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Abstract

This paper proposes a model of the term structure of interest rates that uses macroeconomic to model

yield dynamics, and allow for time-varying volatility. Results suggest that the introduction of survey

data on market participants’ expectations improves significantly the out-of-sample forecasting perfor-

mance of the model in terms of statistical measures of predictive accuracy. Additionally, we investigate

the economic value of yield curve predictability based on an portfolio allocation exercise. Results indi-

cate that modelling time-varying yield volatility is highly relevant and improves the economic relevance

of forecasts regardless of the degree of risk aversion considered.
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1. Introduction

The last two decades have seen mounting evidence of a strong link between macroeconomic factors and

the yield curve1. Ang & Piazzesi (2003) incorporated macroeconomic variables under no-arbitrage re-

strictions and showed that models with macro factors computed from principal components outperformed

models with only unobservable factors. Despite not considering out-of-sample forecasting, Diebold et al.

(2006, henceforth DRA) find evidence that real activity, inflation, and the monetary policy instrument

can explain a significant part of yield curve variations.

Additionally, several papers explore surveys of market expectations and broad macroeconomic in-

formation to link them with interest rates.2 Altavilla et al. (2017), for instance, show that survey

1See, for example, Fleming & Remolona (2001); Piazzesi (2001, 2005); Dai & Philippon (2005); Diebold et al. (2005);
Gallmeyer et al. (2005); Hördahl et al. (2006); Ang et al. (2006); Duffee (2006); Dewachter & Lyrio (2006); Dewachter
et al. (2006); Rudebusch & Wu (2007, 2008); Bikbov & Chernov (2010); Bekaert et al. (2010); Duffee (2011); Gürkaynak
& Wright (2012); Joslin et al. (2014).

2Ludvigson & Ng (2009); Piazzesi et al. (2009); Stark et al. (2010); Kim & Orphanides (2012); Chernov & Mueller



expectations can be exploited to improve the accuracy of yield curve forecasts. Moench (2008) jointly

modeled the dynamics of macroeconomic variables and government bond yields in a dynamic factor

model. He finds that information embedded in the macro factors helps provide out-of-sample yield fore-

casts that outperform the benchmark at intermediate and long horizons and for short and medium-term

maturities. De Pooter et al. (2010) compare the forecast performance of several individual term structure

models, they suggest that adding macroeconomic information improves interest rate forecasts, especially

in and around recession periods. Fernandes & Vieira (2019) reveals that employing financial and macro

information to build factors based on high-frequency forward-looking series in a factor-augmented DNS

model can improve the predictive performance.

The gains obtained by including macroeconomic information depend on how macro information is

incorporated in the model, as argued by Exterkate et al. (2013). Also, they suggest it is useful only

for forecasting yields of medium-term maturities (between 1 and 5 years) and that factor-augmented

methods perform well in relatively volatile periods, including the crisis period in 2008-2009 when simpler

models do not suffice. Koopman & van der Wel (2013) also extending the class of dynamic factor yield

curve models perform an out-of-sample forecasting study, and their results suggest that macroeconomic

variables can lead to more accurate yield curve forecasts.3

The evidence exploring the links between macroeconomic variables and yield curve modeling for

Brazil is not a novelty, notwithstanding the scarcity. Almeida & Faria (2014), for instance, evaluates the

term structure forecasting as per Moench (2008) using common factors from macroeconomic series from

January 2000 to May 2012. Their results suggest better predictive performance compared to the usual

benchmarks but presented deterioration of the results with increased maturity. Also, by eliminating

the no-arbitrage restrictions, they produced superior forecasting results. Vieira et al. (2017) show that

the inclusion of forward-looking data set principal components improves the predictive ability of the

factor-augmented VAR methodology with the Nelson-Siegel in out-of-sample analysis to the Brazilian

term structure of interest rates. de Andrade Alves et al. (2023) investigates whether Brazilian Central

Bank communication helps to forecast the yield curve. They include sentiment variables as additional

factors into the dynamic Nelson-Siegel term structure model and found that these sentiment variables

contain predictive information for yield curve forecasting.

Although the research cited above illustrated different approaches and evidences, they have some

common features and hypotheses. One of them is constant volatility for all maturities throughout the

sampling period. The second one, which may justify the first, is that the absence of time-varying volatility

would not be a problem in estimation for advanced economies compared with emerging economies. The

last one is a lack of evaluating forecasting results applied to an investment strategy. So, our goal is

to explore these gaps to investigate whether modeling time-varying volatility in macro-term structure

(2012); Orphanides & Wei (2012); Ehling et al. (2018); Chun (2011); Favero et al. (2012); Chun (2012); Van Dijk et al.
(2014); Altavilla et al. (2014).

3Poncela (2013) comments that what helps to increase the forecasting accuracy of the US term structure of interest
rates is to restrict the transition matrix ϕ of the VAR(1) model proposed for the common factors. The forecasting results
for the smooth dynamic factor model (SDFM) with and without macro variables are very similar, meaning that simpler
models for the common factors (in the form of uncoupled factors) are preferred for forecasting.
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models to an emerging market improves forecasting performance and whether these forecasts are worth

it for an investor who cares about mean and variance.

Our analysis builds on contributions from Diebold et al. (2006) who use macroeconomic variables, and

Koopman et al. (2010) that use a factor volatility structure for the latent variables with a specification

based on GARCH models4, both based on the Nelson & Siegel (1987) model of the term structure. In an

application to Brazilian data, this paper provides evidence that adding backward- and forward-looking

macroeconomic informations to the dynamic factor models with time-varying volatility can produce

more accurate forecasts for forecasts of government bond yields. Following the recent literature that

emphasizes the interaction between the yield curve and other economic variables, we present forecast

results obtained from different model specifications, considering both with and without macroeconomic

variables and time varying volatility.

Although our analysis is focused on statistical measures of predictive accuracy, it is important to

evaluate the extent to which the apparent gains in predictive accuracy can be used in real time to improve

investors’ economic utility, that is, translate into better investment performance. Given that statistical

significance does not necessarily imply economic significance, we follow what was done in Thornton &

Valente (2012), Sarno et al. (2016), Caldeira et al. (2016), and Gargano et al. (2019), among others,

and assess the economic value of the predictive power of interest rates by investigating the utility gains

accrued to investors who exploit the predictability of yield curve relative to the benchmark model.

