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ABSTRACT  

 

Outlier is an observation that has moved away from most likely value to the point of not belonging to the 
mathematical model (functional and stochastic) stipulated. Failure to identify an outlier can jeopardise 
the reliability level of a system.Outliers must be appropriately treated to ensure the quality of data 
analysis. Data snooping outlier statistical testing procedure has been applied in Geodesy.The test 
procedure is liable to decision errors, such as Type I error (saying that a measure is an outlier when in 
fact it is not).It has been demonstrated that to effectively user-control the type I error rate, critical values 
must be computed numerically by means of Monte Carlo. We provide a model based on an artificial 
neural network. The results prove that the proposed model can be used to compute the critical values 
and, therefore, it is no longer necessary to run the Monte Carlo-based critical value every time the quality 
control is performed by means of data snooping.Details of that work can be found in Rofatto et al. (2021). 

Keywords: Neural Network. Reliability. Monte Carlo. Quality Control. Hypothesis Testing. 

 

1 INTRODUCTION 

Data Snooping is one of the most best-established methods for processing observations 

contaminated by outliers. It has also become very popular and is routinely used in adjustment 

computations (GHILANI, 2017). This testing procedure consists of screening each individual 

observation for the presence of an outlier. The test statistic employed in the data snooping is 

given by a normalised least-squares residual, and it is well-known as 𝑤-𝑡𝑒𝑠𝑡 (BAARDA, 1968). 

The 𝑤-𝑡𝑒𝑠𝑡, which is based on a linear mean-shift model, can also be derived as a particular 

case of the generalised likelihood ratio test (TEUNISSEN, 2006). 
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In principle, 𝑤-𝑡𝑒𝑠𝑡 only makes a decision between the null, denoted by ℋ0, and a single 

alternative hypothesis, say ℋ𝒶 . The model under the null hypothesis is often formulated under 

the condition of absence of outliers, whereas the alternative model is proposed when there is 

an outlier in the dataset. In order to verify whether the alternative hypothesis is significant or 

not (i.e., whether we accept or reject the null hypothesis), the 𝑤-𝑡𝑒𝑠𝑡 statistic is compared with 

its critical values (i.e., the percentile of its probability distribution), which can be taken from 

well-known standard normal distribution. In that case, rejection of null hypothesis ℋ0 

automatically implies acceptance of the alternative hypothesis ℋ𝒶, and vice versa 

(IMPARATO; TEUNISSEN; TIBERIUS, 2019). 

In that case, the probability level associated with data snooping is restrict to Type I error 

(rejection of a true null hypothesis) and Type II error (acceptance of a false null hypothesis). 

The probability of committing the type I error is well-known significance level or type I error rate 

(denoted by 𝛼0), which is controlled by the user. However, data snooping is by nature a 

procedure that involves multiple hypothesis testing (TEUNISSEN; IMPARATO; TIBERIUS, 

2017; ZAMINPARDAZ; TEUNISSEN, 2019). The multiple hypothesis testing problem occurs 

when a number of individual hypothesis tests are considered simultaneously. This means 

testing ℋ0 against ℋ𝑎
(1)

, ℋ𝑎
(2)

,…, ℋ𝑎
(𝑛)

 (LEHMANN, 2012). 

To make it clearer, let's start by assuming that the individual tests are independent and 

the significance level for each test (𝛼𝑖) be 𝛼0; then the probability that one of the tests is 

rejecting the null hypothesis is given by (LEHMANN; LÖSLER, 2016): 

 
α′ = 1 − ∏(1 − α𝑖)

𝑛

𝑖=1

= 1 − (1 − α0)𝑛 
(1) 

which 𝛼′ is the the probability of making one or more false positives, or type I errors, when 

performing multiple hypotheses tests. It is known as family-wise error rate (FWER). 

In this case, the significance level or the type I error rate of individual tests (𝛼0) no longer 

represents the error rate of the combined set of tests (denoted by 𝛼′). Therefore, we are 

interested in controlling 𝛼′. In this context, methods that deal with multiple alternative 

hypotheses are referred to as multiple comparison methods. Investigations on such methods 

are rare in geodetic applications, which, in a way, opens the way for research and applications. 

