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Abstract

Markowitz optimization plays an important role in modern portfolio theory.
However, it is well-known that Markowitz optimization is highly affected by the
estimation error of the mean vector and covariance matrix, resulting in extreme
and/or unrealistic portfolio weights, lacks of diversification and poor out-of-sample
performance. To deal with this issue, Michaud and Michaud (1998) proposed a
heuristic portfolio resampling approach which can deliver more diversified and bet-
ter out-of-sample portfolio performance in practice. In this paper, we assess the
performance of the Michaud and Michaud (1998) portfolio resampling approach in
the Brazilian context and also introduce a new portfolio resampling scheme called
factor-based portfolio resampling, which takes advantage of the factor structure
of stock returns. The results suggest that portfolio resampling can be an easy to
implement alternative to increase portfolio diversification, reduce transaction costs
and improve out-of-sample performance in the Brazilian context.
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1 Introduction

Modern portfolio theory brought a new way to deal with how investment decisions should

be made. In accordance with this, the efficient frontier (Markowitz, 1952, 1959) refers

to a set of portfolios where rational risk-averse investors should maximize their expected

∗Corresponding author: Pedro Valls Pereira - pedro.valls@fgv.br
The second author acknowledges financial support from grant 2022/09122-0, São Paulo Research Foun-
dation (FAPESP)

1



return for a given level of risk or, equivalently, minimize their portfolio risk for a given

level of expected return (Meucci, 2007). To this end, the optimal portfolio weights are

selected by using the mean vector and covariance matrix in a quadratic optimization

problem, a procedure also known as Markowitz optimization.

Markowitz optimization has gained popularity among both academics and practition-

ers, being a widely used tool for portfolio management as well as an interesting and

active topic in empirical and theoretical research. Despite the brilliance and elegance of

Markowitz’s formulation, Markowitz optimization requires that the mean vector and the

covariance matrix of assets returns be known, a requirement that never holds in prac-

tice. Therefore, in real applications, those quantities are estimated from the data, thus

implying an estimation error.

Estimation error has consequences in portfolio allocation. In fact, it is well known

that Markowitz optimization is highly affected by the estimation error of the mean vector

and covariance matrix, resulting in extreme and/or unrealistic portfolio weights, a lack of

diversification and poor out-of-sample performance (Michaud, 1989; Becker et al., 2015;

Huang and Yu, 2020). Thus, to overcome these problems, two main approaches have

being proposed in the literature: (a) improving the covariance matrix estimation 1 and

(b) taking into account parameter uncertainty.

Improving the covariance matrix estimation has usually been handled by using robust,

shrinkage and/or sophisticated time series methods, the benefits of which are improve-

ments well established in the literature (see, for instance, Oliveira and Valls Pereira, 2018;

De Nard et al., 2021; Hirukawa, 2021; Trućıos et al., 2021; Ledoit and Wolf, 2022, for

some recent references). On the other hand, parameter uncertainty is usually addressed

by Bayesian or, so-called, portfolio resampling, the latter of which is the focus of this

paper. For readers interested in Bayesian methods to deal with parameter uncertainty

in a portfolio allocation context, we refer them to Markowitz and Usmen (2003), Harvey

et al. (2010), Anderson and Cheng (2016), and Bauder et al. (2021), among others.

1Markowitz optimization requires both the mean vector and covariance matrix. However, it is well
known that the mean vector is very difficult to estimate with any accuracy ( Merton (1980)), hence
covariance matrix estimation is the main focus of research nowadays.

2



Portfolios resampling (Michaud and Michaud, 1998) is an easy to implement procedure

based on the bootstrapping idea (Efron and Tibshirani, 1994) and was proposed to handle

estimation error without relying on difficult or complex methods. The Michaud procedure

tries to minimize the influence of estimation error on portfolio selection (Becker et al.,

2015). Nevertheless, portfolios resampling has been the subject of several controversies

and criticisms and its usefulness to improve the out-of-sample portfolio performance still

remains unclear in the literature.

Theoretical investigations of Michaud portfoio resampling are provided by Scherer

(2002) and Wolf (2004), whose main findings reveal that, in the unrestricted case, port-

folio resampling and classical Markowitz optimization show similar performance and no

improvement is observed through the use of portfolio resampling over classical Markowitz

optimization. However, if constraints are included, such as, for instance, no short-selling

constraints, portfolio resampling can deliver more diversified portfolios and better out-

of-sample performance.

Unfortunately, empirical applications do not always show significant improvements of

portfolio resampling over classical Markowitz optimization, and it is thus difficult to de-

cide whether to use portfolio resampling or not. For instance, Wolf (2004) and Fernandes

et al. (2012) favour the resampling technique over classical Markowitz optimization while

Kohli (2005), Scherer (2006) and Delcourt and Petitjean (2011) observe no significant

superiority of portfolio resampling over classical Markowitz optimization.

That evidence reflects the fact that the usefulness of portfolio resampling is still un-

clear in the literature, being thus making empirical comparisons of great interest for a

better understanding about this approach. In this sense, we use data from the Brazilian

stock market, a data set never used before in a portfolio resampling context, to perform

an out-of-sample comparison between portfolio resampling and classical Markowitz opti-

mization. Additionally, we propose and alternative portfolio resampling technique that

takes advantage of the factor structure of stock returns, and we evaluate whether this new

portfolio resampling can improve the results obtained by Michaud portfolio resampling.

