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ORCID: 0000-0001-8394-0417

Esther Ruiz*

Dept. Statistics, Universidad Carlos III de Madrid, Getafe (Spain)

ORCID: 0000-0002-5944-9449
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Abstract

In this paper, we analyse the forecasting performance of several parametric ex-
tensions of the popular Dynamic Nelson-Siegel model for the yield curve. We fo-
cus on the role of additional and time-varying decay parameters, conditional het-
eroscedasticity and macroeconomic variables. We also consider the role of several
popular restrictions on the dynamics of the factors. Using a novel end-of-month
continuously compounded Treasury yields on US zero-coupon bonds and frequen-
tist estimation based on the extended Kalman filter, we show that a second decay
parameter does not have any role in obtaining better forecasts. Also, in concor-
dance with the preferred habitat theory, we show that, the best forecasting model
depends on the maturity. For short maturities, the best performance is obtained
in a heteroscedastic model with time-varying decay parameter. However, for long
maturities, neither the time-varying decay nor the heteroscedasticity plays any role
and the best fit is obtained in the basic DNS model with the shape of the yield
curve depending on macroeconomic activity. Consequently, models for the yield
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curve should incorporate some short of non-linearity depending on the maturity.
Furthermore, assuming non-stationary factors is helpful in forecasting at long hori-
zons.

Keywords: Dynamic Nelson-Siegel-Svensson model, Time-varying decay parameter,
Term Structure, Extended Kalman filter

JEL codes: C53; E43; G17.
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1 Introduction

The yield curve of government bonds, i.e. the relationship between interest rates and

time to maturity, is often regarded as a benchmark due to its high liquidity and low

credit risk. Accurate forecasts of the term structure of interest rates or yield curve are

relevant for investors and policy makers when pricing interest rate contingent assets,

constructing asset and bond portfolios, managing financial risk or making economic policy

decisions; see Hodges & Schaefer (1977) and Ronn (1987) for early references. Recently,

these forecasts have also become important in the context of new tools of unconventional

monetary policy as yield curve control or forward guidance; see, for example, Kuttner

(2018) and Bernanke (2020). Consequently, during the last two decades, a large number

of works has been devoted to developing alternative methodologies for modelling the term

structure. These methodologies can be classified into three main alternative approaches.

First, several models focus on fitting the term structure at a point in time to ensure

that no-arbitrage possibilities exist. These models are usually estimated using regression-

based procedures; see the recent work by Golinski & Spencer (2021) and the references

therein. In many empirical studies, it is suggested that imposing no-arbitrage conditions

does not generally lead to more accurate predictions; see, for example, Joslin et al. (2011).

Second, many authors estimate the term structure using affine models, originally char-

acterized by Duffie & Kan (1996), which allow multiple state variables to drive interest

rates with bond yields being linear functions of these variables; see Duffee & Stanton

(2012) for a comparison of alternative estimators of affine models, including Kalman

filter-based estimators. Recent estimation techniques of affine models for the term struc-

ture rely on Bayesian procedures, which are computationally demanding; see, for example,

Carriero et al. (2021) for a recent Bayesian estimator of the canonical affine term structure

model, in its equivalent but computationally more stable representation of Joslin et al.

(2011).

Finally, motivated by the rational expectation theory, Nelson & Siegel (1987) express

spot interest rates in terms of forward rates and propose a three factor model for the

yield curve, with the factors representing the level, slope and curvature of the curve. As

a result of this interpretation of the factors, the factor loadings are heavily parametrized

depending on a single exponential decay rate parameter; see Coroneo et al. (2011) and
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Krippner (2012) for the connection between the DNS model and affine and arbitrage-free

models, respectively. Diebold & Li (2006) propose modelling the dynamic evolution of

the yield curve by extending the three factor model to allow for time-varying factors. The

resulting model is the so-called Dynamic Nelson-Siegel (DNS) model, which is a major

workhorse among academics and it is also widely used in the financial community; see, for

example, Diebold et al. (2008), Yu & Salyards (2009), Christensen et al. (2011), Laurini

& Hotta (2014) and Caldeira et al. (2016), for some few selected empirical applications,

and BIS (2005) and ECB (2018) for its implementation by practitioners. In spite of its

popularity, the Achilles heal of the DNS model lies in its poor forecasting performance,

with forecasts that hardly beat those obtained by a random walk model. As far as we are

concerned, Christensen et al. (2011) and Coroneo et al. (2016) are among the few that

conclude that the DNS has a good forecasting performance improving the random walk

predictions. Two main reasons have been put forward to explain this poor performance.

First, the specification of the model and, in particular, the restrictions imposed on the

factor loadings, may not hold in practice; see Jungbacker et al. (2014) and Carriero et al.

(2021). Alternatively, there is also a literature suggesting that the performance of DNS

type models has deteriorated in the post global financial crisis due to the low variability

of interest rates during the zero-lower-bound interest rate constraints period from 2008

to 2012; see, for example, Diebold & Rudebusch (2013) and Altavilla et al. (2017).

