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Abstract 8 

Previous estimates of the effect of the creation of protected areas (PAs) on natural conservation 9 

are biased by staggered protection and confounder environmental policies. We address these 10 

biases by employing a cohort-time refined estimator using Amazon Basin data from 2003 to 11 

2020. We also uncover policy-relevant dynamic patterns that remained hidden in previous 12 

papers’ aggregate effects. Our findings show that PAs’ effects on deforestation and fires were 13 

biased in at least 50% by staggered protection. Failure to control for confounder policies 14 

deflated the effect on deforestation in 13%, and inflated the effects on fires in 16%. We also 15 

observe a rise in deforestation two years before protection, an evidence of forward-looking 16 

behaviour. Moreover, PAs’ effects increased with ageing, suggesting that enforcement is subject 17 

to learning. Effects were heterogeneous, with both moderately and severely restricted PAs 18 

mitigating fires, but only the severely restricted mitigating deforestation. The effects of 19 

conservation unit PAs managed by national or subnational governments were mixed, whereas 20 

indigenous land PAs successfully curbed deforestation and fires. No type of PA could diminish 21 

artisanal goldmining, a highly environmentally detrimental activity. PAs’ effects were also 22 

showed to be driven by the mechanisms of reduced indigenous migration and low market 23 

integration perpetuation. Therefore, with dynamic and heterogeneous effects, PA creation 24 

should leverage the strengths of different government levels and PA types, while simultaneously 25 

anticipating forward-looking reactions. There is also need to intensify the enforcement of 26 

goldmining prohibitions inside PAs. 27 

Keywords: differences-in-differences, staggered treatment, event study, matching, protected 28 
areas, deforestation. 29 

JEL Codes: C21, Q58.  30 

 
1 Corresponding author. Federal University of ABC, Brazil, and Land, Environment, Economics and 

Policy Institute, University of Exeter, UK. fonseca.morello@ufabc.edu.br; 
2 Department of Economics, University of São Paulo; pereda@usp.br; 
3 Amazon Environmental Research Institute (IPAM), Brazil; acmoreirapessoa@gmail.com;  
4 National Center for Monitoring and Early Warning of Natural Disasters (Cemaden), Brazil; 

liana.anderson@cemaden.gov.br5 Statistical evidence that landholding size and cattle heads, which are 

proxies of agricultural scale, affect integration are provided by Haile et al., (2022) and Davidova et al., 

(2006). 



2 
 

1 Introduction 31 

Protected areas (PAs) have been repeatedly attested to be effective in conserving natural capital, 32 

especially highly ecologically valuable ecosystems such as forests and wetlands (Sze et al., 33 

2022, Shi et al., 2020, Herrera et al., 2019, Wendland et al., 2015, Barnes et al., 2023). They 34 

have been shown to avoid deforestation, fires, and related carbon emissions, to increase bird 35 

diversity, and to reduce poverty (Barnes et al., 2023, Sims, 2010, Ferraro and Hanauer, 2014). 36 

The extension of protected land has expanded globally by 92% since the 1990s, now embracing 37 

15.4% of Earth’s land (Kuempel et al., 2018, Persson et al., 2021). Despite the abundance of PA 38 

studies, there are two reasons why new investigations are needed. Firstly, from the policy 39 

planning perspective, whether the cost of protection, measured as forgone income from primary 40 

activities, is outweighed by ecological benefit, is an empirical question which is highly 41 

dependent on local and time-variant factors (Persson et al., 2021, Lima and Peralta, 2017). 42 

Secondly, the methods so far adopted in the estimation of protected areas’ (PAs’) effect are 43 

biased by staggered creation of PAs over time (across multiple cohorts) and by unobservable 44 

drivers of PAs’ effectiveness. What may lead to a distorted allocation of public funds for such 45 

policy and competing policies. Most studies seek to mitigate only the bias from non-random 46 

selection of sites for protection by relying on matching on observable covariates (Arriagada et 47 

al., 2016). This approach does not effectively address biases arising from influential non-48 

observables. Factors, such as concomitant changes in environmental policy, or local 49 

characteristics, are not adequately accounted for. This is particularly relevant given that 50 

enforcement of deforestation prohibitions not coinciding with PAs has intensified from 2004 to 51 

2014 in our region of study, the Amazon Basin (Assunção et al., 2020, Hargrave and Kis-Katos, 52 

2013, Börner et al., 2015). One potential solution is to explore, after matching, (“within”) 53 

variation across time with a differences-and-differences (DiD) approach, thus avoiding 54 

unobservable geographical variation sources and explicitly controlling for observed policy 55 

changes. This approach, which is rarely adopted (exceptions being Shi et al. 2020 and Keles et 56 

al., 2023), is limited by a second source of bias, the “negative weights” attached automatically 57 

to PA cohorts by standard DiD estimators, which aggregate all cohorts together, irrespective of 58 

their potentially heterogeneous effects (Goodman-Bacon, 2021, Callaway and Sant’Anna, 59 

2021). Consequently, the causal interpretation of the treatment effect parameter may be 60 

compromised. 61 

To address the aforementioned inaccuracies, this paper proposes a new methodological 62 

procedure to estimate the effect of PAs. It consists in, after the commonly adopted matching 63 

approach, applying Callaway and Sant’Anna’s (2021) cohort-refined DiD estimator to unveil, 64 

with an event study, cohorts violating the parallel trends assumption. By removing these cohorts 65 

(hereafter also called “groups”), the aggregate treatment effect estimate obtained is both causal 66 
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and accurate. By incorporating event study and cohort-refined DiD estimation to analysis, we 67 

innovatively expand the toolbox of PAs’ effect identification. Furthermore, the challenge of 68 

measuring non-PA anti-deforestation policy efforts is addressed by leveraging publicly 69 

available proxies. At last, protection performance is measured in terms of two types of forest 70 

disturbance, deforestation and fires, the latter a source of forest degradation, and also in terms of 71 

a highly damaging form of natural resource exploitation, artisanal goldmining, which is 72 

generally illegal. 73 

Research has so far largely overlooked the dynamic nature of protection’s effect, especially 74 

delays and anticipations of changes in outcomes relative to the beginning of protection. This 75 

important dimension is pioneeringly made visible in this study by introducing a novel 76 

econometric technique that enables the consideration of non-immediate effects in the planning 77 

of PAs. This aspect holds great importance as the mere creation of PAs alone is insufficient to 78 

ensure effectiveness. Systematic enforcement, including on-field patrolling, is needed (Afriyie 79 

et al., 2021, Kuempel et al., 2018, Geldman et al., 2015). The performance of enforcement is 80 

dynamic for being contingent on several factors, such as (i) the underlying drivers of the 81 

decision to pursue forbidden activities, including deforestation and burning, such as agricultural 82 

prices (Assunção et al., 2015, Hargrave and Kis-Katos, 2013), (ii) the enforcement budget 83 

available (Kuempel et al., 2018, Jachman, 2008, Silva et al., 2019), and (iii) the process of 84 

learning how to enforce protection in the particular social-biophysical context of each PA 85 

(Geldman et al. 2015, Afriyie et al., 2021, Kuempel et al., 2018). 86 

Therefore, despite being so far presented as instantaneous by econometric studies, protection’s 87 

effect is dynamic as both the threats facing PAs and the capacity to withstand them oscillate 88 

over time and may affect different cohorts differently. The knowledge about this dynamics, 89 

which is available in scattered form across PA studies not necessarily relying on econometrics, 90 

is used for the first time in this paper to inform estimation and interpretation of protection’s 91 

effect. 92 

Our findings reveal significant biases arising from (i) unobservable heterogeneity not addressed 93 

by matching, which deflated effect on deforestation in 73%, (ii) staggered protection, which at 94 

least halved the effect on both deforestation and fires, (iii) non-parallel trends, whose biases 95 

ranged from a 39% deflation to a 11% inflation and (iv) concurrent policy changes, which 96 

deflated the effect on deforestation in 13% and inflated the effect on fires in 16%. After 97 

removing these biases, protection proved doubtlessly effective towards deforestation and fires, 98 

but ineffective towards artisanal goldmining. Additionally, it was particularly noteworthy the 99 

strong evidence of an increase in deforestation occurring two years before PA creation, which is 100 

consistent with forward-looking behaviour by illegal deforesters. These agents, anticipating that 101 

the probability of being sanctioned for illegal deforestation will rise in the post-protection 102 
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period, “rush” to deforest in the pre-protection period (a behaviour evidenced by Temudo, 2012, 103 

and Pedlowsky et al., 1999). 104 

Additionally, we observed heterogeneous effects across PA types, both aggregating or not 105 

across cohorts. Conservation units, which are managed either by national or subnational 106 

governments and do not necessarily ban farming, experienced more deforestation than 107 

unprotected land in six years of the pre-protection period, including the aforementioned rise two 108 

years before protection. Such type of event occurred only once in indigenous lands, whose 109 

utilisation is constrained to traditional peoples’ practices. Importantly, the event arose 110 

approximately when the lengthy process of indigenous lands’ creation generally starts and was 111 

reverted in the subsequent year to a deforestation level below that of unprotected lands. Which 112 

may be another evidence of forward-looking behaviour, with an initial forest rush aborted after 113 

learning that governmental presence had already increased locally. Consistently with the 114 

specific dynamic patterns of the different PA types, only indigenous lands presented an 115 

unambiguously aggregate negative impact on deforestation. These lands also inhibited fires, 116 

which was also true for conservation units, except for subnational ones, where fires were more 117 

frequent than in unprotected land. Severely restrictive protected areas were more effective in 118 

avoiding the two types of forest disturbance. No type of PA could avoid artisanal goldmining. A 119 

final dynamic pattern worth mentioning is the gradual intensification of the inhibition of 120 

deforestation and fire, across PA’s lifetime, confirming that enforcement is subject to gains 121 

from learning. 122 

We fill another important gap in the empirical literature, the silence about the mechanisms 123 

driving the PAs’ effects detected. By relying on demographic and agricultural censuses, two 124 

mechanisms are tested, the first consisting in the hypothesis that when a PA is created, social 125 

groups whom traditionally conserve forests become more likely to immigrate to the location and 126 

less likely to emigrate from it. PAs, thus, by increasing the share, in local population, of 127 

individuals with high propensity to conserve forests, turn out to be effective. We look, with 128 

demographic censuses data, specifically to native-born Amazonians and to indigenous peoples, 129 

but also to all-groups migration flows. The second mechanism is the feedback between PA 130 

creation and integration of agriculture to markets, which is hypothesised as negative, since 131 

protection constraints agricultural scale, diminishing integration5. The latter, for its turn, if low, 132 

leads to a small return from deforestation and burning, which are then less frequently pursued, 133 

what explains PAs’ effectiveness. This hypothesis is tested with agricultural censuses data and, 134 

similarly as the first one, it found support on data, albeit for only half of the Amazonian states. 135 

 
5 Statistical evidence that landholding size and cattle heads, which are proxies of agricultural scale, affect 

integration are provided by Haile et al., (2022) and Davidova et al., (2006). 
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Our research thus makes significant contributions to the literature evaluating the impact of PAs 136 

(e.g., Pfaff et al., 2015, Herrera et al., 2019, Wendland et al., 2015, Shi et al., 2020, Keles et al., 137 

2023). We address critical sources of bias that have not been comprehensively considered in 138 

previous studies measuring PAs’ effects. Specifically, we update the standard methodology with 139 

recent discoveries about the inaccuracies introduced by a homogeneous aggregation of 140 

heterogeneous treatment cohorts (Goodman-Bacon, 2021, Roth, 2022, Callaway and Sant’Anna, 141 

2021). The resort to Callaway and Sant’Anna’s (2021) cohort-refined estimator not only 142 

mitigate biases, but also reveals dynamic patterns that were hidden in the aggregate effects 143 

reported by previous studies. These patterns are both consistent with a forward-looking model 144 

of deforesters’ behaviour we developed and highly relevant for planning PAs’ implementation. 145 

They shed light on the evolution of protection's influence on deforestation. To the best of our 146 

knowledge, no other research has empirically investigated delays and anticipations associated 147 

with the creation of PAs6. 148 

The next section summarizes extant knowledge about the dynamics of protection’s effect, 149 

presenting a theoretical model demonstrating that forward-looking behaviour is a 150 

microfoundation of protection’s effect dynamics. Methods follow and results are then presented. 151 