The contribution of this paper is twofold. First, we compare the out-of-sample perfor-
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mance of classical Markowitz optimization versus portfolio resampling using recent data

from the Brazilian (emerging) stock market. Second, motivated by the idea of the factor

structure present in stock returns, we propose a factor-based portfolio resampling that

can be used with both observable and unobservable factors.

The rest of the paper is organised as follows. Section 2 briefly introduces the efficient

frontier while Section 3 describes Michaud portfolio resampling as well as our resampling

proposal. Section 4 introduces measures used to evaluate out-of-sample performance.

Section 5 presents the empirical application and Section 6 concludes the paper.

2 Efficient Frontier

The efficient frontier (Markowitz, 1952, 1959) postulates that rational risk-averse investors

should maximize their expected return for a given level of risk or, equivalently, minimize

their portfolio risk for a given level of expected return (Meucci, 2007). Thus, any portfolio

with the same expected return but with higher risk is an inefficient (worse) decision.

Determining the optimal portfolio allocation relies on finding the optimal solution in a

quadratic optimization problem. Let us consider a set of N risky assets with a covariance

matrix and mean vector denoted by Σ and µ, respectively. Let ω = (ω1, · · · , ωN)
′ be

a column vector with elements ωi representing the fraction of wealth invested in asset

i. Thus, the portfolio at the efficient frontier can be obtained by the solution to the

following optimization problem

Max: ω′µ− λ

2
ω′Σω, (1)

subject to
N∑
i=1

ωi = 1 and ωi ≥ 0 ∀i = 1, · · · , N, where λ > 0 is a pre-specified risk-

aversion parameter.

The non-negativeness restriction is widely known as no short-selling constraint and

is not necessary for the efficient frontier problem. However, due to usual investor prefer-

ences and/or financial institution restrictions, it is commonly included in the quadratic

optimization problem. Note that if λ is large, then the investor is highly averse to risk
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and the optimization problem (1) is equivalent to

Min: ω
′
Σω,

subject to the same restrictions given in (1). This portfolio is known as the (global)

minimum variance portfolio.

If additionally we consider a risk-free asset (Rf ), the portfolio that maximizes the

Sharpe ratio is obtained by the solution to

Max:
ω

′
µ−Rf√
ω′Σω

.

This portfolio is also at the efficient frontier and is known as the tangency portfolio.

Markowitz optimization started a new era in portfolio theory, with Markowitz himself

being considered the father of modern portfolio theory. However, the main drawback of

this approach is the requirement of the true mean vector and covariance matrix, both

quantities that are never known in practice. Therefore, in empirical applications, those

quantities are estimated from the data, implying estimation error which strongly impacts

the optimal solution (DeMiguel et al., 2009; Michaud and Michaud, 1998; Delcourt and

Petitjean, 2011; De Prado, 2016).

3 Portfolio Resampling

The estimation error coming from replacing the true covariance matrix and mean vector

with theirs estimated sample versions has consequences in the portfolio allocation. In

fact, it is well known that Markowitz optimization is highly affected by the estimation

error of the mean vector and covariance matrix, resulting in extreme and/or unrealistic

portfolio weights, a lack of diversification and poor out-of-sample performance (Michaud,

1989; Becker et al., 2015; Huang and Yu, 2020). One way to overcome those problems

is through portfolio resampling (Michaud and Michaud, 1998), a procedure proposed to

handle estimation error without relying on difficult or complex procedures.
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The portfolio resampling proposed by Michaud and Michaud (1998) is briefly de-

scribed in Section 3.1 and a new portfolio resampling scheme called factor-based portfolio

resampling is introduced in Section 3.2.

3.1 Michaud portfolio resampling

Let RT be a matrix of monthly returns of dimension T ×p, where T stands for the sample

size and p for the number of assets considered and let ri be the corresponding row i of

matrix RT . Michaud portfolio resampling can be summarised as follows:

• Step 1: For a given RT , calculate its sample mean vector and covariance matrix.

Denote these values as µ̂ and Σ̂, respectively.

• Step 2: Take T draws from Np(µ̂, Σ̂), a p-dimensional multivariate Normal distri-

bution with mean vector µ̂ and covariance matrix Σ̂. Denote the resulting matrix

as Rb
T .

• Step 3: Estimate the mean vector and covariance matrix of Rb
T by their sample

versions (µ̂b and Σ̂b) and then calculate the optimal portfolio weights.

• Step 4: Repeat Steps 2 and 3 B times. The final optimal portfolio weights are

obtained by averaging the optimal portfolio weights obtained in each iteration of

Step 3.

The algorithm described in steps 1–4 uses a parametric bootstrapping, hence the

commonly used name of Michaud parametric portfolio resampling. Instead of using a

parametric bootstrapping approach as described in steps 1 and 2, Michaud and Michaud

(1998) also proposes using a non-parametric bootstrapping approach, which means to

resample with replacement directly from past vector returns. In practice, both approaches

yield very similar results (Michaud and Michaud, 1998; Wolf, 2004).

Modifications of Michaud’s algorithm were proposed by Wolf (2004) and Huang and

Yu (2020) and include using shrinkage procedures to estimate the covariance matrix

and/or using alternative procedures for forecasting returns. However, in this paper we
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only focus on Michaud’s original proposal, which uses the sample mean vector and co-

variance matrix, since the focus is on keepping the simplicity of the procedure. We will

leave the aforementioned modified versions for further research.

