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Abstract

Beliefs play a central role in trading, influencing decision-making and driving market
dynamics. This centrality gives rise to conflicts of interest, particularly in contexts such
as analysts’ recommendations and manipulative practices like spoofing. In this paper, we
propose a game-theoretical framework to investigate these phenomena, where a major agent
strategically influences the beliefs of a continuum of minor agents while engaging in an opti-
mal execution problem. The major agent faces a cost associated with this belief manipulation,
leading to a trade-off between influence and trading performance. We embed this interaction
into a mean field game framework, which allows us to characterize the resulting Nash equi-
librium through a coupled system of Hamilton-Jacobi-Bellman equations that are reduced
to a tractable system of ordinary differential equations. Our analysis is complemented by
numerical simulations, which illustrate how strategic belief manipulation affects trading out-
comes and overall market dynamics. The insights derived from our model shed light on the
interplay between information asymmetry and market behavior, with important implications
for both market participants and regulatory policies.

1 Introduction

Financial markets are, at their core, belief-aggregation machines. In this context, the role of
information is crucial, as it drives the decisions of investors and influences market dynamics. Tra-
ditional economic theories suggest that profitable trading strategies emerge from the ability to
incorporate new and valuable information into market prices, whether through news, macroeco-
nomic indicators, or proprietary analyses. However, the recognition that beliefs play a central role
in financial markets has led market participants to develop strategies that exploit belief dynamics,
rather than relying solely on superior information processing. This raises critical questions about
how beliefs evolve in response to strategic actions, and how such dynamics impact markets.

Historically, documented strategies of exploiting belief manipulation date back at least to the
seventeenth century, as seen in the Amsterdam Stock Exchange, where brokers engaged in bear
raids : short-selling stocks to drive down prices, then repurchasing them at a discount. In Allen
and Gale [1992], the history of stock price manipulation is discussed, and it is shown, under a
discrete time trade model, that such stock manipulation can be profitable. A more recent anec-
dote is studied in Huberman and Regev [2001], which presents the case of EntreMed, whose stock
price surged by over 200% following a New York Times article highlighting its cancer research,
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despite the fact that the underlying scientific breakthrough had been public knowledge for over
five months. This price movement, triggered by the mere re-publication of old information, un-
derscores the role of herding behavior and belief contagion in financial markets, where investor
attention and media amplification can create significant price distortions independent of new fun-
damental developments.

In electronic markets, belief influence has grown increasingly sophisticated. A prominent ex-
ample is spoofing, where traders place and cancel orders to create illusory liquidity, distorting
others’ perception on supply or demand. Spoofing is illegal, and there is a fine associated with
it, which makes employing this strategy risky. For a better discussion on spoofing via stochastic
control analysis, see Cartea et al. [2020], which models an agent spoofing the limit order book
while performing liquidation. Unlike spoofing, which operates through observable market actions,
subtler influences can occur through institutional trust. Firms operating on both the sell side and
buy side face inherent conflicts of interest, leading to regulatory efforts to enforce Ethical Walls
that separate these activities. Several scandals where large institutions got fined for breaching
this information barrier have raised attention to this topic. Michaely and Womack [1999] studies
stock recommendations and discusses these conflicts of interests, arguing that their market-wide
effects remain underappreciated by regulators. These considerations suggest that beliefs are not
only a byproduct of information, but strategic processes which can be optimized by agents.

We develop a Mean Field Game framework that considers the interaction of different market
participants where belief has an endogenous component. This is done by considering the interac-
tion between a major agent and a population of minor agents, both engaged in optimal execution.
Inspired by real-world phenomena such as spoofing and biased stock recommendations, we intro-
duce belief influence control as an explicit decision variable for the major agent, allowing us to
investigate how the major agent balances the cost of influence against potential trading advan-
tages. We characterize the optimal behavior for each agent in the resulting Nash Equilibrium.

The main interest of this modeling approach is to ask what are the effects of having the wrong
model for asset dynamics when performing optimal execution with other agents, and what is the
optimal strategy when one agent can influence the belief of others. The answer to the first ques-
tion is inherently dependent the functional agents are maximizing. As argued in Section 3, we can
choose a clever gain functional under which answering this question becomes explicitly clear. The
second question, however, is more subtle, as it depends on how the influence in belief occurs. We
propose a baseline model for this cost dynamics that preserves the linear-quadratic structure of
the optimal control problem.

