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Abstract

This paper studies the problem of a labor market regulator who knows that workers
prefer to work fewer hours at their current wage, but lacks specific knowledge of pro-
duction, labor disutility, and the bargaining protocol. We show that for a large class of
bargaining protocols, moderate regulation (such as a small minimum wage) is counter-
productive in that it results in hours that exceed the efficient quantity. We find that a
combination of the minimum wage, overtime pay, and a cap on hours is optimal in a
novel robust regulatory setting where the regulator has neither a prior nor exogenous
bounds on model parameters.
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1 Introduction

Most workers cannot freely set their hours.1 This restriction is not studied in the theoretical
literature on labor regulation, where hours are assumed to be either fixed or chosen by
workers.2

However the practice of regulation recognizes this issue. Many policies are designed to
reduce the hours of individual workers. For example, the European Union imposes a sharp
cap of 48 hours per week. In the United States, overtime pay requires companies to pay “time
and a half” (1.5 times the wage) for each hour worked above 40 hours per week. Japan uses
a lesser amount of overtime, “time and a quarter”, combined with a sharp cap of 55 hours
per week. These policies are depicted in Figure 1.
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Figure 1: Regulations for minimum total compensation for each number of hours in the
United States, Japan, and the European Union with a normalized minimum wage. Contracts
with hours and compensation above the line are allowed. Contracts below the line are not.

This paper addresses this gap in the theoretical literature by analyzing the effects of
regulation in a model in which workers and firms bargain over both wages and hours of
work.

Consider a fully-informed monopsonist firm that submits a “take it or leave it” offer of
compensation and hours to a single risk-neutral worker with convex disutility from labor. We

1For example, less than 5% of hourly paid respondents to the 2016 United States General Social Survey
said that they had full control of their hours compared to 47% who responded that their employer decides
unilaterally. See Table 1 in Appendix for details.

2It is, however, considered outside the context of regulation. For example Manning (2005) shows differ-
ences between the canonical model of monopsony and one where the employer chooses hours.
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refer to this as the “ultimatum model” of monopsony to distinguish it from the traditional
model.3 In the absence of regulation, the proposed contract will maximize total surplus,
which will be entirely appropriated by the firm, and the worker’s hours will be longer than
she would like to work at the implied wage (i.e., total compensation divided by hours of
work). Suppose that a regulator maximizes a weighted sum of worker utility and firm profits
with more than half of the weight placed on the utility of the worker. The regulator would
thus implement a regulation that (1) benefits the worker and (2) is not Pareto dominated.

We show that, when the regulator has complete information, minimum wage policies
dominate overtime pay and caps on hours. This is because workers only want to reduce
their labor if their implied wage is too low; if the wage is increased sufficiently, the problem
vanishes. Moreover, an efficient minimum wage exists where both the firm and worker receive
their preferred hours.

If the regulator has limited information about the market, he may be unable to implement
the efficient minimum wage. In the standard model of monopsony, which we will refer to
as the “flexible-hours” model, the worker and firm agree to each hour worked at a wage
set by the firm. This flexible-hours model yields a strictly increasing relationship between
agreed-upon hours and total surplus. As a result, any minimum wage below the efficient
minimum wage is “better than nothing” in the sense that it benefits workers and increases
total surplus above the market level. Thus, even if the regulator is unable to implement the
first-best regulation, he still prefers any reasonable lower bound on the minimum wage to
the free-market outcome.

This is not the case in the ultimatum model. If the minimum wage is binding but below
the efficient minimum wage, the firm will select more hours than is efficient in an attempt to
“claw back” the additional surplus the worker derives from higher wages. Consequently, the
minimum wage that maximizes hours actually minimizes total surplus locally.4 This implies
a suboptimal minimum wage is not necessarily “better than nothing”: total surplus is lower,
worker surplus may be lower, and the overall allocation may be strictly Pareto dominated
by that of the unregulated market.

This fragility of the minimum wage as a welfare improving policy motivates our interest
in robust regulation that always increases the worker’s utility even when the regulator’s
information is quite limited.

We consider a framework where the regulator has no prior knowledge of production and
costs, but: (1) observes the contract that prevails in the market before regulating, and (2)
knows a specific reduction in hours at the implied wage which benefits the worker. Given
this information, it is clear that reducing hours to this specific quantity at the current wage
would make the worker better off, regardless of the true production and disutility from labor.

However, this reduction in hours is actually weakly dominated: that is, alternative policies
exist which provide weakly greater payoffs for both the worker and firm for every possible
combination of production and cost functions and strictly larger payoffs for some case. Two

3Ultimatum bargaining is just a special case of the bargaining studied in this paper.
4It is not the global minimum. Total surplus is positive at this point, yet a sufficiently large minimum

wage will result in zero labor (and therefore zero surplus).
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Main Result: Optimal Regulation

Figure 2: The never Pareto dominated satisficing policy combines a minimum wage, overtime
pay, and a cap on hours. This policy guarantees the worker at least as much utility as the
contract at the “kink”.

insights demonstrate this observation. First, observing the market contract enables the
regulator to bound the worker’s disutility from labor. Second, an inflexible reduction in
hours is weakly dominated by any policy that guarantees the worker enough additional pay
to compensate for the additional hours. Intuitively, if the firm is willing to pay the worker
sufficiently in exchange for an additional hour, blocking the transaction is Pareto dominated.

The regulator is then able to use this bound on the worker’s disutility in order to ensure
that the worker is compensated enough to weakly benefit from increased hours. The optimal
policy is to combine a minimum wage, overtime pay, and hours cap calibrated such that
worker surplus will not be harmed. The minimum wage is set at the current implied wage,
overtime pay begins at a preferred reduced number of hours, and the hours cap is set at
the hours that prevailed in the market before regulation. We show that this policy uniquely
maximizes total surplus for any combination of production and worker disutility functions
within the class of regulations that dominate the inflexible reduction in hours.

Policies with this described shape are common. For example, Japan and France both
combine overtime pay with a cap on hours. Overtime pay in countries with no caps on
hours, such as the United States are also fundamentally similar because there is a natural
cap on the number of hours that one can work in a week. Some real-world regulations are
plotted in Figure 1 and can be compared to our optimal regulation in Figure 2.

This paper is the first to theoretically study the effects of regulation in a setting where
hours and compensation are jointly contracted. Our analysis contributes to a large theoretical
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and empirical literature on labor regulation. We additionally build on a small literature on
the joint determination of hours and compensation. In particular, Manning (2005) analyzes
the ultimatum model of monopsony without regulation.

This study also joins a growing literature on robust contracting. Our informational
setting shares key elements with Carroll (2015), which considers a robust moral hazard
problem where the principal: (1) knows at least one of the agent’s available actions and (2)
obtains an optimal contract which exploits the alignment of incentives between the principal
and agent. In our setting, the regulator instead: (1) knows one regulation which benefits the
worker, instead of an action, and (2) obtains an optimal regulation which exploits efficiency,5

which is analogous to aligned incentives in Carroll’s context.6

The paper is organized as follows. In Section 2 we restate some standard results about
monopsony to frame our results. We present the formal model in Section 3. In Section 4, we
study the problem of regulation with complete information. The case where the regulator
lacks information about production and disutility is presented in Section 5. We explore
extensions in Sections 6 (more general bargaining), 7 (more workers), and 8 (information
manipulation). In Section 9, we review the related literature and discuss the results.

2 The standard, “flexible-hours” model of monopsony

To illustrate our approach and the significance of our results for regulation, we present the
model of monopsony that is common in the literature. We then show how our model differs
from this standard model and how this difference affects the optimal regulation.

The canonical Stigler (1946), henceforth flexible-hours, model of monopsony under a
minimum wage is the standard model used in the literature. A monopsonist firm (it) con-
tracts with a worker (she) to obtain hours of labor, ℓ, in exchange for a transfer, τ . From
any given contract (ℓ, τ), the firm receives profits, f(ℓ) − τ , where f is a strictly concave,
differentiable production function. The worker receives payoff τ − c(ℓ), where c is a strictly
convex, differentiable, and increasing labor cost function. Without loss, f(0) = c(0) = 0. We
additionally make the standard assumption that c′(x)x is convex (i.e., marginal expenditure
is increasing).7 The firm makes some quota of employment hours, ℓ̄, available to the worker
at an hourly wage, w ≡ τ/ℓ, and the worker then chooses to provide ℓ ≤ ℓ̄ hours of labor.

In the absence of a minimum wage, the firm equates marginal productivity and marginal
expenditure, yielding ℓm work hours – a quantity notably below the efficient, surplus maxi-
mizing, amount (see Figure 3). The introduction of a minimum wage w̄ then improves total
welfare by helping increase labor, as the higher compensation incentivizes workers to supply
longer hours. This movement happens up until the worker is paid her marginal productivity,

5That is, bargaining between the worker and firm is Pareto optimal under the constraints of the regula-
tion.

6Our framework can be applied to any robust delegation context. See Chapter 10.5.
7This assumption is important for the standard model of monopsony. Without this assumption, Lo-

ertscher and Muir (2021) show that a menu of stochastic wages may be optimal for the firm. The assumption
is not relevant to the ultimatum model presented in Section 3 or the more general model in Section 6.1.
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Figure 3: Labor supply, demand, and equilibrium under flexible-hours monopsony. The
equilibrium labor hours occur at the intersection between marginal expenditure and labor
demand.
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Effect of Minimum Wage on Hours in Flexible-hours Model

Figure 4: Plot of labor response curve, L for the flexible-hours model. For any minimum
wage w̄ ∈ (c′(ℓm), c′(ℓ∗b)), the worker is employed for a quantity of hours between the market
employment and the efficient level of employment (the inverse of the marginal cost). The
minimum wage w̄∗

b = c′(ℓ∗b) = f ′(ℓ∗b) implements efficient employment. Labor is decreasing
in the minimum wage for wages above w̄∗

b because the firm’s limit on work hours is binding.
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or w̄∗ ≡ c′(ℓ∗) = f ′(ℓ∗). Only beyond this level do we have that further increases in w̄ become
counterproductive. This relationship between the minimum wage and labor (i.e., the labor
response curve, L) is plotted in Figure 4.

Note that, in this model, the minimum wage that maximizes labor among any set of min-
imum wages also maximizes total surplus in that set. This suggests that, if the introduction
of a minimum wage has increased the number of hours worked, then the total surplus has
inevitably improved – even if no other information about costs and production processes is
available. This is a powerful relationship in terms of policy evaluation, and offers a clear
guide to regulators considering introducing or altering the minimum wage. However, as
we will show next, this intuition depends crucially on accepting that the worker has total
flexibility in reducing her own hours. Without this supposition, the conclusions may be
reversed.

3 Model

We adapt the model in Section 2 to the setting where the firm chooses hours. The players,
payoffs, and definitions remain the same.

Contracts take the form (ℓ, τ) ∈ R2
+ where ℓ is hours of labor and τ is a gross payment

to the worker. The worker’s wage is defined as the average payment per hour: w ≡ τ/ℓ.

Players The firm’s payoff from a contract (ℓ, τ) is

π(ℓ, τ) ≡ f(ℓ)− τ.

Failing to hire the worker results in no labor or payment.
The worker’s utility function is u(ℓ, τ) ≡ τ − c(ℓ) where τ is the gross payment from the

firm for the worker’s labor and c is the worker’s disutility from labor. The worker’s outside
option is no labor or payment.

Without loss of generality, f(0) = c(0) = 0. As in Section 2, we assume f, c are differ-
entiable, c is weakly increasing and strictly convex, f is strictly concave, and there exists a
t > 0 such that f ′(t) < c′(t).