3.2 Factor-based portfolio resampling

Since the CAPM (Lintner, 1965; Sharpe, 1964) there have been several attempts to use

a factor structure to explain and better estimate stock return and its covariance matrix

(see, for instance, Pettenuzzo et al., 2014; Trućıos et al., 2019a; Giovannelli et al., 2021;

Cai et al., 2022, for some recent references). In order to use this factor structure, we

propose a resampling scheme that is conditional on factors. The procedure is also based

on the bootstrapping idea and can be summarised in the following four steps:

• Step 1: Let Ft be the observed or unobserved factors. Run a multivariate linear

regression of the form

rt = α + βFt + ϵt, t = 1, · · · , T,

and obtain the estimates α̂, β̂ and ϵ̂, as well as Σ̂F and Σ̂ϵ, the estimates of the

covariance matrices of F and ϵ, respectively.

• Step 2: Generate a new matrix resampling monthly returns

rbt = α̂ + β̂Ft + ϵbt , t = 1, · · · , T,

where ϵbi ∼ Np(0, Σ̂ϵ). Denote as Rb
T the corresponding T × p matrix of resampled

monthly returns.

• Step 3: Using Rb
T , estimate the mean vector and covariance matrix through µ̂b =

α̂b + β̂bF̄ and Σ̂b = β̂b′Σ̂F β̂
b + Σ̂b

ϵb
, where α̂b, β̂b and Σ̂b

ϵb
are the estimated versions

of α̂, β̂ and Σ̂ϵ, respectively. Then, calculate the optimal portfolio weights.

• Step 4: Repeat steps 2 and 3 B times. The final optimal portfolio weights are

7



obtained by averaging the optimal portfolios weights obtained in each iteration of

Step 3.

As in Section 3.1, we used a parametric bootstrapping approach. Replacing the para-

metric bootstrapping with non-parametric bootstrapping is straightforward; instead of

sampling from a multivariate normal distribution in Step 2 we can directly sample with re-

placement from ϵ̂. The version described in the algorithm is called Factor-Based Paramet-

ric while the modified (non-parametric) version is called Factor-Based Non-Parametric.

Both alternatives are implemented in the empirical application.

Note that if there is evidence of returns predictability, instead of using the factor

structure defined in Step 1, we can use rt+1 = α + βFt + ϵt+1, t = 1, · · · , T − 1 to

obtain a better forecast of expected returns and modify the algorithm accordingly. To

make both resampling approaches as comparable as possible, we use the factor structure

described in the algorithm and estimate the expected return as described in Step 3.

On the other hand, it is worth mentioning that the factors F can be observed (market

factor, Fama-French, Fama-French-Carhart , etc.) or unobserved, in which case they

are obtained by applying, for instance, principal components analysis in RT as in our

empirical application. However, there are several other dimension reduction techniques

that could be also used (see, for instance; Hu and Tsay, 2014; Peña and Yohai, 2016;

Forni et al., 2017; Trućıos et al., 2019a).

Before ending this section, it is important to point out that both resampling pro-

cedures implicitly assume that returns are homoscedastic and not serially correlated.

These characteristics do not occur in daily or higher frequency returns but there is ev-

idence that monthly returns have little or no GARCH effects (Galea et al., 2010; Kan

and Zhou, 2017), which is the reason why empirical applications of portfolio resampling

usually use monthly data (Fletcher and Hillier, 2001; Scherer, 2002; Markowitz and Us-

men, 2003; Wolf, 2004; Delcourt and Petitjean, 2011; Becker et al., 2015; Huang and Yu,

2020). If the focus is on daily or higher frequency returns, alternative resampling pro-

cedures similar to the ones proposed by Fresoli and Ruiz (2016) or Trućıos et al. (2018)

could be used.
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4 Out-of-Sample Performance

The out-of-sample portfolio performance is evaluated through economic measures as in

Gambacciani and Paolella (2017), Raffinot (2017), and Trućıos et al. (2019b), among

others. The measures used are common in the financial econometric literature and are

briefly describe below.

• AV: Annualised average return. This is given by 12× R̄p, where R̄p is the sample

mean of the out-of-sample realised portfolio returns. The larger the AV is, the

better the portfolio performance.

• SD: Annualised standard deviation. This is given by
√
12 × σ̂p, where σ̂p is the

sample standard deviation of the out-of-sample realised portfolio returns. The

smaller the SD is, the better the portfolio performance.

• SR: Annualised Sharpe ratio. This is given by
√
12 × SR, where SR is the well-

known Sharpe ratio (Sharpe, 1975), which is a risk-adjusted performance measure

defined by

SR =
R̄p − R̄f

σ̂p−f

,

where R̄f is the average risk-free rate and σ̂p−f is the estimated standard deviation

of the excess returns. The higher the annualised Sharpe ratio is, the better the

portfolio performance. Here we use a risk-free rate of 0.5%.

• ASR: Annualised adjusted Sharpe ratio. This is given by
√
12×ASR, where ASR

is the adjusted Sharpe ratio (Pézier and White, 2008), a performance measure that

penalises the Sharpe ratio by negative skewness and an excess of kurtosis. It is

given by

ASR = SR
[
1 +

(µ3

6

)
SR−

(µ4 − 3

24

)
SR2

]
,

where µ3 and µ4 stand for the skewness and kurtosis of the realised out-of-sample

portfolio returns. The higher the annualised adjusted Sharpe ratio is, the better

the performance.
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• SoR: Annualised Sortino ratio. This is given by
√
12 × SoR, where SoR is the

Sortino ratio (Sortino and Van Der Meer, 1991), another risk-adjusted performance

measure. It is defined by

SoR =
R̄p√√√√√√

K∑
i=1

Min(0, Rp,i −MAR)2

K

,

where K is the size of the out-of-sample period and MAR is the minimum accepted

return, which in this paper is equal to the monthly risk free rate (0.5%). The higher

the annualised Sortino ratio is, the better the portfolio performance.

