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Resumo

Global shocks in oil markets are transmitted to the final price of gasoline throughout
many channel markets. Investigating and measuring these mechanisms is an impor-
tant issue. The Brazilian case is analyzed because a large part of the country has a
car fleet equipped with flexible engines that can be fueled with alcohol or gasoline - 4
out 5 cars have this technology - and there is a wide supply of gasoline and alcohol all
over the country to the consumer in the filling station. This work uses GVAR Global
VAR methodology extended by impulse indicator saturation techniques to analyze
the relationship between fuel prices between alcohol and gasoline. The methodology
used in the paper allows us to identify outliers and evaluate how changes in the oil
price affect gasoline and alcohol prices in different regions, and their lags and allows
gains in terms of forecast accuracy.
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1 Introduction

Gasoline accounts for about half the U.S. consumption of petroleum products, and its price
is the most visible among these products (Balke et al., 1998). As such, changes in gasoline
prices are constantly being studied and observed very carefully. Following the outbreak of
the Gulf crisis on 2 August 1990, crude oil prices rose dramatically, resulting in the fourth
price ‘shock’ since 1973; this brought to attention the response of retail gasoline prices
to fluctuations in world oil prices (Shin, 1994). In theory, price shocks can originate at
any point from crude oil prices to the final price at the gasoline pump. Shocks created at
the wholesale price of gasoline may reflect a bottleneck in distribution. In contrast, price
shocks originating farther upstream are more likely to represent the effects of variation
in crude oil supply. Given the history of oil supply shocks and indications that gasoline
demand is relatively stable, intuition suggests that price shocks are more likely to originate
upstream and be transmitted downstream.

The effects of a shock to crude oil in retail gasoline depend on the response in many in-
termediate channels. Extensive literature has argued an asymmetric relationship between
gasoline and oil prices, specifically that gasoline prices respond more quickly when oil
prices are rising than when oil prices are falling. Moreover, some of this literature has
found heterogeneous asymmetry in gas price responses across cities (Bennett et al., 2021).

Regardless of the symmetry of the relationship, it is clear that macroeconomic shocks
affect sectors and regions with different intensities and delays. Sector activities tend to
be concentrated in some areas or cities. The existence of good economic infrastructures
such as roads, airports, ports, and telecommunications facilities links regions economically
and provides channels that can spread out economic shocks among areas. Macroeconomic
models tend to disregard regional and spatial economic activity issues due to their aggre-
gate nature bias or complexity of theme. However, for a specific region, it is essential to
understand how economic activity variance can be decomposed into macroeconomic and
idiosyncratic factors.

In the past few years, time-series data at disaggregated and regional levels and long-
period samples become available. At the same time, efforts have been made in econometric
literature to tackle high-dimensional problems. These challenges must be faced to address
interdependence among regions and linkages from the macroeconomic environment to
regions. The first is the curse of dimensionality. The second challenge involves modelling
the connection between regions and regional shocks.

One can tackle the curse of dimensionality in different ways, reducing the parameter
space or shrinkage of the number of variables. The parameter space can be shrunk by
imposing a set of restrictions, which could be, for instance, obtained from a theoretical
structural model, directly on the parameters (e.g., Lasso model proposed by Tibshirani
(1996); Adaptive Lasso Model presented by Zou (2006)). For the data shrinkage, one could
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use techniques where prior distributions are imposed on the parameters to be estimated.
Bayesian Vector Autoregression model proposed by Doan et al. (1984), for example, use
what has become known as ‘Minnesota’ priors to shrink the parameters space. The
global vector autoregressive (GVAR) model proposed by Pesaran et al. (2004), is a model
that can effectively tackle the interdependence among regions while handling the curse of
dimensionality by shrinkage of the data.

Since the mid-1970s, there has been a growing interest in utilizing alcohol as an alter-
native and more environmentally friendly fuel for internal combustion engines. Recently,
the use of alcohol as an alternative fuel has gained significance due to its minimal adverse
effects on the environment. Unlike various fossil fuels and their exhaust emissions, which
contribute to harmful environmental impacts like carbon monoxide, carbon dioxide, hy-
drocarbons, nitrogen oxides, and particulate matter, alcohol-based fuels offer a cleaner
and greener alternative (Kasibhatta, 2019).

Brazil has a long tradition on using alcohol as an alternative to gasoline as fuel for
cars. The initial effort to foster the use of alcohol was taken in 1975, as a response to the
shock caused by the first oil crisis. The Brazilian government implemented the National
Alcohol Program called “Pró-Álcool”1, a nationwide program financed by the government
to phase out automotive fuels derived from fossil fuels in favor of ethanol made from sugar
cane. After extensive research in the 90s, the Brazilian subsidiary of Volkswagen launched
the first fully flexible-fuel car in March of 2006. By 2010, most Brazilian automakers were
producing models of flex cars and light trucks. The adoption of ethanol flex-fuel vehicles
was so successful that the production of flex cars went from almost 40 thousand in 2003
to 1.7 million in 2007 (ANFAVEA, 2010).

During the first decade of 2000 cars manufactured in Brazil started to be produced
with flexible engines that could use either alcohol or gasoline. The decision of choosing
alcohol or gasoline was transferred from car acquisition to the filling stations and the
reactions to shocks in the price of alcohol and gasoline were faster and stronger. The
customer can direct arbitrage between the two fuels.