They are confronted with previous studies in the discussion section. A short conclusion section 152 

closes the paper. 153 

2 Literature and theory 154 
In this section we stablish the empirical and theoretical foundations of the dynamics of PAs’ 155 

effects. We start with a taxonomy of dynamics and demonstrate its theoretical consistency with 156 

a forward-looking behaviour model. Then evidence on effects’ dynamics collected by previous 157 

studies is presented. 158 

2.1 Theory 159 
The available knowledge about the temporal patterns of protections’ effect may be summarized 160 

into four types of dynamics, combining two dimensions, namely: (1) timing relative to 161 

protection outset, i.e., either (1.a) pre-protection or (1.b) post-protection and, (2) direction of 162 

effect, which is either (2.a) positive or (2.b) negative (figure 1). 163 

  164 

 
6 Despite, perhaps, Keles et al. (2023), but with the important difference that authors’ treatment is not the 

creation of PAs, but their downgrading, downsizing or degazettement. 
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Figure 1 Four types of dynamic effects, post-protection decay (a), pre-protection 165 

decay (b), post-protection rise (c) and pre-protection rise (d). 166 

 167 

The four types of dynamics are consistent with basic economics. To demonstrate that, we now 168 
present and simulate a theoretical model whose main microfoundation is forward-looking 169 
expectations formed by the representative resource-extracting household. For simplicity, we 170 
focus on one type of extraction - or, more precisely, suppression of - forest resources, 171 
deforestation, since the other forms considered in the paper, fires and mining, are associated 172 
with deforestation7. The model is essentially one of intertemporal consumption decision in 173 
which households’ savings can be only accumulated in the form of land. Following the classical 174 
Ricardian analysis, land is available in different qualities, or “grades”, which differ in the gross 175 
per-hectare return yielded.  176 

Owned land can be only expanded via deforestation and for this a right to deforest must be 177 
purchased by the current market price. This is the first component of deforestation’s cost, which 178 
is referred to as “endogenous price”. Its main function is introducing (perfect) competition for 179 
land in the model, thus leading to the equalisation of net return across different land grades 180 
(another crucial foundation of Ricardos’ analysis; Blaug, 1997). The second component, 181 
referred to as “exogenous price”, is policy-based, corresponding to the expected sanction the 182 
household is continuously exposed to, due to legal and illegal deforestation rights exchanged in 183 
the market. More precisely, rights are issued either officially by government, or illegally, by 184 
pioneer land grabbers and both are purchased by the household. 185 

Creation of PAs is understood strictly as an increase in the exogenous price of low-quality land, 186 
since, in practice, it consists in a (permanent and local) rise of expected sanction on illegal 187 

 
7 What is evidenced, for the case of fires, by Aragão and Shimabukuro (2010), with a 81% rate of 

increased deforestation pixel also exhibiting increased fire frequency. For the case mining, see Asner and 

Tupayachi (2017). 
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resource appropriation, which generally takes place where agriculture is less profitable. The 188 
assumptions here presented are formalised in what follows.  189 

2.1.1 Assumptions 190 
The representative household (HH) maximises the instantaneous CRRA utility function below, 191 

with ct denoting contemporaneous consumption and η the relative risk aversion coefficient (η > 192 

0). 193 

𝑢(𝐶𝑡) =
𝐶𝑡

(1−𝜂)

1 − 𝜂
 194 

Assuming land is classified in i = 1,2,…,N grades of quality, the budget constraint has, on the 195 

income side, the net return from investment on land, π(Ai,t). Expenditures comprise 196 

consumption and deforestation cost. The latter unfolds into the endogenous market-based price, 197 

pi,t, and into the exogenous policy-based price, mit. That is: 198 

∑(p𝑖,𝑡 + m𝑖,𝑡). D𝑖,𝑡

𝑁

𝑖=1

+ C𝑡 = ∑ π𝑖(A𝑖,𝑡)

𝑁

𝑖=1

 199 

The net return function is quadratic with a single interior maximum, “Amax”: 200 

π𝑖(A𝑖,𝑡) = 𝛿𝑖 (𝐴𝑚𝑎𝑥. A𝑖,𝑡 −
A𝑖,𝑡

2

2
) , 𝑖 = 1, … , 𝑁 201 

The larger net return yielded by land of higher quality is captured with a greater δi. Deforested 202 

land is accumulated, growing with deforestation and, for simplicity, is not subject to 203 

depreciation: 204 

A𝑖,𝑡 = A𝑖,𝑡−1 + D𝑖,𝑡−1, 𝑖 = 1, … , 𝑁 205 

Compiling all expressions and equations, the HH problem is: 206 

max{𝐶𝑡,{𝐷𝑖,𝑡,𝐴𝑖,𝑡},𝑖=1,…,𝑁}𝐸0 {∑ 𝛽𝑡 [
C𝑡

1−𝜂

1 − 𝜂
+ ∑ 𝜆𝑖,𝑡(A𝑖,𝑡−1 + D𝑖,𝑡−1 − A𝑖,𝑡)

𝑁

𝑖=1

∞

𝑡=0

207 

+ 𝜆𝐵𝐶,𝑡 [∑π𝑖(A𝑖,𝑡)

𝑁

𝑖=1

− ∑(p𝑖,𝑡 + m𝑖,𝑡). D𝑖,𝑡

𝑁

𝑖=1

− C𝑡]]} 208 

The representative issuer of deforestation rights must incur a cost of taking control of land, 209 

which involves building of (unpaved or paved) roads and minimal infrastructure. It maximises 210 

profit in a perfectly competitive market for rights: 211 

𝑀𝑎𝑥{D𝑖,𝑡
𝑆 }{p𝑖,𝑡D𝑖,𝑡

𝑆 − 𝐶(D𝑖,𝑡
𝑆 )} 212 

Total cost is assumed as cubic, as standard in microeconomics and, consequently, marginal cost 213 
is quadratic. The rights’ market clearing condition, which determines the endogenous price, is: 214 
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D𝑖,𝑡
𝑆 (p𝑖,𝑡) = D𝑖,𝑡 215 

2.1.2 Simulations 216 
The steady state of the model was calibrated to a set of parameters meant to be as general as 217 

possible – data sources are found in appendix 4, which also contains the equations of the 218 

dynamic system. For simplicity, only two land grades were assumed, low quality or i = L, and 219 

high quality or i = H. The model’s internal consistency was evaluated by conceiving the 220 

exogenous price components as stochastic shocks unexpected to the household. A near-221 

negligible correlation between the shocks mL and mH, of 0.1%, was assumed. Besides the 222 

confirmation of consistency, relevant responses to the shocks were observed, namely: 223 

• Deforestation of a specific land grade responded negatively to the exogenous component of 224 

its own price and positively to the exogenous component of the other grade's price (land 225 

grades were substitutes); 226 

• The endogenous component of deforestation price worked as a self-correction mechanism 227 

decreasing after a positive shock to the exogenous component, thus re-stablishing the long-228 

run equilibrium; 229 

• Consumption increased with a positive shock to the exogenous price component, which is in 230 

accordance with the “return-on-savings” mechanism behind intertemporal consumption 231 

choice (i.e., with an unexpected fall in the return of assets, it becomes less attractive to 232 

save). 233 

Now, to simulate PA creation, it was introduced a shock to low-quality land that was both fully 234 

expected and durable, lasting from half of the period on, i.e., on t = 10 since a time horizon of 235 

twenty instants was assumed (Figure 2). The exogenous price of high-quality land was kept 236 

unchanged. The forest rush effect was doubtless. It was followed by a three-stage trajectory, 237 

which started with a smooth increase, proceeding to stagnation and then ending with smooth 238 

decrease. At the end, deforestation inside PAs was smaller, uncovering a post-decay effect. 239 

Importantly, high-quality-land-deforestation followed the exactly opposite trajectory, what is 240 

another indication that crowding-out of deforestation is a potential side-effect of PA creation. 241 

Consumption fell gradually before the shock, attesting that consumption smoothing was at play, 242 

rising sharply afterwards, again because of the decreased return-on-savings. Interestingly, a 243 

slightly larger consumption level was achieved. The reason for this is that, without capital 244 

accumulation, only land accumulation, savings are fully converted in land. The forest rush, by 245 

prematurely increasing deforestation, expanded land, what increased future income, enabling 246 

consumption to increase. The endogenous price of low-quality land followed own deforestation, 247 

which is expected as it was demand for deforestation that responded to the shock (and not 248 

supply of deforestation shocks). 249 
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The two dynamic effects lacking, pre-fall and post-rise, were also generated by the model, but 250 

with an expected shock on exogenous price of high-quality land. The reasons were analogously 251 

the same as in the shock to low-quality land price. The former was due to the rush to deforest 252 

outside PAs, which meant allocating HH budget with priority to such locations, with not much 253 

resources left for deforesting inside. Now post-rise occurred as substitution of high-quality for 254 

low-quality land deforestation - the two can be also observed in Figure 2, by mentally switching 255 

all variables indexes from “L” to “H” and vice-versa. 256 

  257 
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Figure 2 Perfect foresight simulation, low-quality land exogenous price (m_L) 258 

shocked at t = 10 259 

 260 

2.2 Evidence 261 

2.2.1 PAs’ effects dynamics 262 
Besides theoretically sound, the four types of effect dynamics have also being observed by 263 

previous investigations about the process through which protected areas inhibit detrimental 264 

resource extraction. Starting with a negative post-protection effect means the absence of effect 265 

in the first year of protection and the presence of a negative effect in subsequent years. This 266 

dynamic type could be attributed to the gradual improvement of PA enforcement, as staff takes 267 

time to learn how to optimise patrolling in the specific set of biophysical and social conditions 268 

faced, what, according to Geldman et al. (2015), is in line with management theory (see also 269 

Afriyie et al., 2021). Also, PAs performance was found to improve over time (Geldman et al., 270 

2015, Paiva et al., 2015). Resource extractors may take advantage of these initial enforcement 271 

caveats to keep their activity. 272 

A post-protection rise in deforestation may result from relatively weaker enforcement inside 273 

rather than outside protected areas, which pushes deforestation towards PAs, as shown by the 274 

theoretical model. This dynamics is even more likely if the budget invested in PAs is mainly 275 

used for their establishment (e.g., to indemnify expropriations), whereas the budget invested 276 

outside of PAs flows mainly to enforcement (Kuempel et al., 2018, Nolte et al., 2013). 277 

Moreover, budget managers may implicitly assume that protected lands are less exposed to 278 
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threats than unprotected, with enforcement prioritizing the latter (as noticed by Kuempel et al., 279 

2018). Another reason, which is driven by the political cycle, is the loss of credibility of 280 

particular PAs, including those that are at risk of being degazetted or downsized (Keles et al., 281 

2023, Kingler and Mack, 2020, Carrero et al., 2022). This tenure ambiguity may be more 282 

profitable to deforesters than the unambiguity of particular unprotected public lands. For 283 

instance, Carrero et al. (2022, figure 3), found fractions of self-declared private properties 284 

overlapping with protected areas that were larger than those overlapping with agrarian 285 

settlements and military areas. Local land users may also increase deforestation and other forms 286 

of natural resource degradation inside PAs whose creation defied their interests, as a form of 287 

contestation (Debelo, 2012, Holmes, 20148). 288 

Now turning to changes occurring before protection, the literature is much less informative 289 

about them. Anticipated response of deforesters, or other resource users, to the restrictions 290 

imposed by protection, are infrequently mentioned, despite being fully consistent with the 291 

assumption of forward-looking agents. A negative pre-protection effect may be motivated by 292 

extractors revising their expectations of enforcement upwards after learning that a land area is to 293 

be protected. Indeed, governmental presence increases right since anthropological and 294 

ecological studies start being undertaken as means to inform the creation decision9. Keles et al. 295 

(2023, fig.7) indeed found negative ex-ante effects of protection in particular Amazonian 296 

locations (such as Pará state). That would be captured, in the theoretical model, by a positive 297 

and permanent shock in mL representing not creation itself, but the outset of the process of 298 

creation, what would anticipate the decay in deforestation in low-quality land.  299 

Pre-protection effects may be also positive. The future protection of a land parcel could trigger 300 

its deforestation in the present, through the increased sanction likelihood mechanism explored in 301 

the theoretical model. A first example is the “forest rush” induced by the prospect of creating a 302 

new PA in Guinea-Bissau, which led local traditional people to believe their land rights would 303 

be revoked (Temudo, 2012). They reacted in advance by resorting to many strategies to secure 304 

forest land, such as thinning forest canopy to plant market-value trees and replacing forest with 305 

orchards. Protest slashing-and-burning took place in a more advanced (and heated) stage of 306 

protection contestation (Temudo, 2012). A second example, reported by Pedlowsky et al. 307 

(1999), is the “rush for land” in the Brazilian state of Rondônia, triggered by the announcement 308 

of conservation units’ creation, a process that was slowly implemented. A third example of an 309 

anticipated response to PA creation that (could have) raised environmental degradation is found 310 

 
8 In the case study of Holmes (2014), peasants set fires near the borders of a PA as means to contest it. 
9 Conservation units and indigenous lands go through, respectively, two and five stages involving State 

presence, to be legally created (Brazil, 9985/2000 and 1775/1996, FUNAI, 2023). During the pre-creation 

assessment studies, agricultural, extractive and other activities may be forbidden and non-indigenous 

people re-settled outside (Brazil, 9985/2000 and 1775/1996). 
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in Baragwhanath and Bayi (2020). The authors make clear that contestation of indigenous lands, 311 

including invasion by non-indigenous resource users and deforesters, is possible up until the 312 

fourth and final phase of the creation process, which takes ten years and half in average to be 313 

achieved, in the Brazilian case (FUNAI, 2023). 314 

2.2.2 Confounder policies 315 
Since we seek, besides detecting PAs’ effects dynamics, to estimate an aggregate effect across 316 

treatment exposure length, there is need to worry about another source of bias observed in the 317 

literature analysing our outcome variables. This is the implementation, in the Amazon, of other 318 

concurrent environmental policies affecting deforestation, fires and mining. Intensification of 319 

the enforcement of laws constraining these activities in non-protected government owned-lands 320 

is a key example which, in the theoretical model, is captured by mH
 (Assunção et al., 2020, 321 