• TO: Average portfolio turnover. This measures the impact of transaction costs on

portfolio performance per rebalancing, on average. It is given by

TO =
1

K − 1

K∑
i=2

N∑
j=1

|ω̂i,j − ω̂+
i,j|,

where ω̂+
i−1 stands the portfolio weights obtained in the window i − 1 updated at

time i before rebalancing to ω̂i. Lower values of TO indicate smaller impacts of

transaction costs on portfolio performance.

• SSPW: Sum of squared portfolio weights. This is a measure of portfolio diversifi-

cation proposed by Goetzmann and Kumar (2008) and is given by

SSPW =
1

K

K∑
i=1

N∑
j=1

ω̂2
i,j,

lower values of SSPW indicate higher levels of diversification.
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5 Empirical Study

5.1 Data

Our dataset corresponds to monthly simple returns of Brazilian stocks spanning from

January 2000 to February 2022 and used in the composition of the IBrx-100 Index2.

Only stocks traded in the whole sample period and reporting no serial autocorrelation of

returns and squared returns according to the Ljung-Box test were considered, resulting

in a panel of 16 assets and 266 months.

All analyses were performed in the R software (R Core Team, 2021). For reproduction

purposes the codes to replicate the empirical application are freely available in our GitHub

repository https://github.com/ctruciosm/ResamplingBRPortfolios. All stock price

data were downloaded from Economatica.

The monthly returns of the 16 assets are displayed in Figure 1 and their descriptive

statistics, as well as the month where minimum and maximum monthly returns were

observed, are reported in Table 1.
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Figure 1: Monthly returns of 16 stocks in the Brazilian stock market over the full sample
period.

All stocks have positive mean monthly returns, a kurtosis larger than 3 and almost

all of them report positive skewness. The null hypothesis of normality is rejected in all

2The IBrx-100 index covers the 100 most liquid assets in the Brazilian stock market. Only stocks
listed in the IBrx-100 Index on March 2, 2022 were considered.
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Table 1: Descriptive statistics of monthly returns of 16 stocks in the Brazilian stock
market over the full sample period

Min. Max. Mean S. Dev. Skewness Kurtosis JB p-value Min month Max month

ALPA4 -38.944 44.653 2.631 10.971 0.083 4.204 0.000 Oct. 2008 April 2009
BBAS3 -40.182 47.544 2.168 12.030 0.162 4.545 0.000 March 2020 March 2016
BBDC3 -31.031 35.733 1.723 9.634 0.410 3.675 0.002 March 2020 Nov. 2000
BBDC4 -31.927 30.425 1.728 9.780 0.201 3.489 0.108 March 2020 Dez. 2000
CMIG4 -36.175 54.050 1.603 10.614 0.365 5.612 0.000 March 2020 Oct. 2018
CPLE6 -33.735 28.677 1.403 10.001 0.013 3.225 0.753 Sep. 2002 Sep. 2005
ELET3 -32.960 60.500 1.629 14.603 0.856 4.810 0.000 Sep. 2002 June 2016
ELET6 -40.248 44.480 1.582 13.046 0.441 4.196 0.000 Nov. 2012 Jan. 2019
EMBR3 -43.769 39.135 1.179 11.641 0.043 5.092 0.000 Sep. 2001 Feb. 2021
GGBR4 -40.533 84.703 2.078 13.110 0.867 8.605 0.000 March 2020 March 2016
ITSA4 -26.856 31.469 1.805 8.632 0.045 3.548 0.181 March 2020 Oct. 2002
LIGT3 -55.509 52.560 0.480 13.488 0.444 5.324 0.000 March 2020 Sep. 2003
PETR3 -47.919 48.747 1.780 12.062 0.230 4.779 0.000 March 2020 April 2015
PETR4 -44.791 62.451 1.742 11.996 0.385 5.802 0.000 March 2020 March 2016
SBSP3 -34.925 37.683 1.522 10.518 -0.098 4.221 0.000 Sep. 2001 Jan. 2019
VIVT3 -28.623 41.262 1.447 7.673 0.695 6.955 0.000 June 2000 Jan. 2001

but the BBDC4, CPLE6 and ITSA4 stocks. The most volatile asset is ELET3 with an

annualised standard deviation of 50.58% (
√
12×14.603) while the least volatile is VIVT3

with an annualised standard deviation of 26.58%. Except for ALPA4, CPLE6, ELET3,

ELET6, EMBR3, SBSP3 and VIVT3, the smallest monthly returns for each asset all

occur in March 2020, when the World Health Organization declared the SARS-COVID-

19 virus pandemic. The largest monthly return corresponds to GGBR4 (Gerdau) in

March 2016. Unreported results reveal that PETR3 and PETR4 are the most correlated

assets (0.97)3 while ELET3 and EMBR3 are the least correlated ones (0.13).

The asset returns described above are used to compare the out-of-sample portfolio

performance for the procedures described in Section 3 versus classical Markowitz portfolio

optimization. The minimum variance, tangency and mean-variance portfolio with risk-

averse parameter λ = 2 were considered in our comparison4. Following Scherer (2002)

and Wolf (2004) who argue that portfolio resampling can be useful when constraints are

included in the portfolio weights, no short-selling constraints (ωi ≥ 0 ∀i) were considered

in all cases.