Our results confirm and extend results found in previous literature that add macroeconomic infor-

mation.

2. Dynamic Factor Models for the Yield Curve

Dynamic factor models play a major role in econometrics since allowing the explanation of a large

set of time series in terms of a small number of unobserved common factors (e.g Jungbacker et al., 2014,

and the literature therein). Many specifications for the yield curve can be viewed as dynamic factor

models with a set of restrictions imposed on factor loadings (see, for example, Joslin et al., 2013). In

this section, we discuss the fourteen individual yield curve models beginning with the three-factor DNS

model.

2.1. Dynamic Nelson-Siegel model

Diebold & Li (2006) estimate the term structure of interest rates using the model proposed by Nelson

& Siegel (1987), assuming that the parameters vary over time. The following equation would describe

the dynamics of the term structure

yi,t(τi) = β1,t + β2,t

(
1− e−λτi

λτi

)
+ β3,t

(
1− e−λτi

λτi
− e−λτi

)
, (1)

4Some ways to overcome this issue were proposed by (Bianchi et al., 2009; Laurini & Hotta, 2010; Caldeira et al., 2010;
Hautsch & Yang, 2012)
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where yit denotes the yield at time t of a security with maturity τi, for t = 1, . . . , T and i = 1, . . . , N ,

and λ is a decay parameter that can capture a variety of shapes of the yield curve through time, such as

upward and downward sloping, and inversely humped. The β1t, β2t, and β3t are time-varying parameters,

or the state variables, that can be interpreted as the level, slope, and curvature latent components of

the yield curve.

The DNS model is our starting point to model and forecast the yield curve. The dynamic movements

or evolution of the yield curve factors, β1t, β2t, and β3t, are assumed to follow a vector autoregressive

process of first order, which allows for casting the yield curve latent factor model in state-space.

2.2. DNS in State-Space Representation

Diebold et al. (2006) note that DNS framework can be represented as a state space model by treating

βt = βj,t, for j = 1, . . . , 3, as a latent vector. For these purpose, the general specification of the dynamic

factor model is given by:

yt = Λ(λt)βt + εt, εt ∼ N (0, Σε) , (2)

where Λ is a N ×K matrix of factor loadings, βt is a K-dimensional stochastic process, and εt is the

N × 1 vector of measurement errors, whose covariance matrix given by Σε. For any given, strictly

positive λ1, the N ×K factor loading matrix Λ(λt) is given by:

Λij(λk) =


1, j = 1

ψi2 =
1− z1i
λ1τi

, j = 2

ψi3 =
1− z1i
λ1τi

− z1i, j = 3,

where z1,i = exp(−λ1τi).
The state-space framework is achieved by assuming that the dynamic movements or evolution of the

yield curve factors βt are modeled by the following first-order vector-autoregressive process:

βt+1 = µ+ Φ (βt − µ) + ηt, ηt ∼ N (0, Ση) , (3)

where µ is a K× 1 vector of constants, Φ is a K×K coefficient matrix, and Ση is the covariance matrix

of the disturbance vector ηt, which is independent of the vector of residuals εt for all t.

The matrix of variance-covariance of the innovations to the measurement system Σε is assumed to

be diagonal. This assumption implies that deviations of the observed yields of various maturities from

those implied by the fitted yield curve are uncorrelated. While the matrix of variance-covariance of the

innovations to the transition system Ση is unrestricted so that shocks to the three yield-curve factors

are correlated.
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2.3. The Factor-Augmented Nelson-Siegel Model

The first extension of the DNS model is the inclusion of macro-finance indicators in the model. In

addition to the yield data, we have p factors available representing macroeconomic information available

at the monthly frequency, covering the same period as the yield data. We include these factors in the

state vector such that it becomes (β1,t, β2,t, β3,t, f1,t, . . . , fp,t)
′ = βFA

t . With the extension of the state

factor, the size of the coefficient matrix ΦFA in the state equation increases from 3×3 to (3+p)×(3+p).

The resulting state-space form is then given by

yt =
[
Λ(λ) 0N×p

]︸ ︷︷ ︸
Λ(λ)FA

[
βt

ft

]
︸ ︷︷ ︸

βFA
t

+εt, εt ∼ N (0,Σε), (4)

[
βt+1

ft+1

]
︸ ︷︷ ︸

βFA
t+1

= (I3+p − ΦFA)

[
µ

0p×1

]
+ ΦFA

[
βt

ft

]
︸ ︷︷ ︸

βFA
t

+ηFA
t , ηFA

t ∼ N (03+p,Σ
FA
η ) (5)

for t = 1, . . . , T , where the dimensions of Φ, ηt+1, and Ση are increased as appropriate. The coefficient

matrix structure implies that the macro-factors affect the individual yields through the Nelson-Siegel

factors and feedback from the yields to the macro-factors. Therefore, we estimated the DNS-Macro in

that framework. In the following section, we explain the algorithm used in the estimation procedure.

2.4. Estimation Procedure

The estimation of the loading parameters λ in the measurement matrix in Eq. (2) is the key to

estimating the state-space model. Keeping λ’s fixed over the whole sample period, the equations (2)

and (3) characterize a linear and Gaussian state-space model; thus, the Kalman filter can be used to

obtain the likelihood function via the prediction error decomposition. The estimation procedures are as

discussed below.

2.4.1. Estimation of Linear State Space Models Based on the Kalman Filter

Assuming that the decay parameters are constant, the measurement equation becomes linear. In

this case, the DNS model is treated as linear Gaussian state-space models. Given the state-space

formulation of the dynamic factor model presented in (2) and (3), the Kalman filter can be used to obtain

the likelihood function via the prediction error decomposition. An optimization algorithm is used to

maximize the likelihood function estimated by the Kalman filter, an iterative process of estimating and

updating the measurement and transition equations until an optimal point is obtained. In short, the filter

computes the optimal yields forecasts and the corresponding forecasting errors, after which the Gaussian

likelihood function is evaluated using the prediction-error decomposition of the likelihood function for

the forecasts and the states. It sequentially updates the measurement and transition equations until an

optimal yield forecast is achieved.

