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Quantifying Systemic Risk in
Cryptocurrency Markets: A
High-Frequency Approach
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Abstract We conduct a comparative analysis of the original CoVaR=
α,β (Y |X) and modi-

fied CoVaRα,β (Y |X) measures of Conditional Value-at-Risk (CoVaR) using high-frequency
returns of Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Solana (SOL), and Binance
Coin (BNB) at 5-minute intervals. Additionally, we employ the Kolmogorov-Smirnov
(KS) bootstrapping test to assess potential interdependencies among cryptocurrency re-
turns. Our results indicate that, on average, estimates derived from CoVaRα,β (Y |X) tend
to surpass those from CoVaR=

α,β (Y |X), with superior performance in the backtesting
analysis. Moreover, the Kolmogorov-Smirnov (KS) test underscores a notable degree of
interconnectedness within cryptocurrency returns.
Keywords: Conditional Value-at-Risk (CoVaR), Cryptocurrencies, Backtesting.
JEL Code: C58, G17, G32

1. Introduction

According to Waltz et al. (2022), the financial system and its institutions
have been shown to be volatile, fragile, and interconnected through various
developments and crises in the past two decades, including the 2009 financial
crisis. Reboredo and Ugolini (2015) highlights the utility of systemic risk
measures in assessing the impact of financial distress in one asset on others,
which has led to increased attention in recent financial literature (Reboredo
and Ugolini, 2016; Zhang, 2015; Liu et al., 2019; Karimalis and Nomikos,
2018; Jin, 2018).

There are numerous methods available for estimating systemic risk within
a market. Some of these include the use of Systemic Expected Shortfall (SES)
as proposed by Acharya et al. (2017), which quantifies systemic risk, and
the focus on Marginal Expected Shortfall (MES) as discussed by Brownlees
et al. (2012). Additionally, Segoviano and Goodhart (2009) presents a method
where the financial sector is represented by a portfolio of individual firms to
estimate a multivariate density tail measure adjusted with empirical data from
each institution, offering insights into systemic risk measures.
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However, one of the most commonly used approaches, as indicated by
Waltz et al. (2022), is the model proposed by Adrian and Brunnermeier (2016)
known as Conditional Value-at-Risk (CoVaR), which extends the Value-at-
Risk (VaR) measure to a conditional setting. According to Girardi and Ergün
(2013), CoVaR effectively captures the propensity for financial distress in one
asset to be correlated with distress in another asset.

One asset class where these measures are especially relevant is cryptocur-
rencies. In the last decade, as highlighted by Waltz et al. (2022), the cryp-
tocurrency market has attracted the attention of investors and policymakers.
Investors embrace, gradually, the idea of these digital currencies, while the
policymakers warn of their volatility, which raises the question of whether
they will ever become stable and viable mainstream currencies (Velde, 2013;
Gandal et al., 2018; Lo and Wang, 2014). However, this asset class is char-
acterized by greater volatility and tail risk than traditional assets (Chaim and
Laurini, 2018; Borri, 2019).

Below are descriptions of several studies that have estimated CoVaR in the
cryptocurrency market. Borri (2019) explored the extent to which cryptocur-
rencies are exposed to each other’s tail risk using a model based on quantile
regressions proposed by Adrian and Brunnermeier (2016). Their findings in-
dicate high correlations among these markets in the tails of the distribution.

Bruhn and Ernst (2022) employed a GARCH-EVT (Extreme Value The-
ory) approach to analyze the financial risk of individual cryptocurrencies and
a portfolio of the cryptocurrency market. They also utilized a t-Student Cop-
ula to aggregate individual market risks to investigate potential diversification
effects. The results suggest that Bitcoin is the most stable cryptocurrency,
while others exhibit higher volatilities in their prices.

Furthermore, Rehman et al. (2020) employed both time-invariant and time-
varying copula models to capture the co-movement between Bitcoin and Is-
lamic equity indices under extreme market conditions. Their results indi-
cate time invariance with symmetrical tail dependence for all Islamic indices
paired with Bitcoin, except for DJIUK, DJIJP, and DJICA. They also ob-
served asymmetry between downside and upside ∆CoVaR, suggesting impli-
cations for investors with varying risk preferences.

In their study, Hanif et al. (2022) applied a time-varying copula model
to analyze systemic risk dynamics in cryptocurrency markets. They investi-
gated eight cryptocurrencies (Monero, Bitcoin, Dash, Litecoin, Stellar, XRP,
Ethereum, and Nem) alongside global/regional equity markets (world, Ameri-
cas, Europe, and Asia Pacific). Their findings revealed that Nem and Ethereum
exhibit the most significant upside and downside CoVaR spillovers on the
world equity index. Conversely, the largest downside CoVaR spillovers from
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the world equity index to cryptocurrencies were observed with Nem and Stel-
lar, while the largest upside CoVaR spillovers were identified with Ethereum
and Nem.

This paper focuses on a modified version of Conditional Value-at-Risk
(CoVaR), as proposed by Girardi and Ergün (2013), which defines financial
distress as the return of the institution being at most at the VaR measure, in
contrast to the exact VaR definition by Adrian and Brunnermeier (2016). We
employ this modified CoVaR framework to estimate systemic risk among ma-
jor cryptocurrencies based on market capitalization, including Bitcoin (BTC),
Ethereum (ETH), Ripple (XRP), Solano (SOL), and Binance Coin (BNB), at
a 5-minute frequency.

For comparative analysis, we also estimate CoVaR using the original model
proposed by Adrian and Brunnermeier (2016), conducting backtests on both
models. Furthermore, we utilize the Kolmogorov-Smirnov (KS) test to as-
sess the impact between the quantiles of conditional and unconditional asset
returns.

According to Mainik and Schaanning (2014), X ⩽ VaRα(X) corresponds
to all possible outcomes for X if X is stressed, while X = VaRα(X) is the
case when selecting only the most “benign” of them. This change in the
model allows to consider more severe distress moments and, also, backtesting
the CoVaR measure using standard tests. The model present by Girardi and
Ergün (2013) is calculated using Copulas, while the Adrian and Brunnermeier
(2016) model are estimated with quantile regressions (see Koenker, 2005 or
Koenker et al., 2017).