Morello et al., 2020, Damonte, 2018). Another example is stronger enforcement inside PAs, 322 

which, albeit also captured by mL, is an intervention that differs from the one we focus, which is 323 

the creation of PAs (Geldman et al. 2015). Failure to control for these policies, which, for not 324 

consisting in PA creation, work as confunders, may either inflate or deflate the effect of PAs. 325 

More precisely: 326 

1. There is deflation if confounder policies reduce forest disturbance more intensively 327 

outside rather than inside PAs (figure 3, chart 2). I.e., if lowering disturbance in the 328 

control group in a larger magnitude (after controlling, ATT should increase in absolute 329 

magnitude). Putting alternatively, in this case other policies and protection are forces 330 

acting upon pixels with different treatment statuses;  331 

2. There is inflation if confounder policies decrease forest disturbance more intensively 332 

inside rather than outside PAs (that is, the indirect spill-over effect must be larger than 333 

the direct effect; figure 3, chart 3). I.e., when they diminish disturbance in the treated 334 

group in a larger magnitude (after controlling, ATT should decrease). In this case, 335 

protection and other policies both act upon treated pixels (they are forces that add up to 336 

each other). 337 

  338 
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Figure 3  Deflation and inflation by confounder policies (control = black, 339 

treated = grey) 340 

 341 

 342 

3 Empirical method and data 343 

3.1 Identification strategy 344 

Our empirical goal is double, both testing for the presence of the four types of dynamics and 345 

accurately estimating the overall effect of PAs, i.e., the effect aggregated across the length of 346 

exposure to protection. The main barriers we face to proceed are two sources of bias. First, 347 

untreated pixels are not all of them comparable to the treated. Second, with cohorts of pixels 348 

defined in terms of length of exposure to protection, aggregating them in a standard way could 349 

automatically attach negative weights to some cohorts. To mitigate these biases, we adopt an 350 

identification strategy. It estimates the effect of PAs, which is represented by β in the equation 351 

below. The associated binary variable, “PA”, takes value one if the i-th pixel is protected in the 352 

t-th year, and null value otherwise. Covariates are subsumed to vector X. The dependent 353 

variable, Y, is a generic environmental outcome. 354 

Yit = γ + βPAit + XitΓ + ai + λt + uit, i = 1,…,N, t = 2003,...,2020 355 

Three main identification challenges are faced, (i) self-selection of the i-th site to be protected, 356 

(ii) staggered creation of PAs over time, which may lead to heterogeneous effects, and, (iii) 357 

potential confounding factors from omitted concurrent changes. To mitigate associated biases, 358 

matching was used in the first step to increase balance and the common extent of support 359 

between treated and untreated (control) observations. Secondly, we implement the group-time 360 

differences-in-differences approach developed by Callaway and Sant’Anna (2021) using 361 

covariates and fixed effects to estimate the average treatment effect on the treated (ATT). This 362 

two-step approach allows us to deal with self-selection on covariates and time-invariant 363 

unobservables, as well as to accurately calculate the average effect of PAs by appropriately 364 

accounting for group (cohort) heterogeneities. 365 

1.Actual (PA effect 

only)

2.Deflation by non-

PA policy

3.Inflation by non-

PA policy
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One-to-one covariate matching on Mahalanobis distance (dij) was pursued with replacement, as 366 

imprecisely represented by the equation below, with Z being a covariate vector with the same 367 

variables of X and some more (Morgan and Winship, 2007, chap.4, StataCorp, 2013). 368 

PAi = α + ZiΠ + ei, i = 1,…,N, t = 2003 369 

𝑑𝑖𝑗 = {(𝑍1 − 𝑍0)′𝑉𝑁𝑥𝑁
−1  (𝑍1 − 𝑍0)}

1
2 370 

In which the covariate values for treated and control groups are denoted by Z1 and Z0, 371 

respectively, and “V” is Z’s sample variance-covariance matrix. 372 

Matching was performed using data from the first year of the dataset, 2003, in order to minimise 373 

the contamination of untreated pixels by the treated. The treated group consisted in all pixels 374 

protected in some year of the analysis period whereas the control group contained only the 375 

never-protected. Matching led to the removal of (i) controls not sufficiently comparable to the 376 

treated and (ii) treated pixels that could not find sufficiently comparable controls. The exclusion 377 

of treated observations relied on a one standard deviation (SD) caliper for each and all 378 

covariates (similar as in Arriagada et al., 2016 and Wendland et al., 2015)10.  379 

Seeking to maximize comparability between treated and untreated pixels while also avoiding 380 

underestimation of treatment effect11, deforestation variables were included in matching only 381 

with fires and mining as the dependent variables. This required matching-based selection of two 382 

subsamples, one for deforestation as the outcome variable, and the other for fires and mining as 383 

the outcomes. 384 

After restricting the sample to comparable pixels, we proceeded with the DiD estimator 385 

developed by Callaway and Sant’Anna (2021) which was based on the outcome regression 386 

specification. The group-time estimates were aggregated at exposure-length level, in order for 387 

an event study to be carried out as means to pre-test the parallel trends assumption ensuring 388 

identification. Further aggregation, across all exposure lengths, generated the overall effect 389 

estimate. But before computing it, we excluded groups violating the parallel trends assumption. 390 

These are hereafter referred to as “critical groups”, and understood as those with significant 391 

group-time ATTs belonging to a pre-treatment exposure length, that, for its turn, was 392 

significant. These exclusions were step-wisely implemented, whenever a previous round of 393 

 
10 A half SD caliper was also considered as an alternative (and more rigorous) option. But since the 

matching quality gain it brought per unit of observation excluded was substantially smaller than the one 

yielded by the one SD caliper, only results generated by the latter are reported. Additionally, the sample 

size reduction the half SD caliper entailed was great enough to prevent generation of the group-time 

estimates. 
11 With treated and control matched on the dependent variable, the likelihood of a null treatment effect 

would be artificially inflated. 
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group removal was not enough to drive all pre-treatment effects null12. The event study 394 

estimates, more precisely, the significance of pre-treatment effects, re-generated at each round, 395 

guided the operation. 396 

The robustness of the “critical groups” approach to group selection was assessed by comparing 397 

the associated overall ATTs with those generated by an alternative group selection approach 398 

based on Goodman-Bacon’s (2021) decomposition. It revealed the weights in the standard two-399 

way fixed-effects estimates of each binary comparison between never-treated and a specific 400 

cohort group, showing which cohorts were the top five in weight – these comparisons, in which 401 

strictly the never treated are taken as untreated units, were focussed in consistency with our 402 

matching convention of including only never-treated pixels in the control group. Three matched 403 

subsamples were the object of the robustness test: (i) whole Amazon Basin, (ii) only the 404 

Brazilian fraction of the Basin, without institutional covariates and (iii) Brazilian fraction with 405 

institutional covariates. In all these three, the top five cohorts in weight represented at least 66% 406 

of the total weight13, which is a major share of the variation identifying ATT. Even with 407 

Goodman-Bacon’s (2021) decomposition implemented separately in each subsample vs. 408 

dependent variable combination, it pointed, in all of them, to the same top five cohorts, namely, 409 

2005, 2006, 2008, 2009 and 2016. Considering only these cohorts, Callaway and Sant’Anna’s 410 

(2021) estimator was then ran for all six combinations. 411 

3.2 Data 412 

3.2.1 Outcome variables 413 
Three are the outcomes based on which effectiveness of protection is assessed. First, 414 

suppression of primary and secondary natural vegetation, i.e., pristine and regeneration, 415 

respectively,  the most common dependent variable in empirical PA studies. We also look to 416 

fires as an indicator of forest degradation, which, despite apparently less ecologically impactful, 417 

is being attested, by a growing body of research, as at least as damaging as deforestation (Qin et 418 

al., 2019, Barlow et al., 2016, Matricardi et al., 2020). The third outcome is a highly damaging 419 

form of resource extraction, artisanal mining of surface or near-surface gold deposits (Teixeira 420 

et al., 2021, Moreno-Louzada and Menezes-Filho, 2023). Indeed, at least in Brazil, a substantial 421 

part of gold deposits are located inside or near PAs (Rizzotto et al., 2022), as attested by 422 

sanctioned offenses data from the Brazilian conservation unit authority (ICMBIO, 2024). 423 

 
12 At most three rounds were required in all cases, with fires requiring mostly two rounds (five of the 

eight subsamples considered) and deforestation requiring mostly three rounds (four of the eight 

subsamples). Mining was an exception as in the subsample with indigenous lands and institutional 

covariates, four rounds were required. Still for such outcome variable, in the high quality of management 

subsample, three rounds were needed and, in all other subsamples, at most two rounds. 
13 This share was above 75% for four of the six combinations. 
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3.2.2 Subsamples and covariates 424 

Ten “subsamples” were analysed, all of them at the geographical scale of 25 km2 pixels and at 425 

the annual time scale from 2003 to 2020. The first sample covered the entire Amazon Basin, 426 

delimited accordingly with hydrological and ecological criteria (see Eva and Huber, 2005). It 427 

overlaps, at least partially, the territories of nine South-American countries, with Brazil 428 

occupying about 60% of the whole region. The second sample contained solely the Brazilian 429 

portion of the Basin (hereafter referred to as “Brazilian Amazon” for simplicity14). It was the 430 

only part of the Amazon Basin for which data was available to control for confounder policies. 431 

Remote-sensing mining data was also only available for Brazil. Abusing the meaning of 432 

“sample”, what is here referred to as the third “subsample”, also captured only Brazil, but 433 

included institutional covariates proxying non-PA-creation policies implemented 434 

simultaneously with creation. In order to measure the effect of specific types of PAs, a common 435 

practice in the literature (Herrera et al., 2019, Amin et al., 2019), five additional subsamples 436 

included only treated pixels belonging to a specific PA type. Whereas the first two types 437 

corresponded to conservation units, either managed by national or subnational governments, the 438 

third type corresponded to indigenous lands. The last two subsamples also referred to 439 

conservation units, but grouped according with two levels of severity of protection constraints. 440 

First, units permitting only indirect resource use (where only ecological management and 441 

tourism are allowed), and those permitting direct use, i.e., extraction and (limited) removal of 442 

vegetation cover by inhabitants. All specific types of PAs we consider may exhibit particular 443 

protection effect dynamics given their particular constraints to natural resource exploitation and 444 

land usage, as well as the different agencies responsible for their management (Amin et 445 

al.,2019, Qin et al.,2023, Carrero et al.,2022). 446 

The ninth subsample was an imposition of the limited availability of data about quality of 447 

management of PAs. The institution in charge of conservation units (ICMBIO) surveys units 448 

annually and, based on that, generates a five level index, which was aggregated in two levels, 449 

low-to-medium and high management quality (ICMBIO, 2024). The data available did not 450 

covered all units, as some did not fill the survey form and others could not be found in the 451 

original dataset, due to the lack of, or inconsistency in, the few variables available for unit 452 

retrieval. Only 30% of the units in our sample could be included in analysis. Only the latest 453 

survey year, 2022, was considered. 454 

The final subsample comprised only pixels at 20 km from natural gold deposits. The locations 455 

of these deposits, informed by the Brazilian Geological Service (SGB, 2024), were used to 456 

 
14 We highlight that the fraction of the Amazonian Basin falling in the Brazilian territory does not 

coincide with the two more commonly adopted geographical delimitations of the Brazilian Amazon, 

which are either of ecological or legal nature (being termed “Brazilian Amazon biome” and “Legal 

Brazilian Amazon”). 
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select pixels where goldmining activity could take place. More precisely, pixels with at least 457 

five percent of their area within 20 km of the deposits were allocated to a subsample hereafter 458 

referred to as “gold reserve pixels”. Pursuing the analysis of the goldmining dependent variable 459 

strictly within this subsample avoided an overestimation bias because goldmining could be less 460 

frequent inside PAs, not because of protection effectiveness, but simply due to a lack of mineral 461 

reserves.  462 

The covariates based on which pixels were matched (vector “Z”) belonged to three classes: (1) 463 

meteorological (temperature, precipitation and maximum cumulative water deficit), (2) land use 464 

and land cover (extent of farming, of forest and other natural landscapes, forest fragmentation 465 

and, in the case of fires, deforestation of primary and secondary vegetation), and (3) land 466 

profitability (distance to roads, rivers, populated areas and urban zones, population, terrain's 467 

elevation and slope and soil quality). All these variables were geoprocessed and aggregated to 468 

pixel-year level. With fires and mining as dependent variables, two extra covariates were 469 

included, the extents of deforestation of primary and secondary vegetation. 470 

The post-matching DID estimation included the time-variant subset of the matching variables, 471 