The main contribution of this paper is the empirical analysis of the forecasting per-

formance of a very general and flexible specification of the DNS model. In particular, we

consider three extensions of the original specification, which could flexibilice the model

and mitigate the adverse effects of potential misspecification. First, early on Svensson

(1994) proposes a four-factor version of the Nelson & Siegel (1987) model; see Koopman

et al. (2010), Almeida et al. (2018) and Swanson et al. (2020) for applications with four

factors. Second, other two important extensions of the DNS model are due to Koopman

et al. (2010), who extend it in two directions. On the one hand, they propose allowing

the decay parameter to evolve over time; see Laurini & Hotta (2010), Hevia et al. (2015)

and Swanson et al. (2020), for other proposals in which the decay parameter is allowed

to change over time. On the other hand, Koopman et al. (2010) propose representing the

overall volatility by a conditionally heteroscedastic GARCH model. Allowing for the evo-
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lution of volatility seems to be an important characteristic of the yield curve.1 Caldeira

et al. (2010) and Laurini & Caldeira (2016) also allow for time-variation in both the decay

parameter and volatilities. Finally, an useful and popular extension of the DNS model

considered in this paper, is the inclusion of macroeconomic variables to explain the yield

curve; see Gürkaynak & Wright (2012) and Morley (2016) for surveys on the relationships

between the yield curve and the macro-economy. Diebold et al. (2006) propose augment-

ing the specification of the yield curve by adding macroeconomic variables to explain the

evolution of the level, slope and curvature factors; see Bianchi et al. (2009), and... for

applications.

In order to disentangle the role played by the four extensions described above in

predicting the yield curve, we consider a DNS model with two time-varying decay pa-

rameters, macroeconomic variables, and conditional heteroscedasticity, which is fitted to

a novel data set of end-of-month continuously compounded Treasury yields on US zero-

coupon bonds. Estimation of the extended DNS model is carried out using the Extended

Kalman filter. Several important conclusions are obtained from this analysis. First, we

show that the second decay rate does not have any role in obtaining a better forecasting

performance of the factor model. Second, we show that the best specification depends on

the maturity. For short maturities, the best performance is obtained in a heteroscedastic

DNS model with time-varying decay. However, for large maturities, the simplest ho-

moscedastic model with constant decay performs better if the shape of the yield curve

depends on economic activity. Finally, we also show that the maturity for which the model

switches is larger the larger the prediction horizon. For example, when the predictions

are obtained one-step-ahead, the model switches for maturities larger than 21 months.

However, one predicting one-year ahead, the model switches for maturities larger than 36

months. These results suggest that the yield curve model should incorporate some short

of non-linearity depending on the maturity.

The outline of the paper is as follows. Section 2 describes the DNS model and its

extensions considered in this paper. In Section 3, the model is fitted to a data set of

end-of-month continuously compounded Treasury yields on US zero-coupon bonds. In

1Note that this extension could also be relevant for density forecasts of the yield curve; see, for example,
Carriero et al. (2021) and Shin & Zhang (2017). Density forecasting of interest rates is important for
derivatives pricing and risk management.
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Section ??, we fit the switching model. Finally, Section 5 concludes.

2 Extensions of the Dynamic Nelson-Siegel model

In this section, we describe the DNS model for the yield curve as well as some of its more

popular extensions. We also describe estimation of the model parameters.

2.1 Dynamic Nelson-Siegel model

The DNS model, originally proposed by Diebold & Li (2006) to represent the term struc-

ture of interest rates, is given by

yt(τi) = β1t + β2t

(
1 − e−λτi

λτi

)
+ β3t

(
1 − e−λτi

λτi
− e−λτi

)
+ εit, (1)

βt+1 = µ+ Φ (βt − µ) + ηt, (2)

where yt(τi) is the yield of a security with maturity τi, i = 1, . . . , N , observed at time

t, for t = 1, . . . , T , βt = (β1t, β2t, β3t)
′ is the vector of factors, which represent the level

(β1), slope (β2), and curvature (β3) of the yield curve, and εt = (ε1t, ..., εNt)
′ is an N ×N

Gaussian white noise vector with diagonal covariance matrix Σε; see, for example, Diebold

& Li (2006), Diebold et al. (2006), Koopman et al. (2010), Exterkate et al. (2013) and

Jungbacker et al. (2014) for the diagonality of Σε. Finally, ηt is a Gaussian white noise

vector, which is independent of εt for all lags and leads and has full covariance matrix Ση.

The λ parameter is a strictly positive decay parameter that governs the decay of interest

rates when maturity increases. Small (large) values of λ produce a slow (fast) decay. The

decay parameter, λ, also governs where the loading on the curvature, β3t, achieves its

maximum. Finally, µ is a 3 × 1 vector of constant parameters and Φ is a 3 × 3 matrix of

autoregressive parameters that govern the dynamics of the factors. The matrix Φ satisfies

the stationarity conditions.2

Two main characteristics explain the popularity of the DNS model to explain the yield

curve. First of all, the model can be easily estimated using standard estimation techniques,

2Alternatively, several authors propose modelling the term structure using factor models with the
loadings represented by polynomial splines; see, for example, Bowsher & Meeks (2008), Koopman &
van der Wel (2013) and Jungbacker et al. (2014).
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avoiding the heavy computations often associated to Bayesian estimation procedures.

Second, the factors have meaningful economic interpretations and can embody different

aspects of monetary policy. First, the limit of the yield when maturity increases is β1t,

which embodies any effects of monetary policy that simultaneously shift all interest rates.

Moreover, β2t is related with conventional monetary policy, which typically affects short

rates more than long rates, thereby changing the so-called term spread of the yield curve.

Finally, an increase in β3t increases medium-term yields and have little effect on short and

long interest rates. It is related with unconventional monetary shocks, such as forward

guidance or monetary policy announcements. Also note that some linear combinations of

the factors are also of interest. For example, β1t + β2t represents the instantaneous yield

while β3t − β1t represents changes in long-run expectations or risk premium that do not

result in parallel shifts in the term structure.