Zhang (2015) highlights the importance of estimating the high-dimensional
joint distribution for effective risk management, given the dynamic co-movement
among risk issuers. In this regard, Copula methods emerge as strong candi-
dates. As noted by Reboredo and Ugolini (2016), employing Copula meth-
ods offers greater flexibility in modeling compared to quantile regressions.
This flexibility stems from Copulas’ ability to accommodate heterogeneity in
marginal distributions and to account for specific features such as volatility
asymmetries, conditional heteroskedasticity, and leverage effects.

Our results indicate that CoVaR estimates from the Girardi and Ergün
(2013) model are generally higher, on average, compared to those from the
Adrian and Brunnermeier (2016) model. Additionally, the VaR results for
both methods demonstrate higher values on average than their respective con-
ditional measures, indicating positive interdependence in the cryptocurrency
market. Through backtesting analysis, the Girardi and Ergün (2013) model
exhibits a lower percentage of violations compared to the Adrian and Brun-
nermeier (2016) model. This indicates a better fit, in the sense of being more
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conservative, of VaR and CoVaR in the former model.
We also found that the interconnections among cryptocurrencies are rel-

evant. The Kolmogorov-Smirnov (KS) bootstrapping test reveals that returns
of one cryptocurrency significantly influence the returns of another cryptocur-
rency across all possible combinations. This finding suggests a high level of
interconnections among cryptocurrencies.

The study underscores the significance of accurately measuring systemic
risk for regulatory and risk management purposes, particularly in the rapidly
growing and volatile cryptocurrency market. The use of Girardi and Ergün
(2013) model, which is better suited for measuring systemic risk, can lead to
more precise estimates, offering practical implications for investors in terms
of portfolio allocation and risk management, as well as for policymakers dur-
ing both crisis and non-crisis periods. The main motivation for this study is to
find better methods to estimate the systemic risk present in financial markets
and especially in the cryptocurrency market, which has high volatility, using
a high-frequency database.

The paper is organized as follows: Section 2 formally defines the method-
ology implemented. Section 3 describes the data we use in the empirical part
of this study and Section 4 presents the empirical results and reports the re-
sults of Kolmogorov-Smirnov (KS) test. Section 5 reports the results of the
backtesting. Section 6 concludes.

2. Methodology

2.1 Conditional Value at Risk

Adrian and Brunnermeier (2016) highlights that Value-at-Risk (VaR), com-
monly used in financial markets, primarily assesses risk at the individual asset
level, neglecting systemic risk implications. Borri (2019) emphasize that the
CoVaR measure, in contrast, enables the estimation of an asset’s exposure to
tail-risk of another asset. Formally, CoVaR represents a risk measure condi-
tioned on an adverse shock, with risk defined by the VaR measure.

Following Adrian and Brunnermeier (2016), the CoVaR measure is com-
puted as the Value-at-Risk (VaR) of an asset y assuming that asset x is exactly
at its VaR level, that is, X = VaRα (X). However, Girardi and Ergün (2013)
propose an alternative way for calculate the Conditional Value-at-Risk (Co-
VaR), which assumes that the Value-at-Risk (VaR) of an asset y is conditioned
on X ⩽ VaRα (X), that is, asset x is at most at its VaR level. Girardi and Ergün
(2013) highlight that this modification allows compatibility of CoVaR esti-
mation with non-parametric methods.

The Adrian and Brunnermeier (2016) definition and the alternative def-
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inition proposed by Girardi and Ergün (2013) are denoted, respectively, as
follows

CoVaR=
α,β (Y |X) = VaRβ (Y |X = VaRα(X)), (1)

CoVaRα,β (Y |X) = VaRβ (Y |X ⩽ VaRα(X)). (2)

Girardi and Ergün (2013) say that the conditioning on Xt ⩽ VaRq,t rep-
resents a more general case of financial turmoil for asset y, which allows
for higher losses, that is, beyond VaRq,t . Mainik and Schaanning (2014) also
show that conditioning on Xt ⩽ VaRq,t gives a much better response to de-
pendence between the assets, and with positive probabilities, the fitting and
backtesting of the model are statistically more advantageous.

Another important point is the estimation method: while the Adrian and
Brunnermeier (2016) method is estimated using quantile regressions, Girardi
and Ergün (2013) propose estimating its version of CoVaR using the bivariate
distribution of assets using Copula representations. More details on this will
be provided in the following sections.

2.2 Copula Functions

For Zhang (2015), Copula is a powerful method for dealing with high-
dimensional joint cummulative distribution functions (CDFs). The Sklar’s
theorem (Trivedi et al., 2007) defines an m-dimensional copula as a func-
tion C which is defined from the unit m-cube [0, 1]m to the unit interval [0, 1]
satisfying the following conditions

1. C(1,...,1,an,1,...,1) = an for n ⩽ m and an in [0, 1];

2. C(a1,...,am) = 0 if an = 0 for n ⩽ m;

3. C is m-increasing.

and thus the function C is also a distribution function.
The copula function is a method to construct a multivariate distribution

function combining the marginal distributions using the copula function, and
in this way we have a flexible form to construct multivariate distributions with
arbitrary marginal distributions and dependence structures, parameterized us-
ing the copula. The construction of the multivariate density is given by:

F(y1, ...,ym) = C(F1(y1), ...,Fm(ym);θ), (3)
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where Fi(yi) is the marginal distribution of the i-th element for the multivari-
ate distribution and Θ denotes a parameter vector of the copula called the de-
pendence parameter, controlling the dependence between the marginals func-
tions. See Nelsen (2006) for examples of copula functions and other proper-
ties.

The flexibility of the model, as highlighted by Reboredo and Ugolini
(2015), compared to parametric bivariate functions, is the major advantage
of copula functions. This greater flexibility occurs because copulas allow for
separate modeling of the marginals and the dependence structure.

2.3 Volatility Model

We have some stylized facts in financial time series as volatility clusters,
fat tails and, also, leverage effects (Waltz et al., 2022; Zhang et al., 2018;
Phillip et al., 2018). The returns in cryptocurrencies market also are charac-
terized by this facts (Chaim and Laurini, 2018). A common approach to model
this effects is to use conditional volatility models with possible dependence
in the mean.