Regulation A regulator imposes a regulation to constrain the contracting space. A regu-
lation a function, ϕ : R+ → [0,∞], such that the worker and firm are restricted to contracts
with τ ≥ ϕ(ℓ). We require that ϕ is weakly convex and ϕ(0) = 0. In other words, the
contracting space is a convex set which contains the disagreement point. This allows for
policies such as overtime pay and caps on hours. However, it does meaningfully constrain
the regulator and prevents full surplus extraction. Convexity of the bargaining space is a
standard assumption in the bargaining literature. If the bargaining set were not convex,
then there would exist two permitted contracts such that some convex combination of them
is not allowed. In this case, a real-world firm might find it optimal to switch between the
two permitted contracts in alternating weeks to approximate the disallowed contract. That
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Figure 5: An example of a minimum wage policy. Only contracts above the lines are allowed.

is, the firm may rest workers in alternating weeks. We prevent this perverse behavior by
requiring convexity.

If ϕ(ℓ) ≡ 0 for all ℓ, there is no regulation. A linear regulation, ϕ(ℓ) ≡ w̄ℓ, is a minimum
wage regulation with minimum wage, w̄.

Bargaining The firm makes an ultimatum offer to the worker in order to maximize profits.
The worker can accept or reject the offer. Rejecting the offer yields disagreement point (0, 0).

Timing The game has three stages.

1. The regulator announces regulation ϕ.

2. The firm offers a contract, (ℓ, τ).

3. The worker can accept or reject the contract to obtain (0, 0).

4 Results with complete information

In this section, we find the equilibrium, identify the optimal regulation, and show how it
differs from the flexible-hours model.

This ultimatum employment game has a unique subgame perfect Nash equilibrium. The
equilibrium contract solves the firm’s profit maximization problem:

max
ℓ,τ

f(ℓ)− τ s.t. τ ≥ c(ℓ) and τ ≥ ϕ(ℓ). (1)
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Figure 6: Plot of labor response curve, L for the ultimatum model. It has the same shape as
the flexible-hours model in Figure 4. However, for any minimum wage w̄ ∈ (c(ℓ∗u)/ℓ

∗
u, c

′(ℓ∗u)),
the worker is employed for a number of hours that exceeds the efficient quantity. Therefore,
the minimum wage that maximizes hours does not implement an efficient allocation.

If ϕ is identically zero (i.e., there is no regulation) the firm extracts all surplus from the worker
and labor hours are efficient. The wage is equal to the worker’s average cost, wm = c(ℓ∗)/ℓ∗,
implying the worker would prefer fewer hours (since c is convex, average costs are lower than
marginal costs). In this case, we say that the worker is overworked.8

We say a regulation is redistributive if it is better for the worker than no regulation.
The following proposition demonstrates that for every redistributive regulation, there is a
minimum wage that gives the worker at least as much utility while maintaining the same
total surplus.

Proposition 1. Let ϕ be a redistributive regulation that implements ℓ. There exists a mini-
mum wage, w̄, that implements ℓ such that w̄ℓ ≥ ϕ(ℓ).

Because of this, minimum wages are without loss of optimality for any fully informed
regulator with an objective that is increasing in τ . As a result, we can restrict attention to
minimum wage regulations and compare the effects of the minimum wage in this model to
those in the flexible-hours model in Section 2.

The labor response curve, L, for the ultimatum model is shown in Figure 6. The curve
for the flexible-hours model (plotted in Figure 4) has the same shape. In fact, the two curves
are indistinguishable, as the following proposition demonstrates.

8In the more general model presented in Section 6, overwork in the absence of regulation is a necessary
and sufficient condition for the market to behave similarly to the ultimatum model in response to regulation.
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Proposition 2. A flexible-hours model with cost, cb, generates the same labor response curve
as an ultimatum model with the same production function and cost, cu, where

cu(x) ≡ c′b(x)x.

This is significant because empirical studies on labor regulation generally focus on mea-
suring some part of the labor response curve – often the change in labor after an increase
in the minimum wage. Suppose that the regulator has access to the entire labor response
curve but not f , c, or even whether this labor response comes from the flexible-hours or
ultimatum model. Due to Proposition 2, the regulator cannot identify the true model with-
out knowledge of the worker’s disutility from labor, c. For any labor response curve, L, and
production function, f , there is one disutility, cb, that is consistent with the flexible-hours
model and another disutility, cu, that is consistent with the ultimatum model.

Of course, the two models are not equivalent for the worker, and the efficient minimum
wage is markedly not the same. The unregulated market is already efficient in the ultimatum
model: thus, a minimum wage that increases hours increases them above the efficient level.
This is undesirable, an assertion we emphasize in the below claim.

Proposition 3. The efficient minimum wage for the flexible-hours model with cost cb (i.e.,
w̄∗

b) locally minimizes welfare in the ultimatum model with cost cu.

Proposition 3 implies that a regulator who assumes the flexible-hours model and has
sufficient knowledge of L to implement the efficient minimum wage under this model will
locally minimize welfare in the case that the ultimatum model holds.

The next claim further demonstrates why knowledge of the labor response curve is not
sufficient for optimal regulation.

Proposition 4. For any labor response curve, L:

• cb(x) < cu(x) ∀x > 0;

• w̄∗
b < w̄∗

u;

• ℓ∗b > ℓ∗u; and

• for i ∈ {b, u} and all w̄ ≥ 0,

d [f(L(w))− ci(L(w))]

dw

∣∣∣∣
w=w̄

> 0 =⇒ d [f(L(w))− c−i(L(w))]

dw

∣∣∣∣
w=w̄

< 0.

The last point of Proposition 4 implies that total surplus is always weakly decreasing
in the minimum wage in at least one of the two models. This poses an impossibility for
robust regulation using L. However, there is information other than L that can be used to
regulate. For example, if the regulator knew that the worker was overworked, he could reject
the flexible-hours model.

Overwork information is not only useful for determining the true model, but also for
finding whether the current minimum wage is above or below the efficient one.
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Proposition 5. For i ∈ {b, u}, w̄∗
i is the largest minimum wage such that the worker is not

underworked in model i.

Proposition 5 demonstrates the importance of worker preferences in regulating labor.
Knowing the actual level of labor that is achieved at each minimum wage is neither necessary
nor sufficient for determining the efficient minimum wage. However, knowing whether the
worker wants to work more or fewer hours at each minimum wage is sufficient.

5 Robust regulation

Suppose the regulator does not observe production or costs. Moreover, he has no prior over
these objects. Instead, the regulator observes: (1) the equilibrium contract, (ℓ0, τ0), that
prevails in ultimatum bargaining prior to the regulation and (2) reduced hours ℓ̂ < ℓ0 that
the worker would prefer at the average wage, w0 ≡ τ0/ℓ0.

Therefore, the regulator is aware of a contract, (ℓ̂, w0ℓ̂), which the worker prefers to the
status quo. Because the contacting space is convex, the regulator knows that both parties
prefer this contract to the disagreement point (i.e., the point is feasible). We are interested
in regulations that are satisficing in that they guarantee at least as much utility for the
worker as this contract.

Definition 1 (Satisficing). A regulation is satisficing if

inf
(f,c)∈I(ℓ0,τ0,ℓ̂)

(τ − c(ℓ))− (w0ℓ̂− c(ℓ̂)) ≥ 0

s.t. (ℓ, τ) = argmax
l,t≥max{ϕ(l),c(l)}

f(l)− t

where I(ℓ0, τ0, ℓ̂) is the set of possible M, f, c that are consistent with ℓ0, τ0, ℓ̂.

The satisficing property ensures that the worker weakly benefits from the market over
the outcome where (ℓ̂, w0ℓ̂) is the only contract allowed. A cap of ℓ̂ hours combined with
a minimum wage of w0 is clearly satisficing, but it is not the only such policy. There is an
opportunity for improvement through refinement.

Intuitively, because the worker wants to work fewer hours at her current wage, our regu-
lation will reduce the hours that the worker works. However, because ultimatum bargaining
is efficient in the absence of regulation, this reduction in hours is inefficient. Therefore, we
want to minimize the reduction in hours while still satisfying the worker. This is formalized
in the following definition.

Definition 2 (TS maximizing). Policy ϕ is TS maximizing if for all f, c such that f ′(ℓ0) =
c′(ℓ0) and c(ℓ0) = τ0 and all satisficing ψ,

f(L[ϕ])− c(L[ϕ]) ≥ f(L[ψ])− c(L[ψ])
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We are interested in finding an element within the class of satisficing policies which has
the greatest total surplus in every state. It is not obvious that such a policy exists. Indeed,
in many settings, such a regulation would not exist. The following theorem shows that this
policy does exist in our setting and guarantees that it is unique.

Theorem 1. There is a unique TS-maximizing satisficing policy. It is

ϕ∗(x) ≡


w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Theorem 1 establishes that the unique TS maximizing, satisficing regulation, ϕ∗, is a
combination of a minimum wage, overtime-pay, and a cap on hours. This regulation is
plotted in Figure 2. Each of the three policies are very common and a similar combination
of the three exists in Japan and France.

6 More general bargaining

6.1 Model

We now assume that the contract (ℓ, τ) solves the following optimization problem:

max
ℓ,τ

M(f(ℓ)− τ, τ − c(ℓ)) s.t. τ ≥ ϕ(ℓ)

where M : R+ × R+ → R is the bargaining objective. The ultimatum bargaining model
studied in 4 is the special case where M(x, y) ≡ x. We make the following assumptions
about M .

Assumption 1 (Weak monotonicity). For all x, y, x′, y′ ∈ R+ such that x′ > x and y′ > y,

M(x′, y′) > M(x, y).

Assumption 2 (Strict quasiconcavity). For all x, y, x′, y′ ∈ R+ such that x′ ̸= x and y′ ̸= y
and for all λ ∈ (0, 1),

M(λx′ + (1− λ)x, λy′ + (1− λ)y) > min{M(x, y),M(x′, y′)}.

Assumption 3 (Continuity). The function, M , is continuous in both arguments.

These assumptions admit the most popular bargaining models including ultimatum bar-
gaining, asymmetric Nash bargaining, egalitarian bargaining, and the more general propor-
tional bargaining of Kalai (1977).9

9Our results also extend to the choice theoretic bargaining of Peters and Wakker (1991).
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6.2 Comparative statics results

In this section, we show that ultimatum bargaining typifies the properties of other bargaining
protocols. Because of this, the claims established in Section 4 for minimum wage regulation
in the ultimatum framework extend to this more general setting.

Proposition 1 extends to this setting without modification. So, minimum wage regulations
are still without loss of optimality for a regulator with complete information and an objective
function that is strictly increasing in τ .

In the analysis of ultimatum bargaining in Section 4, a minimum wage of zero and the
minimum wage w̄∗ ≡ f ′(ℓ∗) are both efficient regulations in that they both implement the
efficient quantity of hours, ℓ∗. This remains true in the general case.

However, in the ultimatum model: (1) the worker is overworked without regulation and
(2) the efficient minimum wage, w̄∗, is always redistributive. For a general bargaining pro-
tocol, it may be that neither holds. The following proposition demonstrates that one cannot
hold without the other.

Theorem 2. Let ϕ be an efficient regulation that implements τ . The worker is overworked
under ϕ if and only if there exists another efficient regulation ψ such that ψ(ℓ∗) > τ .

In other words, the worker is overworked under an efficient regulation if and only if there
is another efficient regulation which redistributes more to the worker. Overwork, which is
the setting under which a regulation such as overtime pay is appealing, is also a necessary
and sufficient condition for there to exist some “costless” redistribution in the sense that we
can redistribute to the worker without sacrificing any total surplus.

For the forward direction, if the worker is overworked, her wage is less than her marginal
cost of labor, which is precisely the efficient minimum wage, w̄∗ ≡ f ′(ℓ∗) = c′(ℓ∗).