As mentioned above, one of the advantages of the DNS model is its easy estimation

with alternative estimators of its parameters available. First, Diebold & Li (2006) pro-

pose fixing the exponential decay rate, λ, to a constant chosen by the researcher and

estimating the other parameters in the model by a simple two-step estimation procedure.

In particular, they propose fixing λ = 0.0609, with the curvature having its larger impact

on the 30-month maturity bond; see Bianchi et al. (2009), Swanson & Williams (2014),

van Dijk et al. (2014), Byrne et al. (2017) and Almeida et al. (2018) for implementations

using this value. If there are sufficient interest rates with different maturities at each

period of time, in the first step, the factors, βt, are estimated by Ordinary Least Squares

(OLS) at each time period t. Assuming that Φ is diagonal, in the second step, univariate

AR(1) models are fitted to each of the estimated factors; see, for example, Swanson &

Williams (2014), van Dijk et al. (2014), Byrne et al. (2017), Almeida et al. (2018) and

Inoue & Rossi (2021) for implementations.

Second, following Diebold et al. (2006), the DNS model can be viewed as a dynamic

factor model (DFMs) with restricted factor loadings as follows

yt = Λβt + εt, (3)

where yt = (yt(τ1), ..., yt(τN))′ and Λ is an N × 3 matrix of factor loadings, with its (i, j)
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element given by3

Λij =



1, j = 1

1 − exp(−λτi)
λτi

, j = 2

1 − exp(−λτi)
λτi

− exp(−λτi), j = 3.

(4)

If the model parameters were known, the Kalman filter and smoothing (KFS) algorithms

can be implemented to extract the factors.4 In practice, the parameters, including the

decay parameter, λ, can be estimated by Quasi Maximum Likelihood (QML), using the

prediction error decomposition of the Gaussian likelihood. For the optimization of the

likelihood, the start-up parameters of Φ can be obtained using the two-step OLS estimator

described above, all variances can be initialized at 1.0 and λ = 0.0609; see Exterkate et al.

(2013) and Joslin et al. (2013) for implementations. Once the parameters are estimated,

the filter can be used to obtain one-step-ahead predictions of the underlying level, slope

and curvature, and consequently, of the yields. Furthermore, h-step-ahead predictions

can be obtained by running the prediction equations of the filter alone.

Next, we describe several popular extensions of the DNS model and how the Kalman

filter methodology can be updated to each of them. In particular, we consider additional

and time-varying discount parameters, the inclusion of macroeconomic variables and of

conditional heteroscedasticity.

2.2 Additional and time-varying decay parameters

Svensson (1994) proposes extending the DNS model in (1) and (2) by including an ad-

ditional decay parameter, which allows the yield curve to have more flexible shapes with

3Other authors have proposed alternative specifications of the loadings. For example, Bowsher &
Meeks (2008) and Almeida et al. (2018) propose using polynomial basis instead of exponential functions,
while Jungbacker et al. (2014) do not impose a fixed structure of the loadings further than some smoothing
conditions.

4The filter can be initialized using the unconditional mean and covariance matrix of βt, namely,
b1|0 = E [βt] = µ and P1|0 = E [βtβ

′
t] = Σβ , with the latter being the solution of Σβ −ΦΣβΦ = Ση, which

can be solved using the properties of the vectorization operator; see Christensen & van der Wel (2019)
for details.
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two humps. The so-called Dynamic-Nelson-Siegel-Svensson (DNSS) model is given by

yt(τi) = β1t + β2t

(
1 − e−λ1τi

λ1τi

)
+ β3t

(
1 − e−λ1τi

λ1τi
− e−λ1τi

)
+ β4t

(
1 − e−λ2τi

λ2τi
− e−λ2τi

)
+ εit,

(5)

where βt = (β1t, β2t, β3t, β4t)
′ is defined as in (2) and λ1 and λ2 are both strictly positive

and distinct to avoid multicollinearity.

Gürkaynak et al. (2007) show that the yield curve often needs two humps, one at short

maturities associated with monetary policy expectations and another at long maturities to

capture convexity effects; see also the results by Almeida et al. (2018) and Swanson et al.

(2020). The second hump in the DNSS model is difficult to identify without imposing

additional restrictions; see, for example, the empirical results in Gürkaynak et al. (2007).

Consequently, several authors propose restrictions to guarantee that the two humps are far

apart; see, for example, Ferstl & Hayden (2010), Pedersen & Swanson (2019), Sasongko

et al. (2019) and Walstrøm et al. (2022). However, it is important to note that Walstrøm

et al. (2022) conclude that the restrictions can be disadvantageous when using the yield

curve for monetary policy decisions.

The estimation procedures described above for the DNS model can be easily adapted

to estimate the DNSS model.5

Koopman et al. (2010) propose making the yield curve more flexible by allowing the

decay parameter, λ, to be time-varying. To guarantee that λ > 0, they specify a model for

log(λt), assuming that it follows an AR(1) model. The resulting state space representation

is given by

yt = Λ(λt)Bt + εt, (6)

Bt = ΦBt−1 + ηt, (7)

where Bt = (β1t − µ1, β2t − µ2, β3t − µ3, log(λt) − µ4) and Λ(λt) is an N × 4 matrix with

the elements of its first three columns defined as in (3) with λ substituted by λt and the

fourth column being a column of zeros. The model with time-varying decay parameter is

5Walstrøm et al. (2022) propose a non-linear LS method.
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denoted as DNS-TVL. Note that the DNSS model with two decay parameters can also

be extended to allow for both parameters to be time-varying. In this case, the model will

be called DNSS-TVL while if only the first (second) decaying parameter is time-varying,

the model is denoted as DNSS-TVL1 (DNSS-TVL2).