Therefore, this study proposes using the GVAR methodology to model the fuel prices
at a regional level, accounting for interdependence among regions and global macroeco-
nomic variables such as crude oil and exchange rate. The model GVAR model used in
this study is referred to the GVAR-IIS, which is the classical global vector autoregressive
extended with the inclusion of impulse-saturation dummies. The GVAR methodology eli-
minates the curse of dimensionality. It provides a parsimonious model for the fuel prices.
The dummies saturation allows the model to consider any structural break or regional
shocks, which can originate at any point from crude oil prices to the final price at the fuel
pump.

In our empirical analysis, we focus on modelling data from Brazil, a vast country
1Portuguese: Programa Nacional do Álcool
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with diverse regional dynamics. The Brazilian economy has been subject to significant
macroeconomic shocks during our analysis period, making it an intriguing case for model
evaluation. This study focuses its attention on the gasoline and ethanol market within
Brazil, with three primary objectives. First and foremost, we aim to model the dynamics
of regional fuel markets, considering the interplay between different Brazilian regions, re-
gional shocks, and macroeconomic variables. To accomplish this, we employ an enhanced
version of the GVAR methodology, initially introduced by Pesaran et al. (2004) by ad-
ding impulse saturation techniques (IIS) developed by Castle et al. (2012) and Johansen
and Nielsen (2009) among other papers and applied to GVAR modelling by Ericsson and
Reisman (2012) which we refer to as GVAR-IIS throughout this study. Our second ob-
jective is to show how this methodology can be useful in generating forecast fuel prices in
various Brazilian regions. To achieve this, we utilize a weekly database containing data
on gasoline, ethanol, and diesel prices in the Brazilian market. The study spans from May
2004 to August 2021, with the model estimation period encompassing January 2004 to
December 2018 and the validation forecast period spanning from January 2019 to August
2021. Lastly, our third objective involves analyzing how the regional fuel markets in Bra-
zil would respond to a shock in the global oil market. This investigation sheds light on
the potential outcomes of such a scenario and its impact on the Brazilian fuel landscape,
particularly in the context of gasoline and ethanol.

The data from fuel prices are taken from the Brazilian Ministry of Mines and Energy
(Ministério de Minas e Energia, 2021) at a municipality level. We also use information
collected by the Brazilian Institute of Geography and Statistics (IBGE)2 that maps infras-
tructure and economic linkages across all municipalities in Brazil. This information about
infrastructure is used to construct a measure of economic connections. Such a measure
creates the weights used in GVAR-IIS to model interdependence across regions.

This study is divided into sections as follows: section 2 is a brief literature review on the
subject; section 3 presents the methodology; section 4 presents the empirical application;
section 5 reports the results of the empirical application; and section 6 contains final
considerations.

2Initials come from “Instituto Brasileiro de Geografia e Estatística”.
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2 Literature Review

Countries and regions are affected by macroeconomics shocks with different intensities
and at different moments in time. The 1990 Persian Gulf crisis had a global shock to the
oil market that brought attention to the response of retail gasoline prices to fluctuations
in world oil prices. More recently, the world was hit by the global shock brought by
the COVID-Sars events. These types of shocks are international and affect economies
worldwide but not necessarily at the same time. This implies that regions can react
differently to them. There is also the presence of monetary policies, fiscal policies, fiscal
crisis, political turmoils, and other types of region specif shocks that affect every region
and affect the economy. There has, over the years, been a wealth of studies looking
into a multitude of features covering the nexus of fuel prices and financial markets. This
section revisits only a selection of the most important contributions offered by the previous
literature.

One of the earliest studies was done by Hamilton (1983). The author analyzed how
oil shocks co-moved with changes in economy-wide activity. The author described that
over the period 1948-1972, the correlation between oil and United States recessions is
statistically significant and nonspurious, supporting the proposition that oil shocks were
a contributing factor in at least some of the United States recessions before 1972. The
proposed model, though simple, illustrated that oil price movements in some manner
influenced most periods of recession in the United States.

In succession, Hooker (1996) found that oil prices no longer Granger caused United
States macroeconomic recessions after 1973. The author explores several potential expla-
nations: that sample stability issues are responsible, that oil prices are endogenous, and
that linear and symmetric specifications misrepresent the form of the oil price interaction.
None of these hypotheses was supported by the data.

Hamilton (1996) responded to Hooker (1996) with an innovative application of econo-
metrics that combined concepts of regime-switching with asymmetric variable decomposi-
tions. Hamilton (1996) stated that many of the quarterly oil price increases observed since
1985 were corrections to even higher oil price decreases the previous quarter. Hamilton
(1996) concluded that when one looks at the net increase in oil prices over the year, the
data is consistent with the historical correlation between oil shocks and recessions.

The existence of asymmetric price adjustment price was tackled by Shin (1994). The
author analysed whether the perception of asymmetric price adjustment is valid. The
author analyzed the issue at both the retail and the wholesale level. The empirical evi-
dence presented in the study supports the hypothesis that the adjustment of the volume-
weighted product prices to changes in crude oil prices is symmetric. In particular, the
study has shown that wholesale gasoline prices adjust symmetrically to changes in crude
prices. Moreover, if any asymmetry exists, it is in the opposite direction to conventional
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wisdom: wholesale gasoline prices fall faster than they rise. For retail gasoline prices, the
findings were mixed, and the overall hypothesis that retail price adjustment is symmetrical
could not be rejected by the data, particularly over longer periods.