Intuitively, the proof of the converse uses the fact that any bargaining protocol responds
to regulation in a manner similar to the ultimatum model when labor hours are efficient.
Because marginal productivity and marginal disutility are equal at the efficient labor, hours
are an almost perfect substitute for the constrained transfers. Because of this, if a regulation
ψ is redistributive and ψ′(ℓ∗) ̸= f ′(ℓ∗), some total surplus will always be traded off to increase
firm profits. By convexity, a regulation with ψ′(ℓ∗) = f ′(ℓ∗) cannot result in a wage that
exceeds the workers marginal productivity, f ′(ℓ∗).

Two convenient choices of ϕ in Theorem 2 allow us to obtain new results and provide
intuition for the theorem. First, if we set ϕ to zero, we obtain the following corollary.

Corollary 2.1. There exists an efficient, redistributive regulation if and only if the worker
is overworked under the free-market contract.

Corollary 2.1 is a special case of Theorem 2 which uses the fact that the free-market is
efficient. Using the efficient minimum wage w̄∗ as ϕ yields a second corollary.

Corollary 2.2. If ψ is an efficient, redistributive regulation, then ψ(ℓ∗) ≤ f ′(ℓ∗)ℓ∗.

Corollary 2.2 implies that w̄∗ maximizes worker utility in the class of efficient policies.
Corollary 2.2 follows from the fact that f ′(ℓ∗) is equal to (and thus not less than) c′(ℓ∗).
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This characterizes the maximal efficient, redistributive minimum wage. However, we have
yet to describe the effects of any other minimum wages.

In Section 4, any minimum wage between the free-market wage and f ′(ℓ∗) implement
labor that exceeds the efficient quantity, ℓ∗. This holds true in the general model when the
worker is overworked in the absence of regulation. Otherwise, these minimum wages are
below the free-market wage and thus do not bind.

In the case of overwork, the shape of the labor response curve is similar to that of the
ultimatum model. That is, overwork is necessary and sufficient for the market to behave
“like ultimatum bargaining” in response to regulation.

Corollary 2.3. Let L : R+ → R+ define the level of labor at each minimum wage and
w0 ∈ [c(ℓ∗)/ℓ∗, c′(ℓ∗)) be the wage in the absence of regulation. Then, the labor response
function, L, is continuous and

L(x)



= ℓ∗ if x ∈ [0, w0]

> ℓ∗ if x ∈ (w0, f
′(ℓ∗))

= ℓ∗ if x = f ′(ℓ∗)

< ℓ∗ if x ∈ (f ′(ℓ∗), f ′(0))

= 0 if x ≥ f ′(0).

First, labor is constant when the minimum wage is too low to bind. Second, hours
exceed the efficient quantity when the minimum wage is between the market wage and w̄∗.
Therefore, the minimum wage that maximizes labor is inefficient. Finally, w̄∗ is the unique
efficient, redistributive minimum wage. So, any larger minimum wage implements fewer
hours than is efficient. Therefore, the analysis in Section 4 is relevant for any bargaining
protocol that results in overwork.

The general setting allows for new effects on the surplus of workers and firms. For
example, it is possible for a minimum wage below w̄∗ to strictly decrease the surplus of both
the worker and the firm.

Example 1 (Egalitarian bargaining). The worker and firm split the market surplus evenly.
So, the market is described by

max
ℓ,τ

min{f(ℓ)− τ, τ − c(ℓ)} s.t. τ ≥ ϕ(ℓ).

Let −c be “more concave” than f on [0, ℓ∗] in the sense that f(ℓ∗)−f ′(ℓ∗)ℓ∗ < c′(ℓ∗)ℓ∗−c(ℓ∗).
This condition is necessary and sufficient for overwork.

In the absence of regulation, τ0 =
f(ℓ∗)+c(ℓ∗)

2
and profits and worker utility are both equal

to half the maximum total surplus, f(ℓ∗)−c(ℓ∗)
2

.
By assumption, the worker is overworked in equilibrium. As the minimum wage increases

above the free-market wage, w0 = f(ℓ∗)+c(ℓ∗)
2ℓ∗

, labor will increase to keep profits and worker
utility equal. This will occur until the minimum wage reaches f ′(z) where z is the smallest

solution to f(z)+c(z)
2z

= f ′(z). For all minimum wages between w0 and f ′(z), the worker’s
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welfare and the profits of the firm are lower than in the unregulated state. This is because
each is taking the same share of a smaller pie.

For any minimum wage above f ′(z), the worker obtains more than half of the total
surplus. So, labor is set to maximize profits. As a result, the equilibrium contract at each
minimum wage is the same as in the ultimatum model. △

Example 1 shows the effect that minimum wages below the efficient minimum wage
can have on the market. If a binding minimum wage benefits the worker, it is because it
increases the worker’s share of total surplus enough to compensate for the weak reduction
in total surplus imposed by the policy.10 In Example 1, any minimum wage in (w0, f

′(z)]
reduces total surplus without affecting the worker’s share. As a result, both the worker and
firm are strictly worse off under these regulations.

6.3 Optimal regulation

We now apply the results of Section 6.2 to the problem of a regulator. We restrict attention
to settings where the worker is overworked in the absence of regulation. By Theorem 2,
this is the same as restricting attention to the setting where the worker’s wage is below her
marginal cost.

6.3.1 Regulation with complete information

Suppose that the regulator knows f , c, and M and maximizes a weighted sum of worker
utility and firm profits with more weight on workers. That is, the regulator’s objective is to
choose the ϕ that maximizes

αu(ℓ, τ) + (1− α)π(ℓ, τ) = α(τ − c(ℓ)) + (1− α)(f(ℓ)− τ)

for α ∈ (0.5, 1]. The case where α → 0.5 is of special interest. In this case, the regulator is
not willing to sacrifice any total surplus to improve the welfare of the worker.

In this setting, Proposition 1 guarantees that any regulation can be weakly improved
upon with a minimum wage. With this, it is straightforward to find an optimal policy.

Theorem 3. Any minimum wage in w∗(α) where

w∗(α) ≡ argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

M(f(l)− wl, wl − c(l))

is a redistributive optimal regulation for α ∈ (0.5, 1].

10It is a strict reduction for any minimum wage other than f ′(ℓ∗).
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The assumption that the worker is overworked ensures that the optimal minimum wage
is redistributive. If the worker is not overworked, minimum wage regulation is still without
loss of optimality. However, it may be optimal not to regulate.11

Note that Theorem 3 does not imply that the optimal minimum wage is unique. This is
further explored in Example 2.12

Example 2. Suppose that bargaining is proportional as in Kalai (1977) with proportion
β ∈ [0, 1] of total surplus going to the worker. The equilibrium contract solves:

max
ℓ,τ

min{(1− β)(f(ℓ)− τ), β(τ − c(ℓ))} s.t. τ ≥ ϕ(ℓ).

Note that this admits ultimatum bargaining (β = 0) and egalitarian bargaining (β = 0.5) as
special cases.

Let −c be sufficiently “more concave” than f on [0, ℓ∗] in the sense that (1− β)(f(ℓ∗)−
f ′(ℓ∗)ℓ∗) < β(c′(ℓ∗)ℓ∗ − c(ℓ∗)). This condition is necessary and sufficient for overwork.

Because the free-market is efficient, regulation cannot increase total surplus. So, any
redistributive regulation must give the worker more than β of the total surplus. Therefore,
as in Example 1, labor is chosen to maximize profits in any redistributive regulation.

Because the worker is overworked in the absence of regulation, the minimum wage f ′(ℓ∗)
is redistributive. Therefore, labor is chosen to maximize profits for all minimum wages
greater than or equal to f ′(ℓ∗).

Therefore, the equation in Theorem 3 is

argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

f(l)− wl.

The constraint simplifies to w = f ′(ℓ). So, any optimal minimum wage satisfies w∗(α) =
f ′(ℓα) where

ℓα ∈ argmax
l<ℓ∗

(2α− 1)f ′(l)l + (1− α)f(l)− αc(l). (2)

△

There may be multiple maxima that satisfy (2). Consequently, more assumptions are
required to ensure that the optimal minimum wage for a given α is unique. In the case of
Example 2, it is sufficient to assume that f ′(x)x is concave.

11For example, if the worker chooses both hours and pay, the worker will extract all of the surplus in the
market. The free-market outcome is clearly optimal in this case.

12Example 3 (in the Appendix) demonstrates another sort of multiplicity where there are multiple workers
and different wages benefit different workers.
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6.3.2 Robust regulation

The TS-maximizing, satisficing policy introduced in Section 5 does not necessarily exist
in a general bargaining environment. However, it is possible to find a policy that is both
satisficing and never Pareto dominated by any other satisficing policy. That is, we replace
TS-maximizing with the weaker notion of never Pareto dominated. We show in Chapter
10.5 that this rule works in a general delegation environment. In this section, we show that
it works in the specific environment of this paper.

Definition 3 (Satisficing). A regulation is satisficing if

inf
(M,f,c)∈I(ℓ0,τ0,ℓ̂)

(τ − c(ℓ))− (w0ℓ̂− c(ℓ̂)) ≥ 0

s.t. (ℓ, τ) = argmax
l,t≥ϕ(l)

M(f(l)− t, t− c(l))

where I(ℓ0, τ0, ℓ̂) is the set of possible M, f, c that are consistent with ℓ0, τ0.

Definition 4 (Never Pareto Dominated). A regulation, ϕ, is Never Pareto Dominated (NPD)
by ψ if there does not exist an (M, f, c) ∈ I(ℓ0, τ0, ℓ̂) such that the outcome of ϕ Pareto
dominates the outcome of ψ.

Because bargaining satisfies weak Pareto, a more flexible regulation allowing more hours
in exchange for compensation is NPD by the sharp cap on hours in any state of the world.
However, there are many states of the world under which the more flexible policy Pareto
dominates the cap.

We are interested in finding a policy that is both satisficing and NPD by any other
satisficing policy. The following theorem identifies such a policy and guarantees that it is
unique.

Theorem 4. There is a unique policy which is satisficing and NPD by any satisficing regu-
lation. It is

ϕ∗(x) ≡


w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Theorem 4 establishes that the unique NPD satisficing regulation, ϕ∗, is a combination
of a minimum wage, overtime-pay, and a cap on hours. The regulation is identical to that
of Theorem 1. This regulation is plotted in Figure 2. Each of the three policies are very
common and a similar combination of the three exists in Japan and France.

The NPD satisficing regulation is the most flexible satisficing policy as it is the point-
wise minimum of all satisficing policies.13 Intuitively, the NPD satisficing regulation allows
(ℓ̂, w0ℓ̂) as well as all contracts which the regulator knows that the worker prefers. This

13Put another way, the bargaining set is the union of all satisficing bargaining sets. For a general delegation
setting, we demonstrate that the union of satisficing sets is satisficing in Chapter 10.5.
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knowledge comes from the fact that the regulator can bound the worker’s disutility from la-
bor. The bound is obtained from the worker’s individual rationality constraint at the initial
contract, (ℓ0, τ0). That is, the regulator can bound the amount of additional income that
the worker needs to work additional hours because he saw the worker work these hours in
exchange for pay.

We now give a sketch of the main technique used in the proof to construct the upper
bound on the worker’s disutility from labor. Any violation of satisficing would come from
contracts with labor in (ℓ̂, ℓ0] that the worker likes less than (ℓ̂, w0ℓ̂). We will show that any
such contract is forbidden.

The worker weakly prefers a contract (x, y) to (ℓ̂, w0ℓ̂) where x ∈ (ℓ̂, ℓ0] if and only if the
additional payment she receives offsets the increase in work hours,

y − w0ℓ̂ ≥ c(x)− c(ℓ̂). (3)

We are able to bound the right hand side (the increase in labor costs) using convexity and
individual rationality of (ℓ0, τ0).

c(x)− c(ℓ̂) <
x− ℓ̂

ℓ0 − ℓ̂

[
c(ℓ0)− c(ℓ̂)

]
<

w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂)

Where the last step uses c(ℓ̂) > 0, and the fact that individual rationality implies c(ℓ0) ≤
τ0 = w0ℓ0. Combining the above with (3) yields that the worker prefers (x, y) to (ℓ̂, w0ℓ̂) if

y ≥ w0ℓ̂+
w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂) = ϕ∗(x).