Consider the general state-space representation in (2) and (3). This state-space model is estimated

by applying a Kalman filter, a recursive formula running forwards through time to estimate latent factors
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from past observations. The Kalman filter evaluates the conditional means and variances of the latent

factors βt+1 conditional on the information available up to and including time t, denoted as b̂t+1|t and

Pt+1|t respectively. Using the transition equation in (3), the optimal predicted estimates is then given

by

b̂t+1|t = µ+ Φ
(
bt|t − µ

)
, (6)

Pt+1|t = ΦPtΦ
′ +Ση, (7)

where Pt+1|t is mean square error (MSE), or covariance, matrix. Hence, the optimal filtered estimates

b̂t+1 and Pt+1 is given by

b̂t+1 = b̂t+1|t + Pt+1|tΛ
′F−1

t+1|tvt+1, (8)

Pt+1 = Pt+1|t − Pt+1|tΛ
′F−1

t+1|tPt+1|t, (9)

where vt+1 = yt+1−Λb̂t+1|t is the prediction error, Ft+1|t = ΛPt+1|tΛ
′+Σε is the measurement prediction

variance, and Pt+1|tΛ
′F−1

t+1|t is called the Kalman gain.

The Kalman filter iterative process is initialized by using the unconditional mean and variance of βt.

For this purpose, we carry out the 2-step procedure as described in Diebold & Li (2006). Specifically,

the unconditional mean and covariance matrix of the state vector is started as follows

b1|0 = E [βt] = µ and P1|0 = E [βtβ
′
t] = Σβ,

where the unconditional covariance matrix of the state vector is the solution of Σβ −ΦΣβΦ = Ση, which

we can solve using the properties of the vectorization operator vec (see Christensen & van der Wel, 2019,

for details).

Let the vector θ collects all unknown coefficients in the in the VAR parameter matrix Φ, variance

matrices Σε and Ση, and Λ and µ. To estimate the parameters vector θ, the likelihood function is

constructed from the update step by assuming that the forecasting errors vt are Gaussian. The Gaussian

log-likelihood function is computed as

ℓ (θ) = −NT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′tF
−1
t vt. (10)

As a result, ℓ (θ) can be evaluated by Kalman filter for a given value of θ. By maximizing this log-

likelihood function with respect to the parameters (collective represented as a vector θ) using a quasi-

Newton optimization method results in maximum likelihood estimates of the parameters. The algorithm

BFGS is used to maximize the log-likelihood function specified in (10) to obtain the estimates of the

parameters θ.

Under this framework, we estimated the linear models. In the next sections, we extend the DNS model

by considering conditional heteroskedasticity in the yield processes and treating the loading parameters

as a stochastically time-varying latent factor.
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2.4.2. Time-Varying Volatility

In the DNS model, we assume volatility is constant over time, which may be a restrictive assumption

since yield curves are related to trading in the financial markets, then changes in volatility may occur. In

general, heteroscedasticity is a constant problem in economics, especially in finance. The Kalman filter

can not handle this problem, that is, the filter works under the hypothesis that the variance matrices

are constant, or at least known. Assuming the GARCH structure, the matrix Σε is time-varying.

To allow for conditional heteroscedasticity in the yield processes, we modify the DNS model by

following Koopman et al. (2010), who propose capturing yield curve volatility allowing for a common

variance component jointly affecting all individual yields. The common variance component is modeled

as a generalized autoregressive conditional heteroscedasticity (GARCH) process. Harvey et al. (1992)

already provides an extensive framework for incorporating this GARCH(1, 1) model into unobserved

component time series models and how to deal with corresponding implications for estimation procedures.

This factor can be interpreted as the volatility of an underlying bond market portfolio according to Engle

& Ng (1993). The error in the measurement equation (2) are decomposed as

εt = Γεε
∗
t + ε†t , t = 1, . . . , T, (11)

where Zε and ε†t are N × 1 vectors of loadings and noise component respectively, and ε∗t is a scalar

representing the common disturbance term. The error components are mutually independent of each

other and are distributed as follows

ε∗t ∼ NID(0, ht), and ε†t ∼ NID(0, Σ†
ε), t = 1, . . . T, (12)

where Σ†
ε is a diagonal matrix and ht is the variance specified as a GARCH process, according to

Bollerslev (1986). In this case, we have

ht+1 = γ0 + γ1ε
∗2
t + γ2ht, t = 1, . . . , T, (13)

and the estimated parameters have the constraints γ0 > 0, 0 < γ1 < 0, 0 < γ2 < 0, h1 = γ0(1 − γ1 −
γ2)

−1, and (γ1 + γ2) < 1. The weights vector Γε can be normalized to avoid identification problems, such

that Γ ′
εΓε = 1, but we follow Koopman et al. (2010) and fixed γ0 at 1×10−4. The resulting time-varying

variance matrix for εt is given by

Σε(ht) = htΓεΓ
′
ε +Σ†

ε , (14)

where Σε(ht) depends on a single factor described by the GARCH process in (13). The (unconditional)

time-varying variance matrix of yt is Λ(λ)ΣβΛ(λ)
′+Σε(ht), where Σβ is the solution of Σβ−ΦΣβΦ

′ = Ση.

The GARCH factor ε∗t is incorporated in the measure equation (2), which is treated as a latent factor.

Hence, we include ε∗t in the state vector alongside the DNS factors.

The resulting observation and state equations of the DNS models with time-varying volatility can
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be rewritten into the state-space formulation as

yt =
[
Λ(λ) Γε

] [βt

ε∗t

]
+ ε†t , ε†t ∼ N (0, Σ†

ε), (15)[
βt+1

ε∗t+1

]
=

[
(Ij − Φj)µ

0

][
Φj 0j×1

01×j 0

][
βt

ε∗t

]
+

[
ηt

ε∗t+1

]
,

[
ηt

ε∗t+1

]
∼ N

([
0

0

]
,

[
Ση 0j×1

01×j ht+1

])
, (16)

for t = 1,. . . , T . The addition of GARCH disturbances and extra parameters requires applying certain

adjustments to the estimation procedure.

