

Avaliação da lixiviação de metais a partir de imãs obsoletos neodímio-ferro-boro utilizando ácido orgânico

Brenda O. L. de Menezes (PG)¹, Leonardo G. D. Silva (G) ¹, Júlia S. Rodrigues (G) ¹, Thaís S. Soares (PG) ¹, Maria C. Hespanhol (PQ) ^{1*}

Grupo de Análise e Educação para Sustentabilidade (GAES), ¹Departamento de Química, Universidade Federal de Viçosa (UFV), Brasil.

*mariacarmo@ufv.br

RESUMO

Com a crecente demanda por ímas de NdFeB, a reciclagem desses materiais torna-se estratégica uma vez que apresentam em sua composição elementos terras raras, classificados como metais críticos devido à sua importância tecnólogica. Neste trabalho, investigou-se a lixiviação de resíduos de ímãs neodímio-ferro-boro (NdFeB) utilizando ácido metanossulfônico (MSA) por meio de um planejamento composto central rotacional. As variáveis analisadas foram concentração do ácido, razão sólido-líquido e temperatura, com tempo fixo de 180 min. Os resultados mostram que a concentração de ácido e a razão sólido-líquido são os fatores mais relevantes, com indícios de efeito sinérgico entre eles. Já a temperatura apresentou influência limitada dentro da faixa estudada. As melhores condições resultam em elevada eficiência de lixiviação, especialmente para Nd e Pr. O MSA demonstra ser uma alternativa promissora e ambientalmente amigável para a recuperação de metais presentes em resíduos de ímãs de NdFeB.

Palavras-chave: Reciclagem, ímãs NdFeB descartados, elementos terras raras, ácido metanossulfônico.

Introdução

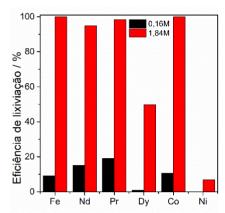
De acordo com a definição do Ministério de Minas e Energia (MME), os metais críticos são aqueles de grande relevância para aplicações em produtos e processos de alta tecnologia (1). Entre eles, destacamse os elementos terras raras, amplamente utilizados na produção de ímãs permanentes de neodímio-ferro-boro (NdFeB) (2). Esses ímãs desempenham um papel essencial em tecnologias estratégicas, como turbinas eólicas e veículos elétricos híbridos. Com o avanco da transição energética e a crescente busca por fontes mais limpas e sustentáveis, a demanda por ímãs de NdFeB vem aumentando. Projeções indicam que essa demanda pode atingir cerca de 240 mil toneladas (kt) em 2030, em um cenário de baixa demanda, e até 633 kt em um cenário de alta demanda (3). A reciclagem desses materiais desempenha um papel complementar e estratégico no suprimento de terras raras, reforçando a segurança de abastecimento e a sustentabilidade do setor tecnológico. Atualmente, a reciclagem de ímas obsoletos é realizada, tradicionalmente, por meio da combinação de processos hidrometalúrgicos e pirometalúrgicos com elevado custo energético (4). Visando obter um processo mais amigável para obtenção dos elementos terras raras de ímãs empregou-se o ácido metanossulfônico (MSA), o qual é um agente lixiviante biodegradável e de baixa toxicidade (5).

Experimental

Lixiviação

A lixiviação foi realizada em frasco de vidro com tampa de septo perfurado, contendo pó de ímã de NdFeB e agente lixiviante (AG) sob agitação magnética (660 rpm) e aquecimento sob temperatura

controlada.


Otimização da lixiviação

A otimização do processo de lixiviação foi conduzida por meio de um planejamento composto central rotacional (PCCR), totalizando 17 experimentos. Durante todo o planejamento, o tempo de ensaio foi mantido constante em 180 min. As variáveis investigadas incluíram a concentração de MSA (0,16 a 1,84 mol kg¹¹), a razão sólido-líquido (1:12,5 a 1:58) e a temperatura (25 a 75 °C) O lixiviado obtido ao fim da lixiviação foi analisado através da espectrometria de fluorescência de raios-X por reflexão total (TXRF) para a quantificação dos elementos.

Resultados e Discussão

Inicialmente, foi realizada a lixiviação nas condições experimentais no ponto central em triplicata para avaliar a reprodutibilidade do processo. As condições de lixiviação do ponto central foram concentração de MSA 1,0 mol kg⁻¹, temperatura de 50 °C, razão sólido-líquido 1:20 e tempo de 180 min. Foi obtida eficiência de lixiviação média de Fe, Nd, Pr, Dy e Co de 73, 78, 79, 37 e 72 %, respectivamente. Os coeficientes de variação (CV) na faixa de 1,4-6,6 %, mostram-se satisfatórios devido a complexidade da amostra. Em seguida, foram realizados os ensaios nos pontos axiais, sendo eles as condições mais extremas do PCCR, os quais são fundamentais para verificar se a faixa de estudo escolhida promove alteração significativa na variável resposta, neste caso, a eficiência de lixiviação. A Figura 1 apresenta as eficiências de lixiviação dos metais em diferentes concentrações de MSA.

