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Analysis of coverage and structural change tests in financial data

Wilton Bernardino 1 · Raydonal Ospina2 · Yuri Santos1

Abstract Detecting structural changes in time series financial data provides important information to

identify breakpoints over time, improving the risk measurement for future crash events. This paper explores

structural change and coverage testing focused on Value-at-Risk (VaR) models. Quantile autoregression

(QAR) is our framework for modeling the time series since it is quite flexible and robust enough to fit

more general changes in the tail. As a result, we highlight how an empirical analysis of exchange-traded

fund returns indicates instability in extreme returns during the subprime crisis and how methods of

change-point testing are the keys to detecting and quantifying these effects. Simulations based on QAR

models performed under different scenarios with and without structural breaks indicate that the structural

change tests can identify change points. Also, the results indicated that coverage tests tend to be more

conservative.

JEL Classification: G11, G12, G17.
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1 Introduction

Time series of financial data are complex and involve different risk characteristics depending on the asset,

such as stocks, bonds, currencies, and others. Financial institutions need to measure reserve levels to cover

solvency and counterparty risks of their operations once the return distributions, as measured by volatility,

skewness, kurtosis, and empirical quantiles, are different from traditional assets and generate a higher
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level of uncertainty. One of the most relevant indicators of evaluation and measurement of financial data

risk is given by the Value-at-Risk (VaR), which is the minimum expected loss for a given time horizon

and confidence level, taking into account a set period of time that allows obtaining more precise data

on the loss that a company, independent of the sector and segment it serves, may be able to support

without affecting its normal operations. Given the importance of VaR, it is necessary to adopt reliable

methodologies for estimating VaR. However, most of the parametric methodologies used for its calculation

have some limitations imposed on the distribution of returns on financial data.

Quantile regression is an estimation method that allows dealing with such restrictions. This approach

allows calculating the conditional quantile directly, without imposing assumptions about the error

distribution associated with the model. In addition, their estimators are robust to outliers. Additionally, a

specification of conditional quantile may include an autoregressive structure to embedding the volatility,

that is very present in the financial series. From Koenker and Zhao (1996) pioneering work, which developed

the quantile autoregressive model, there have been important additions to the modeling and prediction of

volatility associated with financial time series (Koenker and Xiao, 2006; Xiao and Koenker, 2009). The

results indicate that they have a good performance for cases in which the distributions have heavy tails

and then this approach is an interesting way to explore VaR.

On the other hand, another topic connected to VaR is the structural break analysis, which seems to

be an interesting approach when analyzing extremal quantiles once neglected parameter changes on the

level and persistence of volatility can generate potential confusion of structure in the series evidencing for

example erroneously non-stationarity of data (Hwang et al., 2004; Stărică and Granger, 2005; Andreou

and Ghysels, 2002). From a practical point of view, breaks can be associated with financial crisis events,

as is the case of the empirical evidence of highly volatile with possible jumps in the subprime mortgage

crisis Demyanyk and Van Hemert (2011); Guidolin and Tam (2013). In this sense, seems to be useful that

the structural change investigation by using statistical procedures as (Qu, 2008) can be based on quantile

autoregression structure under the VaR since it is a statistical measure associated with extreme quantiles.

In this work, we propose to use quantile autoregression in estimating VaR. Here, we consider four

important Exchange Traded Funds (ETFs) time series data set, namely, SPDR S&P 500 (SPY), Vanguard

Information Technology (VGT), Industrial Select Sector SPDR (XLI), and Consumer Staples Select

Sector SPDR (XLP) that were present in the period of the subprime mortgage crisis. By using computer

simulations to evaluate the nominal level of Christoffersen (1998) and Candelon et al. (2010) coverage

tests as well as the power of the Qu’s test (Qu, 2008) under several structural break scenarios we analyze

the target financial data set.
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2 Background

In finance, a structural break happens when the analyzed time series abruptly changes its regime at a

certain point over time. This behavior can involve changes in the mean or other parameters associated

with the model used to describe the data-generating process. In this sense, testing hypotheses of structural

break regard, identifying and monitoring adequately the variability with evidence that the parameters are

or are not affected. The analysis of structural breaks can be found in Page (1954, 1955); Aue and Horváth

(2013); Jeng (2015); Dette and Wied (2016); Song and Kang (2018) and Truong et al. (2019); Casini

and Perron (2019) for a recent review. The literature that studies structural breaks based on financial

time series is abundant. Among several studies, we can cite Granger and Hyung (2004), which analyze

how occasional break modeling incorporates incremental information to the future volatility on stocks.

Babikir et al. (2012) study the relevance of considering structural breaks in forecasting stock returns

volatility. Jung and Maderitsch (2014) focus on understanding the volatility transmission between three

stock markets by considering a period of analysis that incorporates various crisis events. Hamilton (1990)

argue that many of the major exogenous economic events that influence financial series are shocks such as

the doubling of oil prices experienced over the past decades. These events can be considered as episodes

(breaks) with an identifiable duration in which the response of economic series might be expected to have

a noteworthy difference from that seen outside these periods.

Several studies on structural changes in financial data consider the breaks only in the conditional mean.

However, structural change detection in conditional quantiles seems to be more suitable (Wolters and

Tillmann, 2015; Zhou et al., 2015; Bonaccolto et al., 2018). In this sense, Qu (2008); Su and Xiao (2008)

investigate structural change tests on conditional quantiles. Qu (2008) adopted the methodology of quantile

regression based on the CUSUM tests (Page, 1954) and proposed two types of test statistics for structural

change occurring in a specific quantile. The tests are based on sequentially weighted empirical subgradient

(Assaf and Ritov, 1988) because it has excellent size properties even in small samples, local power, and

only requires estimating the model under the null hypothesis. The QU’s test based on subgradient (Qu,

2008) is attractive by considering conditional heteroskedasticity models under the quantile regression

framework. Here, the heteroskedasticity patterns (volatility presented in many financial time series) are

explored via the conditional variance linked to a regression structure to model quantiles by considering

explanatory variables Koenker and Bassett (1978).