In his turn, Borenstein et al. (1997) studied the response of gasoline prices to changes
in crude oil prices. The evidence gathered by the authors supports the theory that retail
gasoline prices respond more quickly to increases in crude oil prices than to decreases. An
increase in oil prices might be passed along to terminal prices in the short run. Still, the
shock effects would not be observable after a ten-week adjustment period. The authors
show that spot prices for generic gasoline have asymmetry in responding to crude oil price
changes, reflecting inventory adjustment effects. Asymmetry also appears in the response
of retail prices to wholesale price changes, possibly indicating short-run market power
among retailers. Borenstein et al. (1997) concluded that this result is consistent with the
theoretical work of Benabou and Gertner (1993), which demonstrates that consumers may
search less when the common input prices of all retailers become more variable, causing
short-run decreases in the elasticity of demand that each retailer faces.

Grasso and Manera (2007) provided a detailed comparison of the three most popular
models designed to describe asymmetric price behaviour. The author compared three
models: the asymmetric error correction model, the autoregressive threshold error correc-
tion model and the error correction model with threshold cointegration. Each model is
estimated on a common monthly data set for the gasoline markets of France, Germany,
Italy, Spain and UK over the period 1985–2003. The conclusion is that all models can
capture the temporal delay in the reaction of retail prices to changes in spot gasoline and
crude oil prices, as well as some evidence of asymmetric behaviour.

The asymmetric response of gasoline prices to Oil price Shocks have been extensively
researched. Kang et al. (2019) studied the effect of oil price shocks on the real price of
gasoline with economic policy uncertainty. Kristoufek and Lunackova (2015) investigated
the effects between retail gasoline and crude oil prices in a new framework of fractional
integration, long-term memory and borderline (non)stationarity. Apergis and Vouzavalis
(2018) looked over the asymmetric pass-through of oil prices to gasoline prices under
the non-linear autoregressive distributed lags model. Sun et al. (2019) employed the
threshold autoregressive interval-valued models developed recently by Sun et al. (2018)
to investigate the pass-through of crude oil prices to retail gasoline prices and proposed a
consistent interval-based test to detect threshold effects.

At the firm level, Broadstock et al. (2016) investigated whether firms reacts to in-
ternational oil prices and if firms also react to gasoline prices, which are more directly
connected to most firms costs of doing business than oil prices are. The study applied
multi-factor asset pricing models to a sample of 963 Chinese firms (between 2005–2013).
The author’s main findings are as follows: Around 90% of Chinese firms are affected by
both oil and gasoline shocks in the long run; The effects differ for price rises and price
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falls; The results also vary widely between industrial sectors.
Using a panel-asymmetric error correction model based on daily panel data of hete-

rogeneous refiners, Chen and Sun (2021) explored the dynamics of China’s gasoline price
response to international oil market price fluctuations and the domestic price regulation.
The author stated several conclusions: Firstly, China’s gasoline price has an asymmetric
response to international crude oil price changes. It responds on time and is closely in
line with crude oil price increases but shows a lagged and long-lasting decrease response.
Secondly, symmetric and asymmetric price responses to price regulation are found at the
industry level as well as in refiners with different types of ownership. Specifically, state-
owned refiners respond more to regulated price increases, whereas private refiners respond
more to regulated price decreases. Thirdly, China’s gasoline price responds symmetrically
to fuel oil price changes but asymmetrically to price regulation in the context of crude oil
import regulation, reflecting the distorted oil market and price response dynamics.

Regarding macroeconomic models, individual regions are interlinked through many
channels when you consider a global economy. This raises several challenges in macroe-
conomic models that address: handling interdependence among regions, data availability,
connecting the macroeconomic environment to regions, handling global shocks and regi-
onal shocks. The first is the well-known curse of dimensionality, and the latter challenge
involves the detection and incorporation in the model of structural breaks.

Focusing on the curse of dimensionality, Chudik and Pesaran (2011) suggested two
approaches to handle this problem: (i) shrinkage of the parameter space and (ii) shrinkage
of the data. Parameter space can be shrunk by imposing a set of restrictions, which could
be, for instance, obtained from a theoretical structural model, directly on the parameters,
as done in the Lasso regressions proposed by Tibshirani (1996), and adaptive Lasso,
where the L1 norms in the penalty are re-weighted by data-weights Zou (2006); Zou
and Hastie (2005). Alternatively, one could use techniques where prior distributions are
imposed on the parameters to be estimated. The second approach to mitigating the
curse of dimensionality is to shrink the data along the lines of index models. Empirical
evidence suggests that few dynamic factors are needed to explain the co-movement of
macroeconomic variables: Stock and Watson (1999, 2002), Giannone et al. (2004) conclude
that only a few, perhaps two, factors explain much of the predictable variations, while
Stock and Watson (2005) estimate as much as seven factors.