The fact that this regulation is never Pareto dominated comes from the fact that it is the
minimal satisficing regulation. Because bargaining satisfies weak Pareto, the least restrictive
regulation is never Pareto dominated by more restrictive policies. We show in Chapter 10.5
that the set of satisficing delegation sets in general delegation problems forms an upper
semi-lattice. As a result, the least restrictive regulation exists and is unique.

Note that in our complete information setting in Section 6.3.1, we found NPD satisficing
regulations. Under complete information, maximizing a weighted sum of payoffs yields all of
the policies that are NPD by any policy. Moreover, any policy that maximizes the objective
for α > 0.5 is satisficing. To see this, note that the efficient minimum wage, w̄∗ is necessarily
larger than w0 because the worker is overworked. Recall that the worker obtains her preferred
hours at w̄∗. Therefore, w̄∗ is satisficing because the utility that the worker obtains at this
higher wage with her most preferred hours exceeds that of any hours, ℓ̂, at the lower wage.
Recall that w̄∗ is optimal for α → 0.5. Clearly, if α > 0.5, more weight is placed on the
worker. So, the minimum wages associated with these larger weights are also satisficing.14

14The only other never Pareto dominated, satisficing regulations are some that maximize the objective
for α = 0.5. These are efficient regulations that redistribute less than w̄∗.
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7 Heterogeneous workers

Thus far, we have assumed that a firm acquires the services of a single worker. This makes
sense if: (1) regulation can be customized to each worker or (2) workers have similar labor
preferences. The first is unusual. While the second is not necessarily true, it is nevertheless
common to use a representative agent to represent players with heterogeneous preferences.

7.1 Complete information regulation under heterogeneity

Suppose that there are N ≥ 2 types of workers employed by a firm. Let ci denote the
cost of the i-th worker type. The individual costs and the production functions, f , satisfy
A1-3. For convenience, order the types in terms of efficient labor hours. That is, for j > k,
ℓ∗j ≥ ℓ∗k where ℓ∗i ≡ argmaxz {f(z)− ci(z)}. The workers negotiate individual contracts in
accordance with the ultimatum model. However, regulations cannot be customized to each
worker. Instead, the regulator chooses a single regulation that applies to all workers. Absent
this restriction, all of the results from the single worker case immediately apply to the general
case.

Assume that the regulator treats all workers equally. That is, the objective of the regu-
lator is

α

(
N∑
i=1

τi − ci(ℓi)

)
+ (1− α)

(
N∑
i=1

f(ℓi)− τi

)
=

N∑
i=1

(2α− 1)τi + (1− α)f(ℓi)− αci(ℓi)

where α ∈ (0.5, 1].
We analyze this case of heterogeneous workers under complete information in depth in

Appendix 10.3. Here we highlight and discuss two significant results.
The first result is that if only the utility of the worker matters to the regulator, hetero-

geneity essentially has no effect on the problem.

Proposition 6. For α = 1, there is at least one optimal regulation that is a minimum wage.
Any optimal minimum wage is the same as the optimal minimum wage in a single worker
problem. This single worker has the average cost of all workers with positive utility under
the regulation.

Proposition 6 means that the optimal minimum wage in the heterogeneous case is the
optimal minimum wage for a worker with costs that are averaged across some subset of the
workers. We can interpret this virtual worker with averaged costs as a representative agent.

The proof contains an algorithm to find all optimum minimum wages by checking all
possible subsets of workers. Example 3 in the Appendix shows how to use the algorithm
in practice. In the example, there are two optimal minimum wages which benefit different
subsets of workers.

Intuitively, Proposition 6 holds because a redistributive regulation implements a contract
that does not depend on workers’ costs. As a result, all workers who benefit from a regulation
receive the same contract.
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Of course, there may be some workers who receive a different contract because the reg-
ulation is not redistributive for them. However, because of the ultimatum bargaining, these
workers are not negatively impacted by the policy.

The firm, on the other hand, may be negatively impacted. Because of this, if the regulator
cares about firms or efficiency, the optimal policy may not be a minimum wage.

Proposition 7. Let α → 0.5. Suppose ℓ∗N ̸= ℓ∗N−1. If minN−1
i=1 {ci(ℓ∗i )/ℓ∗i } > f ′(ℓ∗N), the

optimal regulation is a minimum wage of f ′(ℓ∗N). Otherwise, consider

ϕ(x) ≡

{
Conv (x) if x ≤ ℓ∗N−1

Conv (ℓ∗N−1) + f ′(ℓ∗N)(x− ℓ∗N−1) if x > ℓ∗N−1,

and Conv is the largest convex function to fit under {(ℓ∗i , ci(ℓ∗i ))}N−1
i=1 with the restriction that

the slope is capped at f ′(ℓ∗N). If ϕ(ℓ
∗
N) > cN(ℓ

∗
N), then ϕ is an optimal regulation.

Proposition 7 demonstrates two important properties of these problems. First, the opti-
mal regulation may not be a minimum wage. The reason that a piecewise linear regulation
may be optimal in the heterogeneous worker setting is that it reduces the effects of regulation
the contracts of workers with zero payoff. Such regulation only affects firms. So, the issue
becomes less relevant as α increases. The second property is that minimum wage regulation
is also optimal in settings where heterogeneity is sufficiently large. In this case, the problem
is separable and the lowest cost worker can be regulated alone. In Appendix 10.3, Proposi-
tion 10 shows that a minimum wage is also optimal for all α ∈ (0.5, 1] (but not for α → 0.5)
when heterogeneity is sufficiently small.

7.2 Robust regulation under heterogeneity

The previous analysis uses the market state from just one worker to regulate. As a result,
the regulation is only necessarily satisficing for this one worker. Extending the analysis
to multiple workers is simple. One can construct the never Pareto dominated satisficing
regulation for each and take the maximum pointwise.

Proposition 8. Let ϕ∗
i be the never Pareto dominated satisficing regulation for worker i.

Suppose that the request, ℓ̂, is below the labor of each worker and that all workers are over-
worked. The unique never Pareto dominated regulation which is satisficing for all workers
is

ϕ∗(x) = max
i
ϕ∗
i (x).

The proof is in Appendix 10.1.12. For ℓ > ℓ̂, each regulation only allows contracts which
the worker prefers to the request. If we take the maximum, all of the points which are
allowed are preferred to the request. The only trick is to ensure that ℓ < ℓ̂ is satisficing.
This comes from weak Pareto and overwork combined with Theorem 2.

The same proof also demonstrates that an hours cap at τ which uses the maximum
of all workers wages is also satisficing. The assumption that all workers are overworked is
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important to establish that ϕ∗ is satisficing. If some workers are not overworked, then ϕ∗ may
not be satisficing. However, for the same reason, an hours cap would also not be satisficing.
The argument that ϕ∗ is a Pareto improvement over an hours cap remains true.

8 Manipulation

In Section 6.3.2, we assumed that the firm and worker do not foresee the regulation that
will be imposed. Moreover, we assume that the regulator knows some lower level of labor,
ℓ̂, which the worker prefers to the current level of labor. This level could be arbitrary or be
an internal belief of the regulator. However, it may be appealing to elicit this value.

In practice, manipulation of regulation is typically prevented through grandfathering, the
use of information which predates the discussion of regulation. For example, in most cap-
and-trade systems, permits are allocated based on historical energy usage that predates the
discussion of these environmental policies.15 This section considers what can happen when
this practice is infeasible.

8.1 Manipulation by workers

Suppose that workers have complete information and interact with firms according to the
ultimatum model. If the regulator asks the worker how many hours she wants to work, the
worker wants to solve

max
ℓ̂≤ℓ0

w0ℓ̂+
w0ℓ0

ℓ0 − ℓ̂
(ℓ− ℓ̂)− c(ℓ)

s.t. ℓ = argmax
l∈[0,ℓ̂]

f(l)− w0ℓ0

ℓ0 − ℓ̂
(l − ℓ̂).

The solution is interior because setting the request, ℓ̂ = 0 or ℓ̂ = ℓ0 results in no binding
regulation being implemented. This can be solved using standard envelope theorem argu-
ments. We instead consider two extreme cases for intuition: (1) when total surplus is small
and (2) when total surplus is large.

If total surplus is small, both marginal cost and marginal productivity are low. The firm
will not pay overtime unless the overtime pay multiplier is sufficiently small. Because the
worker prefers all of the overtime points to the preferred point by construction, the worker
wants to make a report such that she can earn overtime. To make the overtime pay multiplier
sufficiently small, the worker will request a low ℓ̂. As a result, the regulator imposes little
regulation when there is not much surplus to redistribute.

If total surplus is sufficiently large, both marginal cost and marginal productivity are
high. The firm will pay overtime even when the overtime pay multiplier is large. To extract

15This also applies to regulations considered for individuals. For example, the 2022 student loan forgive-
ness policy in the U.S. does not apply to any loans taken out less than two months before its announcement.
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a larger payment, the worker will request a large ℓ̂. As a result, the regulator imposes a large
overtime payment multiplier when there is a lot of surplus to redistribute, but most hours
are worked without overtime.

The regulation does not require the worker to be strategic or have information about
production. However, if the worker does have access to these inputs, they can be used to
make the regulation better. In both cases, the worker makes a strategic decision which makes
the regulator’s bound on the disutility of labor more accurately reflect the worker’s marginal
costs.

8.2 Manipulation by firms

8.2.1 Manipulation before regulation

Suppose that the firm predicts the regulation and adjusts the contract in the preexisting
regulation to interfere with the mechanism. For simplicity, suppose that ℓ̂ is fixed.

The firm cannot benefit from paying the worker more than her costs. This makes the
regulation more restrictive. As a result, the firm can only manipulate by adjusting labor.
The firm solves

max
z≥ℓ̂,ℓ≤z

f(ℓ)− c(z)

z
ℓ̂− c(z)

z − ℓ̂
(ℓ− ℓ̂).

We consider the same two extreme cases. If total surplus is small, both marginal pro-
ductivity and marginal cost are low. The firm cannot make the overtime payment multiplier
arbitrarily small without making the wage arbitrarily large. Therefore, the firm will not pay
overtime. This implies ℓ = ℓ̂. In this case, the firm wants to set z as small as possible to
reduce the hourly wage that must be paid. In equilibrium, z = ℓ = ℓ̂.

If total surplus is large, both marginal productivity and marginal cost are large. In this
case, a large choice of labor in the preexisting market is costly. The firm will end up paying
overtime for all available hours.16 In this case, the firm will set ℓ = z. The firm’s problem
can then be rewritten as

max
z

f(z)− c(z)

z
ℓ̂− c(z).

Therefore, the firm hires the worker for fewer hours than is optimal in advance of the regu-
lation. Intuitively, the firm takes into account the effect that an increase in labor will have
on the overtime multiplier.

8.2.2 Manipulation after regulation

Suppose that the firm is regulated but wants to prevent future regulation. When it chooses
the contract, it takes into account that the regulator will obtain information from the pre-
vailing contract.

16Note that this case also applies when ℓ̂ is sufficiently small relative to ℓ∗. This is because the firm’s
objective is decreasing in z for ℓ̂ sufficiently small.
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In the ultimatum model, paying overtime to a worker reveals that the marginal produc-
tivity of the worker is w0

ℓ0
ℓ0−ℓ̂

. As a result, the regulator knows that a minimum wage of

w0
ℓ0

ℓ0−ℓ̂
will not affect total surplus, but will increase the surplus of the worker.