Since ht+1 in (13) is a function of its past values and unobserved values of ε∗t , it is not possible

to calculate the values required for ht+1 at time t. Specifically, Harvey et al. (1992) explains that,

although the models are not conditionally Gaussian because knowledge of past observations does not

imply knowledge of past GARCH errors, we may treat the models as though they are conditionally

Gaussian. Because of that, in the presence of GARCH errors, the Kalman filter can be regarded as a

quasi-optimal filter instead of optimal. Harvey et al. (1992) propose to take the expectation of the latent

term in the volatility specification such that we obtain an estimate for ht+1, given by

ĥt+1|t = γ0 + γ1E
[
ε∗2t |It

]
+ γ2ĥt|t−1, t = 1, . . . , T, (17)

where It denotes all information available up to and including time t. To calculate the expectation term

we note that

ε∗t = E [εt−1|It] + (ε∗t − E [ε∗t |It]) .

By squaring and taking conditional expectations we can shown that

E
[
ε∗t

2 |It

]
= E [ε∗t |It]

2 + E
[
(ε∗t − E [ε∗t |It])

2] ,
= ε̂∗t|t

2 + P ε
t|t, (18)

where ε̂∗t|t is the last element of the filtered state bt|t and P
ε∗

t|t is the last diagonal element of the Pt|t, the

filtered variance of ε̂∗t|t. Then, we substitute the expression E
[
ε∗t

2 |It

]
into (17) to obtain a prediction

for the volatility component ht+1. Lastly, we insert the predicted value ht+1 in the position (j, j) of the

variance matrix Ση, corresponding to the location of ε∗t in the state vector. With this framework we

estimated the DNS-GARCH and extensions.

3. Out-of-Sample Analysis

In order to forecasts h-months ahead, the steps below follow after the filtering step and estimation of

the optimal set of parameters θ throughout the sample, see Durbin & Koopman (2012) for more details.
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Therefore, we have the following

yt+1 = Λ(λ)E(βt+1|Yt),

ȳt+1 = Λ(λ)b̄t+1, (19)

where b̄t+1 is the state vector and B̄t+1 the variance matrix of the states calculated by the Kalman filter

in (6) and (7). For other forecasts, the filter can be rewritten to h = 2, . . . , H, as follows

b̄t+h = µ+Φ(b̄t+1 − µ), (20)

B̄t+h = ΦB̄t+1Φ̂
′
+Ση, (21)

ȳt+h = Λ(λ)b̄t+h, (22)

where the states vector and the variance matrix of the previous estimation states are used to calculate

the predictions in the step h+1. With the time-varying loading parameter, the difference for predictions

lies in the loading matrix that multiplies the state vector, that is, Zt(at|t−1) instead of Λ(λ) in (19) and

(22).

The out-of-sample predictions are assessed by the relative sizes of the root mean square error

(RMSPE) of all considered models relative to those from the DNS baseline model. The RMSPE is

calculated as follows:

R(h, τ) =

√
1

n

∑
t

[ŷt+h|t(τ)− yt+h(τ)]2, (23)

where n is the number of forecasts previously defined in 312. The drawback of using RMSPE is that

this is a single statistic summarizing individual forecasting errors over an entire sample. Although often

used, they do not give any insight as to where in the sample a particular model makes its largest and

smallest forecast errors. Therefore, we also graphically analyze the cumulative squared forecast errors

(CSFE) proposed by Welch & Goyal (2008). These cumulative prediction errors series clearly depicts

when a model outperforms or underperforms a given benchmark and could motivate the use of adaptive

forecast combination schemes. The CSFE is given by:

CSFEm(h, τ) =
∑
t

[(
ŷt+h|t,bench(τ)− yt+h(τ)

)2 − (ŷt+h|t,m(τ)− yt+h(τ)
)2]

. (24)

In the case a model outperforms the benchmark, the CSFEm(h, τ) will be an increasing series. If the

benchmark produces more accurate forecasts, then CSFEm(h, τ) will tend to be decreasing.

We use the Giacomini & White (2006) test to assess whether the forecasts of two competing models

are statistically different. The Giacomini-White (GW) test is a test of conditional forecasting ability and

is constructed under the assumption that forecasts are generated using a moving data window. This is a

test of equal forecasting accuracy and as such can handle forecasts based on both nested and non-nested

models, regardless from the estimation procedures used in the derivation of the forecasts.
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Lastly, we implement the Model Confidence Set (MCS), approach developed by Hansen et al. (2011),

which consist on a sequence of tests which permits to construct a set of ’superior’ models, where the

null hypothesis of Equal Predictive Ability (EPA) is not rejected at a certain confidence level. The EPA

statistic tests is calculated for an arbitrary loss function, in our case we test squared errors of DNS

model against competing models.

3.1. The Economic Value of the Yield Curve Predictability

Although our analysis is focused on statistical measures of predictive accuracy, it is important to

evaluate the extent to which the apparent gains in predictive accuracy can be used in real time to improve

investors’ economic utility, that is, translate into better investment performance. Given that statistical

significance does not necessarily imply economic significance (Thornton & Valente, 2012; Sarno et al.,

2016; Caldeira et al., 2016; Gargano et al., 2019), we assess the economic value of the predictive power

of interest rates by investigating the utility gains accrued to investors who exploit the predictability of

yield curve relative to a no-predictability alternative associated with the random-walk model.