In order to capture these dynamics, we follow Reboredo and Ugolini
(2016), which assumes that the asset price returns, yt , have time-varying
mean, µt , is given by an Autoregressive Moving-Average (ARMA) model:

yt = µt + εt , (4)

µt = φ0 +
p

∑
j=1

φ jyt− j +
q

∑
h=1

ϕ jεt−h, (5)

denoting φ0, φ j and ϕ j, respectively, as a intercept parameter, the autoregres-
sive (AR) and moving average (MA) parameter vectors. The term εt = σtzt is
a stochastic variable with unit variance and zero mean.

We assume that the dynamics of variance of the εt is given by a Thresh-
old Generalized Autoregressive Conditional Heteroskedasticity (TGARCH)
model proposed by Glosten et al. (1993) as follow

σ
2
t = ω +

r

∑
k=1

βkσ
2
t−k +

m

∑
h=1

αhε
2
t−h +

m

∑
h=1

λh1t−hε
2
t−h, (6)

where ω is an intercept, β represents the GARCH parameters, α denotes
the autoregressive conditional heteroskedasticity (ARCH) parameters, and
the parameter 1t−h equals one if εt−h < 0 and zero otherwise. Reboredo and
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Ugolini (2016) emphasize that the TGARCH model is useful because the pa-
rameter λ captures asymmetry effects. Specifically, for λ > 0, negative past
shocks have a greater impact on variance than positive shocks.

As cryptocurrencies present a strong indication of skewness and, also,
non-normality (Vieira and Laurini, 2023), we choose the skewed-t density
distribution of Fernández and Steel (1998), which parameters η and υ de-
noting, respectively, the skewness and shape as the of the distribution of the
innovations for the returns. An interesting observation is that when the pa-
rameter of symmetry, denoted by η , equals one and the degrees of freedom
(shape), denoted by υ , tend to infinity, the skewed-t density distribution con-
verges to the Gaussian density. Furthermore, when η = 1 and υ is finite, the
distribution converges to the symmetric Student-t distribution, and thus we
assume a flexible distribution for the conditional returns.

We employ a partially automated procedure that chooses the most suitable
model for each series based on an Akaike information criterion. Table 1 shows
the models chosen.

Table 1
Model Selection

Series Selected Model Intercept in Mean
BTC ARIMA(1, 0, 1) - GJR GARCH(1, 1) No
ETH ARIMA(1, 0, 1) - GJR GARCH(1, 1) Yes
XRP ARIMA(1, 0, 1) - GJR GARCH(1, 1) Yes
SOL ARIMA(1, 0, 1) - GJR GARCH(1, 1) Yes
BNB ARIMA(0, 0, 1) - GJR GARCH(1, 1) No

Note: This table reports the models that were selected using the Akaike information criterion for
the cryptocurrencies BTC, ETH, XRP, SOL and BNB.

2.4 Quantile and Conditional Quantile Estimations

Building on the selected univariate models, according to Reboredo and
Ugolini (2016), the estimation of unconditional quantiles used in VaR esti-
mation for the returns of assets occurs as follows.

VaRβ ,t(X) = qxt
β ,t = µt +σtF−1

υ ,η(β ), (7)

where F−1
υ ,η(β ) is the β -quantile of the skewed Student-t distribution and µt ,

σt , υ and η are obtained from estimated models in equations (5) and (6).
Reboredo and Ugolini (2016) point out that in analysis of financial risk,

the Value-at-Risk (VaR) is calculated for low values of α , normally for 5%
and 1%. These significance levels are widely acknowledged and commonly
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accepted as standard in academic literature (Müller et al., 2022; Trucíos,
2019; Ardia et al., 2019; Müller and Righi, 2018).

Following Reboredo and Ugolini (2016), the α-quantile of an asset return
distribution for a given β -quantile of another asset return given by P(yt ⩽

qyt |xt
α,β ,t |xt ⩽ qxt

β ,t) = α can be calculated as

qyt |xt
α,β ,t = F−1

yt |xt⩽qxt
β ,t
(α), (8)

where F−1
yt |xt⩽qxt

β ,t
(α) denotes the inverse distribution of yt conditional on xt ⩽

qxt
β ,t .

To estimate the conditional quantiles for assets’ returns distribution, we
can employ copula functions for the estimation of the joint distribution func-
tion:

P(yt ⩽ qyt |xt
α,β ,t |xt ⩽ qxt

β ,t) =
Fyt xt (q

yt |xt
α,β ,t ,q

xt
β ,t)

Fxt (q
xt
β ,t)

= α. (9)

Using the Sklar (1959) Theorem, we can express the joint distribution
function, that is, equation (9), in terms of a Copula function (C), where C(FX (x),FY (y))=
FXY (x,y) and Fxt (q

xt
β ,t) = β . Therefore, the equation (9) can be rewritten as

C(Fyt (q
yt |xt
α,β ,t),β ) = αβ . (10)

Inverting the Copula function (Equation (10)) for given values of α and
β , we obtain an estimated value for Fyt (q

yt |xt
α,β ,t), that is, F̂yt (q

yt |xt
α,β ,t). Then, as in

Reboredo and Ugolini (2016), by inverting the marginal distribution function
of yt , the conditional quantile is obtained as

qyt |xt
α,β ,t = F−1

yt (F̂yt (q
yt |xt
α,β ,t)). (11)

In this work we use a t-copula to construct the bivariate distributions.
As discussed by Demarta and McNeil (2005), the t-copula (Embrechts et al.,
2001; Fang and Fang, 2002), embodies the underlying dependence structure
found within a multivariate t distribution. This model has garnered significant
attention recently, particularly in the modeling multivariate financial return
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data. Recent studies, (e.g., Breymann et al., 2003), demonstrated that the em-
pirical fit of the t-copula generally surpasses that of the Gaussian copula,
which represents the dependence structure of the multivariate normal distri-
bution. One rationale for this superiority lies in the t-copula’s ability to more
accurately capture the phenomenon of dependent extreme values, commonly
observed in financial return data.

Following Karimalis and Nomikos (2018), we rescale the CoVaRα,β ,t
measure using the fitted conditional mean µs,t and the standard deviation σs,t
of Ry,t , which are obtained, respectively, from the estimated models in equa-
tions (5) and (6). The CoVaRα,β ,t is calculated as follows

CoVaRα,β ,t(Y |X) = µs,t +σs,tq
yt |xt
α,β ,t . (12)

3. Data Description

This section describes the database, which is made up of intraday data
sampled at 5-minute frequency, on asset returns starting on 2020-08-11 and
ending on 2023-10-31, for the following cryptocurrencies: Bitcoin (BTC),
Ethereum (ETH), Ripple (XRP), Solana (SOL) and Binance Coin (BNB) 1.
An important note is that due to the unavailability of cryptocurrencies mea-
sured in US dollars, we chose USDT as the conversion currency for our data.
Tether (USDT) is a cryptocurrency (stablecoin) backed by the US dollar, and
thus serves as a USD price reference for the cryptocurrency market.