Autoregressive Conditional Heteroskedasticity (ARCH) models was projected by Engle (1982) to

measure the conditional variability or volatility that includes the lagged value and gives higher weights

to recent past observations than others. To allow a longer memory and a more flexible lag structure

Bollerslev (1986) introduced the generalized autoregressive conditional heteroskedasticity (GARCH)

models. Variations of GARCH include GARCH in Mean (GARCH-M) Engle et al. (1987), Exponential
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GARCH (EGARCH) (Nelson, 1991), Integrated GARCH (IGARCH) (Engle and Bollerslev, 1986), Glosten

Jagnnathon Runkle GARCH (GJR-GARCH) (Glosten et al., 1993), Quadratic GARCH (QGARCH)

(Engle and Ng, 1993) , Asymmetric GARCH (AGARCH) (Nelson, 1991; Xiao and Aydemir, 2007; Miron

and Tudor, 2010), among others

However, all these models are deficient in describing nonlinearities in the data produced by general

forms of heterogeneity when different regimes coincide in the conditional mean process, a behavior generally

observed in financial time series. In this direction, quantile regression Koenker and Zhao (1996) and

autoregressive (QAR) model Koenker and Xiao (2006) has attracted considerable attention by allowing to

allocate in flexible form the existence of different regimes depending on the quantile of the series to be

modeled (Engle and Manganelli, 2004; Xiao and Koenker, 2009; Baur et al., 2012).

Forecasting is, therefore, crucial in many areas of finance, such as option pricing, Value-at-Risk

applications, and portfolio selection. The Value-at-Risk (VaR) (Jorion, 2000; Tsay, 2005) is possible to

relate to quantile regression once VaR can be seen as an extremal quantile which can be estimated by

using quantile regression techniques. A Value-at-Risk proposes to show the worst expected loss over

a given trading horizon at a given confidence. For example, a financial institution could say that the

daily VaR of some trading portfolio is $2 million with 99% of confidence. In this case, there is a 1%

probability of losing more than $2 million under stable market conditions. For relevant related work see

(Lee and Noh, 2013; Xiao et al., 2015; Haugom et al., 2016; Hagfors et al., 2016; Taylor, 2019; Christou

and Grabchak, 2019). The modeling strategy of Var via QR or QAR is also justified by the simplicity

of implementing the quantile regression and by the usefulness of the method to deal with asymmetric

dynamics and local persistence when modeling financial time series Xiao et al. (2015); Haugom et al.

(2016); Xu et al. (2016); Kuck and Maderitsch (2019); Christou and Grabchak (2019). Finally, for financial

institutions and their regulators is of vital importance to evaluate the accuracy of VaR estimation. In this

sense, several backtesting procedures (Philippe, 2001) are available, which include the likelihood ratio

(LR) test of Kupiec (1995), the independence and conditional coverage test (Christoffersen, 1998) and the

duration-based approach of (Candelon et al., 2010).

The remainder of the paper is organized as follows: In Section 2, we describe our approach to

benchmarking systems. In Section 3, we briefly discuss LCDA. Section 4 reports the results of our

computational study. Some conclusions follow in Section 5.

3 Models and methods applied to analyze Exchanged Traded Funds

QAR models to estimate VaR: Let {εt} (a returns series) be a stochastic process such that εt =

σtvt = (α0 +
∑p
i=1 αi|εt−i|) vt, where α0 ∈ (0,∞), αi ≥ 0, i = 1, . . . , p, {vt} are i.i.d. random variables

with distribution function Fvt . Given the information set Ft−1 representing observed returns, the linear
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ARCH formulation for the conditional quantile of the returns can be written as (Koenker and Zhao, 1996)

Qεt(τ |Ft−1) =

(
α0 +

p∑
i=1

αi|εt−i|

)
F−1vt (τ), (1)

where F−1vt (τ) denotes the τ -th quantile of the innovations {vt}. Koenker and Zhao (1996) showed that,

r ∈ (1,∞), µr = E(|vt|r)1/r <∞, and the polynomial φ(x) = xp − µr(α1x
p−1 + . . .+ αp−1x+ αp) having

all roots inside of the unit circle are sufficient conditions to the stationarity of {εt}. Furthermore, with

these conditions the process is ergodic and E(|εt|r) < ∞, where E(·) denotes the expected value. The

Equation (3) can be rewritten as

Qε∗t (τ |Ft−1) =

(
1 +

p∑
i=1

γi|εt−i|

)
F−1v∗t

(τ), (2)

where γi = αi

α0
,
√
ω0 = α0 are the new coefficients, {v∗t =

√
ω0vt} represents the modified innovation having

quantile function F−1v∗t
. A more general discussion about the class of QAR models can be seen in Koenker

and Xiao (2006). By definition, considering τ ∈ (0, 1) (significance level), VaR (VaRt
τ ) corresponding to

the returns {εt} satisfies the equation Pr(εt ≤ VaRt
τ |Ft−1) = τ, where Pr(A|B) denotes the conditional

probability of A given B. As consequence, based on the information set available up to (t− 1)-period, and

using the Equation (2), we can consider the equality Qε∗t (τ |Ft−1) = VaRt
τ .

Supose that Qε∗(τ |F) = Qε∗(τ |X ) is a linear funtion of parameters, i.e., Qε∗(τ |X ) = X ′βτ , where

βτ = βF−1v∗ (τ) = (1, γ1, . . . , γp)
′F−1v∗ (τ). The estimation of QAR models in Equation (2) can be made by

solving the problem (see Koenker and Bassett (1978))

β̂τ = argminb∈Rp

{
n∑
t=1

ρτ (εt −X ′tb)

}
, (3)

where Xt = (1, |εt−1|, . . . , |εt−p|)′, {(εt,Xt), t = 1, . . . , n} denotes a sample of size n, and ρτ (v) = v(τ −

I(v < 0)) is the check function.

Qu’s test for structural changes detection: The Qu’s test (Qu, 2008) seeks to determine whether

the coefficients of a linear quantile regression remain the same over time. For the accomplishment of this

task he proposed the following inferential procedure: (1) consider the random variable {εti}, where the

subscript indicates that process is observed in ti-period; (2) suppose that the τ -th conditional quantile

of {εti} can be written as a linear function Qεti (τ |Xti) = X ′tiβtiτ , where Xti = (1, |εti−1|, . . . , |εti−p|)′ is

the vector of explanatory variables; (3) the inferential procedure proposes to test H0 : βtiτ = β0τ for all i

against H1 : βtiτ =

β1τ for ti ∈ {t1, t2, . . . , tk}

β̃1τ for ti ∈ {tk+1, tk+2, . . . , tn}
, where tk denotes the breakpoint; (4) since the

objective function in Equation (3) is not everywhere differentiable, the test statistic is based on the

subgradient and it is computed using a sorted subsample from the beginning up to tk = bλnc, λ ∈ [0, 1],
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where b.c denotes a floor function. The subgradient test statistic proposed by Qu (2008) is based on the

random variable

Sn(λ, τ, ϑ) = n1/2
bλnc∑
t=t1

Xtψτ (εt −X ′tϑ), (4)

where ϑ ∈ Rp is some estimates for βτ and ψτ (u) = 1(u ≤ 0)− τ .