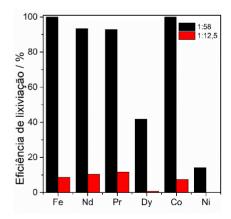
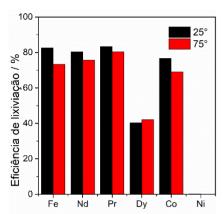


Figura 1. Eficiência de lixiviação dos elementos presentes no ímã de NdFeB em diferentes concentrações de ácido metanossulfônico (razão sólido-líquido de 1:20 e temperatura de 50 °C).

Na menor concentração testada (0,16 mol kg⁻¹), a eficiência de lixiviação foi baixa, chegando a ser menor que 20 % no caso dos elementos terras raras. Em constraste, a condição com concentração mais elevada (1,84 mol kg⁻¹) proporcionou eficiência superior a 90 % para os elementos Nd e Pr. Esses resultados indicam que a disponibilidade de íons H⁺ no sistema é essencial para promover a dissolução dos elementos presente na matriz estudada.

A razão sólido-líquido influência diretamente a disponibilidade do agente lixiviante. Conforme apresentado na Figura 2, o ensaio conduzido com o sistema mais diluído (1:58) resultou em uma maior eficiência de lixiviação quando comparado, por exemplo, a um ensaio realizado com razão mais concentrada (1:12,5).


Figura 2. Eficiência de lixiviação dos elementos presentes no ímã de NdFeB em diferentes razões sólido-líquido (concentração do MAS de 1,0 mol kg⁻¹ e temperatura de 50 °C).

Essa diferença pode ser atribuída à maior quantidade de MSA disponível nas condições mais diluídas, o que favorece a dissolução dos metais. Por outro lado, em sistemas mais concentrados em MSA, a lixiviação tende a ser limitada, possivelmente devido à saturação do meio (6).

Por sua vez, a temperatura não demonstrou ser uma variável determinante como as outras variáveis desse estudo. A eficiência de lixiviação apresenta variação pouco expressiva ao longo do intervalo de temperatura testado (25 a 75 °C), sugerindo que, dentro dessa faixa, o fator térmico exerce um efeito limitado sobre a lixiviação dos

metais. Essa tendência pode ser vizualizada na Figura 3, que compara dois ensaios realizados sob temperaturas distintas, mantendo-se constante as demais variáveis. A semelhança dos resultados sugere que a temperatura tem efeito limitado em alterar a eficiência de lixiviação dos elementos.

Figura 3. Eficiência de lixiviação dos elementos presentes no ímã de NdFeB em diferentes temperaturas (concentração do MSA 1,0 mol kg⁻¹ e razão sólido-líquido de 1:20).

Conclusões

Os resultados indicam que a concentração de ácido metanossulfônico e a razão sólido-líquido são variáveis mais influentes na eficiência de lixiviação, com indícios de um possível efeito sinérgico entre ambas. Já a temperatura apresentou impacto limitado. A avaliação dos pontos axiais permitiu concluir que a lixiviação pode ocorrer de forma eficiente mesmo em temperaturas mais brandas, próximas à ambiente. Este é um resultado promissor que reforça o potencial do ácido metanossulfônico para a recuperação de metais a patir de resíduos de ímas de NdFeB.

Agradecimentos

FAPEMIG, CNPq, PIBIC/CNPq, CAPES

Referências

- 1. Decreto n°10.657 de 24 de março de 2021, ministério de minas e energia (MME), Governo Federal Brasil.
- 2. Xiao, F., Hu, W., Zhao, J., Zhu, H., Metals 2023, 13(4), 779.
- 3. K. Binnemans; P.T. Jones; B. Blanpain; T. Van Gerven; Y. Yang; A. Walton; M. Buchert, *J. Clean. Prod.* **2013**, *51*.
- 4. Salim, H., Sahin, O., Elsawah, S., Turan, H., Stewart, R.A., Resources Policy **2022**, 77.
- 5. A.J. Pell; G. Pintacuda; A.J. Rossini, Chem. Soc. Rev. 2020, 49.
- 6. . S.S. Behera; P.K. Parhi, Sep. Purif. Technol. 2016, 160, 59-66.