Xit, in order to compensate for the static nature of matching - in line with Goodman-Bacon’s 472 

(2021) statement that time-variant covariates attenuate staggered treatment bias. In addition, one 473 

of the “subsamples” contained four institutional variables explicitly controlling for confounder 474 

policies. These variables were municipal expenditure on environmental governance, area of 475 

properties embargoed due to illegal deforestation,distance to the nearest environmental police 476 

headquarters, sanctions applied at conservation unit protected areas by the authority in charge, 477 

and the counts of two types of environmental protection workers, environmental technicians and 478 

forest rangers15 (FINBRA, 2023, IBAMA, 2023a and 2023b, RAIS, 2024, ICMBIO, 2023). The 479 

first two variables were available only at the municipal level, and since all the three variables 480 

were time-invariant, they were interacted with a time trend to prevent elimination by the fixed-481 

effects estimator - the three institutional covariates were available only for Brazil. 482 

3.2.3 Sample reduction 483 

The population variable exhibited great discrepancy between protected and non-protected 484 

pixels, with a large standard deviation in the second group (coefficient of variation = 16). 485 

Because of that, outlier pixels in population were eliminated from analysis before matching 486 

(what reduced fourfold the population's variable coefficient of variation). These pixels, whose 487 

population level was above the 99th percentile of the whole dataset (1,297 inhabitants/25 km2 by 488 

 
15 Sanction counts were provided by Instituto de Conservação da Biodiversidade Chico Mendes, the 

federal institution in charge of federal conservation units. The data was requested to the authority via the 

federal government system of information disclosure (Fala.BR; ICMBIO, 2023).The source of the worker 

counts is the Brazilian Ministry of Labour’s registry of workers hired with full rights. Only the two CBO 

2002 categories directly related with environmental protection were included (RAIS, 2024). 
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2003), were either urban or considerably closer to urban zones - 20% of them were at zero 489 

distance from urban towns, a percentage which was of 0.1% for non-outlier pixels; in addition, 490 

distance to urban towns was, among outlier pixels, statistically smaller in average (p-value < 491 

0.01%). Outlier population pixels were thus unlikely to give place to deforestation, so that 492 

keeping them could contribute to an underestimation of the treatment effect. 493 

Before matching, and in accordance with Callaway and Sant’Anna (2021, footnote 2), pixels 494 

treated before the second year of analysis (2004) were dropped, along with outlier pixels– thus 495 

ensuring that all treated pixels were observed also in their pre-treatment state. 496 

3.2.4 Artisanal mining 497 

The mining dependent variable was retrieved from Mapbiomas (2024), being originally 498 

generated from satellite imagery. It captured the land area occupied by artisanal mining of gold 499 

(“garimpo”) and was available only for the Brazilian portion of the Amazon Basin. The datum 500 

was converted to a binary variable indicating whether goldmining occurred in each pixel-year. 501 

The analysis of mining was ran exclusively within the subsample of pixels at 20 km from gold 502 

deposits. This was true also when considering specific PA types. Only the portions of these 503 

specific types overlapping the 20 km buffers from gold deposits were included in the analysis of 504 

goldmining. 505 

4 Results 506 

4.1 Main effects16 507 

In this section, we present the main estimates of the impact of protected areas on deforestation, 508 

fires, and mining, utilizing various strategies (Table 1, Panels A to C). Starting with 509 

deforestation (Panel A), in the matched subsamples17, we first investigate the identification 510 

hypotheses. We find that three violations of parallel trends assumption, in the form of 511 

significant pre-treatment effects, were observed in the event studies18. To address this issue, we 512 

excluded the critical groups, namely 2006, 2013, 2016 and 2019, to ensure parallel trends, as 513 

reported in the Column 5 of Panel A. 514 

In the matched sample and considering the staggered implementation of protection, the PA 515 

impact on deforestation is -0.0278 (Table 1, Panel A, Column 4). But in the case in which the 516 

parallel trends assumption was met, i.e., without the critical groups, the impact was of -0.025, 517 

showing that failure to meet the assumption was biasing upwards in 11%, in absolute value 518 

 
16 Results based on the half SD caliper are omitted. The results reported are based on the 1 SD caliper, 

which achieved a satisfactory balance between matching quality and sample size (see Appendix 2). 

17 An assessment of matching quality is provided in the robustness section and in Appendix 1. 
18 These occurred at exposure lengths of -15, -9 and -2 years, the first two displaying significant negative 

effects and the last one showing a positive effect (Appendix 2, figure A.2.1.1) - lag -9 was not significant 

in the unmatched sample. 
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terms, the estimate (see Table 4). The estimate with parallel trends was over twice as large, in 519 

absolute value, as those with TWFE regressions, revealing that the negative weights bias, 520 

coupled with non-parallel trends, diminished the absolute size of the impact (Table 1, Panel A). 521 

The estimates for fires were similarly subjected to parallel trends violations (in lags -11,-10, -6, 522 

-4, -1), which biased the estimates downwards in 39% (Tables 1 and 3). Both the failure to 523 

match and the lack of a post-matching analysis deflated the impact, with non-staggered post-524 

matching deflating further (Table 1, Panel B).  525 

Gold mining was peculiar in the impossibility of estimating group-time effects for many 526 

cohorts, except those of 2004 to 2006, which were thus the only ones considered. No pre-trends 527 

were significant, leading to a null unparalleled trends bias. The bias from not conducting a 528 

postmatching analysis was exactly equal to the biased estimate, of 0.4 pps, since the unbiased 529 

was null. For the same reason, all remaining biases were also null (Tables 1 and 4). Alternative 530 

estimations, based on TWFE were conducted in the robustness section. No statistically 531 

significant results were found.  532 

With the institutional variables that were available only for Brazil, 13% larger and 16% smaller 533 

impacts were estimated for deforestation and fires, respectively, compared with a Brazilian 534 

subsample without institutional covariates (Table 2). The effect on mining remained null with 535 

the institutional variables. Therefore, concurrent non-PA policies decreased deforestation more 536 

largely outside PAs, whereas they decreased fires more intensely inside PAs. 537 

Regarding the heterogeneity of the impact, only indigenous lands and a specific type of 538 

conservation unit, the most severely restrictive one (indirect use), were effective in preventing 539 

deforestation. Indigenous lands were slightly more effective, with an estimate closer to that for 540 

whole-PAs’ effect than severely restrictive conservation units. Different patterns were observed 541 

for fires, which were blocked by indigenous lands and national conservation units. Subnational 542 

units unexpectedly presented a higher internal fire frequency than unprotected land, what may 543 

reflect the lower availability of resources for management and enforcement at the subnational 544 

level (Herrera et al., 2019). Units differing on degree of protection stringency were all effective, 545 

but again the most restrictive were most effective. In the case of mining, estimation was 546 

possible only for direct and national conservation units, which turned out not to diminish the 547 

activity in question. 548 

There was no evidence that areas with higher quality of management avoided a larger extent of 549 

deforestation or fires; in fact, non-effectiveness prevailed, irrespective of how good 550 

management was. The comparison was impossible for the case of mining, because only the 551 

effect of low-to-medium quality PAs could be estimated; which was, by the way, null (Table 3). 552 

  553 
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Table 1: Impact of PAs on deforestation, fires, and artisanal mining using different 554 
approaches 555 

 

   Group-time 

(1) (2) (3)   (4) (5) 

Matching 

only 

Canonical  

DiD 

TWFE 

DiD 
  All groups 

Groups with            

no pre-trend 

 

Panel A: Deforestation 

PA impact -0.0067*** -0.0124*** -0.0124***   -0.0278* -0.025* 

 [0.0013] [0.0017] [0.0016]   [0.0032] [0.0037] 

N 594,702 594,702 594,702   594,702 415,080 

        

Panel B: Fires 

PA impact -0.0575*** -0.0052*** -0.0052***   -0.0369*** -0.0601*** 

 [0.0008] [0.0012] [0.0011]   [0.00291] [0.0073] 

N 592,380 592,380 592,380   592,380 209,628 

        

Panel C: Artisanal goldmining 

PA impact -0.045*** -0.0018 -0.0018   NA 0.2139 

 [0.0014] [0.0022] [0.0021]   NA [0.1751] 

N 52,190 52,190 52,190   NA 47,484 

        

Notes: Each panel shows the average treatment effect on the treated (ATT) of Brazilian indigenous PAs 556 
on deforestation (Panel A), fires (Panel B) and mining (Panel C) estimated by multiple approaches - 557 
columns (1) to (5). Column (1) reports the comparison between treated and control areas in the matched 558 
sample. The matched sample was built after the exclusion of treated observations that were more than one 559 
standard deviation (SD) caliper away from controls for all covariates; non-comparable controls were also 560 
excluded. Column (2) shows the estimates of the ATT based on a DiD approach without fixed effects, 561 
while Column (3) reports the DiD results using a TWFE model. Columns (4) and (5) reports the same 562 
effects by considering the staggered implementation of PA in our matched sample for all group-times and 563 
for selected group-times, respectively. Panel C, Column 5, shows the effects of the 2004 to 2006 564 
treatment groups. The selection of groups in Column (5) was based on the non-statistical significance of 565 
pre-trends. Clustered standard errors are presented in brackets. P-values: * <10%, ** <5%, and *** <1%.   566 

 567 
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Table 2: Effect of PAs on deforestation, fires and mining: Amazon Basin by type, and Brazilian Amazon with different covariates. 568 

    Brazilian Amazon   Amazon Basin 

  
  

All PAs   All PAs Indig. Lands Subnat. Units National units 
Indirect 

Direct   units 
  units 

    (1) (2)   (3) (4) (5) (6) (7) (8) 

                      

Panel A: Deforestation       

PA impact 
  

-0.0279*** -0.0321*** 
  

-0.025* -0.0243*** 0.0022 -0.0113 -0.0227* -0.0028 

    [0.0068] [0.0053]   [0.0037] [0.0066] [0.0095] [0.0071] [0.0093] [0.0059] 

N   145,224 241,074   415,080 106,830 57,762 88,038 84,366 141,948 

                      

Panel B: Fires       

PA impact    -0.0624***   -0.0538***     -0.0601***   -0.0352***   0.0323***   -0.0552***   -0.0499***   -0.0318***  

     [0.0096]   [0.0065]     [0.0073]   [0.0050]   [0.0076]   [.0065]   [.0053]   [.0067]  

N         201,546       201,546         209,628        119,052          89,028          99,414        107,802        203,994  

                      

Panel C: Artisanal mining (Brazilian Amazon only) [1]       

PA impact   0.2139 0.172   
 

    -0.0101  -0.0063  

    [0.1751] [0.1720]   
 

    [0.0103]   [ 0.0087] 

 N    47,484 47,484   
 

            29,178           33,858  

Institutional 
  no yes   no no no no no no 

Controls 

Notes: Each panel shows the average treatment effect on the treated (ATT) on deforestation (Panel A), fires (Panel B) and goldmining (Panel C) considering the staggered 569 
implementation of PA in our matched sample for selected group-times. Columns (1)-(2) report the Brazilian Amazon results with and without institutional covariates, while 570 
Columns (2) to (9) considered the Amazon Basin sample by PA type. The selection of groups was based on the non-statistical significance of pre-trends. Clustered standard 571 
errors are presented in brackets. P-values: * <10%, ** <5%, and *** <1%. 572 
[1] For artisanal goldmining, only the subsample within 20 km of gold deposits located inside Brazil was considered.   573 
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Table 3  Effect of Brazilian PAs of medium-to-low and high quality of management: 574 
group-time estimates after exclusion of critical groups 575 

  

Deforestation Fires Mining 

High quality 

Low-to-

medium 

quality 

High quality 

Low-to-

medium 

quality 

Low-to-

medium 

quality 

ATT 0.0024 0.0653** -0.0266+ -0.06837*** -0.00638 

SE [0.0147] [0.0216] [0.0147] [0.0079] [.0074035] 

N 61,578 217,746 64,998 217,098    40,122  

Clusters 3,421 12,097 3,611 12,061      2,229  

Note: management quality was measured by the authority in charge of Brazilian conservation units, based 576 
on a multidimensional indicator developed by the own authority and based on questionnaires responded 577 
by PAs’ staff (ICMBIO, 2024). Not all PAs were evaluated. The high quality PA type could not be 578 
estimated for the case of goldmining due to an insufficient number of observations. Clustered standard 579 
errors are presented in brackets. P-values: * <10%, ** <5%, and *** <1%. 580 

 581 

Table 4  Description of biases in naïve estimation (relative [and absolute] 582 
calculation) for all outcomes 583 

  Deforestation Fires Artisanal mining 

"Matching alone" bias -73 % [-1.84%] -4 % [-0.26%] NA [0.04%] 

Staggered protection bias -50 % [-1.26%] -91 % [-5.49%] 0 [0] 