In this section, we explore the empirical evidence linking statistical forecasting evaluation with eco-

nomic utility. To this purpose, we consider a mean-variance investor with quadratic utility and relative

risk aversion γ who allocates her portfolio on a risky bond with τ periods to maturity versus a one-month

T-bill that pays the risky free rate (Rapach & Zhou, 2013). At the end of t, the investor allocates the

following share of her portfolio to bond with maturity τi during t+ 1:

wi,t =

(
1

γ

)(
r̂
(τi)
t+h

σ̂
2,(τi)
t+h

)
(25)

where r̂
(τi)
t+h = τiy

τi
t − (τi − h)ŷτi−h

t+h is a return forecast for the bond with maturity τi in time t and σ̂2
i

is a forecast of the variance5 of bond returns to models with constant volatility and Σrt|t−1
= τ ′τ ⊗

[Λ(λ)ΣβΛ(λ)
′ + Σε (ht)] to time-varying volatility. Over the forecast evaluation period, the investor

realizes the average utility,

ν̂i = µ̂i − 0.5γσ̂2
i , (26)

where µ̂i (σ̂
2
i ) is the sample mean (variance) of the portfolio formed on the basis of r̂

(τi)
t+h and σ̂2

i over

the forecast evaluation period. The resulting sequences of allocation weights are next used to calculate

realized utilities. For each model m, the realized utility are converted into equivalent returns CER, i.e.,

the difference between utility (26) with model m and the DNS represents the utility gain accruing to

using the competitors models forecast of the bond yields in place of the DNS benchmark forecast in

the asset allocation decision. This utility gain (certainty equivalent return) can be interpreted as the

portfolio management fee that an investor would be willing to pay to have access to the information in

the model forecast relative to the information in the benchmark DNS model.

5We follow the strategy of Rapach & Zhou (2013) and estimate the variance of bond returns using the sample variance
computed from a one-year (252-obs) rolling window of historical returns.
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4. Data and Results

4.1. Data

This paper’s data set consists of monthly closing prices observed for yields of future DI contracts.

Based on the observed rates for the available maturities, the data were converted to fixed maturities of

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48, and 60 months, through interpolations using cubic splines.

The database contains the maturities with the highest liquidity for January 2003 through December

2019 (T = 204 observations) and represents the most liquid DI contracts negotiated during the analyzed

period. We assess the model’s performance by splitting the sample into two parts: the first one includes

132 observations used to estimate all models’ parameters. The second part is used to analyze the

performance out-of-sample of bond portfolios obtained from the model, with 72 observations.

Table 1 displays the descriptive statistics for the Brazilian interest rate curve. For each of the 14 time

series, we report average, standard deviation, minimum, maximum, and the last three columns contain

sample autocorrelations at displacements of 1, 6, and 12 months. Descriptive statistics presented in

Table 1 seem to confirm key stylized facts about yield curves: the sample average curve is upward

sloping and concave, volatility is decreasing with maturity, autocorrelations are very high and increasing

with maturity. Also, there is a high persistence in the yields: the first-order autocorrelation for all

maturities is above 0.87 for each maturity.

Figure ?? presents a three-dimensional plot of the data set and illustrates how yield levels and spreads

vary substantially throughout the sample. Although the yield series change heavily over time for each

of the maturities, a strong common pattern in the 14 series over time is apparent. The sample contains

204 monthly observations with maturities of τ = 3, 6, 9, 12, 15, 18, 21 24, 27, 30, 36, 39, 48, and 60

months.

We use three macroeconomic factors: the Selic interest rate is the monetary policy interest rate, i.e.,

the key tool used by the Central Bank of Brazil (BCB) to implement the monetary policy. The Selic

rate, or ’over Selic’, is the Brazilian federal funds rate. Precisely, Selic rate is the weighted average

interest rate of the overnight interbank operations – collateralized by federal government securities –

carried out at the Special System for Settlement and Custody (Selic).

Under the inflation-targeting regime, the BCB’s Monetary Policy Committee (Copom) regularly sets

the target for the Selic rate. Within the relevant horizon for the monetary policy, the Copom aims to

keep the Extended National Consumer Price Index (IPCA inflation rate) around the target and anchor

inflation expectations. Accordingly, the BCB performs daily open market operations to keep the effective

Selic rate at the target set by Copom.

Brazil has several price indexes that differ significantly in scope, depending on their particular pur-

poses. A price index can be designed to reflect the cost of living for a specific group of households,

but each household will have its price index based on its consumer basket. In this sense, there can be

different inflation perceptions between what the citizen notices as inflation and the variation of several

price indexes. The inflation index adopted here is the IPCA which is the reference for the Brazilian

inflation-targeting system. The BCB ensures that the IPCA’s annual inflation is centered at the inflation

target set by the National Monetary Council (CMN).
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Table 1: Descriptive statistics for the term structure of interest rates

The table reports summary statistics for Brazil yield curve over the period 2003-2019. We examine

monthly data, constructed using the spline method. For each maturity we show mean, standard

deviation, skewness, raw kurtosis, minimum, maximum, and three auto-correlations coefficients, ρ̂1,

ρ̂6, ρ̂12. Also the table reports proxy estimates for level, slope, and curvature of the yield curve.

The proxies are defined as follows: for level, the highest maturity bond (60 months); for slope, the

difference between the bond of 60 months and the bond of 3 months; and for curvature, two times

the bond of 18 months minus the sum of bond of 3 months and bond of 60 months.

Acf
Maturity

Mean Std Dev Min Max Skewness Kurtosis ρ̂1 ρ̂6 ρ̂12

M3 12.19 4.52 4.30 27.50 0.90 4.11 0.96 0.70 0.48
M6 12.20 4.47 4.30 28.30 0.90 4.24 0.96 0.69 0.48
M9 12.24 4.42 4.40 29.00 0.92 4.56 0.95 0.68 0.48
M12 12.30 4.39 4.50 29.60 0.98 4.93 0.94 0.67 0.47
M15 12.38 4.34 4.50 30.40 1.06 5.39 0.94 0.65 0.46
M18 12.48 4.31 4.60 31.30 1.16 5.95 0.93 0.64 0.45
M21 12.57 4.28 4.70 32.30 1.29 6.64 0.93 0.62 0.44
M24 12.65 4.27 4.90 33.40 1.43 7.41 0.92 0.61 0.43
M27 12.74 4.25 5.00 34.30 1.57 8.15 0.92 0.60 0.42
M30 12.80 4.26 5.10 35.10 1.69 8.86 0.91 0.59 0.41
M36 12.92 4.28 5.30 36.70 1.95 10.35 0.90 0.57 0.40
M42 13.02 4.34 5.60 38.40 2.20 11.93 0.90 0.55 0.38
M48 13.10 4.38 5.70 39.40 2.37 12.96 0.89 0.54 0.38

M60 (Level) 13.18 4.35 6.00 39.40 2.44 13.12 0.89 0.55 0.38
Slope 0.99 2.10 −3.90 11.90 0.75 6.77 0.84 0.35 0.01
Curvature −0.24 1.17 −3.00 3.10 0.18 2.86 0.87 0.40 0.08
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IBC-Br is an indicator of the monthly periodicity, which incorporates the pathway of the variables

considered proxies to economic sectors such as Agriculture and livestock, Industry, and Services. The

well-known adherence of the trajectory of the IBC-Br to the GDP behavior confirms the importance of

monitoring the indicator to understand better and anticipate the activity analysis.