This approach is influenced by some ideas in the mathematical finance literature. We provide
a brief summary of advancements in this field: Cartea and Jaimungal [2016] study how order flow
information can be incorporated into optimal execution, Cardaliaguet and Lehalle [2018] propose
a MFG of controls to study optimal execution and crowd trading; Huang et al. [2019] and Bergault
and Sánchez-Betancourt [2024] study a mean field game where different populations perform opti-
mal execution under different models. Cartea et al. [2017] analyze this optimal execution problem
under an ambiguity aversion framework. Building on this body of knowledge, our work extends
literature by introducing belief control as an explicit decision variable under a MFG framework.
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2 Model Setup

We consider the interaction of a major agent with a continuum of minor agents performing optimal
execution of an asset. Each minor agent has an inventory process, (Qt)t∈[0,T ], and a wealth process,
(Xt)t∈[0,T ], evolving according to:

dQt = νtdt,

and
dXt = −νt(St + bνt)dt,

where (St)t∈[0,T ] is the asset price process to be defined later, b > 0 is the instantaneous price
impact coefficient of the minor agents, and (νt)t∈[0,T ] is the trading speed controlled individually
by each minor agent. Similarly for the major agent, we have processes (QM

t )t∈[0,T ] and (XM
t )t∈[0,T ]

such that:
dQM

t = νMt dt,

and
dXM

t = −νMt (St + bMν
M
T )dt,

where bM > 0 is the instantaneous price impact coefficient for the major agent and (νMt )t∈[0,T ] is
the trading speed process for the major agent.
We assume that the stock price follows the dynamics

dSt = µtdt+ σdWt,

where (µt)t≥0 is the drift process, and (Wt)t≥0 is a standard Brownian motion under the real-world
probability measure P. If (Ft)t≥0 is the natural filtration to which the Brownian motion is adapted
and given a process (αt)t≥0, we define an alternative probability measure Pα, absolutely continuous
with respect to P, such that:

dPα

dP

∣∣∣∣
Ft

= exp

{∫ t

0

αt

σ
dWt −

1

2

∫ t

0

(αt

σ

)2

dt

}
.

By Girsanov’s theorem,
dSt = (µt + αt)dt+ σdW̃t,

where (W̃t)t≥0 is a Brownian motion under Pα.

2.1 Minor Agents’ Belief and Herding

We assume the major agent controls the level of influence such that the minor agents’ belief
stochastically reverts towards this level. More formally, we write:

dαt = κ(ct − αt)dt+ σbdW
b
t ,

α0 = 0,

where ct is the major agent’s control, and (W b
t )t≥0 is a Brownian motion independent of the ones

previously defined. The choice of the control (ct)t≥0 incurs in a cost for the major agent, as we
will define also in Section 3.
Here, κ is a parameter that encompasses how influential the major agent is, and one of the chal-
lenges of this modeling approach is to estimate reasonable values for it.
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3 Objective Functionals

For the minor agents, we use the same functional as Cartea and Jaimungal [2016], which is shown to
incorporate robustness with regards to model uncertainty in Cartea et al. [2017]. This robustness
allows us to explicitly state how a bias in belief affects agents’ optimization.
We define for the minor agent:

J(t, x, s, qM , q, α, ν) = EPα

t

[
XT +QT (ST − γQT )− ψ

∫ T

t

(Qu)
2du

]
,

where this expectation is conditional on Xt = x, St = s,QM
t = qM , Qt = q, αt = α, γ ≥ 0 is

a penalty coefficient for the remaining inventory and ψ is a urgency parameter that incentivizes
quick liquidation. Using Girsanov’s Theorem and integration by parts, one can show that:

EPα

t

[
XT +QT (ST − γQT )−

∫ T

t

ψ(Qu)
2du

]
= EP

t

[
XT +QT (ST − γQT )−

∫ T

t

(
ψ − αu

Qu

)
(Qu)

2 du

]
,

which answers one of our questions: performing optimal execution while having the wrong model
is equivalent to performing optimal execution with the correct model, but with a different (and
stochastic) urgency process instead of the original urgency parameter. This equation by itself is
already insightful, as it provides intuition to what values of αt the major agent aims to induce
given the value of the minor agents inventory Qt.
The objective functional for the major agent is very similar, but incorporates a quadratic cost for
ct, resulting in

JM(t, x, s, qM , α, νM) = EP
t

[
XM

T +QM
T (ST − γMQM

T )− ψM

∫ T

t

(
QM

u

)2
du− ζ

∫ T

t

(cu)
2 du

]
,

where γM ≥ 0 and ζ > 0 is the cost parameter for the influence of the major agent.