Unparalleled trends bias 11 % [0.28%] -39 % [-2.32%] 0 [0] 

Concurrent policy bias -13 % [-0.42%] 16 % [0.86%] 0 [0] 

Note: The relative bias is calculated as biased/unbiased – 1, that is, as the percentage in which biased 584 
absolute estimate exceeds the unbiased absolute estimate. Consistently, absolute bias was calculated as 585 
abs(biased) – abs(unbiased), with “abs” standing for absolute value. 586 

 587 

4.2 Robustness tests 588 

To assess the robustness of our findings, we compared the group-time estimates from the 589 

unmatched sample with those obtained using various matching strategies. The results are 590 

presented in Table 5, with deforestation outcomes shown in Panel A and fire outcomes in Panel 591 

B. Our analysis indicates that the results for deforestation are highly robust, while the results for 592 

fires are qualitatively consistent. The robustness of the findings is particularly evident in 593 

samples where the pre-trend hypothesis holds more strongly. 594 

We have also compared different strategies to select a sample without significant pre-trends 595 

(Table 6). Regarding deforestation, robustness was achieved both in sign and magnitude of 596 

estimates, the latter differing in no more than 14%. This is shown in Panel A of Table 6, which 597 

compares critical cohort exclusion with the inclusion of top-five cohorts in the weights obtained 598 

from Goodman-Bacon’s (2021) decomposition. Nevertheless, in the case of fires (Table 6, Panel 599 

B), robustness was restricted to estimates’ sign, due to discrepancies of at least 40%, which 600 
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suggested inflation of effect’s size. Therefore, it is cautious to expect, in practice, lower effects 601 

on fires than those shown in the previous tables. The robustness test was unreasonable in the 602 

case of mining, an outcome that was not affected by unparalleled trends. 603 

Furthermore, the direction of change in effects after controlling for concurrent policies was also 604 

robust for deforestation and fires. In the two cases, the magnitude of change was smaller in the 605 

robustness test. 606 

Table 5  PA impacts on deforestation and fires using different selected group-times, 607 

Brazilian Amazon and Amazon Basin. 608 

  

Group-time 

(1) (2) (3) (4) 

All groups Selected groups 

Unmatched sample 
Matched sample 

(no caliper) 

Matched sample 

(caliper of 1 SD) 

Matched sample 

(caliper of 1 SD) 

          

Panel A: Deforestation 

PA impact -0.0236* -0.0294* -0.0278* -0.025* 

  [0.0019] [0.003] [0.0032] [0.0037] 

N 2,235,996 725,724 594,702 415,080 

          

Panel B: Fires 

PA impact -0.0153*** -0.0360*** -0.0369*** -0.0601*** 

  [0.0014] [0.0026] [0.00291] [0.0073] 

N 2,235,996 726,048 592,380 209,628 

Notes: Each panel shows the PA impact considering the staggered implementation of PA in the 609 
unmatched sample (Column 1), and subsamples considering different matching strategies: matching 610 
without caliper (Column 2), matched sample excluding treated observations that were more than one 611 
standard deviation (SD) caliper away from controls for all covariates (Column 3), and for selected groups 612 
based on the non-statistical significance of pre-trends (Column 4). Clustered standard errors are presented 613 
in brackets. P-values: * <10%, ** <5%, and *** <1%.   614 
 615 

  616 
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 617 

Table 6  PA impacts on deforestation and fires using different selected group-times, 618 

Brazilian Amazon and Amazon Basin. 619 

  

(1) (2)     (3) (4)     (5) (6)   

All PAs   Brazilian PAs   Brazilian PAs with inst. var. 

Critical 

groups 

Top-5 

weights 

(rob.) 

Diff. %   
Critical 

groups 

Top-5 

weights 

(rob.) 

Diff. %   
Critical 

groups 

Top-5 

weights 

(rob.) 

Diff. % 

[(2)/(1) 

-1] 
  

[(4)/(3) 

-1] 
  

[(6)/(5) 

-1] 

                        

Panel A: Deforestation     
PA 

impact 
-0.025* -0.0255*** 2%   -0.028*** -0.0319*** 14%   -0.0321*** -0.0342** 7% 

  [0.0037] [0.0037]     [0.0068] [0.0045]     [0.0053] [0.0046]   

                        

N 415,080 431,550     145,224 349,776     241,074 349,776   

                        

Panel B: Fires     

PA 

impact 
-0.0601*** -0.0273*** -55%   -0.0624*** -0.0338*** -46%   -0.0538*** -0.0321*** -40% 

  [0.0073] [0.0030]     [0.0096] [0.0039]   [0.0065] [0.0042] 

                        

N 209,628 429,750     148,914 348,138     201,546 348,138   
Notes: This table compares critical cohort (group) exclusion (Columns 1, 3 and 5) with the inclusion of top-five 620 

cohorts in the weights obtained as part of Goodman-Bacon’s (2021) decomposition (Columns 2, 4, and 6) for 621 

Amazon Basin (all PAs), and Brazilian Amazon (with and without institutional covariates). Panel A reports the 622 

impact for deforestation, while Panel B shows the estimates for fires. Clustered standard errors are presented in 623 

brackets. P-values: * <10%, ** <5%, and *** <1%. 624 

 625 

For gold mining, as we could not estimate group-time effects for many cohorts, we have 626 

assessed alternative TWFE estimations based on different periods and cohorts (Table 7). More 627 

precisely, we explored two patterns in the share of protected land within 20 km of gold deposits. 628 

First, a discontinuous leap from 3% to 30% between 2005 and 2006 and a near stagnation 629 

between 2006 and 2020, when protected pixels grew at 0.4% per year. Thus, we consider the 630 

sub-periods of 2006 to 2020 and of 2005 to 2006. The cohort of 2006 was also targeted, alone, 631 

in an additional group-time DiD estimation. As in the main regressions, we do not find 632 

statistically significant results. 633 

  634 
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Table 7  PA impacts on goldmining using different cohorts of treatment. 635 

  (1) (2) (3) (4) (5) 

  

TWFE                        

2006-2020 

TWFE                              

2005 and 2006 

TWFE                              

2006 

Group-time                                                                  

2004 to 2006 

Group-time                                                                  

2006 

PA impact -0.00423 0.0019 -0.00435 0.213946 -0.00054536 

  [0.00280] [0.00141] [0.00553] [0.1751294] [0.0074533] 

N 46,050 6,140 42,228 47,484 42,228 

Notes: This table compares TWFE (Columns 1 to 3) and staggered treatment estimates (Column 4 and 5) for different 636 

calendar periods and treatment cohorts. Columns 1 to 3 show TWFE-based results for alternative calendar periods, 637 

while columns 4 and 5 report group-time DID results for alternative cohorts. Clustered standard errors are presented 638 

in brackets. P-values: * <10%, ** <5%, and  *** <1%. 639 

 640 

Finally, we have conducted additional robustness of matching with an alternative approach. It 641 

selected controlled and treated pixels as those within 50 or 100 km of PAs' boundaries, but, 642 

respectively, either outside or inside a PA. Distances were calculated in order to accommodate 643 

the time variation of pixel-to-boundary distance, due to the staggered nature of protection. As 644 

the result, matching-based effects on deforestation proved non-robust in terms of sign, which 645 

was positive in the robustness test and without controlling for institutional factors (appendix 3, 646 

Tables A.3.1 and A.3.2). When controlling, sign was robust, but ATTs' magnitudes were up to 647 

88% larger. For the case of fires, estimates' sign proved robust, but the magnitude did not, with 648 

distance-based ATTs systematically smaller in up to 75%. Nevertheless, since spatial proximity 649 

does not ensure protected and unprotected pixels are satisfactorily comparable, these 650 

discrepancies should be taken as indication that deforestation effects' signs may be 651 

heterogeneous in the spatial dimension, and that both deforestations' and fires' effects 652 

magnitudes are spatially heterogeneous.  653 

The test was not pursued for mining due to the small number of degrees of freedom it would 654 

rely on, as the analysis of such outcome variable was already spatially restricted to 20 km from 655 

gold deposits. 656 

 657 

 658 

  659 
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4.3 Dynamic effects 660 

 661 

Figure 4 PA impact on deforestation and fires, Event Study. 662 

 663 

Notes: The left figure illustrates the temporal impact of Brazilian indigenous protected areas (PAs) on 664 
deforestation, while the right figure depicts the temporal impact on fires. These event studies were 665 
conducted using a matched sample, excluding treated observations that deviated by more than one 666 
standard deviation (SD) from controls across all covariates and also non-comparable controls. Clustered 667 
standard errors were calculated, and the 95% confidence interval is presented. 668 

 669 

In this section we provide further information about the significant pre and post-treatment 670 

effects, interpreting them as manifestations of the four types of effect dynamics depicted in 671 

figure 1. Only systematic effects are examined, i.e., those whose significance was observed in 672 

more than one “subsample”, namely: (i) all PA types, (ii) indigenous lands, (iii and iv) 673 

subnational or national conservation units, (v and vi) Brazil with or without institutional 674 

covariates. The event studies here described, which contain all groups, without any attempt to 675 

address significant pre-treatment effects, are found in figure 4 and in appendix 2. 676 

A noteworthy finding is the positive pre-protection effect on deforestation observed at lag -2 in 677 

all five samples, except for the one involving only indigenous lands (figure 4; Appendix 2, 678 

figures A.2.1.1, A.2.2.1, to A.2.3.1). This effect can be attributed to the group treated in 2006. 679 

Its deforestation level in 2004 was larger than unprotected pixels. The group’s pixels were 680 

evenly distributed between subnational and national conservation units in Brazil and most of 681 
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them belonged to “direct-use” units, which are more permissive regarding resource extraction 682 

and land usage (Nolte et al., 2013). Importantly, this positive pre-treatment effect 683 

counterbalanced the negative pre-treatment effect of the 2009 group which was also captured 684 

into lag -2’s effect. 685 

Positive and negative pre-treatment effects on deforestation at lags -10 and -9, respectively, 686 

were observed for the case of indigenous lands and in the Brazilian sample with institutional 687 

covariates. Focussing on indigenous lands, the two effects were due to the group treated in 688 

2016. It must be highlighted that even with the effects observed many years before creation, 689 

they were still within the time span that indigenous lands take to be created (FUNAI, 2023)19. 690 

This suggests that these effects may be evidence of deforesters’ forward-looking behaviour. The 691 

initially perceived gain, ten years before protection, from rushing to harvest forest resources and 692 

claiming land, may disappear after one year as deforesters learn that governmental presence 693 

truly increased in the zone that is to be protected. 694 

Negative pre-protection effects on fires four years and eleven years before protection were 695 

systematically observed across all matched sub-samples (except, for the pre-effect at lag -4, for 696 

subnational conservation units). Whereas the pre-effect at lag -4 had its origin in Brazilian 697 

national conservation units and indigenous lands, the one at lag -11 also occurred in subnational 698 

conservation units. The cohorts associated with these pre-treatment effects were 2008, 2009 and 699 

2016, for the case of lag -4, and 2016 for lag -11 (judging for the most recurrent critical group in 700 

each case). 701 

Another peculiarity of conservation units’ event studies for deforestation was the six positive 702 

pre-treatment effects, considering both national and subnational units (at lags -13, -7, -5, -3, -2, -703 

1), whereas only one positive pre-treatment effect was observed in indigenous lands (at lag -10). 704 

This is another evidence that conservation units are more prone to experiencing rises in 705 

deforestation prior to protection. A similar, albeit weaker, pattern was observed for fires. 706 

Whereas conservation units presented two or three positive pre-treatment effects, indigenous 707 

lands presented only one.  708 

A related result is that the lack of overall significance of subnational PAs against deforestation 709 

was due, in the sample without critical groups, to the significant inhibition effect up to the fifth 710 

year after creation being counterbalanced by a “stimulation effect”, i.e., a larger inner 711 

deforestation, seven years and also ten to twelve years after creation. The same was observed 712 

for fires, whose level was larger inside subnational units than in unprotected land, with positive 713 

post-protection effects observed in leads 2, 8, 9, 11, 13 and 14. 714 

 
19 The average duration of the creation process was of 10.5 years among the 127 Brazilian indigenous 

lands whose initial and final phases of creation dates were both available and consistent – meaning, by 

consistency, the initial date coming before the final date. 
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Regarding post-treatment effects on deforestation, two prominent patterns emerge. Firstly, a 715 

two-year delay in the impact was observed only in indigenous lands. This could be attributed to 716 

enforcement not increasing immediately after the creation of indigenous lands (BenYishay et al. 717 

2017). Secondly, a (approximately gradual) effect magnification was observed in all six 718 

subsamples (appendix 3, figures A.2.1.1, A.2.2.1, up to A.2.6.1, but except for A2.4.1). It is an 719 

evidence that enforcement staff takes time to learn how to improve their performance. Gradual 720 

magnification was also true for fires, except in the case of subnational units, where fires were 721 

more frequent than in unprotected land. Such pattern may be both evidence of “learning-by-722 

enforcing” and, relatedly, of reduced deforestation, which is a main purpose of fire usage. A 723 

delayed decrease was also true in indigenous land, but at one year after protection. 724 