We use market expectations factors from the BCB’s Market Expectations System, which monitors

market expectations regarding the main macroeconomic variables, providing important inputs for the

monetary policy decision-making process.

The BCB carries out the “Focus Survey”, compiling forecasts of about 140 banks, asset managers,

and other institutions (real sector companies, brokers, consultancies, etc.). The Survey daily monitors

the market expectations for several inflation indices, the GDP and industrial production growth, the

exchange rate, the Selic rate, fiscal indicators, and external sector variables. Based on this Survey, the

BCB compiles daily – and releases weekly – the Focus Market Readout, which brings the summary of

the statistics calculated over the information collected. We use the IPCA inflation accumulated median

percent change, Over-Selic Target median percent p.y., and total GDP median percent change over the

next 12 months (see Figure 1).

5. Results

We use a rolling estimation window of 72 monthly observations (i.e., six years) for computing our

results. We produce forecasts for 1-month, 3-month, 6-month, and 12-month-ahead. To compare the

performance of out-of-sample forecasts, we compute the root mean square forecast error (RMSFE). More-

over, the Giacomini & White (2006) test (GW-test) is used to assess whether each model outperforms

the DNS. Table 2 report statistical measures of the out-of-sample forecasting performance at various

horizons. The first row of entries in each panel of the tables report the value of RMSFE (expressed in

basis points) for the DNS model, while all other rows report statistic relative to the DNS.

Table 2 reports out-of-sample forecast performance measured in terms of RMSPE. This table is

divided in four panels A through D, each corresponding to a different forecast horizon (1, 3, 6 and 12

steps ahead).The first row in each panel contains the RMSPE of the DNS baseline forecasts, whereas

the remaining rows report RMSPE of a given model relative to those of the benchmark. Therefore

any number below one indicates outperformance relative to the benchmark, whereas any number larger

than one indicates underperformance. Asterisks to the right of entries indicate that, at the 10% level

of significance, the null hypothesis of the GW test is not rejected. Bold type indicates that the model

belongs to M̂∗
0.75, the set of superior models containing the best models with probability no less than

75%.
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Figure 1: This figure shows the SELIC interest rate, the Extended National Consumer Price Index (IPCA), and Index
of Economic Activity of the Central Bank (IBC-Br) in solid lines and his expectations (GDP for IBC-Br) of one year in
dashed lines, respectively. The sample contains 194 monthly observations from January 2003 through December 2019 for
realized series and from 2002 through 2018 for expectations.
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Table 2: Relative Root Mean Squared Forecast Errors

The Table reports the relative root mean squared forecast errors (RMSFE) relative to the Random-Walk model (RW) model for the

1-month, 3-months, 6-months, and 12-months forecast horizons. The evaluation sample is 2014:1 to 2019:12 (73 out-of-sample forecasts).

The first line in each panel of the table reports the value of RMSFE (expressed in basis points) for the RW model, while all other

lines reports statistics relative to the RW. The following model abbreviations are used in the table: DNS-Macro model for realized

macroeconomic factors , DNS-MacroE1 model for market expectations of macroeconomic factors, and the last three models have time-

varying volatility (-GARCH). Numbers smaller than one indicate that models outperform the RW, whereas numbers larger than one

indicate underperformance. The ∗ on the right of the cell entries indicate the level at which the Giacomini & White (2006) test rejects

the null of equal forecasting accuracy at least 10% level. Shaded values indicate that the model belong to Model Confidence Set (MCS)

Hansen et al. (2011).

Maturity
Model

M3 M6 M9 M12 M15 M18 M21 M24 M27 M30 M36 M42 M48 M60

Panel A: 1-month ahead forecasts

RW 41.26 39.69 42.97 47.79 51.04 54.47 56.47 57.74 58.80 60.69 61.63 63.07 64.53 66.56

DNS 0.933 0.992 0.999 0.995 0.982 0.972 0.971 0.963 0.960 0.959 0.967 0.966 0.972 0.971

DNS−Macro 0.940 1.010 0.989 0.976 0.970 0.971 0.977 0.976 0.978 0.978 0.992 0.991 0.996 0.995

DNS−MacroE1 0.881 0.892∗ 0.978 1.009 1.010 1.009 1.018 1.016 1.020 1.019 1.033 1.034 1.049 1.063

DNS−GARCH 0.964 0.978 1.040 1.056 1.055 1.044 1.050 1.048 1.048 1.042 1.045 1.044 1.047 1.045

DNS−GARCH−Macro 0.940 1.010 0.989 0.976 0.970 0.971 0.976 0.976 0.978 0.978 0.992 0.991 0.996 0.995

DNS−GARCH−MacroE1 0.881 0.892∗ 0.979 1.009 1.010 1.009 1.018 1.016 1.020 1.019 1.034 1.034 1.049 1.063

Panel B: 3-months ahead forecasts

RW 90.21 90.41 94.52 99.69 103.88 108.63 111.44 112.61 114.64 117.00 120.34 121.97 124.01 125.32

DNS 0.824 0.892 0.934 0.959 0.953 0.941 0.932 0.925 0.914 0.905 0.887∗ 0.880∗ 0.878∗ 0.878∗

DNS−Macro 0.795 0.877 0.913 0.938 0.937 0.935 0.936 0.936 0.932 0.928 0.920∗ 0.920∗ 0.922∗ 0.929∗

DNS−MacroE1 0.668 0.800 0.877 0.93 0.942 0.945 0.953 0.955 0.951 0.947 0.934 0.935 0.939 0.952