Table 2 summarizes the descriptive statistics of the chosen assets and Fig-
ure 1 shows the evolution of the returns of the cryptocurrencies. The descrip-
tive statistics support the perception of the high tail risk associated with cryp-
tocurrencies, due to the high kurtosis values observed, and also the notable
asymmetry in returns.

4. Empirical Results

First, we will analyze the VaR and CoVaR estimates for the Girardi and
Ergün (2013) and Adrian and Brunnermeier (2016) models, as well as the
results of Kolmogorov–Smirnov (KS) bootstrapping test for the equality be-
tween conditional and unconditional assets return quantiles. Next, the back-
testing results for both models will be discussed. In the following sections,
we analyze only the results estimated with 5% quantile. The results for the
1% quantile are displayed in A.

1Data on cryptocurrency returns was sourced from binance.com
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Table 2
Descriptive Statistics for cryptocurrencies

BTC ETH XRP SOL BNB
Mean (%) 0.000 0.000 0.000 0.001 0.001
Std (%) 0.223 0.284 0.391 0.464 0.299
Skew -0.424 -0.285 -1.647 0.367 -0.314
Kurt 94.264 152.597 186.114 63.907 90.605
Min. -10.415 -15.901 -24.587 -18.222 -11.831
Quantile 5% -0.294 -0.379 -0.470 -0.624 -0.395
Median 0.000 0.000 0.000 0.000 0.000
Quantile 95% 0.296 0.382 0.463 0.620 0.389
Max. 8.987 16.463 20.105 18.032 14.333

Note: This table reports mean, standard deviation, skewness, kurtosis, minimum, quantile of
5%, median, quantile of 95% and maximum for the 5-minute returns on Bitcoin, Ethereum,
Ripple, Solana and Binance Coin during the period of 2020-08-11 to 2023-10-31.

Figure 1
Evolution of daily returns of the analyzed cryptocurrencies.
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The results are displayed in Tables 3 and 4 for the Girardi and Ergün
(2013) model version, and Tables 5 and 6 for the Adrian and Brunnermeier
(2016) model. Note that the averages of CoVaR, in the Girardi and Ergün
(2013) model, are, in general, greater than the averages of the Adrian and
Brunnermeier (2016) version. However, the values of minimum, skewness
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and kurtosis are more “conservative” in the Girardi and Ergün (2013) model
than in the Adrian and Brunnermeier (2016) model.

Comparing these two approaches, Mainik and Schaanning (2014) found
out that the CoVaR from Girardi and Ergün (2013) model, CoVaRα,β (Y |X),
presents properties of continuity and monotonicity with respect to the depen-
dence parameter.

According to Girardi and Ergün (2013), the interpretation and properties
of the risk measure appear to be more meaningful and practical when consid-
ering the event that R j

t ⩽ VaR j
q,t . Furthermore, unlike the Adrian and Brun-

nermeier (2016) model, the time-varying correlation implementation of the
GARCH model allows the CoVaRα,β (Y |X) of asset y to have a time-varying
exposure to its VaR. This property makes it possible to detect and incorporate
the variation in links between cryptocurrencies into systemic risk analyses.

Analyzing the univariate VaR resuls, we found out that, on average, they
exhibit higher values than their respective conditional measures. For Waltz
et al. (2022), which also found these results when analyze BTC, ETH, LTC,
XMR, and XRP, this reflect the positive interdependence in the cryptocur-
rency market, in other words, the Conditional Value-at-Risk measure are driven
by a similar dynamic as the Value-at-Risk. The results for the 1% quantile in
A show that for quantiles lower than 5%, the results are analogous.

Table 3
VaR estimates - X ⩽ VaRα (X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
BTC -10.270 -0.357 -0.294 -0.036 0.277 -4.921 76.432
ETH -16.110 -0.441 -0.366 -0.057 0.346 -6.525 147.701
XRP -19.716 -0.602 -0.436 -0.135 0.571 -6.418 93.950
SOL -14.594 -0.767 -0.620 -0.178 0.560 -4.282 39.134
BNB -14.497 -0.466 -0.364 -0.090 0.394 -5.500 79.609

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of VaRα (X) results using the (Girardi and Ergün, 2013)
method. The α-quantile is 5%.

4.1 Testing the Effects of the Cryptocurrencies Quantiles on Other As-
sets Quantiles

Following Reboredo and Ugolini (2016), we estimated the impact be-
tween quantile assets returns obtained using the Girardi and Ergün (2013)
model by testing the hypothesis of equality between conditional and uncondi-
tional assets return quantiles. The hypotheses can be summarized as follows:
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Table 4
Conditional Value-at-Risk - CoVaRα,β (Y |X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
ETH|BTC -36.238 -0.970 -0.803 0.414 0.765 -6.560 150.145
XRP|BTC -45.098 -1.323 -0.959 0.034 1.262 -6.571 100.203
SOL|BTC -36.757 -1.717 -1.382 -0.025 1.272 -4.366 41.398
BNB|BTC -34.429 -1.088 -0.850 1.013 0.926 -5.513 79.967
BTC|ETH -20.470 -0.763 -0.627 0.377 0.592 -4.852 73.820
XRP|ETH -42.213 -1.286 -0.933 -0.156 1.223 -6.527 98.170
SOL|ETH -36.881 -1.755 -1.415 -0.370 1.293 -4.327 40.393
BNB|ETH -32.216 -1.070 -0.837 -0.083 0.909 -5.466 78.037
BTC|XRP -24.719 -0.794 -0.647 9.778 0.668 -4.434 67.321
ETH|XRP -35.199 -0.982 -0.808 9.908 0.814 -5.884 122.974
SOL|XRP -35.345 -1.538 -1.230 9.672 1.195 -4.374 43.312
BNB|XRP -29.905 -0.997 -0.777 9.523 0.890 -5.125 69.807
BTC|SOL -21.938 -0.782 -0.640 13.117 0.667 -3.959 55.179
ETH|SOL -37.250 -1.017 -0.838 12.768 0.842 -5.742 120.816
XRP|SOL -41.195 -1.166 -0.854 11.166 1.152 -6.166 91.079
BNB|SOL -31.625 -0.972 -0.757 12.505 0.872 -4.927 66.304
BTC|BNB -22.786 -0.828 -0.680 -0.085 0.640 -4.902 75.571
ETH|BNB -36.597 -1.036 -0.860 -0.135 0.811 -6.492 145.746
XRP|BNB -41.785 -1.263 -0.916 -0.288 1.195 -6.562 99.143
SOL|BNB -31.150 -1.624 -1.313 -0.376 1.185 -4.263 38.800