Mining was not subject to pre-protection or post-protection effects, except for the negative 725 

effect 15 years after creation of national conservation units. Which, thus, occurred at the end of 726 

the period considered, since only the cohorts from 2004 to 2006 were included in estimation. 727 

Care thus requires this finding to be interpreted as a calendar-year effect, given the few cohorts 728 

basing it. 729 

To confirm and better understand the pre-rise in deforestation and fires, leads of the time-variant 730 

treatment variable were added to a two-way fixed effects model, as seen below: 731 

𝑦𝑖,𝑡 = β0 + δ𝑑_𝑃𝐴𝑖,𝑡 + ∑ 𝛼𝑗𝑑_𝑃𝐴𝑖,𝑡+𝑗

𝐿

𝑗=1

+ β1𝑥𝑖,𝑡 + 𝑎𝑖 + 𝑢𝑖,𝑡 732 

Up to six leads were considered as this was the level of a proxy for the duration of the 733 

conservation units’ creation process (i.e., L = 6)20. The most consistent patterns revealed by 734 

results were the positive second lead and the negative sixth lead (Table 8). Which means that 735 

deforestation and fires decreased six years before creation of conservation units, which is when 736 

the average unit started being created. It also means that, importantly, the three outcomes rose 737 

two years before creation, which is another evidence of the forest rush. 738 

  739 

 
20 Since creation time was not a public information, we relied on a proxy, the average number of years 

separating the start, by the competing authority, of the bureaucratic process leading to creation, and 

creation itself, a proxy for creation time. This is inexact because creation may have started before the 

bureaucratic process. The average of a sample of 15 conservation units was 5.13 years. 
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Table 8  Treatment lead tests for TWFE regressions of deforestation and fires by 740 

PA types 741 

 

Deforestation Fires 

All PAs 

Subnational 

conservation 

units 

National 

conservation 

units 

All PAs 

Subnational 

conservation 

units 

National 

conservation 

units 

      

Negative leads 3  6 6 6 6 

Positive leads 2 2 2,4 2 2, 5 2 

F-stat 126.76 133.81 189.49 281.37 68.14 161.28 

p-value <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 

       

N 594,702 143,298 256,266 592,380 141,696 255,978 

Clusters 33,039 7,961 14,237 32,910 7,872 14,221 

Notes: The table shows a test of treatment variable leads for deforestation and fires for all PA types, subnational 742 
conservation units, and national conservation units. 743 

4.4 Mechanism examination 744 
The first mechanism tested operates through migration. A municipal-year panel dataset was 745 

built from microdata of the latest Brazilian demographic Censuses, of 2000 and 2010. It 746 

included multiple measures of emigration and immigration, as dependent variables, covering 747 

indigenous, native Amazonians and also all migrants. The covariates captured economic drivers 748 

of migration, more specifically, labour market structure, education, local income, urbanization 749 

and population, in line with econometric studies of migration (Castelani, 2013, chapter 4, 750 

Incaltarau et al., 2021, Birgier et al., 2022) - the full list of covariates is found in tables A.3.3 751 

and A.3.4 of appendix 3. The hypothesis was not rejected for the indigenous. Their emigration 752 

from a reference municipality, state or from the Amazon as a whole, decreased with the creation 753 

of indigenous lands PAs. In complement, their immigration to the reference municipality was 754 

reduced (appendix 3, tables A.3.3 and A.3.4). No further effects were significant, what included 755 

immigration of indigenous to the reference state, native Amazonians’ emigration and emigration 756 

and immigration by all social groups. There was thus evidence that by reducing geographical 757 

dispersion of the indigenous, PAs concentrated inside of them a group that has been 758 

traditionally less likely to engage in suppression and degradation of forest. 759 

The second mechanism tested operates through market integration, in a negative feedback loop. 760 

The test was pursued with a panel convening the two latest Brazilian agricultural censuses of 761 

2006 and 2017, and a set of covariates adopted in empirical market integration studies 762 

(Davidova et al., 2006 and Haile et al., 2022). Conservation unit and indigenous PA shares of 763 

municipal area, accumulated up to the Censuses years were the main explanatory variables. 764 

They were interacted with Amazonian state dummies in order to account for the large 765 

agricultural heterogeneity of the Amazon. Share of market integration was measured as the ratio 766 
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between revenue and production value from crop and animal products. Results confirmed the 767 

hypothesis for both conservation units and indigenous lands, but only for half of the states 768 

experiencing changes in the areas of these two PA types between 2006 and 2017 (table A.3.5, 769 

appendix 3) – those not experiencing changes had their interactions eliminated by the fixed-770 

effects transformation21. For the other half, the partial correlation between protection and 771 

integration was positive, revealing that commercial agriculture and PAs coexist in a non-772 

conflicting manner in some municipalities.  773 

5 Discussion 774 

A methodological contribution was made in this study by devising and applying a novel causal 775 

inference approach to estimate the impact of protected areas’ on deforestation, which was robust 776 

to self-selection of sites for protection, to the staggered nature of protection, to unobservable 777 

drivers of protection and to confounders introduced by concurrent environmental policies. The 778 

proposed analytical framework includes two key components, which are new to the literature 779 

branch assessing PAs’ effect. First, cohort-time refined effect estimates. Second, an event study 780 

examination of effect’s dynamics across protection length. It was demonstrated the need to 781 

remove some cohorts in order to ensure identification by the means of the parallel trends 782 

assumption, something ignored so far in the specific literature at the cost of a considerable bias, 783 

as here evidenced. These exclusions refined the variation found in the observational dataset 784 

available, isolating its causal component. Besides ensuring identification, the approach unveiled 785 

important dynamic patterns in the effect, including a deforestation above the unprotected level 786 

at two years before protection and a progressively magnified decrease after protection, the latter 787 

also the case for fires. Furthermore, specific dynamics were observed by type of PA, with 788 

conservation units being more exposed to pre-protection rises in deforestation and fires. The 789 

ineffectiveness of PAs in regards to gold mining, a highly detrimental activity was also attested. 790 

Our analysis also filled a gap of lack of explanation of PAs’ effects in the extant empirical 791 

literature. Two mechanisms were showed to be driving PAs’ effects, the reduced migration of 792 

indigenous populations, whom conserve forest as part of their traditions and livelihood, and the 793 

perpetuation of a low degree of market integration, and, consequently, of low monetary return 794 

from forest disturbance. A third mechanism was evidenced to drive an anticipated positive 795 

effect of PA creation on deforestation, the rush to appropriate forest resources that become 796 

legally inaccessible after creation. 797 

The different effects of the different PA types, detected in the present paper, align with previous 798 

research in the field. A larger effect on deforestation was estimated by Nelson and Chomitz 799 

(2011, table 7) for indigenous lands, but, conversely, Amin et al. (2019), estimated conservation 800 

 
21 Which was the case, for conservation units, of three states and, for indigenous lands, for one state. 
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units to have a bigger effect. Diverging from the two studies and also from this paper, Herrera et 801 

al. (2019) estimated equivalent effects for the two PA types. But the greatest opposition to this 802 

paper’s results, in which indigenous lands had either the first or second largest inhibition effect 803 

on deforestation, fires and mining, comes from BenYishay et al. (2017), who found a null effect 804 

of such PA type22. The divergence may be due to three differences with the analysis here 805 

conducted. First, BenYishay et al’s. (2017) estimates relied strictly on before-and-after 806 

variation, as their sample contained only indigenous lands. In contrast, in this paper and in the 807 

majority of studies measuring deforestation inhibition by indigenous’ lands - which all found a 808 

significantly negative effect -, the control group is made of non-PAs (Nelson and Chomitz, 809 

2011, Qin et al., 2023, Herrera et al., 2019, Amin et al., 2019). This is an issue because 810 

indigenous people generally already inhabit the land whose property right they claim. Therefore, 811 

pressure on forest resources after recognition should not change considerably, exactly as 812 

BenYishay et al. (2017) found. Secondly, the author’s measure of deforestation is a proxy that 813 

does not directly captures forest suppression, differing from the metric adopted here and in most 814 

of the literature. Third, despite that authors have also relied on matching, their period of analysis 815 

started eight years before the one adopted in this paper. To finish, the delayed impact of 816 

indigenous lands on deforestation, here uncovered, may be a reason why the authors, by 817 

ignoring effect dynamics, failed to attest the effectiveness of such change. 818 

The substantial biases due to confounder policies is an indirect evidence that these polices 819 

considerably altered outcome variables. What finds parallel in previous studies. Many of them 820 

have demonstrated the effectiveness of the Brazilian deforestation control program from 2004 to 821 

2014, which involved not only the creation of PAs, but also rationing of agricultural credit to 822 

illegal deforesters and increasing on-site and remote monitoring and sanctioning (Assunção et 823 

al., 2020, Hargrave and Kis-Katos, 2013, Börner et al., 2015). Nevertheless, despite some 824 

studies measuring the PA effect mentioning, en passant, these concomitant interventions, none 825 

have explicitly controlled for them in their empirical analyses. A rather indirect approach, of 826 

breaking down analysis in pre and post-2004 sub-periods, was followed by Pfaff et al. (2015). 827 

This, despite automatically eliminating confounders in the pre-2004 period, fails to deliver a 828 

bias-free estimate reflecting the post-2004 sub-period, which is the most policy-relevant phase, 829 

given the substantial change in the incentives to deforestation triggered by the enhanced policy 830 

(Börner et al., 2015). Nevertheless, Pfaff et al.’s (2015) and this paper’s results converge for 831 

deforestation, but not for fires or mining. The authors found a slightly lower effect in the post-832 

2004 sub-period and here, similarly, a smaller effect on deforestation was detected without 833 

controlling for the non-PA policies strengthened after 2004. But a larger effect was found for 834 

fires and mining, a discrepancy with Pfaff et al., (2015) which resides in two particularities of 835 
 

22 This explanation is in direct opposition to what is argued by Nelson and Chomitz (2011) regarding fires 

at the Latin American and Caribbean level. 
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this paper. First, that non-PA policies were explicitly controlled for. Second, the analysis period 836 

begun four years later and ended twelve years after. Additionally, BenYishay et al. (2017) found 837 

no influence of post-2004 policy strengthening, after interacting a 2004 binary variable with 838 

indigenous land legalisation (a measure of the stage of completion of indigenous lands’ 839 

creation), at odds with the results in this paper, which may be attributed to the differences 840 

between this and authors’ studies, as described in the previous paragraph. 841 

Despite not assessed by previous studies, the PA effect dynamics found in this paper aligns with 842 

results and arguments from other papers. For instance, the enhancement of the effect on 843 

deforestation and fires along the post-protection period is both in line with studies of PA 844 

enforcement arguing that such activity is subject to learning and also with the few empirical 845 

results available showing that the effect increases along protection time (Geldman et al. 2015, 846 

Afriyie et al., 2021, West et al., 2022, fig.5, Duncanson et al., 2023). For another side, the post-847 

protection rise in fires inside subnational PAs could be due to enforcement being reduced some 848 

years after creation, in line with studies pointing that protection is only effective under diligent 849 

monitoring and sanctioning (Lima and Peralta, 2017, p.810, Kuempel et al., 2018, Afriyie et al., 850 

2021). 851 

Regarding pre-protection effects, conservation units sometimes undergo a conflicting process of 852 

creation, with contestation from local actors (Brito, 2010, p.63, Temudo, 2012, Pedlowski et al., 853 

1999). This could explain the six positive pre-protection effects on deforestation that 854 

conservation units were exposed to, the most notorious of them occurring two years before 855 

creation. The significance of such pre-treatment effect was unequivocal and persistent even after 856 

elimination of some groups, being a robust finding of this paper which has no parallel in the 857 

literature so far. Fires were also subject to (a few) positive pre-protection effects. The policy 858 

relevance of these findings is clear: policymakers should be aware that the creation of 859 

conservation units induces a “forest rush” two years before its legal completion, so that 860 

enforcement in the zone to be legally protected must be increased in advance as a preventative 861 

measure. 862 

A leap in deforestation was observed by about the moment that the legal process of indigenous 863 

land establishment is started, which is of 10.5 years before completion. This suggests a potential 864 

rush to appropriate land and forest resources before prohibition. This is in line with 865 

Baragwhanath and Bayi (2020) result that only areas where indigenous property has been fully 866 

legally recognised can reduce deforestation. But, diverging from authors’ results, the leap was 867 

followed, in the ninth year before full recognition of indigenous rights, by a fall in deforestation, 868 

probably due to the increased presence of the State during the early phase of PA creation. This 869 

is an indication that the mere possibility of indigenous property recognition may change the 870 

behavior of forward-looking deforesters. 871 
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That PAs could not inhibit mining aligns with the recent growth of the activity inside these 872 

areas (Moreno-Louzada and Menezes-Filho, 2023, Asner and Tupayachi, 2017). Such finding 873 

suggests, invoking the theoretical model, that the higher likelihood of sanction within PAs could 874 

not counterbalance the incentive from the presence of natural reserves. What could be due to a 875 

lack of PAs’ enforcement (Asner and Tupayachi, 2017, Weisse and Naughton-Treves, 2016). 876 