4 Mean Field Setting

All minor agents are identical in their preferences, differing only in their inventory holdings.
At each time t, the inventory holdings of minor agents are distributed according to a probability
measureM(t, ·) defined on the Borel σ-algebra B(R). For any Borel set A ⊆ R,M(t, A) represents
the proportion of minor agents whose inventory holdings lie within A at time t. We assume the
measure M has a density with respect to the lebesgue measure, m, such that when minor agents
are performing their optimal execution, the following transport equation holds:

∂tm+ ∂q (m ν∗(t, q)) = 0,

where we abuse the notation here to denote by ν∗(t, q) the optimal trading speed of a minor agent
as a function of q, implicitly conditioned on the values of qM and α.
We then define the mean field quantity ν̄t, the average trading speed of the minor agents as

ν̄(t) =

∫
R
ν∗(t, q)m(t, q)dq,

from which we define the market clearing condition:

µt = λ1ν
M
t + λ2ν̄(t),
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imposing a linear1 permanent price impact with different coefficients for the different agents.
We also define the average holding for the minor agent population at time t,

E(t) =

∫
R
qm(t, q)dq,

and, using integration by parts,

E ′(t) =

∫
R
ν∗(t, q)m(t, q)dq = ν̄(t).

5 Value Functions and HJB equations

Each minor agent computes its optimal behavior given a aggregate trading speed ν̄, and the major
agent trading speed νM . They have the value function

Ṽ (t, x, s, qM , q, α) = sup
ν
J(t, x, s, qM , q, α, ν; ν̄),

which leads to the HJB equation:

∂Ṽ

∂t
+ sup

v

[
− v(s+ bv)

∂Ṽ

∂x
+ (λ1ν

M
u + λ2ν̄u)

∂Ṽ

∂s
+

1

2
σ2∂

2Ṽ

∂s2
+ LαṼ + v

∂Ṽ

∂q

+ νMu
∂Ṽ

∂qM
− ψq2

]
= 0.

Again using integration by parts, we can write:

Ṽ (t, x, s, qM , q, α; ν̄, νM) = x+ qS + V (t, qM , q, α; ν̄, νM).

Using this substitution, we get the following HJB equation:

∂V

∂t
+ sup

v

[
v
∂V

∂q
+ νM

∂V

∂qM
+ LαV − bv2 + q(λ1ν

M
u + λ2ν̄u)− ψq2

]
= 0,

which allows us state the optimal control as:

ν∗(t, q) =
∂qV

2b
,

and

∂tV +
(∂qV )2

2b
+ νM∂qMV + LαV − (∂qV )2

4b
+ q(λ1ν

M
u + λ2ν̄)− ψq2 = 0,

with terminal condition
V (T, qM , q, α; ν̄, νM) = −γq2.

1We are not incorporating transient price impact in this model. Doing it would make the equations more
complex, but the framework we develop here can still be applied.
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The major player faces a similar problem, with the HJB equation:

∂tV
M + sup

v,c

[
∂V M

∂qM
v + LαV M + qM(λ1v + λ2ν̄)− bMv

2 − ψM(qM)2 − ζa2

]
= 0,

which implies optimal controls

ν∗,M =
∂qMV

M + qMλ1
2bM

and c∗ =
κ∂αV

M

2ζ
,

where

∂tV
M + ∂qMV

M

(
∂qMV

M + qMλ1
2bM

)
+ LαV M + qM

(
λ1
∂qMV

M + qMλ1
2bM

+ λ2ν̄

)
− bM

(
∂qMV

M + qMλ1
2bM

)2

− ψM(qM)2 − ζ

(
κ∂αV

M

2ζ

)2

= 0,

with terminal condition
V (T, qM , α; ν̄) = −γM(qM)2.