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of CoVaRα,β (Y |X) results using the (Girardi and Ergün,
2013) method. The α-quantile and β -quantile are both 5%. For the estimation, we use a
t-copula.

Table 5
VaR estimates - X = VaRα (X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
BTC -90.709 -0.286 -0.219 -0.178 0.591 -91.707 11460.269
ETH -143.817 -0.370 -0.284 -0.228 0.900 -108.768 15064.272
XRP -149.170 -0.470 -0.335 -0.276 1.180 -64.251 6109.092
SOL -93.465 -0.615 -0.474 -0.385 0.894 -45.464 3411.802
BNB -120.949 -0.384 -0.284 -0.231 0.830 -81.826 9738.395

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of VaRα (X) results using the (Adrian and Brunnermeier,
2016) method. The α-quantile is 5%.
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Table 6
Conditional Value-at-Risk - CoVaR=

α,β (Y |X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
ETH|BTC -159.124 -0.494 -0.385 -0.314 1.020 -97.628 12666.994
XRP|BTC -180.109 -0.618 -0.461 -0.383 1.354 -71.447 7433.097
SOL|BTC -156.754 -0.799 -0.620 -0.493 1.249 -62.880 6096.773
BNB|BTC -144.988 -0.503 -0.384 -0.312 0.993 -86.279 10464.905
BTC|ETH -136.418 -0.392 -0.306 -0.250 0.860 -104.256 14074.276
XRP|ETH -210.091 -0.627 -0.469 -0.387 1.474 -81.879 9515.874
SOL|ETH -195.317 -0.813 -0.628 -0.498 1.423 -75.077 8291.573
BNB|ETH -170.887 -0.509 -0.388 -0.315 1.109 -97.060 12660.733
BTC|XRP -113.596 -0.389 -0.293 -0.242 0.832 -74.462 8014.125
ETH|XRP -169.951 -0.504 -0.379 -0.312 1.171 -85.350 10213.489
SOL|XRP -150.766 -0.787 -0.596 -0.484 1.307 -51.795 4313.732
BNB|XRP -150.776 -0.506 -0.372 -0.308 1.088 -73.162 8047.682
BTC|SOL -83.570 -0.393 -0.306 -0.244 0.634 -68.517 7058.297
ETH|SOL -129.924 -0.507 -0.392 -0.311 0.918 -80.582 9320.901
XRP|SOL -145.516 -0.623 -0.459 -0.372 1.231 -55.210 4708.639
BNB|SOL -116.989 -0.512 -0.384 -0.306 0.893 -64.307 6492.203
BTC|BNB -113.762 -0.402 -0.310 -0.255 0.777 -85.750 10393.353
ETH|BNB -165.164 -0.516 -0.395 -0.325 1.084 -93.478 11966.246
XRP|BNB -187.359 -0.632 -0.463 -0.386 1.385 -69.801 7377.552
SOL|BNB -169.063 -0.824 -0.626 -0.506 1.340 -59.554 5686.241

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of the CoVaR=

α,β (Y |X) results using the (Adrian and
Brunnermeier, 2016) method. We use a rolling window of 60-minute realized volatility of BTC,
ETH, XRP, SOL and BNB as covariates in this model. The α-quantile and the β -quantile are
both 5%.

H0 : qyt
α,t = qyt |xt

α,β ,t ,

H1 : qyt
α,t ̸= qyt |xt

α,β ,t .

The null hypothesis will be rejected if the conditional and unconditional
quantiles are distinguishable, that is, if changes in the returns of the asset x
have an impact on the returns of the asset y.

The Kolmogorov–Smirnov (KS) bootstrapping test, introduced by Abadie
(2002), can be useful for test these hypotheses. According to Abadie (2002),
this test measures the difference between two quantile functions, without con-
sidering any underlying distribution function. The test can be computed as
follows:

KSmn =

(
mn

m+n

) 1
2

supx|Fm(x)−Gn(x)|, (13)
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where Fm(x) and Gn(x) are, respectively, the cumulative conditional and un-
conditional quantile distribution for the asset y, and n and m denote the size
of the two samples.

Through the Kolmogorov-Smirnov (KS) test, the interconnections be-
tween the assets in a determinate market can be tested at the quantile levels.
Note that this is an important feature, since more accurate results on risk mea-
sures, as highlighted by Walther et al. (2019), is what traders and investors are
looking for in portfolio analysis and risk management.

The Kolmogorov-Smirnov (KS) bootstrapping test results are displayed
in Table 7. The greatest differences between the quantile functions, as indi-
cated by the KS test, are exhibited by SOL|ETH, SOL|BTC and XRP|BTC,
whose values are, respectively, 0.560, 0.546 and 0.521. On the other hand, the
combinations XRP|SOL, BNB|SOL and BTC|SOL show the smallest differ-
ences between the quantile functions, which are, respectively, 0.421, 0.436
and 0.448.

However, the results indicate that the differences between the uncondi-
tional and conditional returns of all cryptocurrencies are statistically signifi-
cant at the 1% level. These results indicated the presence of spillover effects
in the 5% quantile, i.e., a dependence in the lower tail among BTC, ETH,
XRP, SOL and BNB. These high levels of connections between assets on the
cryptocurrencies market are in agreement with the literature (Koutmos, 2018;
Katsiampa et al., 2019; Katsiampa, 2019, Akhtaruzzaman et al., 2022, among
others).