3This is expected because PETR3 and PETR4 are, respectively, the ordinary and preference shares
of PETROBRÁS.

4Our choice of the risk-averse parameter is purely arbitrary. Other values of λ were also analysed,
obtaining similar results, and are presented in the Supplementary Material.
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5.2 Out-of-sample results

The out-of-sample analysis was performed using a rolling window approach. As commonly

used in practice (Wolf, 2004; DeMiguel et al., 2009; Becker et al., 2015; Huang and Yu,

2020), we used window sizes of T = 60 and 120 which corresponds to five and ten

years of monthly data with corresponding out-of-sample periods of 206 and 146 months,

respectively. For each window, the mean vector and covariance matrix were estimated

and used to select the optimal month-ahead portfolios. We then moved the window

forward a month and repeated the estimation and portfolio allocation processes. The

same procedure was carried on until no more data were available.

To evaluate the out-of-sample performance, the portfolio measures described in Sec-

tion 4 were used. To verify which procedures outperform classical Markowitz optimization

in terms of out-of-sample standard deviation and Sharpe ratio, the bootstrapping tests

of Ledoit and Wolf (2008) and Ledoit and Wolf (2011) were applied.

The factor-based portfolio resampling of Section 3.2 was implemented using unobserv-

able factors (extracted by PCA) and one observable factor, the market factor, in which

case the Ibovespa index was used. In each window, the procedure of Bai and Ng (2002)

was used to determine the number of principal components. For the sake of compari-

son, we also included the Markowitz optimization when both mean vector and covariance

matrix are estimated via factor models with observable and unobservable factors. Those

procedures are denoted as Markowitz-Ibov and Markowitz-PCA, respectively.

Table 2 reports the out-of-sample performance of the portfolios constructed using

both window sizes. The top panel reports the results for the minimum variance portfolio,

the middle panel reports the results for the tangency portfolio and the bottom panel

reports the results for the mean-variance portfolio with risk-aversion parameter λ = 2.

The best procedure according to each performance measure is reported in bold. For the

out-of-sample standard deviation and Sharpe ratio, the shaded cells indicate procedures

with superior out-of-sample performance than classical Markowitz optimization at the

5% of significance level. Figures 2 and 3 display the boxplots of the SSPW and turnover

obtained by all procedures considered.
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Table 2: Out-of-sample performance measures of the minimum variance (top panel), tan-
gency (middle panel) and mean-variance (bottom panel) portfolios. AV, SD, SR, ASR,
SO, TO and SSPW stand for the annualised average, standard deviation, Sharpe ratio,
Adjusted Sharpe ratio, Sortino ratio, average turnover and average sum of squared port-
folio weights, respectively. The best procedure according to each performance measures
is shown in bold. Shaded cells in the SD and SR columns indicate procedures superior to
the benchmark (classical Markowitz optimization) at the 5% significance level according
to the tests of Ledoit and Wolf (2008) and Ledoit and Wolf (2011).

Method AV SD SR ASR SO TO SSPW

M
in
im

u
m

V
a
ri
a
n
ce

P
o
rt
fo
li
o

T
=

6
0

Markowitz 13.8148 19.2097 0.4068 0.4075 0.5212 0.1246 0.2710
Michaud Parametric 13.6826 19.1046 0.4021 0.4023 0.5175 0.1123 0.2414
Michaud Non-Parametric 13.8297 19.0885 0.4102 0.4101 0.5281 0.1117 0.2357
Markowitz-PCA 13.8201 19.2060 0.4072 0.4079 0.5217 0.1243 0.2687
Factor-Based Parametric PCA 13.6649 19.0740 0.4018 0.4020 0.5174 0.1114 0.2400
Factor-Based Non-Parametric PCA 13.6101 19.1220 0.3980 0.3981 0.5128 0.1131 0.2420
Markowitz-Ibov 13.8252 19.2064 0.4074 0.4081 0.5221 0.1244 0.2687
Factor-Based Parametric Ibov 13.6701 19.0945 0.4017 0.4018 0.5173 0.1122 0.2399
Factor-Based Non-Parametric Ibov 13.6258 19.1180 0.3989 0.3989 0.5140 0.1126 0.2421

T
=

1
2
0

Markowitz 10.5339 18.0484 0.2512 0.2503 0.3418 0.0873 0.2741
Michaud Parametric 10.8868 18.0124 0.2713 0.2702 0.3667 0.0819 0.2565
Michaud Non-Parametric 11.0921 18.0495 0.2821 0.2809 0.3805 0.0814 0.2493
Markowitz-PCA 10.5422 18.0635 0.2515 0.2505 0.3420 0.0874 0.2727
Factor-Based Parametric PCA 10.8601 18.0499 0.2693 0.2681 0.3645 0.0832 0.2551
Factor-Based Non-Parametric PCA 10.8684 18.0312 0.2700 0.2689 0.3653 0.0829 0.2559
Markowitz-Ibov 10.5316 18.0579 0.2509 0.2500 0.3414 0.0874 0.2728
Factor-Based Parametric Ibov 10.8935 18.0320 0.2714 0.2703 0.3668 0.0823 0.2553
Factor-Based Non-Parametric Ibov 10.8930 18.0348 0.2713 0.2702 0.3670 0.0824 0.2564