Since the measurement equation of the DNS-TVL model is non-linear, estimation

of its parameters can no longer rely on the Kalman filter. To overcome this problem,

estimation can be carried out using the extended Kalman filter (EKF), which accounts for

non-linearities by using, at each time t, a first-order Taylor expansion around the current

state estimate; see Jazwinski (1970), who demonstrates that the EKF is particularly

effective in dealing with this type of non-linearity. Denote by H (Bt) = Λ1 (λt) β1t +

Λ2 (λt) β2t + Λ3 (λt) β3t with Λk (λt) being the k-th column of Λ (λt), and by bt|t−1 =(
b1,t|t−1, b2,t|t−1, b3,t|t−1, lt|t−1

)′
, the KF one-step-ahead predictions of Bt. The measurement

equation in (6) can be linearised around bt|t−1 by approximating H (Bt) as follows

H (Bt) ≈ H
(
bt|t−1

)
+ Ḣ

(
bt|t−1

) (
Bt − bt|t−1

)
, (8)

where Ḣ (Bt) = ∂H(Bt)
∂Bt

= [ιN ,Λ2 (λt) ,Λ3 (λt) , At], with ιN being a N×1 vector of ones and

At = λt
∂H(Bt)
∂λt

with its i‘th element given by exp(−τiλt)
τiλt

[(β2 + β3)(λtτi + 1 − exp(λtτi)) + λ2t τ
2
i β3t].

The Kalman filter is then run with the following measurement equation6

yt = β1t + Λ2

(
lt|t−1

)
β2t + Λ3

(
lt|t−1

)
β3t + At

(
logλt − lt|t−1

)
+ εt. (9)

2.3 Adding macroeconomic variables

Several authors conclude that macroeconomic variables are significant for explaining bond

yield dynamics. Central banks around the world use interest rates as their main monetary

policy instrument responding to macroeconomic variables such as inflation or output. The

link between the yield curve and macroeconomic aggregates may also exists in the reverse

direction due to economic agents responding to changes in interest rates.

Consequently, the DNS model in (1) and (2) has also been extended by assuming that

6Alternatively, Gimeno & Nave (2018) propose a genetic algorithm for the estimation of the parameters
of the DNSS-TVL model.
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the level, slope and curvature of the yield curve, depend on the macroeconomic and finan-

cial activity, which could be represented by the inclusion of key macro-finance indicators

in the equation that governs the dynamic evolution of βt. For example, Diebold et al.

(2006) find strong in-sample evidence in the US in favour of causal linkages between man-

ufacturing capacity utilization, monthly average of the federal funds rate, and 12-month

percent change in the price deflator for personal consumption expenditures, and future

yield curve dynamics. Byrne et al. (2017) also find evidence in the US of a better fore-

casting performance when including macroeconomic variables in the DNS model, among

them the Federal Fund Rate, CPI inflation and Industrial Production while Bianchi et al.

(2009) use de-trended output, annualized monthly inflation and the policy interest rate

to explain the term structure of interest rates in the UK.

Instead of using a set of specific macroeconomic variables to explain the factors of

the yield curve, the macroeconomic information is often summarized extracting diffu-

sion indexes from large sets of economic variables using Principal Components (PC); see

Pedersen & Swanson (2019) for a survey on recent empirical findings regarding the out-

of-sample forecast usefulness of including diffusion indexes in DNS type models.7 Favero

et al. (2012) favour the forecast performance of factor-augmented DNS (FA-DNS) models

when compared with a large number of alternatives. They conclude that macroeconomic

information is more useful at longer forecast horizons and longer maturities. Exterkate

et al. (2013) conclude that FA-DNS models perform well in relatively volatile periods with

reductions of 20%-30% in mean square forecast errors (MSFEs) when compared with the

simplest DNS model. Swanson & Williams (2014) also observe decreasing sensitivity,

beginning in late 2011, of medium-term interest rates to macroeconomic news. It is im-

portant to note that Swanson & Xiong (2018) and Pedersen & Swanson (2019) point out

that the usefulness of diffusion indexes is crucially dependent upon whether real-time-data

are used or not. When real-time data are used, pure DNS models based only on historical

7Exterkate et al. (2013) consider alternative procedures for the extraction of the macroeconomic
factors and rank PC diffusion indexes second best after Partial Least Squares factor extraction. Pedersen
& Swanson (2019) also survey procedures using targeted prediction, in which the variables used in the
construction of the diffusion indexes are pre-selected using methods based on Machine Learning (ML).
They note that, in periods when interest rates are more volatile, ML techniques may have much to
offer. Swanson et al. (2020) also propose factor extraction based on the ML and Elastic net procedures
proposed by Bai & Ng (2008). Alternatively, Coroneo et al. (2016) propose fitting a Dynamic Factor
Model treating macroeconomic factors as unobservable components that are extracted simultaneously
with the traditional yield curve factors.
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information on interest rates, deliver forecasts with smaller MSFEs. However, when data

are not real-time, diffusion indexes always have marginal forecasting content for interest

rates.

Denote by ft the r × 1 vector of PC factors at time t extracted from a large set of

macroeconomic variables. The vector βt in (2) is substituted by

βt+1 − µ

ft+1

 = Φ

βt − µ

ft

+ ηt, (10)

where Φ is a (3 + r) × (3 + r) matrix of parameters allowing interrelations between the

shape of the yield curve and the macro-financial factors. Finally, ηt is a (3 + r) × 1

Gaussian white noise vector with covariance matrix Ση.