Under the null hypothesis, ψτ (εi−X ′tiβ0τ ), i = 1, . . . , bλnc, in Equation (4) is a sequence of independent

binary random variables with mean zero and variance τ(1− τ). In this sense, it can be considered as a

pivot quantity to make decisions about the rejection/nonrejection of the null hypothesis. By considering

X = (x′t1 , . . . , x
′
tn)′ and Hλ,n(β0τ ) = (n−1X ′X)−1/2Sn(λ, τ, β0τ ), Qu (2008) concludes that, under some

regularity conditions, Hλ,n(β0τ ) is such that Hλ,n(θ0τ )
d−→ N (0, λ2τ(1− τ)). Replacing β0τ with the full

sample quantile regression estimate obtained under null hypothesis (β̂0τ ) we can write

Hλ,n(β̂0τ ) = (X ′X)−1/2
bλnc∑
t=t1

Xtψτ (εt −X ′t β̂0τ ). (5)

Qu (2008) showed that, under the null hypothesis, Hλ,n(β̂0τ ) converges to a nondegenerate distribution,

whereas under the alternative hypothesis, it diverges for some λ. Since the true breakpoint is unknown,

it is necessary to investigate all the possibilities. In addition, Qu (2008) concludes that, if we re-center

Hλ,n(β̂0τ ) by λH1,n(β̂0τ ) it often has a better performance in finite samples. Thus, Qu (2008) defines the

alternative test statistic

SQτ = sup
λ∈[0,1]

∣∣∣∣∣∣(τ(1− τ))−1/2
[
Hλ,n(β̂0τ )− λH1,n(β̂0τ )

]∣∣∣∣∣∣
∞
, (6)

where ||·||∞ denotes the uniform norm (see, e.g., Rudin (2006)). Under the null hypothesis, the statistic

SQτ in Equation (6) converges to a p-vector of independent Brownian bridge processes (see, e.g., Revuz

and Yor (2013)) on [0, 1]. Based on simulations, Qu (2008) obtained critical values for the SQτ test under

H0.

Coverage tests: Coverage tests are widely used to evaluate VaR estimates. In this sense, it is not enough

to know if a certain VaR model produces a plausible percentage of VaR violations1, it is necessary to

evaluate if the VaR violations are independent of each other as stated by Christoffersen (1998). Tests

that simply check the expected rate of violations are called unconditional coverage tests, and the others

seeking a more sophisticated approach regarding clusters and violation moments are called conditional

coverage tests.

1 Consider εt some return at t-period. A VaR violation occurs if the observed return exceeds the VaR’s estimate, i.e., if
εt < VaRtτ .
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Let I1−τ be the indicator function which is equal to 1 when there is a VaRt
τ violation. The Christof-

fersen’s null hypothesis (independence of VaR violations) is H0 : Π = Πα =

[
τ 1 − τ

τ 1 − τ

]
. It is tested against

Π =

[
π01 1 − π01

π11 1 − π11

]
, where πij = Pr(It1−τ = j|It−11−τ = i). The GMM test (Candelon et al., 2010) is based

on an orthonormal polynomial Mj+1 associated with a geometric distribution with a success probability

s ∈ (0, 1). This polynomial Mj+1 is given (∀d ∈ N∗) by

Mj+1(d; s) =
(1− s)(2j + 1) + s(j − d+ 1)

(j + 1)
√

1− s
Mj(d; s)− j

j + 1
Mj−1(d; s), (7)

where d is the duration between two VaR violations (supposed to be geometrically distributed under the

null hypothesis), j ∈ N, M0(d; s) = 1, and M−1(d; s) = 0. Under independence of the durations between

VaR violations, If the geometric distribution is the true random pattern of d with a success probability

s = τ , then the expected value of Mj(d; τ) is zero for all j.

Let us denote {di}Ni=1 a sequence of N durations between violations. The null hypothesis of conditional

coverage GMM test is H0 : E(M(di; τ)) = 0, where M denotes a (p, 1) vector of Mj for j = 1, . . . , p.

Under some regularity conditions, and under the null hypothesis, the GMM’s test statistic (Jcc) converges

to a chi-square distribution as described by

Jcc =

(
1√
N

N∑
i=1

M(di; τ)

)>(
1√
N

N∑
i=1

M(di; τ)

)
d−→ χ(`), (8)

where ` is the number of orthornormal polynomials used as moment conditions (see Candelon et al.

(2010)).

4 An empirical motivation

4.1 Data

In the initial study, we analyzed four important ETFs, namely, SPDR S & P 500 ETF (SPY), Vanguard

Information Technology ETF (VGT), Industrial Select Sector SPDR ETF (XLI), and Consumer Staples

Select Sector SPDR ETF (XLP). These ones use different criteria to formulate their portfolios, focusing,

respectively, on important stocks listed on NYSE and NASDAQ exchanges, Information Technology,

industrial, and consumption sectors.

In the literature focusing on ETFs, empirical studies have been performed in order to assess the

efficiency of this kind of investment option. The United States, for example, represents almost 70% of the

ETF market in terms of assets under management, although the number of exchange-traded products in

the U.S. accounts for only 30% of the world total (Abner, 2013).
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4.2 Empirical analysis

The main point of this section is to use the quantile regression methods discussed in Section 3 in order to

evaluate the VaR measures corresponding to the four ETFs mentioned in Subsection 4.1. The period of

analysis corresponds to the daily returns from 7/03/2007 to 6/29/2009 (502 trading days). This two-year

period was chosen to focus on the main extension of the subprime mortgage crisis. In this sense, we focused

on analyzing the estimates of 5% and 1% VaRs corresponding to the ETFs. The Augmented Dickey–Fuller

(ADF) Dickey and Fuller (1981) and McLeod-Li McLeod and Li (1983) tests were implemented, however

it is important to note that the ADF test is biased towards nonrejection of nul hypothesis (unit root)

(Perron, 1990). Partial autocorrelation function (PACF) and autocorrelation function (ACF) were plotted

for regular and absolute returns. This procedure was done to get insights into the orders of the ARCH

processes. Finally, ten fitted models were evaluated. To help on choosing the models, AIC (Akaike, 1974),

pseudo R2 (Koenker et al., 2005) were computed. In addition, GMM’s, Christoffersen’s, and Qu’s tests

were implemented.