T
a
n
g
en

cy
P
o
rt
fo
li
o

T
=

6
0

Markowitz 14.1675 25.7408 0.3173 0.3158 0.4247 0.3063 0.3111
Michaud Parametric 14.4940 23.1957 0.3662 0.3632 0.4904 0.1859 0.1641
Michaud Non-Parametric 14.5269 23.2352 0.3670 0.3642 0.4912 0.1856 0.1690
Markowitz-PCA 14.1827 25.7224 0.3181 0.3166 0.4259 0.3058 0.3092
Factor-Based Parametric PCA 14.7765 23.3383 0.3761 0.3730 0.5019 0.1867 0.1601
Factor-Based Non-Parametric PCA 14.7172 23.3966 0.3726 0.3695 0.4989 0.1860 0.1632
Markowitz-Ibov 14.1698 25.7093 0.3178 0.3162 0.4255 0.3057 0.3095
Factor-Based Parametric Ibov 14.5000 23.2752 0.3652 0.3622 0.4892 0.1903 0.1606
Factor-Based Non-Parametric Ibov 14.5059 23.2820 0.3653 0.3623 0.4900 0.1883 0.1646

T
=

1
2
0

Markowitz 10.4610 23.0275 0.1937 0.1926 0.2808 0.2482 0.2870
Michaud Parametric 11.7595 21.6104 0.2665 0.2642 0.3770 0.1410 0.1483
Michaud Non-Parametric 11.8847 21.6134 0.2723 0.2698 0.3848 0.1398 0.1526
Markowitz-PCA 10.4501 23.0133 0.1934 0.1923 0.2803 0.2483 0.2859
Factor-Based Parametric PCA 11.6334 21.6758 0.2599 0.2577 0.3679 0.1438 0.1454
Factor-Based Non-Parametric PCA 11.8034 21.6963 0.2675 0.2652 0.3780 0.1410 0.1478
Markowitz-Ibov 10.4481 23.0137 0.1933 0.1922 0.2801 0.2484 0.2860
Factor-Based Parametric Ibov 11.9551 21.6067 0.2756 0.2732 0.3883 0.1386 0.1464
Factor-Based Non-Parametric Ibov 11.7093 21.5954 0.2644 0.2622 0.3732 0.1414 0.1495

M
ea

n
-V

a
ri
a
n
ce

P
o
rt
fo
li
o
(λ

=
2
)

T
=

6
0

Markowitz 13.6975 19.1899 0.4011 0.4019 0.5142 0.1252 0.2686
Michaud Parametric 13.5379 19.0986 0.3947 0.3948 0.5089 0.1123 0.2392
Michaud Non-Parametric 13.6107 19.0864 0.3987 0.3986 0.5149 0.1124 0.2334
Markowitz-PCA 13.6992 19.1846 0.4013 0.4020 0.5146 0.1248 0.2663
Factor-Based Parametric PCA 13.5049 19.0948 0.3930 0.3931 0.5070 0.1128 0.2376
Factor-Based Non-Parametric PCA 13.4678 19.1146 0.3907 0.3907 0.5045 0.1133 0.2397
Markowitz-Ibov 13.7089 19.1846 0.4018 0.4025 0.5152 0.1249 0.2663
Factor-Based Parametric Ibov 13.5290 19.0823 0.3946 0.3946 0.5091 0.1117 0.2377
Factor-Based Non-Parametric Ibov 13.4892 19.1229 0.3916 0.3916 0.5056 0.1125 0.2399

T
=

1
2
0

Markowitz 10.4761 17.9865 0.2489 0.2479 0.3393 0.0877 0.2712
Michaud Parametric 10.8657 17.9765 0.2707 0.2695 0.3667 0.0826 0.2533
Michaud Non-Parametric 11.0548 17.9802 0.2811 0.2798 0.3801 0.0819 0.2463
Markowitz-PCA 10.4855 18.0019 0.2492 0.2482 0.3397 0.0878 0.2698
Factor-Based Parametric PCA 10.8207 17.9972 0.2679 0.2667 0.3631 0.0824 0.2523
Factor-Based Non-Parametric PCA 10.8881 17.9788 0.2719 0.2707 0.3685 0.0819 0.2531
Markowitz-Ibov 10.4752 17.9964 0.2487 0.2477 0.3391 0.0878 0.2699
Factor-Based Parametric Ibov 10.8448 17.9698 0.2696 0.2684 0.3654 0.0825 0.2525
Factor-Based Non-Parametric Ibov 10.8007 17.9878 0.2669 0.2657 0.3620 0.0827 0.2534
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Figure 2: Boxplots of SSPW in the out-of-sample period.
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Figure 3: Boxplots of the turnover in the out-of-sample period.
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For the minimum variance portfolios, no procedure outperforms classical Markowitz

optimization in terms of out-of-sample SD and SR according to the tests of Ledoit and

Wolf (2008) and Ledoit and Wolf (2011). For the AV, SO and ASR out-of-sample mea-

sures, the differences are small between all procedures and no improvement is observed

with respect to classical Markowitz optimization. In terms of diversification (Table 2),

Markowitz optimization (classical and factor-based models) perform slightly worse than

the resampled portfolios, reporting larger SSPW values.

For the mean-variance portfolio, the results in Table 2 and Figures 2 and 3 report

that, regardless of the sample size used, slightly better performance is observed in terms

of SSPW with the resampled portfolios, implying more diversified portfolios. For the

other measures considered, all procedures perform similarly and no evidence is observed

in favour of portfolio resampling.