The structure of the matrix Φ has information about the possibility of different char-

acteristics of the yield curve being related to different macroeconomic aspects; see, for

example, Diebold et al. (2006) and Exterkate et al. (2013).

2.4 Conditional heteroscedasticity

In the DNS in (1) and (2), the diagonal covariance matrix of εt is assumed to be constant

over time. To allow for conditional heteroscedasticity in the yields, Koopman et al. (2010)

propose modelling εt with a common pattern of evolving variances as follows

εt = Γε∗t + ε†t , (11)

where Γ is an N × 1 vector of constants, ε†t is an N × 1 Gaussian white noise vector with

diagonal covariance Σ†ε, and ε∗t is given by a conditionally normal GARCH(1,1) model

with its conditional variance given by8

ht = γ0 + γ1ε
∗2
t−1 + γ2ht−1, (12)

8Alternatively, Bianchi et al. (2009) and Byrne et al. (2017) allow for stochastic volatility in the DNS
model.
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where, following Koopman et al. (2010), identification is achieved by fixing γ0 = 10−4

and the other parameters satisfy the usual positivity and stationarity conditions, namely,

γ1, γ2 ≥ 0 and γ1 + γ2 < 1, respectively.9 Furthermore, the initial conditional variance is

given by the marginal variance, h1 = γ0(1 − γ1 − γ2)
−1.

The DNS model with conditionally heteroscedastic errors is denoted as DNS-GARCH.

The volatility of each yield is related to a common conditional variance in (12) that can

be interpreted as the volatility of an underlying bond market portfolio; see Engle & Ng

(1993).

The DNS model with time-varying volatility can be rewritten as a state-space model

as follows

yt =

[
Λ Γ

]βt
ε∗t

+ ε†t , (13)

βt+1 − µ

ε∗t+1

 =

Φ 0

0 0


βt − µ

ε∗t

+ ωt, (14)

where ωt =
[
ηt, ε

∗
t+1

]
has covariance matrix Σω =

Ση 0

0 γ0 + γ1ε
∗2
t + γ2ht

.

In order to run the Kalman filter in model (13)-(14), Harvey et al. (1992) propose to

substitute the last term in the diagonal of Σω by

ĥt+1|t = γ0 + γ1E
[
ε∗2t|t + P ε

t|t
]

+ γ2ĥt|t−1, t = 1, . . . , T, (15)

where ε̂∗t|t is the last element of the filtered state and P ε∗

t|t is its variance, both given by

the Kalman filter.10

9Note that E (εtε
′
t) = Γ

(
γ0

1−γ1−γ2

)
Γ′ + Σ†ε. Therefore, identification is usually achieved by assyming

either that ΓΓ′ = I or by fixing γ0 to any known constant.
10Hansen (n.d.) implements the same methodology in the context of a no-arbitrage yield curve with

time-varying conditional variation.

12



3 Empirical forecasts of yields

In this section, the extended DNSS-GARCH-TVL-FULL-Macro model is fitted to end-

of-month continuously compounded yields on US zero-coupon bonds. We also fit all

admissible specifications described in Table 1, which summarizes the extensions of the

DNS model considered in this paper together with the acronyms used for each of them.

The estimated models are then use to obtain out-of-sample forecasts.

Table 1: Description of model specifications of the yield curve

Acronym
Number of

factors
Volatility

Decay

parameter λkt

DNS 3 constant constant

DNS-Macro 3 constant constant

DNS-GARCH 3 time-varying constant

DNS-GARCH-Macro 3 time-varying constant

DNS-TVL 3 constant time-varying λ1t

DNS-TVL-Macro 3 constant constant

DNS-GARCH-TVL 3 time-varying time-varying λ1t

DNS-GARCH-TVL-Macro 3 time-varying time-varying λ1t

DNSS 4 constant constant

DNSS-GARCH 4 time-varying constant

DNSS-TVL1 4 constant time-varying λ1t

DNSS-TVL2 4 constant time-varying λ2t

DNSS-GARCH-TVL1 4 time-varying time-varying λ1t

DNSS-GARCH-TVL2 4 time-varying time-varying λ2t

DNSS-GARCH-TVL-FULL-Macro 4 time-varying time-varying λ1t and λ2t

3.1 Data

We analyse the novel zero-coupon Treasury yield curve data set constructed by Liu &

Wu (2021).11 Yield curves, plotted in Figure 1, are available at the end-of-month from

January 1972 through December 2019 for US securities with maturities of 3, 6, 9, 12, 15,

18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, with N = 17 maturities and

T = 576 monthly observations. Table 2 reports some descriptive statistics of the time

11The data is publicly available in the Journal of Financial Economics Data Archive, as part of their
supplementary material.
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series of annual yields for each maturity. We can observe that, as expected, the mean of

the interest rates increases with the maturity. However, the standard deviation is smaller.

This reduction is due to the fact that while the minimum yield increases with maturity,

the maximum decreases. When looking at the dynamic dependence of yields, we can

observe that there is some evidence of non-stationarity. Table 2 also reports descriptive

statistics for time series of some proxies of the level, slope and curvature. In particular,

as proposed by Diebold & Li (2006), the proxy for the level is the highest maturity bond,

i.e. the bond for 120 months, while that for the slope is the difference between the bond

of 120 months and the bond of 3 months. Finally, the proxy for curvature is two times

the bond of 24 months minus the sum of bond of 3 months and bond of 120 months. The

sample autocorrelations reported in Table 2 show that the dependence of the level, slope

and curvature is characterized by large persistence.