Serial correlations in return series are not significant because they are not predictable (see, e.g., Issler

(1999)). On the other hand, when considering absolute (or squared) returns, it is possible to evaluate

the predictability of conditional variance by plotting Autocorrelation (ACF) and Partial Autocorrelation

(PACF) functions. The plots in Figures 1 and 2 show only a few significant values for autocorrelations and

partial autocorrelations. On the other hand, the plots corresponding to the absolute returns (Figures 3

and 4) show a completely different scenario. These plots reveal some visual evidence of serial correlation

in all ETFs, which justifies the ARCH modeling. In addition, after implementing the ADF test, we did

not find any evidence of unity roots. As expected, McLeod-Li’s test detected a serial correlation between

absolute returns in all ETFs returns.
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Fig. 1: ACF of returns for all ETFs.

Fig. 2: PACF of returns for all ETFs.

As a second step, focusing on τ -quantiles (τ = 1%, 5%), we fitted ten ARCH(p), p = 1, . . . , 10. AIC

and pseudo R2 were computed. The results are shown in Tables 1 and 2. Tables 3 to 6 show the GMM’s

and Christoffersen’s p-values corresponding to τ = 1% and 5%.

The model selection started observing the AIC and pseudo R2 measures. The AIC (Table 1) selects

high order for the quantile linear ARCH models (τ = 5%, 1%), none lower than six and some, especially

when τ = 1%, reaching p = 10. A similar behavior occurs when using pseudo R2 values, reaching a

stable and less increasing state at higher orders. It is important to note that AIC and pseudo R2 are

not sufficient to evaluate VaR violations. This is the reason we did not focus on these measures as the
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Fig. 3: ACF of absolute returns for all ETFs.

Fig. 4: PACF of absolute returns for all ETFs.

main criteria to qualify the goodness of fit of the VaR estimates. In this sense, we used the coverage tests

described in Subsection 3. The results from the Christoffersen’s test are shown in Tables 3 and 4. As can

be seen, considering a nominal level of 5% and τ = 5%, 1%, the null hypotheses were not rejected for

almost all ETF data when considering the ARCH order p = 1. For τ = 5%, when p = 2 or 3, the null

hypotheses were rejected only for SPY (CTuc and CTcc, when p = 2, and CTcc, for p = 3) and XLI (CTuc,

for p = 3). Regarding Christoffersen’s coverage test, in the next section, we show simulation evidence

that Christoffersen’s test is a permissive test, and we recommend considering this question in the model

selection.
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The results from GMM test are shown in Tables 5 and 6. As can be seen, the null hypotheses were

rejected in almost all cases (unconditional and conditional tests). An interesting exception occurred when

τ = 1% and p = 1 (Table 6). In this case, the p-values corresponding to XLI and XLP suggest not rejection

of the null hypotheses for all coverage tests. It is important to note that the aim of coverage tests is to

provide feedback on whether VaR is being well estimated or not. Thus, coverage tests precede other model

criteria, such as AIC and pseud-R2, when fitting VaR models. In our study, lower p-order models needed

to be considered.

Table 1: AIC values for the fitted models

ARCH τ = 5% τ = 1%
order SPY VGT XLI XLP SPY VGT XLI XLP

1 -1887 -1959 -1895 -2434 -1443 -1608 -1552 -1995
2 -1977 -2010 -1950 -2451 -1614 -1691 -1692 -2168
3 -1972 -2012 -1971 -2449 -1631 -1711 -1733 -2169
4 -2063 -2055 -2016 -2458 -1802 -1750 -1797 -2164
5 -2077 -2053 -2027 -2483 -1880 -1787 -1792 -2224
6 -2096 -2088 -2028 -2475 -1918 -1915 -1801 -2226
7 -2120 -2095 -2027 -2479 -1973 -1978 -1863 -2316
8 -2119 -2103 -2021 -2490 -2015 -2020 -1862 -2330
9 -2112 -2096 -2017 -2482 -2011 -2014 -1917 -2336
10 -2111 -2093 -2011 -2483 -2012 -2008 -1924 -2341

Table 2: pseudo R2 values for the fitted models

ARCH τ = 5% τ = 1%
order SPY VGT XLI XLP SPY VGT XLI XLP

ARCH τ = 5% τ = 1%
order SPY VGT XLI XLP SPY VGT XLI XLP

1 0.668 0.696 0.698 0.696 0.893 0.910 0.912 0.902
2 0.699 0.713 0.717 0.704 0.910 0.918 0.924 0.918
3 0.700 0.716 0.725 0.706 0.913 0.920 0.928 0.919
4 0.728 0.730 0.739 0.711 0.927 0.924 0.933 0.919
5 0.734 0.732 0.744 0.721 0.933 0.927 0.933 0.925
6 0.742 0.743 0.746 0.721 0.936 0.937 0.934 0.926
7 0.750 0.747 0.748 0.725 0.940 0.941 0.938 0.933
8 0.752 0.751 0.749 0.730 0.943 0.944 0.939 0.934
9 0.752 0.752 0.750 0.731 0.943 0.944 0.943 0.935
10 0.754 0.753 0.750 0.733 0.944 0.944 0.943 0.936

4.2.1 Graphical analysis using in-sample VaR estimates

In an in-sample estimation strategy, 1% and 5% VaRs were estimated based on quantile linear ARCH(p), p =

1, . . . , 3. The plots corresponding to each ETF are shown in Figures 5 to 8. In each graph, the black line

is the returns, the read line represents 1%-quantiles (VaR1%) and the orange line is the 5%-quantiles
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Table 3: p-values of Christoffersen’s test (τ = 5%). CTuc and CTcc denotes unconditional and conditional
tests, respectively.

ARCH SPY VGT XLI XLP
order CTuc CTcc CTuc CTcc CTuc CTcc CTuc CTcc

1 0.081 0.053 0.324 0.062 0.553 0.788 0.429 0.013
2 0.034 0.036 0.235 0.064 0.235 0.493 0.052 0.016
3 0.114 0.058 0.830 0.135 0.033 0.099 0.230 0.064
4 0.001 0.003 0.012 0.020 0.001 0.005 0.226 0.063
5 0.000 0.000 0.019 0.027 0.001 0.003 0.048 0.016
6 0.001 0.002 0.030 0.066 0.011 0.041 0.004 0.002
7 0.001 0.000 0.004 0.005 0.002 0.006 0.018 0.004
8 0.004 0.005 0.001 0.002 0.002 0.006 0.001 0.001
9 0.003 0.001 0.006 0.006 0.010 0.037 0.003 0.004
10 0.003 0.008 0.017 0.003 0.002 0.008 0.000 0.000

Table 4: p-values of Christoffersen’s test (τ = 1%). CTuc and CTcc denotes unconditional and conditional
tests, respectively.