The results for the 1% quantile (A) are still statistically significant at the
1% level. However, the greatest values are exhibited by SOL|ETH, SOL|BTC
and BNB|BTC, whose values are, respectively, 0.680, 0.662 and 0.642. While,
the smallest results are 0.526 for XRP|SOL, 0.532 for BTC|ETH and, 0.559
for BNB|SOL and ETH|BTC.

5. Backtesting

For Karimalis and Nomikos (2018), if a risk model is well-specified, the
proportion of exceedances should be approximately equal to the confidence
level and these exceedances must occur independently. Girardi and Ergün
(2013) point out that, with the change in definition of the systemic risk mea-
sure, we can estimate CoVaR similarly to VaR estimates for periods in which
Rx

t ⩽VaRx
q,t using Christoffersen (1998) and Kupiec (1995) tests.

As in Girardi and Ergün (2013), the backtesting is computed using hit
sequence functions. First, for a sample with N observations where t = 1,...,N,
we compare the past ex-ante VaR forecasts with the ex-post losses for each
asset x. The hit sequence function of violations is denoted as follows.
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Table 7
Results of the Kolmogorov-Smirnov (KS) Bootstrapping Test

Test Statistics
ETH|BTC 0.483***
XRP|BTC 0.521***
SOL|BTC 0.546***
BNB|BTC 0.517***
BTC|ETH 0.460***
XRP|ETH 0.507***
SOL|ETH 0.560***
BNB|ETH 0.510***
BTC|XRP 0.462***
ETH|XRP 0.476***
SOL|XRP 0.465***
BNB|XRP 0.459***
BTC|SOL 0.448***
ETH|SOL 0.486***
XRP|SOL 0.421***
BNB|SOL 0.436***
BTC|BNB 0.503***
ETH|BNB 0.518***
XRP|BNB 0.501***
SOL|BNB 0.519***

Note: This table shows the test statistics obtained by Kolmogorov-Smirnov (KS) bootstrapping
test for the (Girardi and Ergün, 2013) model version. The α-quantile and the β -quantile are
both 5%. The p-values which are calculated with standard errors computed by bootstrap and are
represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and ∗p < 0.10.

Ix
t+1 =

{
1 if Rx

t+1 ⩽VaRx
q,t+1

0 if Rx
t+1 >VaRx

q,t+1,
(14)

According to Girardi and Ergün (2013), if the loss of the asset x on that
day was larger than its estimated predicted VaR for that day, the hit sequence
(Ix

t+1) returns a 1 and, otherwise, the hit function returns zero.

Using those days in which Rx
t+1 ⩽ VaRx

q,t+1, that is, when institution x
is in financial distress as a sub-sample, a second hit sequence function of
violations can be computed comparing the past ex-ante CoVaR forecasts with
the past ex-post losses of the asset x as follows:
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t+1 =

{
1 if Ry

t+1 ⩽CoVaRy|x
q,t+1

0 if Ry
t+1 >CoVaRy|x

q,t+1,
(15)

As in Girardi and Ergün (2013), the second hit sequence, Iy|x
t+1, has the

number of observations equal to the number of violations of the first hit se-
quence. The hit function Iy|x

t+1 returns 1 if the asset x was in financial distress
and the loss of the asset y on that day was greater than its predicted measure
CoVaRy|x

q,t+1 and the function returns zero otherwise.
To analyze the percentage of violations in the Girardi and Ergün (2013)

model, we also estimate the Adrian and Brunnermeier (2016) model, which
is the most popular CoVaR method, and compare the results of backtesting
the VaR and CoVaR estimates between these models. Tables 8 and 9 display
the results for, respectively, VaR and CoVaR backtesting.

First, the results of the VaR backtesting. It should be noted that, for all
cryptocurrencies, the results of the Adrian and Brunnermeier (2016) model
are very close to the α quantile chosen, which is α = 5%. These results are to
be expected, since these versions of the model are estimated with quantile re-
gressions and, for the chosen α quantile, we expect to see returns below VaRi

on 100α percent of the period. However, for the Girardi and Ergün (2013)
model, which is estimate using copula, the results are even lower than the
Adrian and Brunnermeier (2016) model: 2.649% for BTC, 2.879% for ETH,
2.260% for XRP, 2.487% for SOL and 2.594% for BNB.

Now, we analyze the CoVaR results. Note that, for all the possible combi-
nations between the analyzed cryptocurrencies, Girardi and Ergün (2013)´s
CoVaR has less violations when compared with Adrian and Brunnermeier
(2016)´s CoVaR. A possible explanation for this comes from Mainik and
Schaanning (2014), which highlighted the fact that, by definition, the CoVaR
of Girardi and Ergün (2013) uses X ⩽ VaRα (X) as financial distress of X ,
this way the violation rate expected for CoVaRα,β , when X is in financial
distress is equal to 1− β . While, by construction, the Adrian and Brunner-
meier (2016)´s CoVaR=

α,β uses X = VaRα (X) as financial distress of X . This
assumption makes the violation rate 1−β under the most benign scenario.

Another point is highlighted by Girardi and Ergün (2013), who argue that
CoVaR=

α,β depends on how well the approximation of FY |X=VaRq(X) in FY |X=x
is performed. Mainik and Schaanning (2014) shows that, even for very basic
models, this approximation fails, resulting in underestimates of the contagion
effect from X to Y . Mainik and Schaanning (2014) add that this underestima-
tion of CoVaR=

α,β is greater in markets with strong correlation and therefore
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high systemic risk, which is the case with the cryptocurrency market. These
problems explain the higher violation rates for CoVaR=

α,β in Table 9.
The results reinforce the better accuracy of the Girardi and Ergün (2013)

model even for the univariate risk measure (VaR) when compared to the
quantile regression approach used in the Adrian and Brunnermeier (2016)
method. Another interesting found is that for BTC|ETH (6.215%), BTC|XRP
(6.431%), BTC|SOL (5.890%) and BTC|BNB (6.194%), the CoVaR of Gi-
rardi and Ergün (2013) has a percentage of violations approximately equal
to the 5% quantile. These results show how accurate this method can be for
analyzing BTC conditional on one of these assets in a portfolio construction
case, for example. Again, a similar behavior can be observed in the 1% quan-
tile results. See A.

Table 8
Backtesting Results (%) for Value-at-Risk

X ⩽ VaRα(X) X = VaRα(X)
BTC 2.649 4.999
ETH 2.879 4.999
XRP 2.260 4.999
SOL 2.487 4.999
BNB 2.594 4.999

Note: This table reports the violations for the VaR estimates for the α = 5%.