Table 2: Descriptive statistics

The table reports summary statistics for U.S. treasury yields from January 1972

through December 2019. Maturity is measured in months. For each maturity we

show mean, standard deviation (Std. dev.), minimum, maximum, and three auto-

correlation coefficients, 1 month [ρ̂(1)], 6 months [ρ̂(6)], and 12 months [ρ̂(12)]. The

proxies for level is the highest maturity bond (120 months), for slope, the difference

between the bond of 120 months and the bond of 3 months, and for curvature, two

times the bond of 24 months minus the sum of bond of 3 months and bond of 120

months.

Maturities Mean Std.dev. Min. Max. ρ1 ρ6 ρ12 Skewness Kurtosis
3 4.722 3.522 0.020 16.170 0.988 0.928 0.865 0.610 3.210
6 4.873 3.561 0.040 16.210 0.989 0.934 0.874 0.569 3.073
9 4.985 3.567 0.070 16.180 0.990 0.937 0.880 0.524 2.946
12 5.072 3.559 0.100 16.030 0.990 0.940 0.886 0.483 2.844
15 5.147 3.550 0.130 15.950 0.991 0.943 0.890 0.455 2.781
18 5.216 3.544 0.160 15.960 0.991 0.945 0.895 0.441 2.754
21 5.274 3.530 0.180 15.900 0.991 0.947 0.898 0.429 2.729
24 5.321 3.501 0.200 15.660 0.991 0.948 0.900 0.410 2.685
30 5.415 3.448 0.240 15.510 0.991 0.950 0.905 0.383 2.629
36 5.518 3.411 0.320 15.550 0.992 0.952 0.907 0.387 2.643
48 5.699 3.329 0.470 15.420 0.992 0.953 0.910 0.388 2.627
60 5.834 3.237 0.640 15.010 0.992 0.953 0.912 0.384 2.600
72 5.971 3.183 0.820 14.990 0.992 0.955 0.913 0.413 2.619
84 6.070 3.116 1.000 14.960 0.992 0.954 0.911 0.433 2.663
96 6.157 3.061 1.210 14.900 0.992 0.955 0.913 0.445 2.677
108 6.229 3.008 1.410 14.810 0.993 0.955 0.913 0.459 2.705
120 (Level) 6.285 2.932 1.500 14.780 0.992 0.952 0.908 0.444 2.722
Slope 1.564 1.417 -4.280 4.340 0.942 0.713 0.476 -0.632 3.445
Curvature -0.365 0.969 -2.680 3.080 0.921 0.746 0.631 -0.250 2.931

Finally, the macroeconomic diffusion indexes used to explain the shape of the yield
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Figure 1: Monthly US Treasury yield curves from January 1972 to December 2019

curve are extracted using PC from the FRED-MD data base, which contain real-time data

observed monthly over 130 variables, covering output and income, labour market, prices,

and interest rates variables; see McCracken & Ng (2016) for a description. The number

of factors extracted is three; see Exterkate et al. (2013), Pedersen & Swanson (2019) and

Swanson et al. (2020), who also consider three factors extracted from the same dataset.

3.2 Out-of-sample forecasts of interest rates

The data set of US yields described above is divided into an initial in-sample period

from January 1972 to December 1993, with T = 264 observations, used to estimate

the parameters of the extended DNSS-GARCH-TVL-Macro model, and an out-of-sample

period, from January 1994 to December 2019, with R = 312 observations. Note that the

out-of-sample period includes the zero-lower-bound interest rates constraints period from

2008 to 2012. We obtain pseudo-real-time h-step-ahead forecasts of the interest rates

at different maturities, for h = 1, 3, 6, 12, using the prediction equations of the Kalman

filter without using the updating equations. The Kalman filter equations are run with

the model parameters substituted by parameters estimated as described above, using

a rolling window estimation scheme. We also fit the restricted versions, including the

simplest DNS, and obtain forecasts with each of them.

For each maturity, τi, and forecast horizon, h, the out-of-sample forecasts of yT+h(τi)
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obtained at time T are denoted by yT+h|T (τi). They assessed by the relative size of their

root mean square forecast errors (RMSFE), which is calculated as follows

RMSFE(h, τi) =

√√√√ 1

R− h+ 1

R−h∑
r=0

[ŷT+r+h|T+r(τi) − yT+r+h(τi)]2. (16)

Table 3: RMSFE of selected models

1-step-ahead forecasts [b]

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120 [t]

RW 0.043 0.037 0.039 0.043 0.047 0.051 0.054 0.057 0.062 0.065 0.070 0.071 0.072 0.071 0.069 0.067 0.067

DNS 0.072 0.055 0.053 0.056 0.060 0.063 0.066 0.068 0.072 0.074 0.078 0.080 0.080 0.077 0.075 0.073 0.076

DNS-Macro 0.064 0.046 0.043 0.047 0.051 0.055 0.059 0.062 0.067 0.069 0.075 0.077 0.078 0.075 0.073 0.072 0.074

DNS-GARCH-TVL 0.050 0.038 0.039 0.044 0.049 0.054 0.059 0.063 0.071 0.076 0.085 0.089 0.090 0.087 0.085 0.083 0.084

3-step-ahead forecasts [b]

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120 [t]