ARCH SPY VGT XLI XLP
order CTuc CTcc CTuc CTcc CTuc CTcc CTuc CTcc

1 0.666 0.142 0.048 0.059 0.329 0.610 0.996 0.951
2 0.048 0.059 0.048 0.059 0.397 0.632 0.008 0.016
3 0.020 0.032 0.008 0.002 0.003 0.008 0.008 0.016
4 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.058
5 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001
6 0.000 0.000 0.000 0.000 0.003 0.007 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.001 0.019 0.031
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: p-values for GMM test (τ = 5%). GMMuc denotes the unconditional test. GMMcc3 and GMMcc5

correspond to the conditional tests with ` = 3 and 5, respectively.

ARCH SPY VGT
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.000 0.000 0.000 0.021 0.000 0.000
2 0.056 0.000 0.000 0.014 0.000 0.000
3 0.090 0.000 0.000 0.094 0.000 0.001
4 0.004 0.000 0.000 0.005 0.000 0.000
5 0.001 0.000 0.000 0.003 0.000 0.000
6 0.006 0.000 0.000 0.004 0.000 0.000
7 0.004 0.000 0.000 0.001 0.000 0.000
8 0.014 0.000 0.000 0.006 0.000 0.000
9 0.014 0.000 0.000 0.001 0.000 0.000
10 0.012 0.000 0.000 0.038 0.000 0.000

ARCH XLI XLP
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.009 0.004 0.005 0.027 0.009 0.002
2 0.000 0.000 0.000 0.006 0.002 0.001
3 0.003 0.000 0.000 0.001 0.001 0.005
4 0.000 0.000 0.000 0.001 0.000 0.001
5 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000
7 0.009 0.000 0.000 0.000 0.000 0.000
8 0.009 0.000 0.000 0.000 0.000 0.000
9 0.007 0.000 0.000 0.001 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000

(VaR5%). In addition, a dashed horizontal blue line at 5% represents a daily hypothetical loss limit in

an ETF investment. According to Figures 5 to 8, in terms of VaR estimates, SPY seems to be the most

aggressive index. In the opposite direction, we can highlight the XLP index, which is, in fact a conservative

ETF.
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Table 6: p-values for GMM test when τ = 1%. GMMuc denotes the unconditional test. GMMcc3 and
GMMcc5 correspond to the conditional tests with ` = 3 and 5, respectively.

ARCH SPY VGT
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.040 0.021 0.010 0.006 0.001 0.000
2 0.007 0.002 0.000 0.004 0.000 0.000
3 0.006 0.001 0.000 0.008 0.002 0.000
4 0.000 0.000 0.000 0.002 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.002 0.000 0.000
7 0.000 0.000 0.000 0.003 0.001 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000

ARCH XLI XLP
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.447 0.722 0.944 0.080 0.068 0.081
2 0.057 0.057 0.116 0.009 0.004 0.005
3 0.002 0.000 0.000 0.005 0.001 0.000
4 0.000 0.000 0.000 0.009 0.002 0.001
5 0.000 0.000 0.000 0.005 0.002 0.001
6 0.002 0.000 0.000 0.001 0.000 0.000
7 0.001 0.000 0.000 0.016 0.010 0.011
8 0.000 0.000 0.000 0.013 0.005 0.001
9 0.000 0.000 0.000 0.001 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 5: SPY returns and its V aR5% and V aR1% fitted as quantile linear ARCH of order 1 to 3, top-bottom.

4.2.2 Structural change analysis

The Qu’s test application results are shown in Tables 7 and 8. At 5% nominal level, critical values, test

statistics and the dates of the structural breaks are shown according to the corresponding p-order. As

we can see, except for the XLP index, QU’s test shows pieces of evidence of breaks at 5%- quantiles

(VaR5%) when considering p < 5. For τ = 1%, all the indices presented breakpoints by considering p = 1

(small order) and p = 9, 10 (large orders). It is important to note that, for small orders, the significant

breakpoints were all close to September 15th, 2008, which represents the date of the Lehman Brothers

bankruptcy. Furthermore, for small p orders, the breakpoints suggested to the XLP index were at this
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Fig. 6: VGT returns and its V aR5% and V aR1% fitted as quantile linear ARCH of order 1 to 3, top-bottom.

Fig. 7: XLI returns and its V aR5% and V aR1% fitted as quantile linear ARCH of order 1 to 3, top-bottom.

Fig. 8: XLP returns and its V aR5% and V aR1% fitted as quantile linear ARCH of order 1 to 3, top-bottom.
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date or one day after it. We highlight that the XLP is an ETF that delivers a conservative basket of

consumer-staples firms. In this sense, the investors rapidly made their decisions after the Lehman Brothers’

bankruptcy, which can justify the breakpoints appointed by QU’s test in the case of this ETF.

Table 7: Qu’s test values for the fitted models at quantile τ = 5%

ARCH Crit. SPY VGT XLI XLP
order value SQτ Break at SQτ Break at SQτ Break at SQτ Break at

1 1.329 2.947 03-09-08 3.140 12-09-08 2.810 12-09-08 2.218 16-09-08
2 1.453 2.239 03-09-08 2.339 25-08-08 2.677 03-09-08 2.136 16-09-08
3 1.517 2.206 03-09-08 2.326 12-09-08 2.134 03-09-08 1.436 16-09-08
4 1.569 2.154 03-09-08 1.796 03-09-08 1.621 23-07-08 1.521 16-09-08
5 1.601 1.763 05-06-08 1.524 03-09-08 1.512 06-08-08 1.484 29-04-08
6 1.628 1.304 03-09-08 1.083 08-07-08 1.623 06-08-08 1.485 29-04-08
7 1.650 0.619 24-12-08 1.264 15-10-08 1.952 03-09-08 1.594 16-09-08
8 1.655 1.296 16-09-08 1.380 26-09-08 2.081 03-09-08 0.889 19-05-08
9 1.684 1.167 08-09-08 1.078 05-06-08 1.967 03-09-08 1.627 02-10-08
10 1.695 0.926 08-09-08 1.312 06-11-08 2.191 03-09-08 1.335 16-09-08