6 Mean Field Equilibrium

When acting optimally, each agent adjusts their speed of trading as the best response to the
actions of all others. Equilibrium is achieved when this best response function converges to a fixed
point for all agents. This fixed point is the solution to the following system of coupled PDEs:

∂tV + (∂qV )2

4b
+
(

∂
qM

V M+qMλ1

2bM

)
∂qMV + LαV + q

(
λ1

∂
qM

V M+qMλ1

2bM
+ λ2E

′(t)
)
− ψq2 = 0,

E ′(t) =
∫
Q

∂qV

2b
m(t, q)dq,

∂tV
M +

(
∂
qM

V M+qMλ1

2bM

)
∂qMV

M + LαV M + qM
(
λ1

∂
qM

V M+qMλ1

2bM
+ λ2E

′(t)
)
− bM

(
∂
qM

V M+qMλ1

2bM

)2

−ψM(qM)2 − ζ(κ∂αV
M

2ζ
)2 = 0,

with appropriate boundary conditions.

Due to the linear quadratic structure of this model, we expect the solution to be a quadratic
polynomial in q (for V ), qM and α. We then write the following substitutions:

V = ϕ1q
2 + ϕ2q q

M + ϕ3(q
M)2 + ϕ4q + ϕ5q

M + ϕ6α + ϕ7α
2 + ϕ8αq + ϕ9αq

M + ϕ10,

V M = ϕ̃1(q
M)2 + ϕ̃2q

Mα + ϕ̃3(α)
2 + ϕ̃4q

M + ϕ̃5α + ϕ̃6.,

and
E(t) = ϕ̄1q

M + ϕ̄2α + ϕ̄3.

Plugging these formulas into the system of coupled PDEs and collecting terms knowing that the
resulting polynomial is identically null polynomial results in a system of 19 ODEs, see A. These
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ODEs can be solved analytically, using integrating factor and Ricatti ODE theory. Due to the
high dimensionality of this system, in order to solve it analytically, it would be appropriate to
use a symbolic calculator software. While symbolic computation could, in principle, yield analyt-
ical solutions, we anticipate that the key dynamical insights will emerge most transparently from
numerical simulations. Moreover, the structure of the ODEs, sufficiently tractable for modern nu-
merical solvers, ensures robustness in their integration, allowing us to focus directly on presenting
and interpreting the results that underpin our claims.

7 FBSDE Approach

One of the theoretical questions that emerge from the approach used up to this point is whether
one can guarantee that a mean field equilibrium does exist. One of the ways to answer this question
is to pose the problem in the FBSDE framework, where we can rely on known results for linear
FBSDEs that guarantee existence and uniqueness of the solution. We begin by rewriting the gain
functional for the minor agent. We have, slightly abusing the notation for J ,

J(ν) = EPα

t

[
XT +QT (ST − γQT )− ψ

∫ T

0

(Qu)
2du

]
.

We can rewrite this definition using integration by parts to get

J(ν) = x+ qtSt + q2t E
Pα

t

[∫ T

0

qudSu +

∫ T

0

−b(νu)2 − 2γquνu − ψ(qu)
2du

]
= Ct + EPα

t

[∫ T

0

qudSu −
∫ T

0

(
νu
qu

)T (
b γ
γ ψ

)(
νu
qu

)
du

]
,

where Ct = xt + qtSt + q2t . For the Major agent, we similarly have:

JM((νM , c)) = EP
t

[
XM

T +QM
T (ST − γMQM

T )− ψM

∫ T

0

(
QM

u

)2
du− ζ

∫ T

0

(cu)
2 du

]
.

such that

JM((νM , c)) = Zt + EP
t

∫ T

0

qMu dSu−
∫ T

0

νMuqMu
cu

T bM γM 0
γM ψM 0
0 0 ζ

νMuqMu
cu

 du

 ,
where Zt is defined analogously.
We now define the functionals L(ν) and LM((νM , c)) as

L(ν) = EPα

t

[∫ T

0

qudSu −
∫ T

0

(
νu
qu

)T (
b γ
γ ψ

)(
νu
qu

)
du

]
,

LM((νM , c)) = EP
t

∫ T

0

qMu dSu−
∫ T

0

νMuqMu
cu

T bM γM 0
γM ψM 0
0 0 ζ

νMuqMu
cu

 du

 ,
such that the maximizers of Js are the same as the ones for Ls, as both Ct and Zt do not depend
on the controls. We will now show that both L and LM are strictly concave, which allows us to
determine optimal controls straightforwardly.
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Lemma 1. For any ρ ∈ (0, 1), and optimal controls ν1, ν2, c1, c2 and v1 = (ν1, c1), v2 = (ν2, c2),
the following inequalities hold:

L(ρν1 + (1− ρ)ν2) > ρL(ν1) + (1− ρ)L(ν2),

and

LM(ρv1 + (1− ρ)v2) > ρLM(v1) + (1− ρ)LM(v2).