RW 0.179 0.183 0.195 0.206 0.214 0.220 0.226 0.231 0.240 0.239 0.239 0.231 0.217 0.204 0.196 0.190 0.183

DNS 0.260 0.256 0.262 0.271 0.279 0.282 0.287 0.290 0.293 0.288 0.284 0.276 0.260 0.242 0.232 0.223 1.177

DNS-Macro 0.231 0.226 0.234 0.245 0.254 0.260 0.267 0.273 0.279 0.276 0.274 0.266 0.250 0.233 0.223 0.214 1.123

DNS-GARCH-TVL 0.180 0.183 0.196 0.212 0.228 0.240 0.252 0.264 0.281 0.288 0.302 0.307 0.299 0.287 0.281 0.275 1.461

6-step-ahead forecasts [b]

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120 [t]

RW 0.521 0.520 0.526 0.531 0.533 0.530 0.528 0.525 0.521 0.506 0.491 0.473 0.442 0.411 0.394 0.377 0.358

DNS 0.686 0.685 0.691 0.698 0.700 0.696 0.692 0.688 0.677 0.654 0.629 0.607 0.569 0.530 0.505 0.482 0.458

DNS-Macro 0.636 0.638 0.649 0.658 0.662 0.662 0.662 0.661 0.654 0.634 0.610 0.585 0.545 0.505 0.480 0.455 0.428

DNS-GARCH-TVL 0.509 0.522 0.543 0.564 0.583 0.595 0.607 0.618 0.633 0.634 0.646 0.651 0.633 0.608 0.594 0.580 0.560

12-step-ahead forecasts [b]

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120 [t]

RW 1.523 1.497 1.461 1.416 1.363 1.304 1.246 1.192 1.103 1.014 0.896 0.824 0.756 0.700 0.655 0.618 0.588

DNS 1.832 1.831 1.816 1.789 1.752 1.703 1.652 1.602 1.506 1.405 1.266 1.173 1.085 1.006 0.946 0.896 0.848

DNS-Macro 1.838 1.841 1.827 1.800 1.762 1.713 1.664 1.616 1.523 1.423 1.277 1.179 1.085 1.003 0.937 0.879 0.827

DNS-GARCH-TVL 1.493 1.516 1.528 1.531 1.523 1.503 1.481 1.458 1.414 1.358 1.285 1.243 1.191 1.137 1.095 1.060 1.022

Figure 2 plots the RMSFEs of the interest rate forecasts obtained by each of the models

considered, which are described in Table 1, relative to those of the forecasts obtained by

the benchmark random walk model, for h = 1 (first column) and 12 (second column), as

functions of the maturities.

In order to investigate the role of the second discount parameter, λ2, the first and

second rows of Figure 2 plot the relative RMSFEs of the models with three and four

factors, respectively. We can observe that, regardless of h, the RMSFEs of yield forecasts

obtained by the DNSS models are larger than those obtained by the models with just

one discount factor. Note that the lack of forecasting power of the second discount

is even smaller when looking at twelve-step-ahead predictions than for one-step-ahead

predictions, when the DNSS model generates predictions with slightly larger RMSFEs

than those of the best competitors. To understand the role of the second discount in

forecasting the yield curve, Figure 3 plots the curvature estimated by the simplest DNS
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Figure 2: RMSFEs of one-step-ahead (left column) and twelve-step-ahead (right column)
of in-sample yield predictions obtained with restricted versions of the DNS-GARCH-TVL-
Macro model (first row) and FA-DNSS-TVL-GARCH model (second row). The RMSFEs
are relative to predictions obtained with the random walk model.
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model, when only one discount is included, together with the two curvatures estimated by

the DNSS model, with two-discounts, together with the difference between these two latter

curvatures. Comparing the curvature estimated by the DNS model with the difference

between the curvatures estimated by the DNSS model, we can observe that both are

very similar, explaining why, in practice the forecasting power of the second discount is

very mild. Our results are in concordance with those by Walstrøm et al. (2022), who

analyse daily market prices of Treasury instruments with maturities up to 30 years, and

also conclude that one of the two curvatures of the DNSS model is superfluous due to

confounding effects. Diebold & Li (2006) also fit an extended model with four and five

factors and conclude that this extension provides negligible improvement in model fit; see

also Dahlquist & Svensson (1996) and Almeida et al. (2018), who fit more complicate

shapes to the yields and also conclude that the second discount parameter does not

contribute to the predictive power of the DNS model.

Given the superior forecast performance of models with just one discount parameter,

we focus on those models in the following more detailed analysis. The second conclusion
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Figure 3: Curvature estimated by the DNS model (top left panel) and curvatures esti-
mated by the DNSS model together with their difference (bottom right panel).

in this paper can be obtained from the first row of Figure 2, which shows that the model

with best forecasting performance depends on the maturity. For short maturities, the

forecasts with minimum RMSFEs are obtained by the model proposed by Koopman et al.

(2010), DNS-GARCH-TVL, in which the discount parameter is allowed to change over

time and there is conditional heteroscedasticity; in their empirical application, Koopman

et al. (2010) also conclude that conditional heteroscedasticity and time-varying discounts

have superior forecast performance and Jungbacker et al. (2014) observe that volatility

tends to be lower for the yields of bonds with a longer time to maturity. However, for long

maturities, the best performance is obtained when the discount parameter is constant and

there is conditional homoscedasticity but allowing the shape of the yield curve to depend

on macroeconomic conditions, i.e. DNS-macro model; see Favero et al. (2012), who also

conclude that macroeconomic variables have forecasting power at longer maturities.