For the tangency portfolio, the results are slightly different than those obtained in

the other two cases. All procedures, except Markowitz-PCA for T = 60, outperform

classical Markowitz optimization in terms of out-of-sample standard deviation according

to the test of Ledoit and Wolf (2011). For the other performance measures the differences

between resampling and Markowitz optimization procedures is larger than for the other

two kinds of portfolios (minimum variance and mean-variance) and, in particular, there

are interesting gains in terms of diversification (SSPW) and transaction cost (turnover)

when portfolio resampling is used, and so it is preferable.

Since almost all procedures in the tangency portfolios outperform the classical Markowitz

optimization in terms of out-of-sample standard deviation, we went one step further

and perform a pairwise comparison. The p-values obtained by using the bootstrapping

test of Ledoit and Wolf (2011) are reported in Table 3 for T = 60 (top panel) and

T = 120 (bottom panel). The pairwise comparison tested whether the procedures placed

in the columns are statistically superior (smaller standard deviation) than the procedures

placed in the rows. For T = 120, all resampling procedures outperform Markowitz op-

timization (classical, PCA-based and Ibov-based), Factor-Based Ibov (parametric and

non-parametric) outperform Factor-Based Non-Parametric PCA but do not outperform

16



Michaud portfolios. For T = 60, once again all resampling procedures outperform

Markowitz optimization (classical, PCA-based and Ibov-based). Additionally, Michaud

Parametric outperforms Factor-Based PCA (in its parametric and non-parametric ver-

sion) but does not outperforms Factor-Based Ibov. By they turn, Factor-Based Ibov

(parametric and non-parametric) outperform Factor-Based Non-Parametric PCA but do

not outperform Michaud portfolios.

Table 3: Pairwise out-of-sample portfolio standard deviation in tangency portfolios.
Shaded cells indicate the procedures in the columns are superior to the procedures in the
rows at the 5% of significance level.
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o
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T
=

6
0

Classical Markowitz - 0.0002 0.0002 0.1782 0.0002 0.0006 0.0122 0.0002 0.0002
Michaud Parametric 1.0000 - 0.6069 1.0000 0.9784 0.9862 1.0000 0.9232 0.9242
Michaud Non-Parametric 1.0000 0.4005 - 1.0000 0.8068 0.9146 1.0000 0.6367 0.7331
Markowitz-PCA 0.8288 0.0002 0.0002 - 0.0002 0.0002 0.0308 0.0002 0.0002
Factor-Based Parametric PCA 1.0000 0.0178 0.2000 1.0000 - 0.8708 1.0000 0.0640 0.1892
Factor-Based Non-Parametric PCA 1.0000 0.0136 0.0958 1.0000 0.1298 - 0.9998 0.0102 0.0264
Markowitz-Ibov 0.9902 0.0002 0.0002 0.9718 0.0004 0.0004 - 0.0002 0.0002
Factor-Based Parametric Ibov 1.0000 0.0780 0.3451 0.9998 0.9392 0.9908 1.0000 - 0.5163
Factor-Based Non-Parametric Ibov 1.0000 0.0774 0.2739 1.0000 0.8146 0.9752 1.0000 0.4849 -

T
=

1
2
0

Classical Markowitz - 0.0212 0.0228 0.0230 0.0274 0.0284 0.0240 0.0246 0.0206
Michaud Parametric 0.9774 - 0.5343 0.9766 0.8220 0.9392 0.9776 0.4769 0.4151
Michaud Non-Parametric 0.9788 0.4931 - 0.9722 0.7271 0.8410 0.9740 0.4541 0.4045
Markowitz-PCA 0.9798 0.0222 0.0300 - 0.0316 0.0258 0.5591 0.0194 0.0224
Factor-Based Parametric PCA 0.9742 0.1854 0.2851 0.9694 - 0.5607 0.9740 0.0654 0.1172
Factor-Based Non-Parametric PCA 0.9710 0.0612 0.1572 0.9728 0.4587 - 0.9750 0.0104 0.0232
Markowitz-Ibov 0.9754 0.0238 0.0260 0.4349 0.0312 0.0252 - 0.0232 0.0170
Factor-Based Parametric Ibov 0.9780 0.5259 0.5441 0.9754 0.9348 0.9846 0.9798 - 0.3999
Factor-Based Non-Parametric Ibov 0.9764 0.5847 0.6071 0.9810 0.8748 0.9784 0.9810 0.6033 -

Overall, portfolio resampling and classical Markowitz optimization report similar re-

sults for the minimum variance and mean-variance (λ = 2) portfolios with a slightly

smaller turnover and SSPW. For the tangency portfolio, portfolio resampling provides an

interesting improvement in the out-of-sample performance and also implies smaller trans-

action costs and more diversified portfolios, thus being then a preferable alternatives.

6 Conclusions

In this paper, we deal with portfolio resampling, an easy to implement way to handle

estimation error in the portfolio construction without relying on difficult and complex

17



methods. An empirical out-of-sample comparison between classical Markowitz optimiza-

tion and portfolio resampling is performed using data from the Brazilian stock market, a

market characterized by its higher volatility and lower liquidity than developed markets.

The main results are that in minimum variance and mean-variance portfolios, portfo-

lio resampling brought no improvements over classical Markowitz optimization with the

results being slightly better but not statistically significant. However, the results for the

tangency portfolio show that portfolio resampling can improve the out-of-sample portfolio

performance and also imply smaller transaction cost and more diverse portfolios.

Another well-known approach to deal with estimation error is through Bayesian anal-

ysis. Although we have not used that methods here, we recognize its importance and

usefulness to deal with the aforementioned issue. Instead, we focused on portfolio resam-

pling since this approach could be more appealing and easy to implement for practitioners

from various backgrounds, including non-technical ones.
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Supplementary Material Appendix for Does portfo-

lio resampling really improve out-of-sample perfor-

mance? evidence from the Brazilian market.