As a concrete example, suppose a firm in the U.S. hires a worker for ten dollars per hour
for more than sixty hours per week. As a result, the firm must pay the worker time and a half
for the last twenty hours that she works. If the regulator sees this, he knows that the firm
would be willing to pay time and a half for the first forty hours as well. The regulator can
use this information to impose a minimum wage of fifteen dollars per hour. This regulation
costs the firm the equivalent of twenty hours of work each week.

This suggests that the regulator has a limited ability to improve on a labor cap if he
cannot commit to the mechanism. The firm may be unwilling to offer any overtime to
workers if doing so invites regulation.

9 Conclusion

We have explored regulation under very general assumptions in a setting where workers are
overworked. We show that a minimum wage is the best tool that a fully informed regulator
can use to alleviate this issue. Through a comparative statics exercise, we demonstrate that
the minimum wage can hurt both workers and firms when it is set either too low or too high.
We show that this is particularly important if regulators assume the flexible-hours model
and try to interpret the effects of regulation on hours.

This issue of interpretation relates to the empirical literature on measuring the effects of
minimum wage policies on hours (e.g., Jardim et al., 2022) and the effects of other policies
such as overtime (Hamermesh and Trejo, 2000; Quach, 2020; Trejo, 1991). This paper
proposes a framework which can be tested by and used in a welfare analysis of these policies
using these empirical estimates.

Our study also cautions that the intensive margin (i.e., hours) and extensive margin must
be treated differently with regards to regulation. For example, Jardim et al. (2022) shows that
the 2014 increase of the minimum wage in Seattle did not significantly reduce employment,
but did significantly reduce hours. Most would say that this is a bad sign. However, a
reduction in hours may be good if these workers wanted their hours to be reduced. The
objective of minimum wage regulation is not to maximize hours (or even take-home pay).
The goal, broadly, is to improve the lives of workers. We demonstrate that this is at odds
with hours maximization.

We find the overall optimal minimum wages when the regulator has complete information.
Even if the regulator is not willing to sacrifice any total surplus to increase the worker’s
welfare, there exists a minimum wage that achieves this goal. This policy ensures an efficient
market equilibrium where both the firm and worker receive their preferred number of hours.

This analysis joins two theoretical strands in labor economics. First, this paper is con-
nected to the large literature on optimal regulation under imperfect competition with hours
set by workers (e.g., Berger et al., 2022) or with fixed hours (e.g., Flinn, 2006; Loertscher
and Muir, 2021). Secondly, our work is also related to the smaller literature on labor hours
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and overwork outside of a regulatory context (Feather and Shaw, 2000; Manning, 2005).
The most novel innovation of our approach lies in combining these two strains by studying
regulation in a setting with labor hours and overwork.

In addition to the complete information setting, we consider a regulator who has no
prior over production and disutility from labor. This regulator instead observes the current
market state and knows that a specific reduction in labor hours at the existing wage will
benefit the worker.

This analysis contributes to the literature on robust implementation. Following Carroll
(2015), this literature focuses on finding policies that can be implemented without any prior
on the space of parameters. Guo and Shmaya (2019) study the problem of regulating an
inefficient monopolist seller without any prior over supply and demand. Unlike our study,
Guo and Shmaya (2019) consider a regulator who knows bounds on supply and demand.

In any robust analysis, the regulator must be able to somehow bound the unknown
objects. In Carroll (2015), the principal is able to create an endogenous lower bound on the
agent’s technology from partial knowledge of the agent’s set of available actions. Typically,
these bounds are exogenous. This is troubling because the objects may be difficult for the
regulator to bound in a reasonable way, and extremely permissive bounds generally produce
unreasonable outcomes (e.g., arbitrarily large or small minimum wages).

We demonstrate a method for creating endogenous bounds on supply and demand when
the regulator is able to observe the price and quantity that prevail in the market. To use this
bound, we develop a new robust objective, the never Pareto dominated satisficing criterion.
This objective is natural in any delegation problem. In general, the principal chooses the
largest delegation set for which the principal does not regret the decision to delegate (i.e., the
payoff is at least as high as the principal’s preferred singleton delegation set). It is common
for the principal and agent to have some inherent alignment of incentives such that this is
beneficial. In our case, this alignment stems from the fact that our contract bargaining is
Pareto efficient.
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10 Appendix

10.1 Proofs

10.1.1 Useful lemmas

In this section, we prove some lemmas that are used in the proofs of the general bargaining
results in Section 6. The main purpose of these lemmas is to ensure that the proofs extend
to the setting of Peters and Wakker (1991). In the ultimatum case, M(x, y) ≡ x and these
lemmas are trivial.

Lemma 1. The functional,

L[ϕ] ≡ argmax
l,t≥ϕ(l)

M(f(l)− t, t− c(l)),

is sequentially continuous in the sense that ϕn → ϕ (under the Hausdorff metric) implies
L[ϕn] → L[ϕ].
Proof. Suppose that M is continuous and satisfies weak Pareto, then L is continuous by
Berge’s theorem of the maximum. Continuity implies sequential continuity because the set
of convex functions is a metric space under the Hausdorff metric.

In the setting of Peters and Wakker (1991), sequential continuity of bargaining ensures
that the payoffs are sequentially continuous in ϕ. Continuity of hours and payment is im-
mediate from continuity and strict concavity of the payoffs.
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Lemma 2. A point on the unconstrained Pareto frontier of M lies above all points on the
Pareto interior in some neighborhood of itself if and only if it is the overall optimum.

Proof. This is immediate from continuity and strict quasiconcavity of M . The purpose of
this lemma is to show this result under the assumptions of Peters and Wakker (1991): Pareto
optimality, IIA, and sequential continuity.

First, note that the overall Pareto frontier is the curve in (π, u) space where total surplus
is maximized. Because of transferable utility, this is a line with slope negative one. Without
loss, say that the space of feasible payoffs is the simplex.

Let z be a point on the Pareto frontier that is above all points in the interior contained in
an ϵ-ball centered at z for some ϵ > 0. Then, construct an ϵ/2-ball such that the point is at
the right with a triangle removed as in the left of Figure 7. As δ decreases towards zero, the
bargaining protocol must still choose z as it is the most preferred point. Continuity of the
protocol implies that z must be chosen in the limit as well. Because this limit contains this
segment of the Pareto frontier, z must exceed all points above it (preferred by the worker)
on the frontier. The same argument can be applied for the points below using the ϵ/2-ball
to the right of Figure 7.

z

δ

ϵ/2

z

δ

ϵ/2

Figure 7: Figure of ϵ/2-balls for Lemma 2. As δ → 0, this sequence approaches the full half
circle, which contains a segment of the Pareto frontier.

Therefore, z is a local maximum on the frontier. By quasiconcavity of M , it is the global
maximum on the frontier. By monotonicity, it is the overall optimum.

10.1.2 Proof of Proposition 1

Proposition 1. Let ϕ be a redistributive regulation that implements ℓ. There exists a mini-
mum wage, w̄, that implements ℓ such that w̄ℓ ≥ ϕ(ℓ).

Proof. We prove this in the general setting of Section 6 where the worker and firm contract
according to a bargaining process defined by M . The proof for Section 4 is the special case
where M(x, y) ≡ x.
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Because ϕ improves the welfare of the worker, the policy is binding. Then, ℓ maximizes
Mϕ(x) ≡M(f(x)− ϕ(x), ϕ(x)− c(x)).

By Lemma 1, the function,

L(w) ≡ argmax
l

M(f(l)− wl, wl − c(l)),

is continuous. Because L(f ′(0)) = 0, if a minimum wage implements labor hours, z, we can
find a minimum wage to implement any labor hours less than z.

There are two cases.
In the first case, ℓ = ℓ∗. We established that w̄ ≡ c′(ℓ∗) implements ℓ∗ and that ϕ′

−(ℓ
∗) ≤

c′(ℓ∗). The conclusion follows from convexity.
In the second case, ℓ ̸= ℓ∗. Consider the minimum wage ϕ(ℓ)/ℓ. Clearly, we are done

if this also implements ℓ. If it implements labor greater than ℓ, continuity of L guarantees
that an even larger minimum wage implements ℓ. Then, the only case left to check is that
this minimum wage implements labor less than ℓ. This is impossible. Suppose by way of
contradiction that the minimum wage does reduce labor. Then,

argmax
x

M

(
f(x)− ϕ(ℓ)

ℓ
x,
ϕ(ℓ)

ℓ
x− c(x)

)
< ℓ.

However, this level of labor and transfer were available under ϕ (by convexity) and (ℓ, ϕ(ℓ))
is available in the above. That both are the unique optima of their respective problems is a
violation of IIA.

10.1.3 Proof of Proposition 2

Proposition 2. A flexible-hours model with cost, cb, generates the same labor response curve
as an ultimatum model with the same production function and cost, cu, where

cu(x) ≡ c′b(x)x.

Proof. In the flexible-hours model, the problem of the firm is to select a wage, w, and
hours-cap, ℓ̄ knowing that the worker will best respond with labor hours, ℓ, according to
ℓ = min{(c′)−1(w), ℓ̄}. Equivalently, by convexity of c, we can write that the firm chooses
w, ℓ subject to the constraint w ≥ c′(ℓ). Using the substitution τ = wℓ, we can write the
firm’s problem under any policy, ϕ, as

max
τ,ℓ

f(ℓ)− τ s.t. τ ≥ c′(ℓ)ℓ and τ ≥ ϕ(ℓ).

This is equivalent to an ultimatum model where the worker’s labor cost is c′(ℓ)ℓ. We use
the assumption that this object is convex in order to ensure that this equivalent ultimatum
model is valid.
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10.1.4 Proof of Proposition 3

Proposition 3. The efficient minimum wage for the flexible-hours model with cost cb (i.e.,
w̄∗

b) locally minimizes welfare in the ultimatum model with cost cu.

Proof. By Proposition 2, we know that the two models generate the same contracts, (τ, ℓ).
The efficient minimum wage in the flexible-hours model maximizes labor hours. Therefore,
this same policy also maximizes labor hours in the ultimatum model. We want to show
that the labor-maximizing minimum wage implements labor hours that exceed the efficient
quantity. Because the total surplus is completely determined by the labor hours, this would
ensure that the labor-maximizing minimum wage is furthest from efficiency of all policies in
its locus. That is, it would be a local minimum.

This fact is proven in Corollary 2.3, but we can also find it directly by differentiating
the firm’s problem in the ultimatum model to find ∂ℓ

∂w̄

∣∣
w̄→+c(ℓ∗)/ℓ∗

= ℓ∗

c′(ℓ∗)−c(ℓ∗)/ℓ∗
> 0 (by

convexity of c).

10.1.5 Proof of Proposition 4

Proposition 4. For any labor response curve, L:

• cb(x) < cu(x) ∀x > 0;

• w̄∗
b < w̄∗

u;

• ℓ∗b > ℓ∗u; and

• for i ∈ {b, u} and all w̄ ≥ 0,

d [f(L(w))− ci(L(w))]

dw

∣∣∣∣
w=w̄

> 0 =⇒ d [f(L(w))− c−i(L(w))]

dw

∣∣∣∣
w=w̄

< 0.

Proof. We go point by point.

• Immediate from convexity of c.

• Immediate from the shape of L and Proposition 2. The efficient minimum wage must
be larger in the ultimatum model to bring labor back down to the efficient level.

• Immediate from the shape of L and Proposition 2. Alternatively, it is ensured by the
fact that the marginal labor cost is greater in the flexible-hours model.

• Immediate from the shape of L and Proposition 2. Note that total surplus is increasing
in the minimum wage in the flexible-hours model iff hours are increasing. This always
decreases total surplus in the ultimatum model. The only segment where total surplus
is increasing in the ultimatum model is the interval that begins at the labor maximizing
minimum wage and ends at the efficient minimum wage. Total surplus is decreasing
on this interval in the flexible-hours model because labor hours are decreasing.
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10.1.6 Proof of Proposition 5

Proposition 5. For i ∈ {b, u}, w̄∗
i is the largest minimum wage such that the worker is not

underworked in model i.