This is worryingly, given the negative environmental, and also social, consequences of the 877 

activity in the region (Teixeira et al., 2021, Asner and Tupayachi, 2017, Weisse and Naughton-878 

Treves, 2016). 879 

6 Concluding remarks 880 

The results achieved show that PAs' effects estimates from previous studies are likely to be 881 

biased due to unobservable drivers of protection effectiveness, uniform aggregation of PA 882 

cohorts with heterogeneous effects, non-parallel trends and failure to control for simultaneous 883 

non-protection policy. We showed that the parallel trends assumption is powerful enough to 884 

avoid these biases, together with explicit policy covariates, provided that cohorts are 885 

appropriately selected. This last task, which has been so far ignored in PA literature, must 886 

become a standard practice, the same way that matching already is. 887 

The non-robustness of the magnitudes of fires’ effects to the “critical groups” selection 888 

approach shows that consistent justification of criteria is needed, as well as an assessment of 889 

robustness. A related implication is that different PA cohorts may have different histories of 890 

damage inhibition, being more and less effective at different stages of their lifetime, another 891 

reason for avoiding aggregations that treats them as homogeneous. 892 

The policy implications of the findings are noteworthy. The effect dynamics must be accounted 893 

for in the cost-benefit analysis informing decisions about creating new protected areas. They 894 

may make a difference depending on the social discount rate adopted. Importantly, policy-895 

makers should also be aware that publicizing the information that a site will be protected may 896 

lead to an increase in forest disturbance, as forward-looking deforesters anticipate losing access 897 

to forest resources. This possibility proved strong enough in regards to conservation units’ 898 

capacity to inhibit deforestation, outweighing any perceived increases in enforcement during the 899 

creation process. Also, mining results suggest that protection needs to be better enforced in PAs 900 

of all types. 901 

Emphasis should be placed on the “forest rush” effect observed two years before the creation of 902 

conservation units. It is a warning that PA creation should not be seen solely as a legal process 903 

of changing the tenure status of a geographical zone, but, more broadly, as means to align the 904 

expectations of forward-looking resource extractors with governmental conservation goals. That 905 
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means signalling that sanction probability will not only increase after creation, but immediately, 906 

thus leaving no time for a resource exploitation rush. 907 
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Appendix 1 Matching quality, all PAs 1086 

A.1 Deforestation 1087 
In the first stage of analysis, a one-to-one covariate matching with replacement on the 1088 

Mahalanobis distance metric was pursued. It induced a clear improvement in the level of 1089 

covariate balance, as compared with the matched sample. A slight further improvement was 1090 

achieved with the introduction of the 1 SD caliper, but a more restrictive caliper, of half SD, 1091 

brought no improvement (Table A.1.1, Figures A.1.1 to A.1.4). 1092 

Table A.1.1  Matching sample sizes and percentage of covariates whose balance was “of 1093 
concern” or “bad” 1094 

 1095 

Matching  Treated   Control   Total  % reduction %concern %bad 

Before matching     33,469       90,753    124,222  0% 22 35 

No caliper     33,469         6,849      40,318  -68% 5 0 

1 SD Caliper     26,755         6,284      33,039  -73% 0 0 

0.5 SD Caliper     14,973         4,627      19,600  -84% 0 0 

 1096 

Figure A.1.1 Common support graph, non-caliper matching, before matching (left) and 1097 

after matching (right) 1098 

 1099 

 1100 

  1101 
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Figure A.1.2 Common support graph, 1SD-caliper matching, before matching (left) and 1102 

after matching (right) 1103 

 1104 

  1105 
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Figure A.1.3 Balance graph, non-caliper matching 1106 

 1107 

  1108 
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Figure A.1.4 Balance graph, 1SD-caliper matching 1109 

 1110 

 1111 

A.2 Fires and mining 1112 
The covariate set used for matching in the case of fires and mining was the same as in the case 1113 

of deforestation, except for two additional variables, primary and secondary deforestation. 1114 

Because of that small difference, nearly the same matching quality results were achieved 1115 

(visually, i.e., in graphical terms, the results seem to be exactly equal; see graphs A.1.5 to A.1.8 1116 

below). 1117 

 1118 

Table A.1.2  Matching sample sizes and percentage of covariates whose balance was “of 1119 
concern” or “bad” 1120 

Matching  Treated   Control   Total  % redux %concern %bad 

Before matching     33,469       90,753    124,222  0% 21 37 

No caliper     33,469         6,867      40,336  -68% 6 0 

1 SD Caliper     26,648         6,262      32,910  -74% 0 1 

0.5 SD Caliper     14,774         4,522      19,296  -84% 0 0 

 1121 

 1122 

  1123 
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Figure A.1.5 Common support graph, non-caliper matching, before matching (left) and 1124 

after matching (right) 1125 

 1126 

 1127 

Figure A.1.6 Common support graph, 1SD-caliper matching, before matching (left) and 1128 

after matching (right) 1129 

 1130 

 1131 

 1132 
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 1133 

Figure A.1.7 Balance graph, non-caliper matching, before matching (left) and after 1134 

matching (right) 1135 

 1136 

 1137 

Figure A.1.8 Balance graph, 1SD-caliper matching, before matching (left) and after 1138 

matching (right) 1139 

 1140 

 1141 
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Appendix 2 Event study plots 1142 
 1143 

A.2.1 Whole 1-SD caliper sample 1144 

A.2.1.1  All groups 1145 
 1146 

  1147 
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Figure A.2.1.1 Event Study for deforestation, whole 1 SD caliper sample, all groups (blue 1148 
= pre-treatment, red = post-treatment) 1149 

 1150 

Figure A.2.1.2 Event Study for fires, whole 1 SD caliper sample, all groups (blue = pre-1151 
treatment, red = post-treatment) 1152 

 1153 
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A.2.1.2 Without critical groups 1154 
Figure A.2.1.3 Event Study for deforestation, whole 1 SD caliper sample, without critical 1155 
groups 1156 

 1157 

Figure A.2.1.4 Event Study for fires, whole 1 SD caliper sample, without critical groups 1158 

 1159 
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A.2.2 Brazil-only sample (with institutional covariates) 1160 

A.2.2.1  All groups 1161 
Figure A.2.2.1 Event Study for deforestation, Brazil-only sample with institutional 1162 
variables, all groups 1163 

 1164 

Figure A.2.2.2 Event Study for fires, Brazil-only sample with institutional variables, all 1165 
groups 1166 

 1167 
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Figure A.2.2.3 Event Study for mining, Indigenous lands subsample with institutional 1168 
variables, all groups 1169 

 1170 

Note: due to the nullity of PAs’ effect in the subsample with all Brazilian PAs, this plot refers to the 1171 
Brazilian indigenous lands subsample, where the effect was significant. 1172 

 1173 

A.2.2.2 Without critical groups 1174 
Figure A.2.2.4 Event Study for deforestation, Brazil-only sample with institutional 1175 
variables, without critical groups 1176 
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 1177 

Figure A.2.2.5 Event Study for fires, Brazil-only sample with institutional variables, 1178 
without critical groups 1179 

 1180 

 1181 
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Figure A.2.2.6 Event Study for mining, Brazil-only sample with institutional variables, 1182 
without critical groups 1183 

 1184 

Note: due to the nullity of PAs’ effect in the subsample with all Brazilian PAs, this plot refers to the 1185 
Brazilian indigenous lands subsample, where the effect was significant. 1186 

 1187 

  1188 
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A.2.3 Brazil-only sample (without institutional covariates) 1189 

A.2.3.1 All groups 1190 
Figure A.2.3.1 Event Study for deforestation, Brazil-only sample without institutional 1191 
variables, all groups 1192 

1193 
Figure A.2.3.2 Event Study for fires, Brazil-only sample without institutional variables, all 1194 
groups 1195 

 1196 
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Figure A.2.3.3 Event Study for mining, Brazil-only sample without institutional variables, 1197 
all groups 1198 

 1199 

A.2.3.2 Without critical groups 1200 
Figure A.2.3.4 Event Study for deforestation, Brazil-only sample without institutional 1201 
variables, without critical groups 1202 

 1203 
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Figure A.2.3.5 Event Study for fires, Brazil-only sample without institutional variables, 1204 
without critical groups 1205 

 1206 

Figure A.2.3.6 Event Study for mining, Brazil-only sample without institutional variables, 1207 
without critical groups 1208 

 1209 



55 
 

 1210 

A.2.4 Subnational conservation units 1211 

A.2.4.1 All groups 1212 
Figure A.2.4.1 Event Study for deforestation, Subnational conservation units, all groups 1213 

 1214 

Figure A.2.4.2 Event Study for fires, Subnational conservation units, all groups 1215 
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 1216 

Figure A.2.4.3 Event Study for mining, Subnational conservation units, all groups 1217 

 1218 

  1219 
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A.2.4.2 Without critical groups 1220 
Figure A.2.4.4 Event Study for deforestation, Subnational conservation units, without 1221 
critical groups 1222 

 1223 

Figure A.2.4.5 Event Study for fires, Subnational conservation units, without critical 1224 
groups 1225 

 1226 
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Figure A.2.4.6 Event Study for mining, Subnational conservation units, without critical 1227 
groups 1228 

 1229 

A.2.5 National conservation units 1230 

A.2.5.1 All groups 1231 
Figure A.2.5.1 Event Study for deforestation, National conservation units, all groups 1232 

 1233 
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Figure A.2.5.2 Event Study for fires, National conservation units, all groups 1234 

 1235 

Figure A.2.5.3 Event Study for mining, National conservation units, all groups 1236 

 1237 

 1238 

 1239 
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 1240 

A.2.5.2 Without critical groups 1241 
Figure A.2.5.4 Event Study for deforestation, National conservation units, without critical 1242 
groups 1243 

 1244 

OBS: not all critical groups were excluded because only one group would have remained, which was 1245 
considered to lead to a non-reliable (too specific) overall ATT. That is why significant pre-treatment 1246 
effects remained. 1247 

Figure A.2.5.5 Event Study for fires, National conservation units, without critical groups 1248 
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 1249 

 1250 

 1251 

Figure A.2.5.6 Event Study for mining, National conservation units, without critical 1252 
groups 1253 

 1254 

 1255 
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A.2.6 Indigenous lands 1256 

A.2.6.1 All groups 1257 
Figure A.2.6.1 Event Study for deforestation, Indigenous lands, all groups 1258 

 1259 

Figure A.2.6.2 Event Study for fires, Indigenous lands, all groups 1260 

 1261 



63 
 

Figure A.2.6.3 Event Study for mining, Indigenous lands, all groups 1262 

 1263 

A.2.6.2 Without critical groups 1264 
Figure A.2.6.4 Event Study for deforestation, Indigenous lands, without critical groups 1265 

 1266 

Figure A.2.6.5 Event Study for fires, Indigenous lands, without critical groups 1267 
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 1268 

Figure A.2.6.6 Event Study for mining, Indigenous lands, without critical groups 1269 

 1270 
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A.2.7 Indirect use conservation units 1272 

A.2.7.1 All groups 1273 
Figure A.2.7.1 Event Study for deforestation, indirect conservation units, all groups 1274 

 1275 

  1276 
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 1277 

Figure A.2.7.2 Event Study for fires, indirect conservation units, all groups 1278 

 1279 

Figure A.2.7.3 Event Study for mining, indirect conservation units, all groups 1280 

 1281 
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A.2.7.2 Without critical groups 1282 
Figure A.2.7.4 Event Study for deforestation, indirect conservation units, without critical 1283 
groups 1284 

 1285 

Figure A.2.7.5 Event Study for fires, indirect conservation units, without critical groups 1286 

 1287 
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Figure A.2.7.6 Event Study for mining, indirect conservation units, without critical groups 1288 

 1289 

 1290 

A.2.8 Direct use conservation units 1291 

A.2.8.1 All groups 1292 
Figure A.2.8.1 Event Study for deforestation, indirect conservation units, all groups 1293 
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 1294 

Figure A.2.8.2 Event Study for fires, indirect conservation units, all groups 1295 

 1296 

Figure A.2.8.3 Event Study for mining, indirect conservation units, all groups 1297 
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 1298 

 1299 

A.2.8.2 Without critical groups 1300 
Figure A.2.8.4 Event Study for deforestation, direct conservation units, without critical 1301 
groups 1302 

 1303 
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Figure A.2.8.5 Event Study for fires, direct conservation units, without critical groups 1304 

 1305 

Figure A.2.8.6 Event Study for mining, direct conservation units, without critical groups 1306 

 1307 

 1308 

 1309 
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 1310 

Appendix 3 Additional tables 1311 
 1312 

Table A.3.1 Robustness test based on 50km and 100km internal and external buffers 1313 
from PAs’ boundaries: deforestation 1314 