Table 8: Qu’s test values for the fitted models at quantile τ = 1%

ARCH Crit. SPY VGT XLI XLP
order value SQτ Break at SQτ Break at SQτ Break at SQτ Break at

1 1.329 1.672 26-09-08 1.681 26-09-08 1.421 01-10-08 1.366 16-09-08
2 1.453 1.399 26-09-08 1.693 26-09-08 0.857 01-10-08 1.067 15-09-08
3 1.517 0.856 26-09-08 1.964 26-09-08 1.796 01-10-08 1.195 16-09-08
4 1.569 1.509 26-09-08 0.740 07-10-08 1.791 01-10-08 1.677 05-06-08
5 1.601 1.892 05-06-08 1.669 26-09-08 1.512 14-10-08 1.469 05-06-08
6 1.628 1.692 05-06-08 0.874 07-01-09 1.722 09-02-09 1.859 02-10-08
7 1.650 1.881 05-06-08 3.320 02-10-08 1.824 13-10-08 1.890 05-06-08
8 1.655 2.741 12-09-08 1.863 07-11-08 1.729 14-10-08 0.992 08-10-08
9 1.684 2.201 14-10-08 2.042 27-01-09 2.563 08-10-08 2.318 18-11-08
10 1.695 2.682 16-09-08 2.999 12-02-09 2.661 08-10-08 2.276 17-11-08

As a conclusion of our empirical analysis we can highlight that the model selection was harsh and

unfruitful when considering models without structural break in financial crisis. For this reason, a structural

change analysis was proposed. The Qu’s test showed good performance when trying to identify the

dates of the breakpoints, which happened close to the Lehman Brothers’ bankruptcy for small p-orders.

Furthermore, the analysis suggested the XLP as a conservative index, which is in accordance with the

proposal of this ETF. After making the structural change analysis, we can see how it could influence the

coverage test results. In fact, we found evidence of structural changes in all ETFs we analyzed, and after

comparing this insight with the results from Cristofersen’s and GMM’s coverage tests, we were motivated

to make a simulation study involving these statistical procedures and the quantile ARCH(p) approach.

The study is shown in Section 5.

5 Simulation study

In the simulation study, ten different break scenarios were considered. The analysis seeks to get insights

into the behavior of null rejection rates of the two coverage tests described in Subsection 3 and also to
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analyze the QU’s test by considering a model without breaks and under several structural change scenarios.

To simplify the simulations, and according to the results suggesting small p-order, the simulations were

made by considering εt following a linear ARCH(2) model, as described below

εt =



(1 + γ1,0|εti−1|+ γ2,0|εti−2|)vti
√
ω0, ti ∈ [0, bλ1nc)

(1 + γ1,1|εti−1|+ γ2,1|εti−2|)vti
√
ω1, ti ∈ [bλ1nc, bλ2nc)

...
...

(1 + γ1,k|εti−1|+ γ2,k|εti−2|)vti
√
ωk, ti ∈ [bλknc, n]

, (9)

where 0 < λ1 < . . . < λk < 1 and vt
√
ωi ∼ N (0, ωj), j ∈ {0, 1, . . . , k}. The random process in Equation

(9) describes a reparametrized linear ARCH(2) process with k breaks in parameters (γ1,j , γ1,j , ωj), j ∈

{0, 1, . . . , k}. It is importante to note that each λj , j ∈ {1, . . . , k}, represents the relative position of the

j-th break across the time window ([t0, n]). In the simulations, the order p = 2 is equal to the average

value between the orders we highlighted in Subsection 4.2 (p = 1, 2, 3).

To evaluate the tests, two thousand Monte Carlo replications from 10 different linear ARCH(2)

processes were generated. In the analysis, the programming language and environment for statistical

computing R (R Core Team, 2018) was used by setting the code set.seed(42) in the Mersenne-Twister

pseudorandom number generator. Each simulated model was planned to achieve different perspectives of

the tests used in the empirical analysis. In addition, we intended to simulate a return series as seen in

the previous Sections, but also under different break scenarios. Figure 9 shows a particular case when

simulating a model behaving like the SPY stock index.

Fig. 9: SPY returns(left) and simulation process(right).

Table 9 shows the λ-values that indicate the relative position of the break (when it exists) and the

values of parameters (γ1,j , γ2,j , ωj) used before and after the break. Note that there is no break in model A
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which implies that λ is not defined in this case. Models B, C, and D were conceived to check a single break

at different points over time. Model E aimed to check the impact of only one brake in the conditional

volatility. Models F and G were proposed to evaluate the behavior of the tests when a break with clusters

of volatility happens. Model H stands for a more progressive break. Model ‘I’ has a long-length cluster.

Model J has three breaks and forms interchangeable clusters. In all cases, the γ values were chosen

according to Lee and Noh (2013). The simulation results are summarized in Tables 10 to 21 and in Figures

10 and 11.

Table 9: Simulated processes

Model λ γ-parameters ω

A − (0.15, 0.06) 1
0 (0.15, 0.0375) 1

B
.25 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

C
.5 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

D
.75 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

E
.5 (0.35, 0.1400) 1
0 (0.15, 0.06) 1
.25 (0.35, 0.14) 2F
.35 (0.15, 0.06) 1

Model λ α-parameters ω

0 (0.15, 0.06) 1
.75 (0.35, 0.14) 2G
.85 (0.15, 0.06) 1
0 (0.15, 0.0375) 1
.4 (0.35, 0.1400) 2H
.6 (0.15, 0.0375) 3
0 (0.15, 0.0375) 1
.25 (0.35, 0.1400) 2I
.75 (0.15, 0.0375) 1
0 (0.15, 0.0375) 1
.25 (0.35, 0.1400) 2
.5 (0.15, 0.0375) 1

J

.75 (0.35, 0.1400) 2

After conducting a statistical investigation of all simulated data, we concluded that the presence of

structural changes did not cause a violation of the null hypotheses of the coverage tests. Because of that,

for these two tests, our analysis focused on an investigation considering the test statistics defined under

the null hypothesis. The results when considering the Christoffersen (1998) tests (Tables 10 to 13) display

null rejection rates much smaller than the nominal levels (5% and 1%). It suggests very conservative tests

(with or without structural breaks).