In the material it is presented the out-of-sample performance measures for two other
risk-averse parameters, λ = 5 and λ = 10. As poninted out in section 5.1 the results of
table (2) remain the same.

Table 4: Out-of-sample performance measures of the minimum variance (top panel)
with λ = 5, and minimum-variance (bottom panel) portfolios with λ = 10. AV, SD,
SR, ASR, SO, TO and SSPW stand for the annualised average, standard deviation,
Sharpe ratio, adjusted Sharpe ratio, Sortino ratio, average turnover and average sum of
squared portfolio weights, respectively. The best procedure according to each performance
measures is shown in bold.

Method AV SD SR ASR SO TO SSPW

M
in
im

u
m
-V

a
ri
a
n
ce

P
o
rt
fo
li
o
(λ

=
5
)

T
=

6
0

Markowitz 13.7657 19.1979 0.4045 0.4052 0.5184 0.1245 0.2700
Michaud Parametric 13.6290 19.0997 0.3994 0.3996 0.5143 0.1124 0.2405
Michaud Non-Parametric 13.7706 19.0845 0.4072 0.4071 0.5245 0.1117 0.2349
Markowitz-PCA 13.7692 19.1946 0.4048 0.4055 0.5188 0.1243 0.2677
Factor-Based Parametric PCA 13.6138 19.0680 0.3993 0.3994 0.5144 0.1114 0.2391
Factor-Based Non-Parametric PCA 13.5560 19.1187 0.3952 0.3953 0.5095 0.1131 0.2411
Markowitz-Ibov 13.7750 19.1941 0.4051 0.4058 0.5192 0.1243 0.2677
Factor-Based Parametric Ibov 13.6161 19.0882 0.3990 0.3991 0.5141 0.1121 0.2391
Factor-Based Non-Parametric Ibov 13.5683 19.1155 0.3959 0.3960 0.5105 0.1127 0.2413

T
=

1
2
0

Markowitz 10.5119 18.0230 0.2503 0.2494 0.3409 0.0874 0.2729
Michaud Parametric 10.8637 17.9894 0.2704 0.2693 0.3658 0.0819 0.2554
Michaud Non-Parametric 11.0638 18.0245 0.2809 0.2797 0.3793 0.0814 0.2482
Markowitz-PCA 10.5217 18.0379 0.2507 0.2498 0.3413 0.0876 0.2716
Factor-Based Parametric PCA 10.8346 18.0263 0.2682 0.2671 0.3634 0.0832 0.2540
Factor-Based Non-Parametric PCA 10.8505 18.0084 0.2693 0.2682 0.3647 0.0828 0.2547
Markowitz-Ibov 10.5118 18.0323 0.2502 0.2493 0.3407 0.0876 0.2716
Factor-Based Parametric Ibov 10.8713 18.0079 0.2705 0.2694 0.3660 0.0822 0.2542
Factor-Based Non-Parametric Ibov 10.8706 18.0118 0.2704 0.2693 0.3662 0.0824 0.2552

M
in
im

u
m
-V

a
ri
a
n
ce

P
o
rt
fo
li
o
(λ

=
1
0
)

T
=

6
0

Markowitz 13.7884 19.2025 0.4056 0.4063 0.5197 0.1246 0.2705
Michaud Parametric 13.6558 19.1014 0.4008 0.4009 0.5159 0.1123 0.2410
Michaud Non-Parametric 13.8001 19.0857 0.4087 0.4086 0.5263 0.1117 0.2353
Markowitz-PCA 13.7937 19.2000 0.4059 0.4066 0.5202 0.1243 0.2682
Factor-Based Parametric PCA 13.6392 19.0703 0.4006 0.4007 0.5159 0.1114 0.2396
Factor-Based Non-Parametric PCA 13.5830 19.1197 0.3966 0.3967 0.5112 0.1131 0.2416
Markowitz-Ibov 13.7991 19.1997 0.4062 0.4069 0.5206 0.1243 0.2682
Factor-Based Parametric Ibov 13.6430 19.0907 0.4004 0.4005 0.5157 0.1121 0.2395
Factor-Based Non-Parametric Ibov 13.5970 19.1160 0.3974 0.3975 0.5123 0.1127 0.2417

T
=

1
2
0

Markowitz 10.5225 18.0354 0.2508 0.2498 0.3413 0.0874 0.2735
Michaud Parametric 10.8750 18.0007 0.2708 0.2697 0.3663 0.0819 0.2559
Michaud Non-Parametric 11.0777 18.0368 0.2815 0.2803 0.3799 0.0814 0.2488
Markowitz-PCA 10.5316 18.0504 0.2511 0.2501 0.3416 0.0875 0.2721
Factor-Based Parametric PCA 10.8471 18.0379 0.2687 0.2676 0.3639 0.0832 0.2546
Factor-Based Non-Parametric PCA 10.8593 18.0196 0.2697 0.2685 0.3650 0.0829 0.2553
Markowitz-Ibov 10.5212 18.0448 0.2506 0.2496 0.3410 0.0875 0.2722
Factor-Based Parametric Ibov 10.8821 18.0197 0.2709 0.2698 0.3664 0.0822 0.2547
Factor-Based Non-Parametric Ibov 10.8816 18.0231 0.2709 0.2697 0.3666 0.0824 0.2558
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