The field known as Spatial Econometrics has a long tradition in Economics handling
the curse of dimensionality. They developed a set of empirical that tools allow policyma-
kers and analysts to track and anticipate the response of regions to shocks is essential.
Pesaran and co-authors introduced the Global VAR model in the empirical macroecono-
mic literature as a model that could handle the curse of dimensionality. Pesaran et al.
(2004) introduced the GVAR methodology employing a study that modelled 11 different
regions using data from 1979 through 1999. This methodology was improved by Dees
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et al. (2007b) with the collaboration of the European Central Bank. Elhorst et al. (2018)
discusses the similarities of the GVAR model and traditional spatial econometrics mo-
dels. Recently the model was extended to deal with regional analysis (Pesaran et al.,
2004; Chudik and Pesaran, 2011).

Forecasting regional labour markets with GVARs is undertaken in Schanne (2015)
using German regional labour market data. His study had two goals: the first was to
estimate the GVAR model, as proposed by Pesaran et al. (2004), and the second was to use
the developed GVAR model to construct a forecast for German labour market indicators
while accounting for spatial effects. The author finds that including information about
labour market policies and vacancies and accounting for the lagged and contemporaneous
spatial dependence can improve the forecasts relative to a simple bivariate benchmark
model. Consequently, Schanne (2015) concluded that the data indicate semi-strong cross-
section dependence and provide consistent results since Germany is a polycentric economy,
in contrast with the United Kingdom or France (places with clearly dominant regions).
The final model used in his study is a basic GVAR specification, which uses first differences
without imposing cointegration relations and does not include a dominant region.

Using a global vector autoregressive (GVAR) model Konstantakis et al. (2021) studied
how the Chinese economy has managed to maintain its overall economic growth, and the-
refore its production, throughout various crises. The GVAR model captured the complex
interactions across regions and factors. The authors use the world input–output tables to
serve as the tools to construct the GVAR weight matrix, as well as Node theory for selec-
ting the dominant economies. The authors concluded that the economies of the United
States and EU17 play a dominant role. In addition, the Chinese economy is unaffected,
in the long run, by unanticipated shocks in the dominant economies of the United States
and EU17.

The curse of dimensionality is not the only problem high dimensional models face.
Another common problem is structural breaks. An unexpected change, which can happen
over time or instantaneously in the population parameter, is classified as a structural
break. These changes in the population parameter can affect the econometric model
causing huge forecasting errors and unreliability of the model in general. There are several
types od structural breaks, they can be rapid, as with crises (financial and otherwise);
they can be characterized as jumps in the parameter value (as with asset-price volatility),
and they can be viewed as changes in regime (as with the 2020 COVID-Sars pandemic).
The structural breaks may also grow more gradually, as with some forms of innovation
and globalization.

Structural instability is an important issue to be analyzed as highlighted by Castle
et al. (2016). They argued that the lack of stability of coefficients frequently caused
forecast failure, and therefore we must routinely test for structural stability. Thus, the
detection of breaks is essential, in one hand, we have that the recent events emphasize
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the need for reliable “early-warning” and “early-detection” methods for assessing the state
of the economy, on the other hand, the gains from modelling a structural break may
be offset by imprecisely estimated break dates and post-break parameters, which, as
Elliott and Müller (2006) show, is a feature of local-to-zero breaks. Therefore, whether
detected or not, breaks pose great economic and statistical inference, forecasting, and
policy challenges.

The first paper to enhance GVAR with impulse indicator saturation is Ericsson and
Reisman (2012). They stated that automatic model selection and impulse indicator sa-
turation contribute two valuable tools to a coherent empirical framework for detecting
structural breaks such as crises, jumps, and regime changes. Ericsson and Reisman (2012)
concludes that Global vector autoregressions (GVARs) have several attractive features:
multiple potential channels for the international transmission of macroeconomic and fi-
nancial shocks, a standardized economically appealing choice of variables for each country
or region examined, systematic treatment of long-run properties through cointegration
analysis, and flexible, dynamic specification through vector error correction modelling.

Our study focuses on expanding the GVAR model with impulse indicator saturation
to detect breaks and shocks. We also provide an empirical analysis of the Brazilian fuel
market with a forecasting exercise. Many economic shocks have hit the Brazilian economy
during the last twenty years. In the eighties, Brazil was hit by the “Debt crisis” that
affected many Latin American countries (Cline, 1995). In the nineties, a series of financial
crisis events hit emerging markets such as Mexico, South Korea, and Russia, among others
and finally, Brazil had to let their currency float facing a massive devaluation. In the first
decade of the twenty-first century, oil prices rose drastically, reaching highs of $147 in
July 2008. This ended in December 2008, when the global economy entered a recession
reducing the oil prices from $147 to $32 per barrel (World Atlas, 2021). The recession was
the subprime crisis, in which Brazil was also hit with the spillovers of the situation (Kolb,
2011). At the end of the second decade of the twenty-first century, a populist policy and
political turmoil took place in Brazil (Melo, 2016). The country faced one of the most
profound and most prolonged recessions documented by CODACE 3. On 8 March 2020,
Saudi Arabia initiated a price war on oil with Russia, causing a 65% quarterly fall in the
price of oil (Journal of Petroleum Technology, 2020). All these events turned Brazil into
a unique case for understanding the effects of frequent and severe macroeconomic events
on regions.