Proof. See Appendix B.1

We define the Gateaux derivative of L(ν) by DL(ν)(·), as an operator such that

DL(ν)(ω) = lim
ϵ→0

L(ν + ϵω)− L(ν)

ϵ
,

and the analogous definition holds for the Gateaux derivative of LM(v).

Lemma 2. The following formulas hold for the Gateaux derivatives of L(v) and LM(v):

DL(v)(ω) = EPα

[∫ T

0

ωs

(
−2bνs −

∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du+Ms

)
ds

]
,

DLM(vM , c)(ω, χ) = EP
[∫ T

0

ωs

(
−2bMν

M
s −

∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψMqν

M

u du+Ns

)
ds

]
+ EP

[∫ T

0

2ζχscsds

]
.

Where Ms and Ns are Pα and P martingales respectively, defined by:

Ms = EPα

[
−2γqνT +

∫ T

0

λ1ν
M
u + λ2ν̄(u)− 2ψqνudu | Fs

]
,

and

Ns = EP
[
−2γMqν

M

T +

∫ T

0

λ1ν
M
u + λ2ν̄(u)− 2ψMqν

M

u du | Fs

]
.

Proof. See Appendix B.2

8 Simulations

To gain insights into the model’s mechanics, we perform simulations using reasonable parameter
values. Many of these values are informed by related literature, such as Cartea and Jaimungal
[2016], which provides empirical estimates for several key parameters, such as price impact co-
efficients. However, the parameters κ and ζ lack established empirical validation, presenting a
challenge for accurate calibration. To address this, we explore a range of plausible values for these
parameters and analyze their impact on the interactions studied. We present here the main results
we find under reasonable value parameters.
In Figure 1 we find a summary of the results of simulations under a set of specific parameters.
In order to understand the histogram of terminal wealth, we define the benchmark to this model
being the case where κ = 0, as this implies no belief control by the major agent. By comparing the
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terminal wealth with the benchmark, we get an idea of the excess wealth achieved by controlling
belief. In order to define the excess terminal wealth, we first introduce

CT = XT + STQT .

The excess terminal wealth, Ξ, is then defined as

Ξ =
Cmodel

T − Cbenchmark
T

Cbenchmark
T

.

In Figure 22, we can see plots about inventory dynamics under this model, as well as comparisons
between trading under belief control, and the benchmark model (κ = 0).
We also look at the effect of the parameters ζ and κ on the dynamics. For that, we calculate the
excess terminal wealth varying the values of these parameters and plot the results in Figure 3. In
Figure 3, we see histograms for the major agent’s excess terminal wealth for different parameter
values. The plot in 4 does the same for the minor agents. When comparing Figures 4 and 3,

2One interesting conjecture that emerges from these plots is that the relative difference in inventories curves
and the y = 0 line are concurrent across all simulations. This might be a trivial fact, but it remains to further
examine it.
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Figure 1: Overview of processes extracted from simulations.

the variation in wealth for the minor agents is smaller compared to the wealth variation for the
major agent. One possible explanation is the fact that the ζ parameter is directly impacting the
final wealth for the major agent, but not for the minor agent. However, the fact that this same
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Figure 2: Inventory dynamics and comparison with benchmark.

observation also holds true for varying the κ suggests that this observation is more fundamental
about this system. It is still necessary to understand if this is governed by regimes that change
under different parametric regions, and this can be better understood in the future. From what
we can observe from this data, interesting questions about the nature of this game are raised. It
suggests that the wealth under different beliefs does not form a 0-sum game, as the wealth gains
for the major agent does not generate a wealth loss of the same magnitude for the minor agents3.
Another interesting visualization here is the 3d plot of the mean excess wealth varying both ζ and
κ. From the tests we performed, the deviation from this mean is not significant compared to the
magnitude of the mean itself. The plot on Figure 5 summarizes this surface in a subset of the
parameter values. We have analogous plot for the mean field of minor agents in Figure 6.

