples and further references) and, as argued
before, indicates that Gibbs-type moves should be performed whenever posterior distributions for θ given
sufficient statistics are available (along with regularization and efficient resampling, as already discussed
in Section 3.2). With respect to CPU time consumption, an average FALW run takes about 79.93
seconds, a Hybrid FALW-RPL run takes 145.33 seconds and a RPL run takes 166.57 seconds (about
twice the average time for a FALW run).

4.5 Stochastic Volatility Model

For our final experiment, we consider inference on a Stochastic Volatility (SV) model (Taylor, 1982;
Dahlin and Schön, 2019) using real-world data from the NASDAQ OMXS30 index.

Let

Xt = ϕXt−1 + τUt, Ut ∼ N (0, 1), (39)

Yt = σ exp(Xt/2)Vt, Vt ∼ N (0, 1), (40)

with priors

X0|τ2 ∼ N (0, τ2), ϕ|τ2 ∼ N (0.9356, 0.10 · τ2), τ2 ∼ IG(8/2, 0.12/2), σ2 ∼ IG(5.1640/2, 5.2164/2).

Here, once again (Ut)t≥0 and (Vt)t≥0 are assumed to be serially and mutually independent, and also
independent of X0. These particular prior hyperparameter values comes from matching the first and
second moments of the experiment in the priors used in Dahlin and Schön (2019), although the actual
priors used here were chosen to allow for closed-form posterior distributions for performing Gibbs-type
updates.

The state space for the SV model is X = R, the static parameters are θ = (ϕ, τ2σ2) and the parameter
space is Θ = R× R2

+. Here,

f(xi
t|xi

t−1, θ
i
t−1) = dN (xi

t|ϕi
t−1x

i
t−1, (τ

2)it−1), g(yt|xi
t, θ

i
t−1) = dN (yt|0, (σ2)it−1 exp(x

i
t/2)).

For this experiment, we use the daily series of stock prices of the NASDAQ OMXS30 index from
January 2, 2012 to January 2, 2014. For each day t after January 2, 2012, the daily log-return is
defined by yt := log(Pt/Pt−1), where Pt is the daily closing price, t = 1, . . . , 500. We perform M = 50
independent runs of the Regularized Particle Learning method (RPL) of Section 3.3.2 using N = 50,000
particles. The design choices we make for the RPL method are SIR intermediate weights λi

t = wi
t−1 and

blind state proposal q(xi
t|x̃i

0:t−1, θ̃
i
0:t−1, y1:t) = f(xt|x̃i

t−1, θ̃
i
t−1).
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The posterior distributions for performing the Gibbs sampling steps in RPL are available in closed
form for all of the parameters. They are given by

τ2|(X0:t, Y1:t) ∼ IG(at/2, bt/2), ϕ|(X0:t, Y1:t, τ
2) ∼ N (mt, τ

2Ct), σ2|(X0:t, Y1:t) ∼ IG(ct/2, dt/2),

where the sufficient statistics St = (mt, Ct, at, bt, ct, dt), satisfy

mt = mt−1 + Ct−1 ·
Ft

Dt
· (xt − Ftmt−1),

Ct = Ct−1 − C2
t−1 ·

F 2
t

Dt
,

at = at−1 + 1,

bt = bt−1 +
(x− Ftmt−1)

2

Dt
,

ct = ct−1 + 1,

dt =
Y 2
t

exp(Xt)
,

for each t, with Ft := Xt−1 and Dt := Ct−1 · F 2
t , starting at m0 = 0.9356, C0 = 0.10, a0 = 8, b0 =

0.12, c0 = 5.1640, d0 = 5.2164 (see also Storvik, 2002). Since the parameter space Θ is once again
restricted, we have to work with log-variances τ̌2 = log(τ2) and σ̌2 = log(σ2) for the regularization steps.

Figure 9 contains the estimated marginal posteriors for each component of θ at t = 500 based on the
RPL method, as well as the corresponding posterior traces at each time point. The estimates show a
certain regularity across runs, and the ESSs for θ = (ϕ, τ2, σ2) are (153, 222, 247). The corresponding
median across runs of the posterior estimates (which are the posterior expectations in each run) are
(1.0773, 0.9743, 0.0202), similar to those found by Dahlin and Schön (2019)(although they rely on a
different parameterization and technique). The RPL posteriors also agree with the pMCMC posterior
distributions, and seem to converge to the pMCMC posterior means.

Figure 10 contains the log-returns and the boxplots of posterior state expectations in each run for
each day. These results are also qualitatively similar to those of Dahlin and Schön (2019), and are
consistent with the parameter estimates obtained here: log-volatilities are slow-moving due to their high
autocorrelation (given by ϕ) and relatively small variance (given by τ2). Average CPU consumption in
this experiment was about 83.12 seconds for each RPL run.

5 Conclusions

In this paper we introduced a framework for sequential parameter learning in state space models
capable of accommodating several other algorithms found in the literature as special cases. In order to
illustrate the flexibility and usefulness of the proposed framework, we also developed three new algo-
rithms: an improved and fully-adapted version of Liu and West (2001)’s filter, a regularized version of
Carvalho et al. (2010)’s Particle Learning method and a hybrid between the two inspired by the ideas of
Chen et al. (2010).

To analyze the performance of the sequential parameter learning methods proposed in this work, we
considered a series of simulation-based numerical experiments. First, we examined the performance of
the Liu and West (2001)’s filter and its fully-adapted counterpart introduced here in a highly nonlinear
θ-logistic model (Peters et al., 2010; Polansky et al., 2009). Afterwards, we assessed inference using
the Particle Learning method of Carvalho et al. (2010) and its regularized counterpart developed here
in the Nonlinear Seasonal State Space Model (Netto et al., 1978; Andrieu et al., 2010). Next, we also
explored the performance of the hybrid filter of Chen et al. (2010) and our fully-adapted version of this
filter in the context of a Gamma-Poisson model (Jørgensen et al., 1996). Finally, we compared all three
proposed algorithms together in the context of an AR(1) + noise model (Nemeth et al., 2016). To add
to these experiments using simulation-based data, we also estimated a Stochastic Volatility model using
real-world data from the NASDAQ OMXS30 index (Dahlin and Schön, 2019; McTaggart et al., 2019).
Further experiments using the methods proposed here can also be found in Silva (2020).

In closing, we note that although much of the content of this paper has already been discussed and
presented elsewhere, to our knowledge no effort has been made to unify such a diverse set of methods
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in a single framework. We single out this effort as the main contribution of our work. Moreover, our
reinterpretation of the role of regularization in the sequential parameter learning setting, inspired by the
works of Liu and West (2001) and Andrieu et al. (2010), has not appeared anywhere else in the literature.

For future work, hopefully the formalism developed for the unified framework proposed here will allow
for further exploration of the analytical and theoretical properties of general sequential parameter learning
algorithms, and also lead to a better understanding of the relationship between these methods. As far
as the practical aspect of these methods is concerned, directions for future research also include drawing
from the results on kernel density estimation literature (such as local or adaptive kernel bandwidths; see
e.g. Silverman 1986 for an early review) in order to improve upon the regularization techniques typically
employed in these algorithms.
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