More details can be seen, for example, in (MILLER, 1981; SIMES, 1986; WRIGHT, 1992; 

SARKAR; CHANG, 1997; LEHMANN; ROMANO, 2005; ROM, 2013).  

One of the simplest methods employed to control the FWER is known as 𝑆̌idák correction 

𝑆̌idák (1967). The 𝑆̌idák correction is derived by assuming that the individual tests are 
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independent, as follows: 
 

 α0 = 1 − (1 − α′)
1
𝑛  (2) (2) 

 

The goal of the 𝑆̌idák correction in Equation (2) is to adjust 𝛼0 so that the significance 

level for the entire series of tests 𝛼′ is warranted. 𝑆̌idák correction produces a family-wise error 

rate of exactly 𝛼′ when the tests are independent from each other and all null hypotheses are 

true. In that case, the critical values for 𝑤-𝑡𝑒𝑠𝑡 statistic can be computed as follows: 

 

 

𝑘𝑠𝑖𝑑 = Φ𝑁
−1 [(1 −

α′

2
)

1
𝑛

] (3) 

 

with Φ𝑁
−1 being the inverse of the standard normal cumulative distribution. The number two in 

the denominator is because the 𝑤-𝑡𝑒𝑠𝑡 is two-sided test.  

In fact, however, the mathematical model promotes correlation between 𝑤-𝑡𝑒𝑠𝑡 test 

statistics. This means that we will always have some degree of correlation between the tests. 

If we neglect the correlation between the tests, we overestimate the critical values computed 

from 𝑆̌idák correction in Equation (3) (LEHMANN, 2013). 

In this contribution, we apply a procedure based on Monte Carlo simulation in order to 

obtain the critical values that considers the correlation between the 𝑤-𝑡𝑒𝑠𝑡 statistics. The 

drawback is that every time data snooping is run, Monte Carlo method is used to compute the 

critical values (ROFATTO et al., 2020b). To overcome this issue, here, on the other hand, we 

first compute a series of critical values for a fixed number of observations with pre-fixed 

correlation between the 𝑤-𝑡𝑒𝑠𝑡 statistics by using Monte Carlo. Then, a Supervised Back 

Propagation Neural Network (SBPNN) architecture was trained and tested using such critical 

values databases. The purpose of the SBPNN model is to suppress the use of Monte Carlo 

method when the data snooping is in play. Furthermore, we provide a MATLAB's flexible 

network object type (called SBPNN.mat) which allows anyone to obtain the critical values 

quickly and easily, in addition to ensuring good control of the type I error rate when applying 

Data Snooping. 

2 MATERIAL AND METHODS 

In total 1.200 critical values for Data Snooping test were computed and stored. For 

instance, Figure (1) shows an example of the behavior of the critical values for the extreme 

cases of having α′=0,001 and α′=0,5 in function of the number of observations n and 𝜌𝑤𝑖,𝑤𝑗.  
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Figure 1 – Critical values for Data Snooping computed by Monte Carlo method for 
α′=0,001 (a) and α′=0,5 (b). 

 
Fonte: Rofatto et al. (2021). 

 

In general, we can observe the following relationship Equation (4) e (5) (↑ means 

increase and ↓ decrease): 

 

 ↑ 𝜌𝑤𝑖,𝑤𝑗  → ↓ 𝑘̂ 𝑎𝑛𝑑 ↑ 𝑛 → ↑ 𝑘̂ 𝑜𝑟 ↓ 𝜌𝑤𝑖,𝑤𝑗 → ↑ 𝑘̂ 𝑎𝑛𝑑 ↓ 𝑛 → ↓ 𝑘̂ 
 

(4) 

 ↓ 𝜌𝑤𝑖,𝑤𝑗  𝑎𝑛𝑑 ↑ 𝑛 → ↑ 𝑘̂ 𝑜𝑟 ↑ 𝜌𝑤𝑖,𝑤𝑗  𝑎𝑛𝑑 ↓ 𝑛 → ↓ 𝑘̂  

 
(5) 

 

From Figure (1), we also observe that the critical values do not depend on of the size of 

samples n when 𝜌𝑤𝑖,𝑤𝑗>0,99. This fact was also presented by (YANG et al., 2013). We also 

note that for n>30 and for a given 𝜌𝑤𝑖,𝑤𝑗, the critical values are virtually constant. These 

datasets were used to build a neural network for computation the critical values for any 

correlation matrix 𝑅𝑤(Figure 2). Details of the neural network can be found in Rofatto et al. 