3In order to understand the aggregate effects on wealth for the collective of all players, it is important to
understand what is the relative wealth size of the major agent in relation to the population of minor agents. From
the model for µt, we expect that the wealth-size of the minor agents is λ2

λ1+λ2
, and, under this hypothesis, the

aggregate wealth can increase due to belief control.
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Figure 3: Excess terminal wealth for the major agent given different parameter choices
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Figure 4: Excess terminal wealth for the mean field of minor agents given different parameter
choices
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Figure 5: 3D plot of the mean excess wealth surface for the major agent

Figure 6: 3D plot of the mean excess wealth surface for the mean field of minor agents

14



9 Future Works

Potential future works include the extension of this approach to multiple populations of both
major and minor agents, understanding the cost structure of belief manipulation in measurable
strategies such as spoofing, or modeling beliefs with a path-dependent component, which could
enrich the mathematical analysis, while improving the modeling of behavioral phenomena such as
trend seeking.
Another interesting direction of study would be to investigate the aggregate effects of this belief
influence. From the simulations, there are cases where both the major agent and the minor agents
are better off under belief control when compared to the benchmark. This phenomenon raises
questions about the wealth creation that seems to be possible and, for instance, one could ask how
does this type of wealth creation relates to bubble formation.
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A System of Ricatti ODEs

We have the following system of ODEs obtained by collecting monomials of the quadratic poly-
nomials on q, qM and α:

dϕ1

dt
=
ϕ2
1

b
− ψm,

dϕ2

dt
=
ϕ1ϕ2

b
+

2ϕ̃1ϕ2 + λ1ϕ2 + 2λ1ϕ̃1 + λ21
2bM

+ λ2
2ϕ1ϕ̄1 + ϕ2

2b
+
κ2ϕ̃2ϕ8

2ζ
,

dϕ3

dt
=
ϕ2
2

4b
+

4ϕ̃1ϕ3 + 2λ1ϕ3

2bM
+
κ2ϕ9ϕ̃2

2ζ
,

dϕ4

dt
=
ϕ1ϕ4

b
+
ϕ̃4(ϕ2 + λ1)

2bM
+
κ2ϕ8ϕ̃5

2ζ
+ λ2

2ϕ1ϕ̄3 + ϕ4

2b
,

dϕ5

dt
=
ϕ2ϕ4

2b
+

2ϕ̃1ϕ5 + 2ϕ3ϕ̃4

2bM
+
κ2(ϕ9ϕ̃5 + ϕ̃2ϕ6)

2ζ
,

dϕ6

dt
=
ϕ8ϕ4

2b
+
ϕ̃2ϕ5 + ϕ̃4ϕ9

2bM
+
κ2(ϕ7ϕ̃5 + ϕ̃3ϕ6)

ζ
− κϕ6,

dϕ7

dt
=
ϕ2
8

4b
+
ϕ̃2ϕ9

2bM
+ 2

κ2ϕ7ϕ̃3

ζ
− 2κϕ7,

dϕ8

dt
=
ϕ1ϕ8

b
+
ϕ̃2ϕ2 + λ1ϕ̃2

2bM
+
κ22ϕ̃3ϕ8

2ζ
− κϕ8 + λ2

2ϕ1ϕ̄2 + ϕ8

2b
,

dϕ9

dt
=
ϕ2ϕ8

2b
+

2ϕ̃1ϕ9 + 2ϕ̃2ϕ3 + λ1ϕ9

2bM
+
κ2(ϕ7ϕ̃2 + ϕ9ϕ̃3)

ζ
− κϕ9,

dϕ10

dt
=
ϕ2
4

4b
+
ϕ̃4ϕ5

2bM
+
κ2ϕ6ϕ̃5

2ζ
+ σ2

bϕ7,

dϕ̃1

dt
=

(λ1 + 2ϕ̃1)
2

4bM
+

(κϕ̃2)
2

4ζ
+ λ2

ϕ2 + 2ϕ1ϕ̄1

2b
− ψM ,

dϕ̃2

dt
=

4ϕ̃1ϕ̃2 + 2ϕ̃2λ1
4bM

+
κ2ϕ̃3ϕ̃2

ζ
− κϕ̃2 + λ2

ϕ8 + 2ϕ1ϕ̄2

2b
,

dϕ̃3

dt
=

ϕ̃2
2

4bM
+

(κϕ̃3)
2

ζ
− 2κϕ̃3,

dϕ̃4

dt
=

4ϕ̃1ϕ̃4 + 2λ1ϕ̃4

4bM
+
κ2ϕ̃5ϕ̃2

2ζ
+ λ2

2ϕ1ϕ̄3 + ϕ4

2b
,

dϕ̃5

dt
=
ϕ̃2ϕ̃4

2bM
+
κ2ϕ̃3ϕ̃5

ζ
− κϕ̃5,

dϕ̃6

dt
=

ϕ̃2
4

4bM
+
κ2(ϕ̃5)

2

4ζ
+ σ2

b ϕ̃3,

dϕ̄1

dt
= −2ϕ1ϕ̄1 + ϕ2

2b
,

dϕ̄2

dt
= −2ϕ1ϕ̄2 + ϕ8

2b
,

dϕ̄3

dt
= −2ϕ1ϕ̄3 + ϕ4

2b
.
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This is the system of ODEs we solve numerically.