Proof. In the flexible-hours model, it is well known that minimum wages above the efficient
minimum wage result in the worker obtaining fewer work hours than desired (i.e., labor is
demand constrained).

In the ultimatum model, a minimum wage larger than f ′(ℓ∗) will obviously result in hours
fewer than ℓ∗ because f is concave. Because f ′(ℓ∗) = c′(ℓ∗), the worker is also underworked
with any such contract by convexity of c.

10.1.7 Proof of Theorem 1

Theorem 1. There is a unique TS-maximizing satisficing policy. It is

ϕ∗(x) ≡


w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Proof. Refer to the Proof of Theorem 4 in Section 10.1.11. This proof demonstrates that
ϕ∗ is both satisficing and minimal. By convexity of ϕ, the minimal phi also has the min-
imal derivative pointwise of any policy. Because the policy is satisficing – and therefore
redistributive – the firm’s problem can be written as

max
ℓ
f(ℓ)− ϕ∗(ℓ).

Any increase to the derivative of phi will weakly decrease the implemented ℓ. Because this
ℓ is weakly less than ℓ∗, this reduction in labor hours reduces total surplus. Therefore, ϕ∗ is
a TS-maximizing, satisficing policy.

We now just need to ensure that the policy is unique. Suppose, by way of contradiction,
that it is not. Then, there exists another satisficing policy, ψ, which is greater than ϕ
at all points after some point, l, but implements the same total surplus for every possible
production function and labor disutility.

Because ψ is satisficing, l ∈ [ℓ̂, ℓ∗). Then, select an f such that f ′(l + ϵ) = w0ℓ0
ℓ0−ℓ̂

for some

ϵ > 0. This implements labor l + ϵ under ϕ∗ but less under ψ. It is clear that such an f is
possible.

10.1.8 Proof of Theorem 2

Theorem 2. Let ϕ be an efficient regulation that implements τ . The worker is overworked
under ϕ if and only if there exists another efficient regulation ψ such that ψ(ℓ∗) > τ .
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Proof. The converse is trivial. If τ0/ℓ
∗ < c′(ℓ∗) = f ′(ℓ∗), ϕ(x) = f ′(ℓ∗)x binds and imple-

ments ℓ∗.
For the forward statement, we know that the policy ϕ implements ℓ∗ and improves the

welfare of the worker. Therefore, z ≡ (f(ℓ∗)−ϕ(ℓ∗), ϕ(ℓ∗)−c(ℓ∗)) is the constrained optimum
but is not the overall optimum. By Lemma 2, For any ϵ > 0, there is an ϵ-ball around z
such that z is not maximal. We want to show that that f ′(ℓ∗) ≥ ϕ′

−(ℓ
∗).

Suppose, by way of contradiction, that f ′(ℓ∗) < ϕ′
−(ℓ

∗). Intuitively, decreasing ℓ in a
neighborhood of ℓ∗ is the same as relaxing the policy constraint because the marginal effect
on profit and worker surplus are equal. As a result, there is an ϵ-ball around z available
under ϕ, which is a contradiction. Formally, we can access the upper part of the ϵ-ball by
transferring ϵ to the worker (because the constraint is in only one direction). We can access
the lower part of the epsilon ball by decreasing ℓ by ϵ

ϕ′
−(ℓ∗)−f ′(ℓ∗)

:

f

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
− ϕ

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
= f(ℓ∗) + ϕ(ℓ∗) + ϵ−O(ϵ2)

ϕ

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
− c

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
= ϕ(ℓ∗)− c(ℓ∗)− ϵ−O(ϵ2).

This comes from taking a Taylor approximation near ℓ∗ and using the fact that f ′(ℓ∗) =
c′(ℓ∗). For ϵ sufficiently small, we can access any angle in the ϵ-ball on the Pareto interior.
This is a contradiction.

Therefore, c′(ℓ∗) ≥ ϕ′
−(ℓ

∗). Therefore, for all x ≤ ℓ∗, ϕ(x) ≤ c′(ℓ∗)x by convexity. Because
τo < ϕ(ℓ∗), we conclude τ0/ℓ

∗ < c′(ℓ∗). Therefore, the worker is overemployed.

10.1.9 Proof of Corollary 2.3

Corollary 2.3. Let L : R+ → R+ define the level of labor at each minimum wage and
w0 ∈ [c(ℓ∗)/ℓ∗, c′(ℓ∗)) be the wage in the absence of regulation. Then, the labor response
function, L, is continuous and

L(x)



= ℓ∗ if x ∈ [0, w0]

> ℓ∗ if x ∈ (w0, f
′(ℓ∗))

= ℓ∗ if x = f ′(ℓ∗)

< ℓ∗ if x ∈ (f ′(ℓ∗), f ′(0))

= 0 if x ≥ f ′(0).

Proof. Continuity comes from Lemma 1 and constant before the constraint binds is imme-
diate from IIA.

We show the third point. The proof is similar to Theorem 2. At w0, consider a small
increase in the minimum wage. If the worker’s incentive compatibility constraint binds,
then the effect of the wage on the equilibrium is the same as under monopsony. Therefore,
ψ′
+(w0) =

ℓ∗

c′(ℓ∗)−w0
> 0.
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Then, suppose the constraint does not bind, we know that labor cannot decrease because
this is Pareto dominated. Therefore, it weakly increases at this point.

As in the proof of Theorem 2, increasing the labor perfectly counteracts an increase in
the minimum wage in a neighborhood around the point where it first binds. We want to
show that w ∈ (w0, f

′(ℓ∗)) leads to ℓ > ℓ∗.
Suppose, by way of contradiction, a w ∈ (w0, f

′(ℓ∗)) supports a contract z ≡ (ℓ∗, wℓ∗).
By Lemma 2, for every ϵ > 0, there is an ϵ-ball around z such that it is not maximal over all
Pareto interior points. Therefore, there must be some angle within this ϵ-ball that cannot
be accessed under minimum wage, w. However, this is not true. We can access the upper
part of the ϵ-ball by transferring ϵ to the worker and can access the lower part of the ϵ-ball
by increasing ℓ by ϵ

f ′(ℓ∗)−w
:

f

(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
−
(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
w = f(ℓ∗) + wℓ∗ + ϵ−O(ϵ2)(

ℓ∗ +
ϵ

f ′(ℓ∗)− w

)
w − c

(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
= wℓ∗ − c(ℓ∗)− ϵ−O(ϵ2).

For ϵ sufficiently small, we can access any angle in the ϵ-ball on the Pareto interior. This is
a contradiction.

The other points are justified in the statement of the theorem.

10.1.10 Proof of Theorem 3

Theorem 3. Any minimum wage in w∗(α) where

w∗(α) ≡ argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

M(f(l)− wl, wl − c(l))

is a redistributive optimal regulation for α ∈ (0.5, 1].

The proof consists of two steps. We first find the optimal minimum wages (rather than
the optimal policies). We then use Proposition 1 to show that any optimal minimum wage
is also an optimal policy.

First, find the optimal minimum wages. The expression for an optimal minimum
wage is, by definition,

w∗(α) ≡ argmax
w

α(τ − c(ℓ)) + (1− α)(f(ℓ)− τ)

s.t. ℓ, τ = argmax
l,t

{M(f(l)− t, t− c(l)) s.t. t ≥ wl}
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Second, simplify the expression. We would like to get rid of the minimum wage con-
straint and substitute τ = wℓ. However, the minimum wage is not always binding. However,
in optimizing, we can restrict attention to minimum wages greater than or equal to f ′(l∗)
because: (1) this minimum wage maximizes total surplus and (2) a lower minimum wage
redistributes less surplus to the worker because it involves less pay and more hours than
desired by the worker.

Theorem 2 establishes that f ′(l∗) is a binding minimum wage. Therefore, the minimum
wage constraint is binding on this restricted domain. Therefore, we can rewrite our expression
to the one in the Theorem.

Finally, show that any optimal minimum wage is an optimal policy. By way of
contradiction, suppose that an optimal minimum wage is not an optimal policy. Then, there
exists a “superior” policy that strictly dominates the optimal minimum wage (in that it makes
the objective larger). By Proposition 1, this “superior” policy is, itself, weakly dominated by
a (possibly different) minimum wage. This is a contradiction because it implies that there
is a minimum wage which strictly dominates an optimal minimum wage.

10.1.11 Proof of Theorem 4

Theorem 4. There is a unique policy which is satisficing and NPD by any satisficing regu-
lation. It is

ϕ∗(x) ≡


w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Proof. We showed in the body of the paper that ϕ∗ is satisficing. To repeat the logic, note
that for all x ∈ (ℓ̂, ℓ0],

c(x)− c(ℓ̂) <
x− ℓ̂

ℓ0 − ℓ̂

[
c(ℓ0)− c(ℓ̂)

]
<

w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂) = ϕ(x)− ϕ(ℓ̂).

The increased transfers make up for the extra work. So, ϕ∗ is satisficing.
We first show that any satisficing policy is greater or equal to ϕ∗. For this part, we

can use the ultimatum model because it must be robust to any bargaining framework. The
functions fε(x) ≡ (w0 + ε)x and

cε(x) ≡


w0x− εℓ0

2ℓ̂
x if x ≤ ℓ̂

w0x+
ε
2
(x− ℓ0) if ℓ̂ < x ≤ ℓ0

w0x+ 2ε(x− ℓ0) if x > ℓ0

are feasible for all ϵ > 0. Satisficing implies ϕ(x) ≥ w0x for all x < ℓ̂ and ϕ(x) > w0x for all
x > ℓ̂. However, if ϕ(ℓ) > w0ℓ, for all ℓ there exists an ε such that the firm shuts down. So
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there must be some t such that ϕ(t) ≤ w0t to be chosen in this case. For satisficing to hold,
this implies ϕ(ℓ̂) = w0ℓ̂. Now, consider fN(x) ≡ Nx and

cN(x) ≡


0 if x ≤ ℓ̂
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

w0ℓ0 + (N + 1)(x− ℓ⋆) if x > ℓ0

which are feasible. If there exists an x > ℓ̂ such that ϕ(x) < w0x+ cN(x), then there exists
an N such that it will be chosen by the firm. Thus satisficing requires ϕ(x) ≥ w0x + cN(x)
for all N . Therefore, satisficing implies that there must be a cap at ℓ0.

10.1.12 Proof of Proposition 8

Proposition 8. Let ϕ∗
i be the never Pareto dominated satisficing regulation for worker i.

Suppose that the request, ℓ̂, is below the labor of each worker and that all workers are over-
worked. The unique never Pareto dominated regulation which is satisficing for all workers
is

ϕ∗(x) = max
i
ϕ∗
i (x).

Proof. The function, ϕ∗(x), is convex (because it is the maximum of convex functions) and
satisfies ϕ∗(0) = 0. Therefore, it is a regulation. We now show that it is satisficing.

For x ≤ ℓ̂, there is a minimum wage equal to the maximum wage paid to any worker.
Because the worker is overworked, this wage is less than f ′(ℓ∗) < f ′(ℓ̂). Therefore, the firm
prefers ℓ̂ to any point below x. If the worker works less than ℓ̂ as a result of the regulation, it
is because she prefers this (by weak Pareto). Therefore, any contract with ℓ ≤ ℓ̂ is satisficing
under this policy.

For x > ℓ̂, there is a region that is the maximum of all of the policies for each worker.
These policies were designed such that all allowed contracts in this region were weakly
preferred to the requested contract for all workers. By taking the maximum, we ensure that
every allowed contract is weakly preferred by all workers.