3CODACE is the Brazilian Business Cycle Dating Committee similar to the NBER Cycle Dating
Committee. See Picchetti (2019) for a description of the methodology adopted by the Committee.
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3 Methodology

This section presents and describes the Global Vector Autoregression (GVAR), which is
the main methodology used in this study. It is assumed that one is familiar with the Vector
Autoregression (VAR) methodology and Vector Error Correction model (VECM), as well
as their terminologies. The current approach to modeling GVARs has been developed
in Pesaran et al. (2004) and Dees et al. (2007b). For further research on GVARs, see
Garratt et al. (2006); Pesaran and Smith (2006); Dees et al. (2007a); Vansteenkiste and
Hiebert (2011); Pesaran et al. (2009); Castrén et al. (2010); Chudik and Pesaran (2011);
and Smith and Galesi (2014)

3.1 Global vector autoregressive model

The GVAR methodology has several attractive features: A versatile structure for charac-
terizing international macroeconomic and financial linkages through multiple channels,
a standardized economically appealing choice of variables (both domestic and foreign)
for each country or region, a systematic treatment of long-run properties through coin-
tegration analysis, and a flexible, dynamic specification through vector error correction
modelling. These features are very appealing, and they balance the roles of data and
economic theory in empirical modelling.

The GVAR explicitly aims to capture international economic linkages, especially linka-
ges between the macroeconomic and financial sides of economies. Weak exogeneity plays
an essential role in allowing conditional subsystem analysis on a region-by-region basis.

The traditional GVAR model handles the curse of dimensionality by shrinking the pa-
rameter space. However, the regions/individuals of the model can be subjected to shocks,
which can lead to structural breaks in the parameters of regression models, leading to
substantial forecasting errors and unreliability of the model in general. A novel approach
to handle unexpected shocks was proposed by Hendry (1999), which introduced the Im-
pulse Indicator Saturation (IIS) as a test for an unknown number of breaks, occurring at
unknown times, with unknown duration and magnitude. The procedure relies on adding
a pulse dummy as an intervention at every observation in the sample.

The use of IIS tackles the problem of the breaks; however, it saturates the model, and
the estimation is unfeasible with traditional methods. The IIS in the Autometrics routine
of Doornik (2009) OxMetrics is an elegant estimation algorithm. The process utilizes many
blocks, and the partitioning of the sample into blocks may vary over iterations of searches;
see also Hendry and Krolzig (1999, 2001, 2005), Hoover and Perez (1999, 2005). IIS is a
statistically valid procedure for integrated, cointegrated data; see Johansen and Nielsen
(2009). IIS can also serve as a diagnostic statistic for many forms of misspecification.

This study proposes to extend the classical GVAR model with the inclusion of impulse-
saturation dummies. The augmented GVAR model would lead to a more robust and par-
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simonious model, where in theory, the model will have several advantages: (i) the classical
GVAR methodology eliminates the curse of dimensionality and provides a parsimonious
model for each region; (ii) the dummies saturation allows the model to take into account
any structural break of the population parameters or regional shock.

3.2 The Classical GVAR Model

The GVAR methodology was originally proposed by Pesaran et al. (2004) as a practical
approach to construct a coherent global model. The model is usually summarized as a
two-step procedure.

1. In the first step, a specific models for each region is estimated conditioned to ex-
ternal influences. The models are represented as VAR models, which have domestic
variables and foreign variables, where the foreign variables are treated as weakly
exogenous.

2. In the second stage, the VAR models of each region are grouped into one single
global VAR model.

To present the classical GVAR methodology we follow the notation in Chudik and
Pesaran (2016). Consider a panel of N cross-section regions (traditionally called units),
each featuring ki variables observed during the time periods t = 1,2, . . . , T . A set of
item-specific endogenous variables are collected in a ki × 1 vector xi,t and let Xt =

(x′
1,t, x

′
2,t, . . . , x

′
N,t)

′ denote a k × 1 vector of all the variables in the panel, where k =∑N
i=1 ki. A set of foreign variables x∗

i,t are calculated as cross-section weighted averages
of foreign variables, collected in a k∗ × 1 vector.

x∗
i,t = W̃ ′

iXt (1)

The specific models of each region consist of a set of domestic and foreign variables,
modeled as an autoregressive model with pi lags. A set of foreign variables x∗ enter the
model time contemporaneously and with a number of lags up to qi, that is:

xi,t = ai,0 + ai,1t+

pi∑
l=1

Φi,lxi,t−l + Λi,0x
∗
i,t +

qi∑
l=1

Λi,lx
∗
i,t−l + ϵi,t (2)

for i = 1, 2, . . . , N , where Φi,l is an array of lag coefficients for lag l associated with
domestic variables and Λi,l is an array of lag coefficients for lag l associated with foreign
variables; and ϵi,t is as an error vector.

Let Zi,t = (x′
i,t,x

∗′
i,t)

′ be ki + k∗ dimensional vector of domestic and region-specific
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foreign variables included in the submodel of region i and rewrite (2) as

Ai,0Zi,t = ai,0 + ai,1t+

p∑
ℓ=1

Hi,ℓZi,t−ℓ + ϵit (3)

where Ai,0 = (Iki ,−Λi,0) ,Hiℓ = (Φi,ℓ,Λi,ℓ) for ℓ = 1, 2, . . . , p. Also, p = maxi(pi,qi),
and define Φi,ℓ = 0 for ℓ > pi, and similarly Λi,ℓ = 0 for ℓ > qi. Individual region-models
in (3) can be equivalently written in the form of error-correction representation.