It seems that, in order to represent adequately the yield curve, one should use different

models depending on whether short or long maturities are being forecast. None of the

alternatives systematically outperform this segmented specification. This result is in con-

cordance with the existence of a segmented yield curve with yields of different maturities

being affected by different risk factors. In particular, volatility is a risk factor for short

maturities while macroeconomic variables are the risk factor for yields with long maturi-

ties. This segmentation is postulated by the preferred habitat theory of the term structure
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of interest rates, according to which each investor may demand bonds of specific maturi-

ties. For instance, pension funds may prefer long-term bonds while speculators may chose

short-term bonds. Arbitrageurs may also participate in the market aiming to maximize a

mean-variance utility function and, consequently, choosing bonds with any maturity. By

doing so, arbitrageurs guarantee some smoothness among yields with different maturities;

see Modigliani & Sutch (1966) for the preferred habitat theory. Almeida et al. (2018) also

conclude that introducing segmentation in term structure models consistently improves

long-horizon forecasts. However, in their model the segmentation is not able to identify

different risk factors for yields with short and long maturities.

Third, Figure 2 suggests that the maturity for which the best forecasting model

switches from the DNS-GARCH-TVL to the DNS-Macro depends on the forecast hori-

zon. When h = 1, the model with best forecasts is DNS-GARCH-TVL for maturities

smaller than or equal to 21 months. However, when h = 12, the maturity increases up to

48 months. Figure 5 plots the relative RMSFEs for different forecasts horizons, namely,

h = 1, 3, 6 and 12. We can observe that when h = 3, the maturity for the model switch

is 24 months while when h = 6, it is 30 months; see Figure 4 that plots the maturity as

a function of the forecast horizon.

Figure 4: Maturity switching
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Fourth, we can observe that, although the DNS forecasts hardly beat the random walk

forecasts, they are not too far when h = 1. In this case, the DNS is still an alternative to be

considered due to its interpretability. However, when h = 12, the increase in the RMSFE

can be as large as 22.5% when the DNS models are used to forecast long maturities as

compared to using the random walk.
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Figure 5: RMSFEs of one-step-ahead (left column) and twelve-step-ahead (right column)
of in-sample yield predictions obtained with restricted versions of the FA-DNS-TVL-
GARCH model (first row) and FA-DNSS-TVL-GARCH model (second row). The RMS-
FEs are relative to forecasts obtained with the random walk model.
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4 Restricted versions: non-stationary dynamics of

factors and discount parameters

In the previous section, two models emerge as having the best forecasting performance,

namely, the DNS-GARCH-TVL model for short maturities and the DNS-Macro model

for long maturities. To avoid problems of overfitting and numerical issues associated with

estimating the large number of parameters in Φ, the specification of these two models

can be simplified imposing restrictions on the dynamics of the factors and/or discount

parameter. In this section, we will consider three restrictions often assumed in empirical

analysis of the yield curve based on the DNS framework.

First, several authors observe that the factors display little cross-correlation, so that

Φ can be assumed to be diagonal; see Exterkate et al. (2013) and van Dijk et al. (2014)

for this assumption. Second, the results in Diebold & Li (2006) and Diebold et al. (2006)

suggest that β1t and β2t may have a unit root while β3t does not; see also Bowsher & Meeks

(2008) and Almeida et al. (2018) for non-stationary models for the factors and Jungbacker
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et al. (2014) for large persistence of the factors and diagonality of the autoregressive

matrix. These results may be the consequence of non-stationarity of interest rates; see

Hall et al. (1992) and Bauer & Rudebush (2020) . Christensen & Rudebush (2012) point

out that due to this persistence, stationary AR models fitted to the factors may suffer

from substantial small-sample bias with estimates implying much less persistence than the

true process. Similarly, several authors suggest that the persistence of the log-discount

parameter can be large and propose modelling it using a random walk; see, for example,

Koopman et al. (2010).

Table 4: Description of restricted model specifications

c

Acronym Restriction imposed

DNS-GARCH-TVL-RW DNS-GARCH-TVL model with decay parameter λ1 with random walk dynamics

DNS-RW-GARCH-Q-DIAG DNS-GARCH model with level, slope, and curvature factors with random-walk dynamics and diagonal covariance matrix Q

DNS-RW-GARCH-TVL-RW DNS-GARCH-TVL with model with level, slope, and curvature factors and decay parameter λ1 with random-walk dynamics

DNS-RW-GARCH-TVL-RW-Q-DIAG DNS-GARCH-TVL with level, slope, and curvature factors and decay parameter λ1 with random-walk dynamics and diagonal covariance matrix Q

Figure 6: RMSFEs of one-step-ahead (left column) and twelve-step-ahead (right column)
of in-sample yield predictions obtained with restricted versions of the DNS-TVL-GARCH-
Macro model (first row) and FA-DNSS-TVL-GARCH model (second row). The RMSFEs
are relative to predictions obtained with the random walk model.
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Figure 7: RMSFEs of one-step-ahead (left column) and twelve-step-ahead (right column)
of in-sample yield predictions obtained with restricted versions of the DNS-TVL-GARCH-
Macro model (first row) and FA-DNSS-TVL-GARCH model (second row). The RMSFEs
are relative to predictions obtained with the random walk model.
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We can see that when h = 12, the DNS-GARCH-TVL model with the factors and the

logarithmic discount parameters modelled as independent random walks is best. How-

ever, for the smallest forecast horizons, these restrictions are not appropriate for the first

maturity (h = 1, 3, 6) and for the first two (h = 1). In this case, the only restriction that

helps is assuming that the logarithmic discount parameter is a random walk.

5 Conclusions

Further: Forecast uncertainty density forecasts Partial Least Squares Segmented yield

curve
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