(2021). 
 

Figure 2 – Topology of the feed-forward neural network with Levenberg-Marquardt 
back-propagation algorithm for prediction of critical values. 
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Fonte: Rofatto et al. (2021). 

 
 

We considered ten geodetic networks for the experiments Figure (3), namely: five 

levelling networks (A, B, C, D and E), two horizontal networks (F and G) and three GNSS 

(Global Navigation Satellite System) baseline networks by static relative positioning method 

(H, I and J).  
 

Figure 3 - Geodetic Networks: observations are displayed in solid black line; repeated 
observations in dash line; the black triangles represent the control points, whereas the circles 

filled in red color are points of unknown coordinates. 

 
Fonte: Rofatto et al. (2021). 

 
The SBPNN-based critical values were obtained according to the following Equations (6) 

(7) (8) (9) (10): 

 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑒𝑎𝑛) =  𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑒𝑎𝑛|𝜌𝑤𝑖,𝑤𝑗|) (6) 

   

 
𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑒𝑎𝑛) =

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥|𝜌𝑤𝑖,𝑤𝑗|) + 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑒𝑎𝑛|𝜌𝑤𝑖,𝑤𝑗|)

2
 (7) 

 
 

 

 
𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑖𝑛) =

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥|𝜌𝑤𝑖,𝑤𝑗|) + 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑖𝑛|𝜌𝑤𝑖,𝑤𝑗|)

2
 

 

(8) 

 𝑘𝑆𝐵𝑃𝑁𝑁(𝑚𝑎𝑥𝑒𝑖𝑔) =  𝑘𝑆𝐵𝑃𝑁𝑁 (𝑝𝑐) 

 

(9) 
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𝑝𝑐 =  √
𝑚𝑎𝑥𝑒𝑖𝑔(𝑅𝑤)

𝑛
 

 

(10) 

where 𝐾𝑆𝐵𝑃𝑁𝑁(.) is the overall neural-network-based critical value. The subscript within the 

parenthesis corresponds to each criterion, as follows: (max/mean) corresponds to the mean 

of the critical values computed by the SBPNN-based critical value for the maximum 

𝑚𝑎𝑥|𝜌𝑤𝑖,𝑤𝑗| and mean 𝑚𝑒𝑎𝑛|𝜌𝑤𝑖,𝑤𝑗| absolute values of the correlation between the 𝑤-𝑡𝑒𝑠𝑡 

statistics; (max/min) the mean from the maximum 𝑚𝑎𝑥|𝜌𝑤𝑖,𝑤𝑗| and minimum 𝑚𝑖𝑛|𝜌𝑤𝑖,𝑤𝑗|; 

(mean) corresponds to the the SBPNN-based critical value for the mean 𝑚𝑒𝑎𝑛|𝜌𝑤𝑖,𝑤𝑗|; 

(𝑚𝑎𝑥𝑒𝑖𝑔) the SBPNN-based critical value obtained from the square root of the ration between 

the largest eigenvalue of the correlation matrix  𝑅𝑤 (signs of correlations are considered) and 

number of observations n. The largest eigenvalue represents the maximum amount of 

information of the 𝑅𝑤 and it can be easily obtained using Matlab's “eigs” command. In the 

context of principal component analysis (PCA), the maximum eigenvalue represents the 

largest possible variance. 

Obviously, the expressions above are computed for a given significance level (α′) and 

number of observations (n), as can be seen in Figure (2). In the next section, we evaluate each 

of these criteria. The goal is to investigate the extent to which the critical values computed by 

the Supervised Back-Propagation Neural Network (𝑘𝑆𝐵𝑃𝑁𝑁) deviate from the critical values 

computed by Monte Carlo method. 

3 RESULTS AND DISCUSSION 

Figure (4) shows that the higher the significance level (α′), the larger the error when 

applying the 𝑆̌idák correction 𝑘𝑠𝑖𝑑This is due to the fact that the correlation between the 𝑤-𝑡𝑒𝑠𝑡 

statistics is neglected by the 𝑆̌idák correction and, therefore, it serves as an upper bound for 

analyzing the error of the SBPNN method. 