This policy is never Pareto dominated because it is minimal. Suppose, by way of contra-
diction, that a smaller policy existed which was satisficing for all workers, then it would be
smaller at some points than the minimal satisficing policy of at least one worker. This is a
contradiction.

The proof that the minimal policy is uniquely never Pareto dominated follows the same
argument as Theorem 4.
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10.2 Robust maxmin regulation

Suppose that a regulator with no knowledge of f, c regulates an ultimatum monopsony. The
regulator knows that the assumptions on f, c hold. The objective of the regulator is

max
ϕ

inf
f,c

τ − c(ℓ)

s.t. ℓ = argmax
x

f(x)−max{c(x), ϕ(x)}

τ = max{c(x), ϕ(x)}.

The regulator has a lower bound on marginal productivity, f ′(x) ≥ f̄ ′(x), and an upper
bound on marginal cost, c′(x) ≤ c̄′(x) for all x. The regulator can make, f̄ ′ weakly decreasing
and c̄′ weakly increasing using his knowledge that the underlying functions are concave.
Assume that both bounds are left continuous.

Proposition 9. A minimum wage with a labor cap is a maxmin policy. One such policy is
defined by

ϕ(x) =

{
f̄ ′(t)x if x ≤ t

∞ if x > t

where t ∈ argmaxz f̄
′(z)z − c̄′(z).

Proof. If f̄ ′(0) ≤ c̄′(0), the infimum in the regulator’s objective is zero. The worker’s payoff
is at least zero by the individual rationality constraint. So, any policy is maxmin.

Suppose that f̄ ′(0) > c̄′(0). By left continuity, there exists at least one t that solves
t ∈ argmaxz f̄

′(z)z − c̄′(z). A minimum wage of f̄ ′(t) maximizes total surplus when the
bound holds exactly by granting the worker the contract (t, f̄ ′(t)t). In this state, this gives
the worker a surplus of f̄ ′(z)z− c̄′(z). It is not possible to achieve more than this in maxmin
because the minimal state is at least as bad as this one.

To guarantee this return, we need to ensure that the firm does not choose a larger level
of labor, ℓ > t, such that f̄ ′(t) < c̄′(ℓ). We did not place an upper bound on marginal
productivity. So, this needs to be guaranteed with some sort of convex policy. We could,
for example, place a labor cap at t or at the largest q which satisfies c̄′(q) ≤ f̄ ′(t). It’s also
possible to integrate c̄′ and add this to the wage after t.

10.3 Complete information regulation under heterogeneity

Suppose that there are N ≥ 2 types of workers employed by a firm. Let ci denote the
cost of the i-th worker type. The costs and the production function, f , satisfy A1-3. For
convenience, order the types in terms of efficient labor hours. That is, for j > k, ℓ∗j ≥ ℓ∗k
where ℓ∗j ≡ argmaxz f(z) − cj(z) and ℓ

∗
k ≡ argmaxz f(z) − ck(z). The workers contract in

accordance with the ultimatum model.
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Assume that the regulator treats all workers equally. That is, the objective of the regu-
lator is

α

(
N∑
i=1

τi − ci(ℓi)

)
+ (1− α)

(
N∑
i=1

f(ℓi)− τi

)
=

N∑
i=1

(2α− 1)τi + (1− α)f(ℓi)− αci(ℓi)

where α ∈ (0.5, 1].

Lemma 3. All workers who receive a positive surplus under regulation, ϕ, have the same
contract: (ℓ̃, τ̃). This contract is defined by f ′(ℓ̃) = ϕ′(ℓ̃) and τ̃ = ϕ(ℓ̃). If that contract is a
minimum wage, any worker, i, with zero surplus has ℓi ≤ ℓ̃.

Proof. If a worker, i, has a positive surplus, ϕ(ℓi) > ci(ℓi). Therefore, the IR constraint does
not bind and ci has no effect on the firm’s problem. Therefore, all workers with positive
surplus must have the same contract defined by first order conditions f ′(ℓ̃) = ϕ′(ℓ̃) and
τ̃ = ϕ(ℓ̃).

If a worker, k, has zero surplus under minimum wage, w̄, τk = ck(ℓk) ≥ w̄ℓk. Suppose,
by way of contradiction that ℓk > ℓ̃. By concavity of f ,

w̄ = f ′(ℓ̃) > f ′(ℓk).

Because the regulation exceeds the worker’s marginal productivity, the firm would prefer to
hire the worker for fewer hours if this regulation were to bind. Therefore, the regulation does
not bind and is therefore weakly below the cost of worker k. Then, f ′(ℓk) is efficient and
this minimum wage is above the efficient minimum wage of k. This is a contradiction.

Lemma 3 shows that the homogeneous and heterogeneous worker problems are funda-
mentally similar. All workers who benefit from a regulation receive the same contract. So,
there is no way to design a regulation that provides different redistributive contracts to
different workers.

If only the utility of the worker matters to the regulator, heterogeneity essentially has no
effect on the problem.

Proposition 6. For α = 1, there is at least one optimal regulation that is a minimum wage.
Any optimal minimum wage is the same as the optimal minimum wage in a single worker
problem. This single worker has the average cost of all workers with positive utility under
the regulation.

Proof. When α = 1, the regulator maximizes the average utility of all workers. By Lemma
3, all workers with positive payoffs have the same contract. For every subset of workers
S ⊆ 21,...,N , the regulator can solve

max
ϕ

∑
i∈S

ϕ(ℓ̃)− ci(ℓ̃) s.t. f
′(ℓ̃) = ϕ′(ℓ̃) (4)
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which is equivalent to

max
ϕ

ϕ(ℓ̃)− 1

|S|
∑
i∈S

ci(ℓ̃) s.t. f
′(ℓ̃) = ϕ′(ℓ̃).

This is the same as the single worker problem where c is replaced by the average of ci for all
i ∈ S. Therefore, the optimum is always a minimum wage.

Some of these problems may be invalid in the sense that the regulation does not actually
benefit all workers in S. Lemma 3 ensures ℓi ≤ ℓ̃ for any worker, i, with zero utility. As a
result, there is no way to reach these workers with a regulation. Therefore, the problem for
S is invalid only if there is no optimal regulation that benefits all workers in S. Therefore,
the optimal minimum wages are valid solutions to (4). The regulator chooses the set of S
that maximize the objective.

Proposition 6 suggests that multiple optimal minimum wages may exist. This is because
the set of workers affected by the regulation may differ across optimal policies.

Example 3 (Two optimal minimum wages). Suppose a firm with f(x) ≡ x − x2

2
contracts

the services of two workers. Worker 1 has cost c1(x) ≡ 7x2

2
and worker 2 has cost c2(x) ≡ x2

2
.

The three candidate optimal regulation problems are

max
x,w̄

w̄x− 1

|S|
∑
i∈S

ci(x) s.t. w̄ = f ′(x).

The solutions to the three candidate problems are ℓ1 = 1
9
, ℓ2 = 1

3
, ℓ1,2 = 1

6
with wages

w̄1 =
8
9
, w̄2 =

2
3
, w̄1,2 =

5
6
. The utility of worker 2 under w̄1 is

w̄1ℓ1 − c2(ℓ1) =
8

9

1

9
− (1/9)2

2
=

5

54
> 0.

This means the regulation is invalid because it should benefit only worker 1. The second
benefits worker 2, but does not benefit worker 1 because

w̄2ℓ2 − c1(ℓ2) =
2

3

1

3
− 7

(1/3)2

2
= −1

6
< 0.

Therefore, it is valid and the benefit of this regulation is

w̄2ℓ2 − c2(ℓ2) =
2

3

1

3
− (1/3)2

2
=

1

6
.

The combined benefit of the joint regulation is

(w̄1,2ℓ1,2 − c1(ℓ1,2)) + (w̄1,2ℓ1,2 − c2(ℓ1,2)) =

(
5

6

1

6
− 7

(1/6)2

2

)
+

(
5

6

1

6
− (1/6)2

2

)
=

1

24
+

1

8
=

1

6
.

This is the same as the effect of the optimal minimum wage for worker 2. Therefore, both
w̄2 = 2

3
and w̄1,2 = 5

6
are optimal minimum wage policies. While both are optimal, their

distributive effects are different. △
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The heterogenous worker problem has different implications for α ∈ (0.5, 1). The largest
effect comes in the case of total surplus maximization (α → 0.5). An immediate implication
from Lemma 3 is that a regulation can be efficient and benefit more than one worker only
if the workers who benefit have the same efficient hours. If efficient labor hours are strictly
ranked, at most one worker can benefit from a regulation that maximizes total surplus.

However, if heterogeneity is small, the problems for α ∈ (0.5, 1) are always similar to the
homogeneous case.

Proposition 10. For each α ∈ (0.5, 1], there exists an ϵ > 0 such that maxx |ci(x)−ck(x)| <
ϵ for all i, k ≤ N implies there is at least one optimal regulation that is a minimum wage.
Any optimal minimum wage is the same as the optimal minimum wage in a single worker
problem. This single worker has the average cost of all workers.

Proof. We only need to show that for any α ∈ (0.5, 1], there exists an ϵ such that the
regulator gives every worker a positive payoff. Giving worker i a positive payoff requires
ϕ(ℓi)− ci(ℓi) > 0. Therefore, any regulation that increases the payoff of one worker increases
the payoff of all workers for ϵ sufficiently small. Therefore, we just need to show that there
exists a binding optimal regulation.

The fact that there is such a regulation is obvious. Consider a minimum wage of f ′(ℓ∗N).
This regulation gives strictly positive benefit to all players. Loss in total surplus can be
made arbitrarily small. Therefore, this dominates not regulating for any α ∈ (0.5, 1].

From this proof, we can see that the required bounds on heterogeneity become more
strict as α gets closer to 0.5. From Proposition 6, we know that no conditions are needed
when α = 1.

Lemma 10 does not hold for α → 0.5. In this case, there is no exactly efficient regulation
that increases the utility of workers when heterogeneity in costs is arbitrarily small. However,
an exactly efficient regulation that increases worker utility may exist when heterogeneity is
not small.

Proposition 7. Let α → 0.5. Suppose ℓ∗N ̸= ℓ∗N−1. If minN−1
i=1 {ci(ℓ∗i )/ℓ∗i } > f ′(ℓ∗N), the

optimal regulation is a minimum wage of f ′(ℓ∗N). Otherwise, consider

ϕ(x) ≡

{
Conv (x) if x ≤ ℓ∗N−1

Conv (ℓ∗N−1) + f ′(ℓ∗N)(x− ℓ∗N−1) if x > ℓ∗N−1,

and Conv is the largest convex function to fit under {(ℓ∗i , ci(ℓ∗i ))}N−1
i=1 with the restriction that

the slope is capped at f ′(ℓ∗N). If ϕ(ℓ
∗
N) > cN(ℓ

∗
N), then ϕ is an optimal regulation.

Proof. Lemma 3 and efficiency ensure minimum wage redistribution can only be used to
benefit worker N . Affecting any other worker at all will reduce efficiency. Therefore, the
regulation must be nonbinding for all other workers. If if the first condition holds, the
efficient minimum wage is optimal because it is the largest efficient regulation for N .

If the second condition holds, any regulation for any other worker, i with slope f ′(ℓ∗i ) at
ℓ∗i will also affect player N . Regulation, ϕ, is as large as possible while lying below all other
points and having slope f ′(ℓ∗N) at ℓ

∗
N .
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Proposition 7 demonstrates two important properties of these problems. First, the opti-
mal regulation may not be a minimum wage. The reason that a piecewise linear regulation
may be optimal in the heterogeneous worker setting is that it reduces the effects of regulation
the contracts of workers with zero payoff. Such regulation only affects firms. So, the issue
becomes less relevant as α increases. The second property is that minimum wage regulation
is also optimal in settings where heterogeneity is sufficiently large. In this case, the problem
is separable and the lowest cost worker can be regulated alone.