Ai,0∆Zi,t =

p∑
ℓ=1

Ai,ℓ∆Zi,t−ℓ −ΠiZi,t−1 + ϵi,t (4)

where ∆ = 1 − L is the usual first difference operator, and Πi = Ai,0 −
∑p

ℓ=1Hi,ℓ, and
Ai,ℓ = −(Hi,ℓ+1 +Hi,ℓ+2 + · · · +Hi,ℓ+p). Also, we omit the constant term in the model
for readability.

The data shrinkage comes from the use of cross-section weighted averages of foreign va-
riables, given by (1), which solves the dimensionality problem. The cross-section averages
x∗
i,t is treated as weakly exogenous and therefore (2) can be estimated consistently (notice

that the weak exogeneity assumption is testable). The estimation of regional models in
(2), which allows for cointegration within and across regions (via the star variables), is
the first step of the GVAR approach. The second step of the GVAR approach consists of
stacking estimated regional models to form one large global VAR model.

3.3 Impulse indicator saturation

Until equation (4), all the model definition follows the classical GVAR model. The impulse
indicator saturation (IIS) uses zero–one impulse indicator dummies to analyze properties
of a model. The model in equation (4) is then augmented by a set of IIS such that there
are T such dummies, one for each observation in the sample. The model is also augmented
by a set of centered seasonal dummies. Therefore we rewrite equation (4) as follows:

Ai,0∆Zi,t =

p∑
ℓ=1

Ai,ℓ∆Zi,t−ℓ −ΠiZi,t−1 +Uiζ + IISiΨ+ ϵi,t (5)

were ζ is a matrix of centered seasonal dummies and Ui are the set of coefficients associated
to the centered seasonal dummies; Ψ is a (ki+k∗)×T matrix that represents the Impulse
Indicator dummies and IISi is the set of coefficients associated to them. Using the (ki +

k∗)×k dimensional ‘link’ matrices Wi = (E ′
i, W̃

′
i )

′, where Ei is k×ki selection matrix that
select xi,t, namely xi,t = E ′

ixt, and W̃i is the weight matrix introduced in (1) to define
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region-specific foreign star variables. We have

Zi,t =
[
x′
i,t x∗

i,t
′
]′
= WiXt (6)

Notice that region-specific models allow for cointegration both among domestic varia-
bles as well as between domestic and foreign (star) variables. In particular, assuming Zi,t

is integrated of order 1, the rank of Πi specifies the number of cointegrating relationships
that exist among the domestic and region-specific foreign variables in Zi,t; and Πi can be
decomposed as Πi = αiβ

′
i. Therefore, using (6) in (5), and decomposing Πi yields

Ai,0Wi∆Xt =

p∑
ℓ=1

Ai,ℓWi∆Xt−ℓ − αiβ
′
iZi,t−1 +Uiζ + IISiΨ+ ϵi,t (7)

At the core of the GVAR approach are small-scale region-specific conditional models
that can be estimated separately. These individual regions models explain the domestic
variables of a given economy, xi,t, conditional on region-specific cross-section averages
of foreign variables. However, the inclusion of all T dummies makes the model model
estimation unfeasible by conventional methods.

3.4 Global model with IIS

The second step of the GVAR approach consists of stacking estimated region models to
form one large global VAR model. Therefore, stacking the equations (7) for each region
and defining the following set of matrices:

G0 =


A1,0W1

...
An,0Wn

 Gl =


A1,lW1

...
An,lWn

 Gα =


−α1β

′
1W1

...
−αnβ

′
nWn

 Ustk =


Ui

...
Un



IISstk =


IIS1

...
IISn

 ut =


ϵ1,t
...

ϵn,t


We then have the following equation:

G0∆Xt =

p∑
ℓ=1

Gℓ∆Xt−ℓ +GαXt−1 +Ustkζ + IISstkΨ+ ut (8)
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If matrix G0 is invertible, then by multiplying (8) by G−1
0 from the left we obtain the

solution to the GVAR model in the error-correction representation:

∆Xt =

p∑
ℓ=1

G−1
0 Gℓ∆Xt−ℓ +G−1

0 GαXt−1 +G−1
0 Ustkζ +G−1

0 IISstkΨ+G−1
0 ut (9)

If matrix G0 is not invertible, then the system (8) is undetermined, and to additional
equations are required for Xt to be uniquely determined. Pesaran and Chudik (2011)
show that these additional equations can be specified in the form of VAR models in
cross-sectional averages of xi,t

3.4.1 Common Variables

As in the case of the classical GVAR model, common variables can be introduced in the
region models, either as observed common factors or in the form of dominant variables
as defined in Chudik and Pesaran (2013). Let ωt be vector of mw × 1 observed common
factors variables. In this case, the conditional region models are included in the model as
ωt and its lagged values; therefore, after piling the equation (8) is rewritten as:

G0∆Xt =

p∑
ℓ=1

Gℓ∆Xt−ℓ +GαXt−1 +Ustkζ + IISstkΨ+Dstk,0∆wt +

si∑
ℓ=1

Dstk,ℓ∆wt−ℓ + ut

(10)

for i = 1, 2, . . . , N . where Dstk,ℓ are the coefficients associated with the common factors
ωt−ℓ for ℓ = 1, . . . , si. Both types of variables (common variables ω and cross-section
averages x∗

i,t) can be treated as weakly exogenous for the purpose of estimation. As
noted, the weak exogeneity assumption is testable. The marginal model for the dominant
variables can be estimated with or without the feedback effects from xt. In the latter
case, we have the following marginal model:

∆wt = −αwβ
′
wwt−1 +

pw∑
l=1

Hw,l∆wt−ℓ +Uwζ + IISwΨ+ ηt (11)

Feedback effects from the variables in the GVAR model back to the dominant variables
via cross-section averages, therefore (11) can be augmented by lags of X∗

w,t = W̄wXt, where
W̄ dimensional weight matrix defining global cross-section averages. Assuming there is
no cointegration among the common variables, ωt, and the cross-section averages, X∗

w,t−ℓ

(notice that this condition is also testable), them the marginal model for the dominant
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variables equation with the feedback becomes:

∆wt = −αwβ
′
wwt−1 +

pw∑
ℓ=1

Hw,ℓ∆wt−ℓ +

qw∑
ℓ=1

Bw,ℓW̄w∆Xt−ℓ +Uwζ + IISwΨ+ ηt (12)

different lag orders for the dominant variables (pw) and cross-section averages (qw) could
be considered. Note that contemporaneous values of star variables do not feature in (12).
Conditional models (10) and the marginal model (12) can be combined and solved as a
complete global VAR model in the usual way.

[
Iw 0

−Dstk,0 G0

]
︸ ︷︷ ︸

Gy,0

[
∆wt

∆Xt

]
=

p̃∑
ℓ=1

[
Hw,ℓ Bw,ℓW̄w

Dstk,ℓ Gℓ

]
︸ ︷︷ ︸

Gy,ℓ

[
∆wt−ℓ

∆Xt−ℓ

]
+

[
Uw IISw

Ustk IISstk

]
︸ ︷︷ ︸

C

[
ζ

Ψ

]
+

+

[
−αwβ

′
w 0

0 Gα

]
︸ ︷︷ ︸

L

[
wt−1

Xt−1

]
+

[
ηt

ut

] (13)

where Iw is an identity matrix of dimension mw, 0 is a zero matrix of dimensions mw × k,
p̃ = maxi(p,pw, qw, si), and define Hw,ℓ = 0 for ℓ > pw, Bw,ℓ = 0 for ℓ > qw, Dstk,ℓ = 0 for
ℓ > si, Gℓ = 0 for ℓ > p.

Let y′t =
[
wt Xt

]
, Ω′ =

[
ζ Ψ

]
and ε′t =

[
ηt ut

]
, then equation (13) can be rewritten

as

Gy,0∆yt =

p̃∑
ℓ=1

Gy,ℓ∆yt−ℓ +CΩ + Lyt−1 + εt (14)

if Gy,0 is invertable, then

∆yt =

p̃∑
ℓ=1

G−1
y,0Gy,ℓ∆yt−ℓ +G−1

y,0CΩ +G−1
y,0Lyt−1 +G−1

y,0εt (15)

3.5 GVAR and Weak exogeneity

As noted earlier the GVAR approach builds on separate estimation of region-specific
VAR models assuming that the foreign variables can be treated as weakly exogenous.
The concept of weak exogeneity in a system of an integrated of order one variables is also
closely related to the notions of “long-run causality” and “long-run forcing” discussed by
Granger and Lin (1995) and Pesaran et al. (2000). The GVAR-IIS model is build on the
same principals of the classical GVAR and must follow the same considerations for the
estimation of region-specific VAR models, and therefore the assumption that the foreign
variables can be treated as weakly exogenous is essential.
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The assumption of weak exogeneity can be easily tested as outlined in section 7.1 of
Pesaran et al. (2004), and typically is not rejected, when the economy under consideration
is small relative to the rest of the world and the weights used in the construction of the
star variables are granular. As stated in Pesaran et al. (2004), we can check the weak
exogeneity by testing the joint significance of the estimated error-correction terms.

4 Empirical Application

In this section, we illustrate our methodology by modeling the Brazilian fuel market’s
dynamics from May 2004 to August 2021. Brazil, the largest country in South America
and Latin America, encompasses roughly 8.5 million square kilometers and has a popu-
lation exceeding 210 million (as of 2019). With a robust Gross Domestic Product (GDP)
of 1.84 trillion USD, the Brazilian fuel market stands out for its diversity and distinctive
attributes.

Brazil has been at the forefront of innovation in the transportation sector, particularly
with the development and widespread adoption of flex-fuel vehicles. These adaptable
vehicles can seamlessly operate on various fuel blends, including gasoline, ethanol, or any
combination thereof. Remarkably, in 2020, 83% of the total market comprised flex-fuel
vehicles (ANFAVEA, 2021).

Moreover, Brazil has implemented regulatory mandates that require the incorporation
of biodiesel into diesel fuel, aligning with the country’s commitment to cleaner energy
sources. Given these factors, the pricing dynamics in the Brazilian fuel market can be
susceptible to fluctuations influenced by various elements, including global oil prices,
currency exchange rates, and government policies related to fuel subsidies and taxation.

4.1 Model

This study will use the GVAR methodology with the IIS augmentation (GVAR-IIS), as
described in the previous section, to evaluate the Brazilian fuel market model.