6. Final Remarks

For Katsiampa et al. (2019), as the cryptocurrency market evolves, it is
important to develop our understanding of the behavior of the connection
between cryptocurrencies. Therefore, in this article, we estimate the Con-
ditional Value-at-Risk (CoVaR) and Value-at-Risk (VaR) using a 5-minute
frequency for BTC, ETH, XRP, SOL and BNB. To do this, we compared
the CoVaR=

α,β (Y |X) of Adrian and Brunnermeier (2016) and the modified
CoVaRα,β (Y |X) of Girardi and Ergün (2013) measures of Conditional VaR
for measuring systemic risk.

We found that, for the Girardi and Ergün (2013) model, the average CoVaRα,β (Y |X)
estimate is generally higher than the average CoVaR=

α,β (Y |X) of Adrian and
Brunnermeier (2016). In addition, the VaR results for both methods show
higher values on average than their respective conditional measures, which
reflects the positive interdependence in the cryptocurrency market.

The Kolmogorov-Smirnov (KS) bootstrapping test, which tests whether
the returns of asset y are affected by the returns of asset x, was carried out for
estimates of the Girardi and Ergün (2013) model. The results show that the
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Table 9
Backtesting Results (%) for Conditional Value-at-Risk

CoVaRα,β (Y |X) CoVaR=
α,β (Y |X)

ETH|BTC 10.825 38.268
XRP|BTC 17.447 39.190
SOL|BTC 27.692 53.922
BNB|BTC 9.710 32.148
BTC|ETH 6.215 21.835
XRP|ETH 17.169 38.902
SOL|ETH 27.487 55.095
BNB|ETH 9.559 33.219
BTC|XRP 6.431 18.763
ETH|XRP 10.574 31.181
SOL|XRP 25.879 48.083
BNB|XRP 9.959 29.533
BTC|SOL 5.890 16.724
ETH|SOL 9.441 28.255
XRP|SOL 15.378 32.053
BNB|SOL 8.657 26.548
BTC|BNB 6.194 19.553
ETH|BNB 10.043 34.617
XRP|BNB 16.067 38.138
SOL|BNB 25.108 51.920

Note: This table compares the backtesting results for the two models studied, CoVaRα,β (Y |X)
and CoVaR=

α,β (Y |X). The α-quantile and the β -quantile are both 5%. The results are present in
violation percentage.

influence of the returns of one cryptocurrency on the returns of another cryp-
tocurrency occurs in all possible combinations in our paper, which indicates
a high level of connections in these cryptocurrencies.

Finally, we compared the estimates of the Girardi and Ergün (2013) and
Adrian and Brunnermeier (2016) models with a backtesting procedure. The
results of Girardi and Ergün (2013) show lower percentage of violations than
Adrian and Brunnermeier (2016), which indicates a more conservative fit of
VaR and CoVaR in this model. This is because Girardi and Ergün (2013)
assume X ⩽ VaRα(X) as financial distress in X , while Adrian and Brunner-
meier (2016) assume X = VaRα(X). The assumption X = VaRα(X) leads the
model to capture only the most benign scenario and therefore underestimates
CoVaRα,β (Y |X).

As pointed out by Girardi and Ergün (2013) and Waltz et al. (2022), mea-
suring systemic risk has great importance for regulatory and risk management
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purposes. Therefore, it is important to understand the difference between sys-
temic risk measures in the literature in order to implement more accurate
methods. The cryptocurrency market, which is growing rapidly and known
for its high volatility, has particularly caught the interest of regulators and
researchers.

In this vein, our analyses show that using the Girardi and Ergün (2013)
method, which is a more appropriate model for measuring systemic risk, can
lead to better estimates in a market with a high level of lower tail connec-
tivity. We hope that our paper will have important practical implications for
investors, both for portfolio allocation and risk management, and also for pol-
icymakers during periods of crisis and non-crisis.
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A. Results for α = β = 1%

Table A1
VaR estimates - X ⩽ VaRα (X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
BTC -16.714 -0.597 -0.491 -0.061 0.462 -4.909 75.923
ETH -26.050 -0.728 -0.604 -0.094 0.570 -6.505 146.515
XRP -33.156 -1.015 -0.736 -0.229 0.960 -6.476 95.974
SOL -24.169 -1.276 -1.032 -0.296 0.931 -4.270 38.890
BNB -23.201 -0.758 -0.594 -0.148 0.641 -5.491 79.208

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of VaRα (X) results using the (Girardi and Ergün, 2013)
method. The α-quantile is 1%.

Table A2
Conditional Value-at-Risk - CoVaRα,β (Y |X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
ETH|BTC -67.333 -1.868 -1.549 -0.230 1.466 -6.521 147.497
XRP|BTC -92.230 -2.770 -2.010 -0.613 2.625 -6.552 99.084
SOL|BTC -71.396 -3.559 -2.874 -0.812 2.607 -4.296 39.607
BNB|BTC -71.230 -2.326 -1.820 -0.316 1.969 -5.494 79.305
BTC|ETH -38.864 -1.469 -1.208 -0.101 1.137 -4.874 74.531
XRP|ETH -85.956 -2.629 -1.907 -0.567 2.490 -6.539 98.384
SOL|ETH -73.360 -3.695 -2.985 -0.820 2.702 -4.281 39.220
BNB|ETH -67.162 -2.246 -1.758 -0.411 1.901 -5.475 78.493
BTC|XRP -46.027 -1.664 -1.362 8.380 1.314 -4.751 71.367
ETH|XRP -70.738 -2.008 -1.660 8.777 1.596 -6.311 138.023
SOL|XRP -61.658 -3.021 -2.433 8.204 2.245 -4.313 40.309
BNB|XRP -61.399 -2.057 -1.606 8.339 1.763 -5.373 75.404
BTC|SOL -43.533 -1.621 -1.333 12.675 1.283 -4.603 67.561
ETH|SOL -76.176 -2.140 -1.773 12.085 1.697 -6.272 137.688
XRP|SOL -75.638 -2.290 -1.668 9.574 2.189 -6.406 95.405
BNB|SOL -59.659 -1.966 -1.537 11.725 1.686 -5.309 74.252
BTC|BNB -48.166 -1.770 -1.455 -0.181 1.369 -4.898 75.388
ETH|BNB -76.024 -2.174 -1.804 -0.283 1.703 -6.483 145.216
XRP|BNB -85.534 -2.606 -1.891 -0.594 2.465 -6.564 99.135
SOL|BNB -62.378 -3.284 -2.656 -0.760 2.395 -4.258 38.672