  

All PAs, 50 

km buffered 
All PAs instt, 

50 km 

buffered 

All PAs, 100 

km buffered 
All PAs instt, 

100 km 

buffered 

    

ATT .0047424 *** -0.0029307*** .0052005 ***  -.0030422 *** 

SE [ .0001126 ] [0.0001174 ] [ .0001014 ] [0.000093] 

          

 N          1,488,731             990,848          1,703,583          1,174,506  

 Clusters               74,884               47,886               92,681               63,507  

 1315 

  1316 
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Table A.3.2 Robustness test based on 50km and 100km internal and external buffers 1317 
from PAs’ boundaries: fires 1318 

  

All PAs, 50 km 

buffered 
All PAs instt, 50 

km buffered 

All PAs, 100 km 

buffered 
All PAs instt, 

100 km buffered 

    

ATT -.013563  *** -.025101*** -.0148688 *** -0.0231495 

SE [ .0028774 ] [.0037408 ] [ .0024932 ] [0.0031783] 

 N          1,559,166             990,848          1,789,979          1,254,632  

 Clusters               78,063               47,886               97,337               67,894  

 1319 

  1320 
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Table A.3.3 Mechanism fixed-effects regression: migration, all social groups and 1321 
Amazonian natives 1322 

Covariate / Outcome 
Emigr. From 

munic., all groups 

Immigr. From 

munic., all groups 

Emigr. From 

Amazon, natives 

Change in PA c.unit area, 2005-

2010 
-0.00284 -0.00133 0.0000352 

 [0.00175] [0.00224] [0.000373] 

Change in PA indig.land area, 2005-

2010 
-0.0006 0.000823 -0.0000543 

 [0.000393] [0.000827] [0.000165] 

Full-right labourers share -144.1* 78.35 11.64 

 [72.34] [83.03] [19.93] 

Agriculture labourers share -281.8*** 4.324 93.50*** 

 [55.41] [73.07] [23.82] 

Manufacture labourers share -1007.8*** -1268.0*** 192.6* 

 [229.5] [194.4] [85.00] 

Service labourers share -450.8*** 56.81 81.55** 

 [98.31] [142.6] [30.73] 

Literacy rate -19.59 16.29 -72.13* 
 [105.7] [316.2] [28.33] 

Economic active pop. -54.59 121.3 12.12 

 [62.75] [82.34] [13.13] 

Total pop. 0.0126*** 0.00249 -0.000441 
 [0.00281] [0.00362] [0.00103] 

Urban pop. Share 103.6 -23.62 -19.79 

 [81.16] [136.8] [16.35] 

Household income -0.0406+ 0.00323 0.00603 

 [0.0207] [0.0311] [0.00386] 

Access to sanitation (bin.) 104.1 -0.657 -95.84+ 

  [131.7] [212.3] [49.21] 

Notes: Emig. = emigration, Immigr = immigration, munic. = municipality, c.unit = conservation 1323 
unit, indig. land = indigenous lands. Fixed-effect regressions with residuals clustered at 1324 
municipal level. State dummies were also included as covariates. 1325 
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Table A.3.3 Mechanism fixed-effects regression: migration, all social groups and 1326 
Amazonian natives (cont.) 1327 

Covariate / Outcome 

Emigr. 

from 

munic., all 

groups 

Immigr. 

from 

munic., all 

groups 

Emigr. from 

Amazon, 

natives 

Mult.-munic. c.unit 

PAs  
7.709 16.19 4.416 

 [17.05] [27.08] [4.784] 

Mult.-munic. 

Indig.land PAs   
-12.75 -4.743 -0.539 

 [16.22] [27.40] [3.328] 

Year of 2000 92.43*** 82.77* -48.10*** 
 [25.07] [38.15] [9.130] 

Intercept 328.8** 212.7 21.82 
 [116.0] [261.4] [34.61] 

Observations 1512 1512 1512 

F (global sig.) 5.495 6.961 21.87 

p-value (global sig.) 7.86E-15 4.27E-20 1.56E-68 

R2 adjusted 0.496 0.58 0.617 

Clusters 756 756 756 

 1328 

  1329 
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Table A.3.4 Mechanism fixed-effects regression: migration, indigenous 1330 

Covariate / Outcome 

Emigr. from 

munic., 

indigenous 

Imigr. from 

munic., 

indigenous 

Emigr. from 

state, 

indigenous 

Imigr. from 

state, 

indigenous 

Emigr. from 

Amazon., 

indigenous 

Change in PA c.unit 

area, 2005-2010 
0.0000435 -0.0000318 0.0000517 -0.0000236 -0.00000201 

 [0.0000306] [0.0000604] [0.0000431] [0.0000634] [0.00000476] 

Change in PA 

indig.land area, 2005-

2010 

-0.000130** 0.000203*** -0.000363*** -0.0000306 -0.00000810* 

 [0.0000495] [0.0000297] [0.0000937] [0.0000385] [0.00000411] 

Full-right labourers 

share 
-1.209 0.332 -0.797 0.74 0.115 

 [1.342] [1.266] [1.520] [1.565] [0.299] 

Agriculture labourers 

share 
-2.512** -0.172 -2.511** -0.167 0.424+ 

 [0.893] [0.902] [0.929] [1.042] [0.225] 

Manufacture labourers 

share 
-5.673* -5.342* -5.091* -4.760* 2.847* 

 [2.602] [2.302] [2.588] [2.332] [1.439] 

Service labourers 

share 
-3.089+ 0.316 -2.069 1.331 0.188 

 [1.803] [2.021] [1.832] [2.248] [0.434] 

Literacy rate -5.898 -1.024 -6.035 -1.146 -0.978* 
 [4.653] [4.786] [4.838] [5.665] [0.439] 

Economic active pop. -1.485 1.135 -1.473 1.117 0.0643 

 [1.279] [1.408] [1.282] [1.637] [0.172] 

Total pop. 0.0000376 -0.0000267 0.0000569 -0.00000749 -0.0000161 
 [0.0000381] [0.0000304] [0.0000373] [0.0000312] [0.0000164] 

Urban pop. Share 0.754 0.124 1.391 0.712 -0.16 

 [1.777] [1.483] [1.851] [1.725] [0.181] 

Household income 0.000178 0.000169 0.000355 0.000345 0.0000858+ 

 [0.000242] [0.000182] [0.000279] [0.000214] [0.0000481] 

Access to sanitation 

(bin.) 
0.958 5.035 3.759 7.875* 0.15 

 [3.304] [3.239] [3.416] [3.397] [0.504] 

 1331 

 1332 
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Table A.3.4 Mechanism fixed-effects regression: migration, indigenous 1333 

Covariate / Outcome 

Emigr. from 

munic., 

indigenous 

Imigr. from 

munic., 

indigenous 

Emigr. from 

state, 

indigenous 

Imigr. from 

state, 

indigenous 

Emigr. from 

Amazon., 

indigenous 

Mult.-munic. c.unit 

PAs  
0.737* -0.0349 0.889** 0.118 -0.0325 

 [0.287] [0.296] [0.318] [0.350] [0.0505] 

Mult.-munic. 

Indig.land PAs   
-0.36 -1.058** -1.065** -1.764*** -0.049 

 [0.334] [0.392] [0.395] [0.477] [0.0581] 

Year of 2000 0.298 0.0794 0.0218 -0.201 -0.470*** 
 [0.619] [0.531] [0.630] [0.607] [0.130] 

Intercept 7.777 2.264 6.488 1.015 0.961* 
 [5.116] [4.318] [5.215] [4.981] [0.485] 

Observations 1512 1512 1512 1512 1512 

F (global sig.) 2.71 4.429 2.499 2.755 4.013 

p-value (global sig.) 0.0000302 4.87E-11 0.000135 0.0000217 1.38E-09 

R2 adjusted 0.171 0.297 0.209 0.21 0.454 

Clusters 756 756 756 756 756 

 1334 

 1335 

 1336 

  1337 
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Table A.3.5 Mechanism 2 fixed-effects regression: Y = market integration share 1338 
(agricultural revenue / agricultural production value) [base state = Rondônia] 1339 

Variable Estimate [SE] 

c.unit * Rondônia state (base) 2.300* 
 [0.964] 

c.unit * Acre state -7.036 
 [6.301] 

c.unit * Amazonas state -2.441** 
 [0.932] 

c.unit * Roraima state -32.54*** 
 [9.578] 

c.unit * Pará state -1.982* 
 [0.988] 

c.unit * Amapá state 0 
 [.] 

c.unit * Tocantins state 0 
 [.] 

c.unit * Maranhão state 0 
 [.] 

c.unit * Mato Grosso state -5.056*** 
 [1.314] 

indig.land * Rondônia state (base) -3.813*** 
 [0.728] 

indig.land * Acre state 4.548*** 
 [0.956] 

indig.land * Amazonas state 3.641*** 
 [0.753] 

indig.land * Roraima state 3.902*** 
 [0.746] 

indig.land * Pará state 4.123*** 
 [0.777] 

indig.land * Amapá state 0 
 [.] 

indig.land * Tocantins state -10.69*** 
 [1.561] 

indig.land * Maranhão state -0.998 
 [1.764] 

indig.land * Mato Grosso state 4.197*** 

  [0.735] 
 1340 

 1341 

  1342 
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Table A.3.5 Mechanism 2 fixed-effects regression: Y = market integration share (cont.) 1343 

Variable Estimate [SE] 

Crop area -0.000000558** 
 [0.000000172] 

Cattle heads 0.000000128 
 [8.73e-08] 

Rural credit 1.54E-10 
 [1.51e-10] 

Off farm revenue 0.00000315 
 [0.0000159] 

Total farm area 0.000000123** 
 [3.82e-08] 

Tractors -0.000162 
 [0.000110] 

Literacy rate -0.0471*** 
 [0.00950] 

Soil quality PC -0.000844* 
 [0.000383] 

Distance to roads 0.0000439 
 [0.0000500] 

Distance to 100k inhab. towns 0.0000086 
 [0.00000697] 

Urban area -0.00000324 
 [0.00000207] 

Total area 0.000000148* 
 [6.96e-08] 

Slope, 25th percentile 0.000499 
 [0.00140] 

Slope, 50th percentile -0.0011 
 [0.00173] 

Slope, 75th percentile 0.0000204 
 [0.000719] 

Intercept 60.26*** 
 [16.50] 

N 1348 

F stat. (global significance) 2790.07 

Log-likelihood 1537.1 

Log-likeli. (no indep. variables) -600.8 

p-value (global significance) 0 

Adjusted R2 0.957 

Overall R2 0.00893 

Within R2 0.958 

Between R2 0.265 

Clusters 674 
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Appendix 4 The theoretical model 1344 

 1345 

Table A.4 Parameters assumed in the simulations 1346 

Parameter Name Assumed level Source 

η CRRA coefficient 2 

Costa-Jr and Cintado (2018, 

table 3), Lucas (1999) and 

Klima et al. (2019) 

β Discount factor 0.99 

Klima et al. (2019), 

Annicchiarico et al.(2012) and 

Palma and Portugal (2014). 

δL 
Net return coefficient, 

low-quality land 
0.5 Assumed by authors 

δH 
Net return coefficient, 

high-quality land 
1 Assumed by authors 

Amax 
Optimal accumulated 

area level 
0.4 Assumed by authors 

α1 

Coefficient of quantity 

in the deforestation 

right supply function 

0.5 Assumed by authors 

α2 

Coefficient of squared 

quantity in the 

deforestation right 

supply function 

1 Assumed by authors 

 1347 

The dynamic system of the dynamic model is found below for i = L, H. It was simulated in 1348 
Dynare®. 1349 

C𝑡
−𝜂(p𝑖,𝑡 + m𝑖,𝑡) = 𝛽E0 {C𝑡+1

−𝜂 (
𝑑

𝑑A𝑖,𝑡+1
π𝑖(A𝑖,𝑡+1) + p𝑖,𝑡+1 + m𝑖,𝑡+1)} (1) 1350 

A𝑖,𝑡 = A𝑖,𝑡−1 + D𝑖,𝑡−1 (2) 1351 

∑(p𝑖,𝑡 + m𝑖,𝑡). D𝑖,𝑡

𝑁

𝑖=1

+ C𝑡 = ∑ π𝑖(A𝑖,𝑡)

𝑁

𝑖=1

 (3) 1352 

D𝑡
𝑆 =

−a2 + √a2
2 − 4a1(a3 − p𝑡)

2a1
 (4) 1353 

π𝑖(A𝑖,𝑡) = 𝛿𝑖 (𝐴𝑚𝑎𝑥. A𝑖,𝑡 −
A𝑖,𝑡

2

2
) (5) 1354 

𝑑

𝑑A𝑖,𝑡
π𝑖(A𝑖,𝑡) = 𝛿𝑖(𝐴𝑚𝑎𝑥 − A𝑖,𝑡) (6) 1355 

log(m𝑖,𝑡) = u𝑖,𝑡 (7) 1356 