DNS−GARCH 0.818 0.929 0.977 0.997 0.999 0.993 0.992 0.996 0.992 0.985 0.972 0.974 0.974 0.981

DNS−GARCH−Macro 0.795 0.877 0.913 0.938 0.937 0.935 0.936 0.936 0.932 0.928 0.920∗ 0.920∗ 0.922∗ 0.929∗

DNS−GARCH−MacroE1 0.668 0.800∗ 0.877 0.930 0.942 0.945 0.953 0.956 0.951 0.947 0.934 0.935 0.939 0.952

Panel C: 6-months ahead forecasts

RW 168.06 166.53 167, 34 169.92 172.07 174.62 176.65 177.09 178.23 180.37 184.08 186.97 187.46 188.79

DNS 0.760 0.835 0.892 0.922 0.926 0.919 0.907 0.896 0.884 0.868 0.834 0.815 0.806 0.790

DNS−Macro 0.722 0.819 0.886 0.925 0.936 0.939 0.935 0.930 0.924 0.914 0.889 0.877 0.873 0.864

DNS−MacroE1 0.669 0.782 0.858 0.906 0.922 0.928 0.929 0.926 0.923 0.914 0.885 0.873 0.867 0.86

DNS−GARCH 0.849 0.916 0.949 0.966 0.97 0.965 0.958 0.956 0.948 0.936 0.911 0.903 0.899 0.895

DNS−GARCH−Macro 0.722 0.819 0.886 0.925 0.936 0.939 0.935 0.930 0.924 0.914 0.889 0.877 0.873 0.864

DNS−GARCH−MacroE1 0.669 0.782 0.858 0.906 0.923 0.928 0.929 0.926 0.923 0.914 0.885 0.873 0.867 0.860

Panel D: 12-months ahead forecasts

RW 296.67 294.33 290.84 286.67 281.94 277.09 272.77 269.43 267.11 265.25 264.99 263.29 262.12 260.45

DNS 0.823 0.875 0.914 0.940 0.951 0.954 0.951 0.941 0.929 0.918 0.884 0.861 0.844 0.819

DNS−Macro 0.830 0.924 0.991 1.036 1.059 1.072 1.073 1.068 1.057 1, 0479 1.014 0.990 0.973 0.944

DNS−MacroE1 0.869 0.944 0.996 1.031 1.044 1.047 1.045 1.034 1.019 1.006 0.966 0.937 0.917 0.885

DNS−GARCH 0.894 0.923 0.951 0.969 0.976 0.982 0.977 0.970 0.959 0.951 0.924 0.909 0.899 0.886

DNS−GARCH−Macro 0.830 0.924 0.991 1.036 1.059 1.072 1.074 1.068 1.057 1.048 1.014 0.990 0.973 0.944

DNS−GARCH−MacroE1 0.869 0.944 0.996 1.031 1.044 1.048 1.045 1.034 1.019 1.006 0.966 0.938 0.917 0.885
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To analyze the accuracy of the forecasts in different time intervals, we follow ? and plot the difference

in cumulative square forecast errors between each of the prediction models and the RW along the out-

of-sample evaluation period.

5.1. Economic Evaluation Results

Table 3 reports certainty equivalent (average utility gains in annualized percent return) for a mean-

variance investor with γ = {0.1, 0.5, 1, 5} who allocates among 1 to 5 years bonds and risk-free rate

using forecasts based on competitors models in place of DNS forecasts.

16



Figure 2: Cumulative squared forecast errors (1- and 3-months ahead)

Note: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel Extensions relative to the DNS baseline
model. Figure shows CSFEs for a 1- and 6-month forecast horizon. The evaluation sample is from January 2014 through
December 2019 (73 out-of-sample forecasts).

(a) One-month ahead

2014 2015 2016 2017 2018 2019

−
4

−
2

0
2

4

Maturity 3−months

DNS
DNS−Macro
DNS−MacroE1

DNS−GARCH
DNS−GARCH−Macro
DNS−GARCH−MacroE1  

2014 2015 2016 2017 2018 2019

−
4

−
2

0
2

4

Maturity 12−months

2014 2015 2016 2017 2018 2019

−
4

−
2

0
2

4

Maturity 24−months

2014 2015 2016 2017 2018 2019

−
4

−
2

0
2

4

Maturity 60−months

(b) Six-month ahead

2014 2015 2016 2017 2018 2019

−
20

−
10

0
10

20
30

40

Maturity 3−months

DNS
DNS−Macro
DNS−MacroE1

DNS−GARCH
DNS−GARCH−Macro
DNS−GARCH−MacroE1  

2014 2015 2016 2017 2018 2019

−
20

−
10

0
10

20
30

40

Maturity 12−months

2014 2015 2016 2017 2018 2019

−
20

−
10

0
10

20
30

40

Maturity 24−months

2014 2015 2016 2017 2018 2019

−
20

−
10

0
10

20
30

40

Maturity 60−months

17



Figure 3: Cumulative squared forecast errors (6- and 12-months ahead)

Note: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel Extensions relative to the DNS baseline
model. Figure shows CSFEs for a 1- and 6-month forecast horizon. The evaluation sample is from January 2014 through
December 2019 (73 out-of-sample forecasts).
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Table 3: Out-of-sample economic evaluation of the yield curve forecasting from 2011:01 to 2017:04

Note: This table reports average utility gain (δ) the portfolio management fee (in annualized percent return) that an investor with mean-

variance preferences and risk aversion coefficient of 0.1 to 5 would be willing to pay to have access to the forecasting method relative to

the DNS benchmark forecast. The following model abbreviations are used in the table: DNS-Macro model for realized macroeconomic

factors, DNS-MacroE1 model for market expectations of macroeconomic factors, and the last three models have time-varying volatility

(-GARCH). The sample starts on January 2000 and the evaluation period is January 2011 to June 2017.