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of CoVaRα,β (Y |X) results using the (Girardi and Ergün,
2013) method. The α-quantile and β -quantile are both 1%. For the estimation, we use a
t-copula.
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Table A3
VaR estimates - X = VaRα (X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
BTC -162.216 -0.523 -0.405 -0.332 1.054 -92.003 11526.415
ETH -236.245 -0.663 -0.518 -0.424 1.484 -107.254 14729.768
XRP -266.932 -0.840 -0.596 -0.491 2.135 -62.960 5876.553
SOL -166.043 -1.081 -0.835 -0.679 1.565 -46.333 3537.974
BNB -222.918 -0.676 -0.496 -0.401 1.514 -84.093 10173.977

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of VaRα (X) results using the (Adrian and Brunnermeier,
2016) method. The α-quantile is 1%.

Table A4
Conditional Value-at-Risk - CoVaR=

α,β (Y |X)

Min. (%) Mean (%) Median (%) Max. (%) Std (%) Skew Kurt
ETH|BTC -280.156 -0.899 -0.705 -0.580 1.798 -96.674 12470.133
XRP|BTC -341.064 -1.125 -0.829 -0.678 2.557 -71.866 7516.273
SOL|BTC -276.271 -1.427 -1.105 -0.878 2.228 -61.465 5860.719
BNB|BTC -267.533 -0.896 -0.678 -0.548 1.827 -86.732 10561.200
BTC|ETH -240.884 -0.714 -0.560 -0.460 1.521 -103.742 13962.998
XRP|ETH -383.832 -1.140 -0.845 -0.691 2.713 -80.584 9254.589
SOL|ETH -333.260 -1.451 -1.121 -0.891 2.476 -71.858 7703.520
BNB|ETH -308.149 -0.907 -0.688 -0.556 2.004 -96.394 12528.701
BTC|XRP -201.791 -0.690 -0.518 -0.429 1.479 -74.346 7990.070
ETH|XRP -292.309 -0.869 -0.656 -0.542 2.010 -85.901 10323.397
SOL|XRP -263.297 -1.366 -1.030 -0.834 2.283 -51.689 4307.614
BNB|XRP -266.810 -0.861 -0.630 -0.516 1.898 -75.520 8499.403
BTC|SOL -151.386 -0.710 -0.554 -0.443 1.138 -69.490 7226.869
ETH|SOL -218.973 -0.900 -0.705 -0.568 1.551 -80.092 9226.616
XRP|SOL -272.386 -1.109 -0.811 -0.655 2.264 -57.038 5003.169
BNB|SOL -210.454 -0.887 -0.666 -0.533 1.578 -66.840 6935.078
BTC|BNB -215.656 -0.725 -0.552 -0.452 1.464 -87.118 10663.704
ETH|BNB -304.858 -0.914 -0.693 -0.565 1.996 -94.094 12090.496
XRP|BNB -361.645 -1.136 -0.817 -0.668 2.634 -72.173 7822.938
SOL|BNB -310.097 -1.442 -1.085 -0.866 2.433 -61.136 5938.128

Note: This table reports the minimum (%), mean (%), median (%), maximum (%), standard
deviation (%), skewness and kurtosis of the CoVaR=

α,β (Y |X) results using the (Adrian and
Brunnermeier, 2016) method. We use a rolling window of 60-minute realized volatility of BTC,
ETH, XRP, SOL and BNB as covariates in this model. The α-quantile and the β -quantile are
both 1%.
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Table A5
Results of the Kolmogorov-Smirnov (KS) Bootstrapping Test

Test Statistics
ETH|BTC 0.559***
XRP|BTC 0.633***
SOL|BTC 0.662***
BNB|BTC 0.642***
BTC|ETH 0.532***
XRP|ETH 0.609***
SOL|ETH 0.680***
BNB|ETH 0.628***
BTC|XRP 0.580***
ETH|XRP 0.585***
SOL|XRP 0.573***
BNB|XRP 0.584***
BTC|SOL 0.566***
ETH|SOL 0.609***
XRP|SOL 0.526***
BNB|SOL 0.559***
BTC|BNB 0.614***
ETH|BNB 0.623***
XRP|BNB 0.606***
SOL|BNB 0.624***

Note: This table shows the test statistics obtained by Kolmogorov-Smirnov (KS) bootstrapping
test for the (Girardi and Ergün, 2013) model version. The α-quantile and the β -quantile are
both 1%. The p-values which are calculated with standard errors computed by bootstrap and are
represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and ∗p < 0.10.

Table A6
Backtesting Results (%) for Value-at-Risk

X ⩽ VaRα(X) X = VaRα(X)
BTC 0.574 1.000
ETH 0.633 0.999
XRP 0.430 1.000
SOL 0.457 1.000
BNB 0.513 1.000

Note: This table reports the violations for the VaR estimates for the α = 1%.
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Backtesting Results (%) for Conditional Value-at-Risk
CoVaRα,β (Y |X) CoVaR=

α,β (Y |X)

ETH|BTC 6.944 30.428
XRP|BTC 11.368 32.024
SOL|BTC 15.792 45.229
BNB|BTC 5.195 22.629
BTC|ETH 3.922 16.849
XRP|ETH 11.438 32.486
SOL|ETH 15.453 47.975
BNB|ETH 4.855 24.002
BTC|XRP 4.605 14.560
ETH|XRP 7.973 24.926
SOL|XRP 16.838 42.233
BNB|XRP 6.667 22.357
BTC|SOL 4.199 12.050
ETH|SOL 7.041 21.707
XRP|SOL 11.111 25.960
BNB|SOL 6.395 18.163
BTC|BNB 4.378 15.657
ETH|BNB 7.258 26.736
XRP|BNB 11.924 31.994
SOL|BNB 15.438 43.456

Note: This table compares the backtesting results for the two models studied, CoVaRα,β (Y |X)
and CoVaR=

α,β (Y |X). The α-quantile and the β -quantile are both 1%. The results are present in
violation percentage.
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