B Proofs

B.1 Proof of Lemma 1

Proof. As we will see, the proof for these statements relies heavily in the integrated quadratic
form structure of the functionals. We will present the proof for the case of the minor agent, and
the major agent’s case is analogous.
We begin by defining

M(ν) = EPα

t

[∫ T

0

qudSu

]
,

N(ν) = EPα

t

[
−
∫ T

0

(
νu
qu

)T (
b γ
γ ψ

)(
νu
qu

)
du

]
,

such that
L(ν) =M(ν) +N(ν).

We will show that M(ν) is concave and N(ν) is strictly concave.

Let A =

(
b γ
γ ψ

)
and yνu =

(
νu
qu

)
. The inventory dynamics implies that

yρν1+(1−ρ)ν2
u = ρyν1u + (1− ρ)yν2u ∀ 0 ≤ u ≤ T.

Notice that, as b > 0, γ > 0 and ψ > 0, the matrix A is symmetric with positive entries, and
therefore it is positive definite. It is known that for a positive definite matrix A, the function
g(y) = yTAy is strictly convex, therefore N(ν) is strictly concave. To finish the proof, we can use

the same argument we used for the convex combination y
ρν1+(1−ρ)ν2
u to see that:

M(ρν1 + (1− ρ)ν2) = ρM(ν1) + (1− ρ)M(ν2).

This implies M(ν) is concave, and therefore L(ν) is strictly concave.

B.2 Proof of Lemma 2

Proof. We begin by noticing that

qν+ϵω = (1− ϵ)q
ν

(1−ϵ) + ϵqω,

and q
ν

1−ϵ
u = Q0 − 1

1−ϵ

∫ u

0
νsds, such that:

qν+ϵω − qν = −ϵQ0 + ϵqω.

Before proceeding, we state the following identity. For x and y vectors of appropriate dimensions,

and letting A =

(
b γ
γ ψ

)
, we have:

xTAx− yTAy = (x− y)TA(x− y) + 2(x− y)TAy.
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Using this identity, we write:

L(ν + ϵω)− L(ν) = EPα

[∫ T

0

qν+ϵ
u − qνudSu −

∫ T

0

(
νu + ϵωu

qν+ϵω
u

)T

A

(
νu + ϵωu

qν+ϵω
u

)
−
(
νu
qνu

)T

A

(
νu
qνu

)
du

]

= EPα

[
ϵ

∫ T

0

qωu −Q0 dSu −
∫ T

0

(
ϵωu

ϵ(qωu −Q0)

)T

A

(
ϵωu

ϵ(qωu −Q0)

)
+ 2

(
ϵωu

ϵ(qωu −Q0)

)T

A

(
νu
qνu

)
du

]

Notice that the first term in the integrand is proportional to ϵ2 and therefore it vanishes in the
limit for the Gateaux derivative. We then write, using the dynamics for St:

lim
ϵ→0

L(ν + ϵω)− L(ν)

ϵ
= EPα

[∫ T

0

qωu −Q0 dSu − 2

∫ T

0

(
ωu

qωu −Q0

)T

A

(
νu
qνu

)
du

]

= EPα

[∫ T

0

(qωu −Q0)(λ1ν
M
u + λ2ν̄(u)− 2γνu − 2ψqνu)du−

∫ T

0

2ωu(bνu + γqνu)du

]
= EPα

[∫ T

0

∫ u

0

ωsds (λ1ν
M
u + λ2ν̄(u)− 2γνu − 2ψqνu)du−

∫ T

0

2ωu(bνu + γqνu)du

]
= EPα

[∫ T

0

ωs

∫ T

s

(λ1ν
M
u + λ2ν̄(u)− 2γνu − 2ψqνu)duds−

∫ T

0

2ωu(bνu + γqνu)du

]
= EPα

[∫ T

0

ωs

(∫ T

s

(λ1ν
M
u + λ2ν̄(u)− 2γνu − 2ψqνu)du− 2(bνs + γqνs )