Table 10: Null rejection rates of UC Christoffersen’s test statistics at 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 11: Null rejection rates of UC Christoffersen’s test statistics at 1% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 12: Null rejection rates of CC Christoffersen’s test statistics at 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0020 0.0055 0.0015 0.0010 0.0015 0.0015

One break
B 0.0015 0.0065 0.0010 0.0020 0.0045 0.0015
C 0.0015 0.0065 0.0030 0.0000 0.0030 0.0015
D 0.0015 0.0085 0.0025 0.0005 0.0045 0.0010
E 0.0015 0.0050 0.0000 0.0015 0.0035 0.0025

Two breaks
F 0.0030 0.0120 0.0025 0.0020 0.0030 0.0055
G 0.0040 0.0070 0.0015 0.0020 0.0045 0.0045
H 0.0015 0.0035 0.0020 0.0005 0.0055 0.0010
I 0.0050 0.0070 0.0020 0.0015 0.0050 0.0025

Three breaks
J 0.0025 0.0060 0.0025 0.0020 0.0035 0.0020

Table 13: Null rejection rates of CC Christoffersen’s test statistics at 1% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0005 0.0005 0.0005 0.0000 0.0000

One break
B 0.0000 0.0010 0.0000 0.0010 0.0000 0.0000
C 0.0000 0.0005 0.0000 0.0000 0.0005 0.0000
D 0.0000 0.0005 0.0000 0.0005 0.0000 0.0000
E 0.0005 0.0000 0.0000 0.0005 0.0000 0.0005

Two breaks
F 0.0005 0.0000 0.0005 0.0005 0.0005 0.0005
G 0.0000 0.0000 0.0000 0.0020 0.0000 0.0005
H 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000
I 0.0000 0.0010 0.0000 0.0010 0.0000 0.0005

Three breaks
J 0.0005 0.0010 0.0005 0.0010 0.0005 0.0000

Tables 14 through 17 show the results corresponding to the GMM statistics. The unconditional test

(Tables 14 and 15) is very conservative in almost all cases. However, there were some scenarios in which the

null rejection rates were much larger than the nominal levels: (1) in Table 14, models H (n = 360, 720, 1080),

I (n = 360, 720) and B (n = 1080), for τ = 5%, and models D (n = 720, 1080), C, H and I (n = 1080), for

τ = 1%; (2) in Table 15, model H (n = 720, 1080), for τ = 5%.
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The conditional tests were realized by considering the order ` equal to 3 and 5 (Tables 16 and 17,

and, 18 and 19, respectively). In general, the test seems to be conservative. However, in some scenarios it

presented a very liberal behavior: (1) in Table 16, models C, H, I, J (n = 360, 720, 1080), and B (n = 1080),

for τ = 5%, and, D (n = 720, 1080), for τ = 1% ; (2) in Table 17, models C, H, I, J (n = 720, 1080), and B

(n = 1080), for τ = 5%; (3) in Table 18, models C, H, J (n = 360, 720, 1080), and B, D, I (n = 720, 1080),

for τ = 5%, and, D, F, G (n = 720, 1080), for τ = 1%; (4) in Table 19, models C (n = 360, 720, 1080), and

B, D, H, J (n = 720, 1080), for τ = 5%, and, D, G (n = 1080), for τ = 1%.

Table 14: Rejection rates in UC GMM test at 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0005 0.0015 0.0000 0.0005 0.0000 0.0020

One break
B 0.0090 0.0010 0.0625 0.0035 0.2665 0.0065
C 0.0790 0.0015 0.0460 0.0540 0.0190 0.2285
D 0.0005 0.0080 0.0000 0.1665 0.0000 0.1920
E 0.0010 0.0020 0.0005 0.0065 0.0005 0.0085

Two breaks
F 0.0005 0.0045 0.0000 0.0305 0.0000 0.0260
G 0.0005 0.0030 0.0005 0.0185 0.0000 0.0150
H 0.1765 0.0010 0.3980 0.0320 0.3540 0.0955
I 0.1020 0.0020 0.1080 0.0545 0.0800 0.2340

Three breaks
J 0.0010 0.0015 0.0005 0.0035 0.0095 0.0000

Table 15: Rejection rates in UC GMM test at 1% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0005 0.0000 0.0000 0.0000 0.0010 0.0000
C 0.0035 0.0000 0.0185 0.0000 0.0045 0.0005
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0360
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
G 0.0000 0.0000 0.0000 0.0005 0.0000 0.0015
H 0.0035 0.0000 0.1420 0.0000 0.2500 0.0015
I 0.0015 0.0000 0.0220 0.0000 0.0215 0.0015

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.1 Qu’s structure change test

For Qu’s test, we analyzed the null rejection rates (model A - no breaks) and the power of the test under

some structural break scenarios (models B to J). The results are shown in Tables 20 (5% nominal level) and

21 (1% nominal level). The rates of null hypothesis rejection presented greater than the nominal levels for
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Table 16: Rejection rates in CC GMM test at 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0015 0.0040 0.0000 0.0040 0.0000

One break
B 0.0010 0.0010 0.0595 0.0010 0.2230 0.0005
C 0.0675 0.0025 0.3070 0.0140 0.4685 0.0375
D 0.0125 0.0120 0.0650 0.1030 0.0885 0.1865
E 0.0005 0.0015 0.0200 0.0030 0.0320 0.0025

Two breaks
F 0.0015 0.0095 0.0125 0.0310 0.0165 0.0375
G 0.0015 0.0095 0.0075 0.0325 0.0180 0.0395
H 0.0180 0.0015 0.5090 0.0070 0.7890 0.0145
I 0.0155 0.0020 0.1130 0.0100 0.3260 0.0360

Three breaks
J 0.0005 0.0030 0.1875 0.0060 0.3625 0.0120

Table 17: Rejection rates in UC GMM test at 1% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0030 0.0000 0.0030 0.0000

One break
B 0.0000 0.0000 0.0485 0.0000 0.1915 0.0000
C 0.0410 0.0000 0.2595 0.0005 0.4290 0.0015
D 0.0090 0.0000 0.0485 0.0050 0.0640 0.0415
E 0.0005 0.0000 0.0170 0.0000 0.0260 0.0000

Two breaks
F 0.0000 0.0000 0.0075 0.0010 0.0110 0.0075
G 0.0010 0.0000 0.0035 0.0015 0.0130 0.0055
H 0.0060 0.0000 0.2480 0.0000 0.6280 0.0005
I 0.0005 0.0000 0.0575 0.0005 0.2630 0.0010

Three breaks
J 0.0005 0.0000 0.1585 0.0000 0.3210 0.0000

Table 18: Null rejection rates in conditional GMM test with ` = 5 and 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0050 0.0040 0.0170 0.0040 0.0155 0.0030