Model
γ = 0.1 γ = 0.5 γ = 1 γ = 5

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

horizon = 1-month ahead

DNS 197.70 2.403 −0.279 −0.901 −0.643 50.16 1.843 0.516 0.138 0.072 31.72 1.773 0.615 0.268 0.161 16.97 1.717 0.695 0.372 0.233

DNS−Macro 226.09 7.118 1.431 −0.296 −0.504 54.65 2.587 0.786 0.234 0.094 33.22 2.021 0.705 0.300 0.169 16.07 1.568 0.641 0.353 0.229

DNS−MacroE1 213.77 8.047 3.377 1.657 1.286 52.70 2.734 1.093 0.542 0.377 32.57 2.07 0.808 0.403 0.263 16.46 1.538 0.579 0.291 0.172

DNS−GARCH 449.44 34.41 12.92 6.247 3.711 89.91 6.896 2.600 1.267 0.760 44.97 3.457 1.31 0.644 0.391 9.019 0.706 0.278 0.146 0.095

DNS−GARCH−Macro 449.54 34.48 12.98 6.272 3.701 89.93 6.907 2.609 1.271 0.758 44.98 3.461 1.313 0.646 0.39 9.016 0.704 0.276 0.145 0.096

DNS−GARCH−MacroE1 449.41 34.40 12.92 6.258 3.726 89.91 6.895 2.601 1.268 0.762 44.97 3.457 1.310 0.645 0.391 9.020 0.706 0.278 0.146 0.095

horizon = 3-month ahead

DNS 38.21 7.202 4.000 2.762 2.271 13.71 2.135 1.054 0.673 0.512 10.65 1.501 0.685 0.412 0.292 8.204 0.995 0.391 0.203 0.116

DNS−Macro 54.28 10.606 5.521 3.529 2.668 16.25 2.672 1.294 0.794 0.574 11.50 1.680 0.765 0.452 0.313 7.697 0.887 0.343 0.179 0.103

DNS−MacroE1 47.23 10.08 5.635 3.899 3.122 15.14 2.590 1.312 0.852 0.646 11.13 1.653 0.771 0.472 0.337 7.919 0.904 0.339 0.167 0.089

DNS−GARCH 181.10 23.13 9.533 5.22 3.377 36.28 4.649 1.927 1.061 0.686 18.17 2.34 0.977 0.541 0.350 3.692 0.492 0.216 0.125 0.081

DNS−GARCH−Macro 181.30 23.25 9.65 5.309 3.423 36.31 4.668 1.946 1.075 0.694 18.18 2.346 0.983 0.546 0.353 3.685 0.488 0.212 0.122 0.080

DNS−GARCH−MacroE1 181.04 23.17 9.609 5.326 3.497 36.27 4.656 1.939 1.078 0.705 18.17 2.342 0.981 0.547 0.356 3.694 0.490 0.214 0.122 0.077

horizon = 6-month ahead

DNS 12.64 14.251 8.698 6.667 5.362 5.676 2.809 1.637 1.218 0.953 4.806 1.379 0.754 0.537 0.402 4.110 0.235 0.048 −0.008 −0.039

DNS−Macro 20.07 15.762 9.355 6.940 5.422 6.850 3.048 1.741 1.261 0.963 5.197 1.459 0.789 0.551 0.405 3.875 0.187 0.028 −0.017 −0.041

DNS−MacroE1 17.61 15.845 9.206 6.741 5.257 6.461 3.061 1.717 1.23 0.937 5.067 1.463 0.781 0.541 0.397 3.952 0.185 0.032 −0.010 −0.036

DNS−GARCH 85.76 13.442 6.843 4.953 4.096 17.22 2.682 1.344 0.947 0.753 8.654 1.337 0.657 0.447 0.335 1.800 0.261 0.107 0.046 0.001

DNS−GARCH−Macro 85.96 13.50 6.872 4.954 4.031 17.25 2.691 1.349 0.947 0.743 8.665 1.34 0.658 0.447 0.332 1.794 0.259 0.106 0.046 0.003

DNS−GARCH−MacroE1 85.69 13.576 7.027 5.190 4.380 17.21 2.703 1.373 0.985 0.798 8.650 1.344 0.666 0.459 0.350 1.803 0.256 0.101 0.039 −0.008

horizon = 12-month ahead

DNS 120.24 55.49 21.874 13.88 10.21 23.99 9.131 3.294 2.034 1.480 11.969 3.337 0.972 0.553 0.388 2.344 −1.298 −0.886 −0.632 −0.485

DNS−Macro 120.84 53.57 19.94 12.146 8.716 24.09 8.829 2.989 1.76 1.244 12.00 3.237 0.870 0.462 0.310 2.326 −1.238 −0.825 −0.577 −0.437

DNS−MacroE1 120.72 54.56 20.53 12.469 8.892 24.07 8.985 3.081 1.811 1.272 11.99 3.288 0.901 0.479 0.319 2.329 −1.269 −0.844 −0.587 −0.443

DNS−GARCH 118.88 14.42 3.330 4.670 6.527 23.78 2.648 0.366 0.579 0.898 11.89 1.176 −0.004 0.068 0.195 2.387 −0.001 −0.301 −0.341 −0.368

DNS−GARCH−Macro 119.27 14.72 3.402 4.635 6.398 23.85 2.695 0.377 0.574 0.878 11.92 1.192 −0.001 0.066 0.188 2.375 −0.011 −0.303 −0.340 −0.364

DNS−GARCH−MacroE1 118.99 15.36 4.483 6.039 8.130 23.80 2.796 0.548 0.796 1.151 11.90 1.225 0.056 0.140 0.279 2.384 −0.031 −0.337 −0.384 −0.419
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The performance of economic evaluation is evaluated in terms of average utility gain (δ) excess return

relative to the risk-free rate 6.

6. Concluding remarks

This research investigate the contribution of forward-looking macroeconomic data, and time-varying

yield volatility to the predictive performance of the factor-augmented DNS model. Forward-looking data

included are expectations of market participants on inflation, GDP growth, and the level of policy rate.

Data on expectations come from the Focus Survey of the Brazilian Central Bank. Results show that the

inclusion of these forward-looking variables improves out-of-sample forecast results, specially for shorter

maturity bonds.

The inclusion of time-varying volatility also improves out-of-sample forecasts based on statistical

measures of predictive ability for certain maturities. However, its value becomes clear when evaluating

the economic significance of forecasts. Portfolios formed based on the predictions of models includ-

ing GARCH effects generate large utility gains for investors regardless of the degree of risk aversion

considered.
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