In the case of the Network (A) and for significance levels lower than 10% (α′<0.1), (𝑘𝑆𝐵𝑃𝑁𝑁) for 

all criteria and 𝑆̌idák correction (𝑘𝑠𝑖𝑑) provided critical values practically equal to those obtained 

by the Monte Carlo method, with error less than 3% (Figure 9). However, the increase in the 

significance level (α′) has enlarged the error in the case of 𝑆̌idák correction, while the error for 

all criteria in the SPBNN method remained less than 3%. Similar results can be found for 

networks (E) and (F). 
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For the case of Network (B), the errors related to the SBPNN-based critical values for all 

criteria were less than 𝑆̌idák correction (𝑘𝑠𝑖𝑑). In that case, SBPNN for 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑒𝑎𝑛), 

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑖𝑛𝑛) and 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥𝑒𝑖𝑔)  had errors less than 6,5%, while 𝑘𝑠𝑖𝑑  reached 39% 

(α′=0,35). Among the criteria considered, the one based on the mean value 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑒𝑎𝑛) 

presented the highest error (22% for α′=0,35). Similar results can be found for network (G). 

For the case of Network (C), SBPNN for 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑒𝑎𝑛) and 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑖𝑛𝑛) and for 

α′<0.15 had larger errors than 𝑆̌idák correction (𝑘𝑠𝑖𝑑), with maximum error of the order of ~16% 

(α′=0,35) and ~14\% (α′=0,35), respectively. On the other hand, 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥𝑒𝑖𝑔)   had error less 

than 7,5%. A similar relationship can be found for network (I), but both 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑒𝑎𝑛) and 

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑖𝑛𝑛)  with errors larger than the 𝑘𝑠𝑖𝑑 for all significance levels α′. In latter case, 

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥𝑒𝑖𝑔)   had error less than 1,5%. Actually, there is the same behavior for networks 

(D), (H) and (J), but the magnitude of the errors for both 𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑒𝑎𝑛) and 

𝑘𝑆𝐵𝑃𝑁𝑁 (𝑚𝑎𝑥/𝑚𝑖𝑛𝑛) are much smaller, with the maximum of the order of ~5%. 

 

Figure 4 – Relative error (ε) of the critical values for 𝑆̌idák correction (sid) and SBPNN model 

based on each criterion of the correlation 
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Fonte: Rofatto et al. (2021). 

In general, therefore, the criterion “𝑚𝑎𝑥𝑒𝑖𝑔” based on the expression in Equation (10) provides 

a better balance between the correlation and the number of observations for the computation 

of the critical values. 

4 CONCLUSIONS 
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Considering the critical values obtained by Monte Carlo as references, SBPNN method 

presented a mean relative error of ~2% (±2%) and a maximum of 7%, whereas the 𝑆̌idák 

correction about ~9%( ±9%) and maximum of 54%. Therefore, we observe that SBPNN is able 

to capture the dependence of the test statistics, and therefore it can be considered as good 

approximations for the control of the false positive rates (α′). Since 𝑆̌idák correction does not 

take into account the correlation between the test statistics, we reinforce that its use for 

controlling the type I error rate should only be used for systems with high redundancy (𝑟𝑖>0.5), 

low correlation between 𝑤-𝑡𝑒𝑠𝑡 statistics (|𝜌𝑤𝑖,𝑤𝑗| ≤ 0,05) and for low rates of individual false 

positives 𝛼0 < 0,01 (1%). 

Finally, we provide a MATLAB's flexible network object type (called SBPNN.mat) that 

allows anyone to obtain the desired critical value with good control of type I error for the case 

where the random errors follow the normal distribution. We also provide a MATLAB's function 

(called “kNN.m”) which uses {SBPNN.mat} and the criterion 𝑚𝑎𝑥𝑒𝑖𝑔 to compute a desired 

critical value for the case where Gauss-Markov model is in play. Those interested in dataset 

of this work, {SBPNN.mat and “kNN.m” please send their request to the authors by e-mail or 

access https://data.mendeley.com/datasets/77sfpx9b74/3. 
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