One break
B 0.0080 0.0035 0.1095 0.0015 0.2765 0.0045
C 0.1930 0.0121 0.5815 0.0225 0.7980 0.0515
D 0.0885 0.0541 0.2270 0.2280 0.3230 0.4595
E 0.0190 0.0060 0.0565 0.0065 0.0800 0.0205

Two breaks
F 0.0260 0.0256 0.0480 0.0850 0.0655 0.1585
G 0.0235 0.0286 0.0460 0.1010 0.0685 0.1795
H 0.0865 0.0121 0.4685 0.0085 0.8715 0.0160
I 0.0185 0.0101 0.3295 0.0215 0.6535 0.0320

Three breaks
J 0.0980 0.0110 0.4865 0.0300 0.7545 0.0675

τ = 1% and n = 360, 720. In the other cases, the rates were close to nominal levels. The power of the test was

high in many scenarios. However, at 1% nominal level (Table 21), the simulations show very small powers

for some scenarios in models B (τ = 1%, n = 360, 720, 1080), E (τ = 5%, n = 360, 720; τ = 1%, n = 1080),

F (τ = 5%, n = 360, 720), G (τ = 5%, n = 360), H (τ = 1%, n = 360), I (τ = 5%, n = 360, 720;

τ = 1%, n = 360, 720, 1080), and J (τ = 5%, n = 360; τ = 1%, n = 720, 1080).
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Table 19: Null rejection rates in conditional GMM test with ` = 5 and 1% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0020 0.0005 0.0095 0.0015 0.0090 0.0000

One break
B 0.0025 0.0010 0.0850 0.0010 0.2410 0.0000
C 0.1410 0.0000 0.4715 0.0015 0.7165 0.0100
D 0.0485 0.0045 0.1535 0.0675 0.2320 0.2800
E 0.0085 0.0010 0.0350 0.0015 0.0510 0.0080

Two breaks
F 0.0105 0.0080 0.0300 0.0285 0.0350 0.0670
G 0.0135 0.0075 0.0210 0.0350 0.0375 0.0955
H 0.0530 0.0010 0.3535 0.0010 0.6320 0.0025
I 0.0035 0.0000 0.2100 0.0015 0.5360 0.0050

Three breaks
J 0.0385 0.0020 0.3865 0.0075 0.6605 0.0155

Table 20: Null rejection rates (model A) and power (models B to J) for Qu’s test at 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0525 0.1710 0.0510 0.1075 0.0620 0.0785

One break
B 0.4070 0.1300 0.9085 0.1085 0.9875 0.1630
C 0.7570 0.3000 0.9760 0.7125 0.9995 0.9585
D 0.4170 0.4590 0.7475 0.7005 0.9105 0.8440
E 0.1325 0.2135 0.2000 0.1700 0.2960 0.1875

Two breaks
F 0.1640 0.2885 0.2270 0.2625 0.3520 0.2825
G 0.2060 0.3645 0.3200 0.3400 0.5065 0.3925
H 0.9485 0.2480 1.0000 0.6185 1.0000 0.9830
I 0.0510 0.1025 0.4055 0.0405 0.7015 0.0310

Three breaks
J 0.1480 0.1865 0.3995 0.1685 0.6570 0.1845

Table 21: Null rejection rates (model A) and power (models B to J) for Qu’s test at15% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0125 0.0805 0.0075 0.0325 0.0115 0.0175

One break
B 0.1050 0.0675 0.7630 0.0360 0.9625 0.0420
C 0.5715 0.1140 0.9285 0.3255 0.9975 0.8270
D 0.1970 0.2910 0.4950 0.4825 0.7360 0.7065
E 0.0470 0.1165 0.0605 0.0605 0.1155 0.0670

Two breaks
F 0.0530 0.1835 0.0830 0.1345 0.1455 0.1255
G 0.0800 0.2390 0.1345 0.1865 0.2555 0.1965
H 0.8560 0.0975 0.9960 0.2400 1.0000 0.6985
I 0.0060 0.0475 0.1260 0.0110 0.4130 0.0080

Three breaks
J 0.0530 0.1030 0.1665 0.0670 0.4020 0.0705

Figures 10 (models B to E) and 11 (models F to J) show the simulated process (left charts) and the

corresponding λ-histograms (right charts). In Figure 10, model E presented a more volatile process and

the corresponding λ-histogram identified the true brake point very well. This fact also happened when

considering models B, C, and D. In Figure 11, models F and G, λ-histogram identified the second brake

point. The λ-histogram of model H identified the first breakpoint. The two breaks were well identified in

Model I, and the λ-histogram identified only two points in Model J.
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Fig. 10: Single break models (B to E), top-down. A single model simulation(left) and the histogram
of λ relative position of its break points when it is rejected Qu’s test hypothesis given τ = 5% and
n = 1080(right).

6 Conclusion

Quantile autoregression models provide a framework to cope with Value-at-Risk estimation. In this sense,

in an initial study, this paper proposed to use QAR modeling to investigate 5% and 1% VaR associated

with the returns from four important ETFs (SPY, VGT, XLI, and XLP), which represent firms belonging

to the strategic stock market, such as the Technology Information, industrial and consumption. The VaRs

were analized during the Subprime mortgage crisis in an in-sample estimation strategy. Our investigation

concludes in favor to Qu’s test capacity to detect structural changes in real data. However, this empirical

study did not conclude positively when referring to the widely used coverage tests Christoffersen (1998);

Candelon et al. (2010). This motivated our simulation study in the second part of the paper.

In the simulations, we considered two thousand Monte Carlo replications from ten different linear

ARCH(2) processes, which represent several simulation scenarios focusing on designing simulated data

behaving similarly to the ETFs and presenting structural breakpoints. We estimated VaR at 1% and
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Fig. 11: Multi break models (F to J), top-down. A single model simulation(left) and the histogram
of λ relative position of its break points when it is rejected Qu’s test hypothesis given τ = 5% and
n = 1080(right).

5% levels and analyzed the null rejection rates of the coverage tests as well as the power of QU’s test

under the presence of breakpoints and without breaks. Among the main conclusions, we highlight that

the coverage tests behaved as very conservative. Qu’s structural change test performed a notable power

in almost all models proposed during the simulation. However, its power might be severely downgraded

in some kinds of series structures like those showing clusters, so common in financial time series. In our

simulations, Qu’s test retained yet a significant power in these cluster situations. It was also noted in the

multiple break models with similar traits a tendency to detect a break in the middlemost break.

In future work, we suggest developing Christorfesen’s and GMM’s null statistics theoretically to

incorporate adjustments to deal with structural breaks, improving the null rejection rates of these tests.
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