10.4 Oligopsony

We now add an entrant firm with production function g such that f ′(x) ≥ g′(x) for all x.
The incumbent must provide the worker enough surplus so that the entrant cannot make any
profitable offer to the worker. Therefore, the profit-maximization problem of the incumbent
under oligopsony is

max
ℓ,τ

f(ℓ)− τ s.t. τ ≥ max {c(ℓ) + u[ϕ; g], ϕ(ℓ)} (5)

where u is maximum surplus that the entrant can offer. That is,

u[ϕ; g] = max
ℓ
g(ℓ)− c(ℓ) s.t. g(ℓ) ≥ ϕ(ℓ). (6)

Note that the regulation, ϕ, enters twice into the incumbent’s problem. As in the monop-
sony case, it pushes the worker’s salary up. However, it also constrains the maximum in (6).
This means that the regulation reduces competitive pressure. This tension between regula-
tion and competition is the main difference between oligopsony and monopsony.

10.4.1 Pre-regulation benchmark

In the absence of regulation, the incumbent offers the efficient level of labor and matches the
best offer of the entrant. So, the incumbent offers contract (ℓ∗, τ ∗g ) with ℓ

∗ ≡ argmaxx f(x)−
c(x) and τ ∗g ≡ c(ℓ∗) + u[0; g] where u is defined by (6).

Unlike under monopsony, it is now possible that the worker is underemployed. That is,
she might prefer to work more hours at the average wage offered by the incumbent.

Lemma 4. Suppose an incumbent with production function, f offers labor quantity, ℓ and
receives profits, Π. Then, the worker is underemployed if and only if the incumbent earns
profit, Π < f(ℓ)− c′+(ℓ)ℓ and is overemployed if and only if Π > f(ℓ)− c′−(ℓ)ℓ.

For the incumbent, the right hand sides of the above inequalities do not depend on the
production function of the entrant, g. However, the equilibrium profit is weakly decreasing
in g. Therefore, markets with more competitive entrants (larger g) have underemployment
and markets with less competitive entrants (lower g) have overemployment. Because the
entrant receives zero profit, its best offer would underemploy the worker.

Because the entrant has lower marginal productivity than the incumbent, the entrant’s
best offer involves weakly less labor than the incumbent’s. This fact combined with Figure
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Figure 8: A plot of labor holding the worker’s utility constant. The lower intersections are
contracts that underemploy the worker while the intersections at the upper part of the curve
overemploy the worker at the same wages.

8 demonstrate the incumbent pays a lower wage than the entrant if the employee is under-
employed. This is because the incumbent is compensating the worker with more labor, and
therefore can pay less. If the worker is overemployed, the incumbent’s wage may be greater
than the entrant’s.

10.4.2 Minimum wage regulation

The competitive constraint ensures that τ − c(ℓ) ≥ u[ϕ; g]. If this condition is binding for
some policy, ϕ, it is impossible for the policy to increase the welfare of the worker over the
pre-regulation benchmark because the worker’s surplus is the left hand side of the constraint
and u is weakly decreasing in phi. When the competitive constraint does not bind, the
entrant is irrelevant.

Therefore, for any policy that increases the welfare of the worker, the oligopsony outcome
and monopsony outcome are the same. Because of this, the justification for restricting atten-
tion to minimum wage policies under Monopsony, Proposition 1, also holds under Oligopsony.

On the other hand, the effects of minimum wages that do not improve the welfare of
workers are very different under Monopsony and Oligopsony. The most apparent difference
between the two is that a minimum wage can strictly reduce worker welfare because workers
have strictly positive welfare in the pre-regulation benchmark.

Because of this, it is not obvious that the market can be efficiently regulated.

Proposition 11. Let (ℓ, τ) be the contract offered by the incumbent under minimum wage,
w̄ ≥ 0, and let ℓ∗ be the efficient level of labor. Assume f is differentiable at ℓ∗. Then, there
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exists a larger minimum wage w̄′ > w̄ that implements ℓ∗ if and only if (ℓ, τ) overemploys
the worker.

Section 2 shows that, as in the neoclassical model, there is a binding minimum wage
that achieves the efficient level of labor under a monopsony. It is well known that this is
impossible under perfect competition when labor demand is a function.17

For w̄ = 0, Proposition 11 demonstrates that if a worker is overemployed in the absence of
regulation, the market is uncompetitive enough for a minimum wage regulation to be efficient.
If the worker is underemployed in the absence of regulation, the market is competitive enough
that efficient minimum wage regulation is impossible.

This means that a regulator need only know if workers desired hours exceed their actual
hours in the pre-regulation benchmark to determine if efficient minimum wage regulation is
possible. The proposition goes further to say that if there is already a minimum wage in
place, a regulator can tell whether this existing regulation is above or below the efficient
minimum wage just by observing whether employees are underemployed or overemployed.

Proposition 12. There f, g, c and ϕ such that, relative to the pre-regulation benchmark,

• worker hours are greater;

• the wage offered by the incumbent is strictly lower;

• the incumbent’s profits are strictly larger.

However, if the worker is underemployed in the pre-regulation benchmark, then none of the
above are possible.

10.5 Robust delegation

11 Introduction

The idea for this chapter comes from the theory of robust regulation in Section 5. We
demonstrate that the never Pareto dominated satisficing regulation developed in Section
6.3.2 is an objective that can be applied to any delegation problem.

We develop a general theory of never Pareto dominated satisficing delegation sets. We
show that such a delegation set always exists and that a refinement can be used to obtain
uniqueness. In particular, the least restrictive never Pareto dominated satisficing delegation
set is unique.

This is particularly useful for a delegation problem where bounds on the preferences of
the agent are not known. Intuitively, the condition yields a rule with guaranteed gains from
delegation. A satisficing rule ensures that the principal will not be worse off by delegating

17When f is not differentiable, demand is a correspondence. That is, there may be an interval of wages
assigned to any level of labor. In this case, imagine that supply intersects this demand at the bottom of this
interval. Then, it’s clear that you can impose a minimum wage to the top of the interval.
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to the agent than if he chose the alternative himself. This is a desirable property when the
principal is uncertain about the agent’s preferences, but still wants to benefit from the agent’s
information and some presumed alignment of incentives. By offering the agent a choice from
the largest possible satisficing delegation set, the principal maximizes the agent’s freedom
subject to the satisficing condition. It is common in delegation problems for the principal
and agent to have some inherent alignment of incentives such that this is beneficial.

In Section 6.3.2, the regulator delegates a bargaining space to two bargaining parties. The
regulator is uncertain about the preferences of the parties, but knows that the bargaining
is efficient. This efficiency takes the place of alignment of incentives in this chapter. The
regulator wants to maximize the gain from the efficient bargaining, but does not want to
risk a loss over a command and control economy. The least restrictive satisficing delegation
set is thus a natural choice for the regulator.

12 Model

Let A be a set of alternatives that a principal (e.g., regulator) and agent (e.g., aggregated
labor market) may choose from. There is some state, θ ∈ Θ, that is known to the agent but
unknown to the principal. This state may affect the payoff of both the principal and agent.
The principal has some choice x̂ which he would choose from the set of alternatives if he
were not able to delegate. We call this his outside option.

In order to elicit this information, the principal may choose a subset, D ∈ D ⊂ 2A, to
provide to the agent such that the agent makes a choice from D. This choice is defined by
choice function, Cθ : D → 2A. This choice function is nonempty and satisfies the weak axiom
of revealed preference, which we report in the form of Sen’s α and β conditions, for each
θ ∈ Θ.

Assumption 4 (Sen’s α, IIA). If x ∈ A ⊆ B and x ∈ Cθ(B), then x ∈ Cθ(A).

Assumption 5 (Sen’s β). If x, y ∈ Cθ(A), x ∈ Cθ(B), and A ⊆ B, then y ∈ Cθ(B).

These assumptions are typically used to obtain a revealed preference binary relation. In
this case, we only impose the conditions on D ⊂ 2A. In Section 5, Sen’s β is vacuously true
because all allowed delegation sets yield a unique choice.

The principal has a complete, but not necessarily transitive, weak relation: ⪰θ. He wants
to choose a delegation set with two properties.

Definition 5 (Satisficing). A delegation set, D ∈ D is satisficing with respect to x̂ ∈ A if
for each θ ∈ Θ, there exists a z ∈ Cθ(D) such that z ⪰θ x̂.

Definition 6 (Never dominated). A satisficing delegation set, D ∈ D is never Pareto dom-
inated if for all satisficing delegation sets, S ∈ D, and all θ ∈ Θ, x ∈ Cθ(D) =⇒ x ∈
Cθ(D ∪ S).
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The satisficing criterion ensures that the outcome is at least as good for the principal and
the never dominated condition imposes a refinement that we give the agent as much surplus
as possible. In the setting of Section 5, weak Pareto of the bargaining protocol implies that
any never dominated delegation set is never Pareto dominated.

13 Results

We want to show that there exists a delegation set that satisfies Definitions 5 and 6. We
will do this by showing that there is a least restrictive satisficing set which contains all other
satisficing delegation sets. This set is never dominated because the agent prefers larger
delegation sets to smaller ones.

Lemma 5. If the set of available delegation rules, D, is closed under unions, then the set of
satisficing delegation sets, S ⊆ D, is an upper semi-lattice under unions.

Proof. We need to show that if S1 and S2 are satisficing, then S1∪S2 is satisficing. For each
θ, consider each x ∈ Cθ(S1∪S2). Because x ∈ S1∪S2, it is either in S1, S2, or both. Without
loss, say it is contained in S1. By Sen’s α, x ∈ Cθ(S1). By Sen’s β, Cθ(S1) ⪰ Cθ(S1 ∪ S2).

Because S1 is satisficing, there exists z ∈ Cθ(S1) such that z ⪰ x̂. Because z ∈ Cθ(S1∪S2),
S1 ∪ S2 is also satisficing.

Intuitively, Lemma 5 says that if we have two satisficing delegation sets, we can take the
union of the two and still have a satisficing delegation set. This is because every alternative
the agent chooses from the larger delegation set chosen in at least one of the smaller delegation
sets. Because these two sets are satisficing, these choices must be at least as good as the
principal’s outside option.

Because of this, we know that the union of all satisficing delegation sets is a satisficing
delegation set. Clearly, this union is the least restrictive satisficing delegation set.

Proposition 13. Suppose the set of available delegation rules, D, is closed under unions
and set of satisficing delegation sets, S ⊆ D is nonempty. There exists a never dominated
satisficing delegation set. Moreover, there exists a unique least restrictive never dominated
satisficing delegation set.

Proof. If there is only one satisficing delegation set, then we are done. It is never dominated.
If there is more than one, by Lemma 5, there exists an S∗ ∈ S such that for all S ∈ S,

S ⊆ S∗. This delegation set is uniquely least restrictive and is never dominated because
S∗ ∪ S = S∗. So, x ∈ C(S∗) =⇒ x ∈ C(S∗ ∪ S).

We assume in Proposition 13 that there is at least one satisficing delegation set. In many
delegation settings, this will be {x̂}. In the setting of Section 5, it was the hours cap.

13.1 Tables and figures
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Table 1: Answers to “Which of the following statements best describes how your working
hours are decided? In this question, working hours refers to the total number of hours you
work each week, not the time you start and finish work each day.” in the 2016 General Social
Survey (Smith et al., 2018).

How worker is paid:

All Workers Non Hourly Hourly

Employer decides 40.77% 32.40% 46.72%
Employer decides with some input 25.96% 18.80% 31.05%
Worker decides within limits 18.30% 26.40% 12.54%
Worker free to decide 8.32% 13.60% 4.56%
Outside of worker and employer’s control 6.49% 8.40% 5.13%

Observations 601 250 351
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