)
ds

]
=

∫ T

0

EPα

[
ωs

(∫ T

s

(λ1ν
M
u + λ2ν̄(u)− 2ψqνu)du− 2(bνs + γqνT )

)]
ds

=

∫ T

0

EPα

[
ωs

(
−2(bνs + γqνT ) +

∫ T

s

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνudu

)]
ds

= EPα

[∫ T

0

ωs

(
−2(bνs + γqνT ) +

∫ T

s

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνudu

)
ds

]
We have not yet mentioned, but we assume the class of admissible controls to be the space H2,
defined as

H2 =

{
ϕ ∈ M ; E

[∫ T

0

ϕ2(ω, t)dt

]
< +∞

}
,

where M is the space of functions ϕ : Ω × [0, T ] → R such that ϕ is measurable with respect to
F⊗B([0, T ]) and adapted with respect to (Ft)t≥0. H2 is a vector space over R, and we can define the

inner product ⟨f, g⟩ = E
[∫ T

0
fg dt

]
. Notice now that by the deduction above, DL(ν)(ω) ∈ H2∗, as

it is a linear operator onH2. From the Riesz Representation Theorem, there exists a representative
element hL(ν) ∈ H2, which is (Ft)t≥0-adapted, such that DL(ν)(ω) = ⟨ω, hL(ν)⟩. We write an
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explicit formula for hL(ν) noticing that

DL(ν)(ω) = EPα

[∫ T

0

ωs

(
−2(bνs + γqνT ) +

∫ T

s

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνudu

)]
=

∫ T

0

EPα
[
ωs

(
− 2(bνs + γqνT )−

∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du

+

∫ T

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du

)]
=

∫ T

0

EPα
[
ωs

(
− 2bνs −

∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du

+

∫ T

0

EPα [
λ1ν

M
u + λ2ν̄(u)− 2ψqνu | Fs

]
du+ EPα

[−2γqνT ]
)]

=

∫ T

0

EPα
[
ωs

(
− 2bνs −

∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du

+ EPα

[
−2γqνT +

∫ T

0

λ1ν
M
u + λ2ν̄(u)− 2ψqνudu | Fs

] ]
Finally, defining Ms = EPα

[
−2γqνT +

∫ T

0
λ1ν

M
u + λ2ν̄(u)− 2ψqνudu | Fs

]
, Ms is Fs-measurable,

and therefore

hL(ν) = (−2bνs −
∫ s

0

EPα [
λ1ν

M
u + λ2ν̄(u) | Fu

]
− 2ψqνu du+Ms)s≥0,

such that
DL(ν)(ω) = ⟨ω, hL(ν)⟩.

The major agent has 2 independent controls: trading speed and influence level. Therefore, using
similar arguments, we can write

DLM(νM , c)(ω, χ) = ⟨ω, hLM (ν,c)⟩+ ⟨χ, h̃LM (νM ,c)⟩,

where

hLM (ν) = (−2bMν
M
s −

∫ s

0

EP [λ1νMu + λ2ν̄(u) | Fu

]
− 2ψMqν

M

u du+Ns)s≥0,

where

Ns = EP
[
−2γMqν

M

T +

∫ T

0

λ1ν
M
u + λ2ν̄(u)− 2ψMqν

M

u du | Fs

]
.

And for the influence level part, we have

h̃LM (νM ,c) = (2ζcs)s≥0.
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Álvaro Cartea, Sebastian Jaimungal, and Yixuan Wang. Spoofing and price manipulation in
order-driven markets. Applied Mathematical Finance, 27(1-2):67–98, 2020.

Xuancheng Huang, Sebastian Jaimungal, and Mojtaba Nourian. Mean-field game strategies for
optimal execution. Applied Mathematical Finance, 26(2):153–185, 2019.

Gur Huberman and Tomer Regev. Contagious speculation and a cure for cancer: A nonevent that
made stock prices soar. The Journal of Finance, 56(1):387–396, 2001.

Roni Michaely and Kent L Womack. Conflict of interest and the credibility of underwriter analyst
recommendations. The review of financial studies, 12(4):653–686, 1999.

20


	Introduction
	Model Setup
	Minor Agents' Belief and Herding

	Objective Functionals
	Mean Field Setting
	Value Functions and HJB equations
	Mean Field Equilibrium
	FBSDE Approach
	Simulations
	Future Works
	System of Ricatti ODEs
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2