Let i be the aggregation units of several municipalities4. The Brazilian fuel market has
several products: hydrous ethanol, regular gasoline, additive gasoline, liquefied petroleum
gas, compressed natural gas, diesel oil, and diesel oil s10. However, the three major fuels
used in the market are diesel oil, regular gasoline, and hydrous ethanol (Centro Brasileiro
de Infraestrutura, 2019). Therefore, the specific model for each region will consist of the
prices for diesel oil, regular gasoline, and hydrous ethanol. Consequently, in period t for
each region i a vector xi,t can be defined as

4A full description of each municipality and its aggregation can be found in the appendix
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xi,t =

Ethanoli,t

Gasolinei,t

Dieseli,t

 , (16)

where Ethanoli,t is the natural logarithm of the price of hydrous ethanol for region i at
time t, Gasolinei,t is the natural logarithm of the price of regular gasoline for region i at
time t, and Dieseli,t is the natural logarithm of the price of regular diesel oil for region i

at time t.
Macroeconomic variables are treated as common variables and modelled in a dominant

unit. Therefore, the dominant unit of the GVAR-IIS model will contain the log level of
the Brent oil price and the log level of the nominal exchange rate between Brazilian Real
and the United States Dollar (BRL/USD). Let ωt be a vector of macroeconomic variables,
then the dominant unit will be a model as defined in (12), and ωt expressed as

ωt =

[
Brentt

ExchangeRatet

]
(17)

4.1.1 Weight matrix

The first step in the GVAR modeling exercise is to construct the foreign region-specific
(“starred”) variables from the domestic variables using (1). In Pesaran et al. (2004) the
weight matrix is defined by country-specific trade weights based on the United Nations
Direction of Trade Statistics.

According to di Mauro and Pesaran (2013) the weight matrix Wi is meant to capture
the importance of all other regions for the region i. In other words, the matrix Wi plays a
key role in linking up the models of the different regions together and shows the degree to
which one region depends on the remaining regions. Therefore, to determine the weight
matrix, it is necessary to decide on the importance of each region for every other region.

Since we will apply the model to the fuel market, to determine the importance of a
region to another is to determine the consumers prefer to acquire convenience goods, in
this case, fuel, given a set of constraints which in the case of spatial competition consist in
a connection between the regions (road, railroad, etc.). We will assume that the products
are homogeneous among regions. The connections between regions in the modern world
can be any means of connection that allow the consumer to reach (by car, by train, by
plane, etc.) the seller in another region. Regions with many connections between them
are more important than regions with fewer connections. Consequently, the importance
of region j to region i is modelled as a function of the connections between them.

Therefore, for the weights, we use a matrix that is based on will be based on the
number of connections between the regions. Chudik and Pesaran (2016) argues that the
construction of cross-sectional averages only need to satisfy some granularity conditions,
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and for large N asymptotics one might as well use equal weights, namely, replace all cross-
sectional averages by simple averages. The author also argues that when the number of
regions is moderate and spillover effects could also be significant, it is advisable to use
weights that also capture political and cultural linkages across regions.

Therefore, the weight matrix is a function of the number of connections between
two regions. Let I be the set of all the regions in our model, and Ii,j be an indicator
function where it assumes the value one if the region i have any connection with the
region j; otherwise, it will assume the value zero. We define the weight vector as W̃i =

(ai,1, ai,2, . . . , ai,N), then each element ai,j of the weight matrix vector is defined as:

ai,j =
Ii,jwj∑
j∈I Ii,jwj

(18)

were Ii,i = 0 and wj is a weighting factor associated with region j that measures its
importance. This weighting factor is determined to take into account the economic influ-
ence and market size. In our analysis, the weighting factor wj is chosen to be the gross
domestic product per capita of region j.

4.2 Database Description

The following section provides a brief description of the data used in this study as well as
their sources and frequency. Table 1 contains a detailed description of the data sources
used in the empirical analysis.

Tabela 1: Data sources and characteristics

Data Level of data Frequency Period
Brazilian fuel prices1 municipal Weekly 2004-05-09 to 2021-08-29
Brazilian Exchange Rate2 federal Daily 2004-05-09 to 2022-01-20
Brent Crude Oil prices3 global Daily 2004-03-01 to 2021-11-15
Geographic regions4 municipal N/A as reported in 2015
Connection between regions4 municipal N/A as of 2007

Source: elaborated by the author
1 Acquired from National Agency of Petroleum, Natural Gas and Biofuels
2 Acquired from Brazilian Central Bank
3 Acquired from ICE Intercontinental Exchange - Provided by Bloomberg terminal
4 Acquired from Brazilian Institute of Geography and Statistics

The data for the Brazilian fuel prices were obtained from the National Agency of
Petroleum, Natural Gas and Biofuels (ANP from the Portuguese Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis). The database is available by municipality
region and was grouped into mesoregions5 taking the average price for each region and

5Mesoregions are geographical subdivisions that fall between the broader regional level and the more
localized microregion or district level.
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each fuel. A detailed description of each region group is in the appendix. Also, missing
values were estimated using a local level space state model.

The data for the Brazilian Exchange Rate was obtained from the Brazilian Central
Bank (Brazilian Real to United States Dollar). The series is reported at a daily frequency
and were transformed to a weekly frequency using the average value of the daily data. In
its turn, Brent Crude Oil prices are obtained from the ICE Intercontinental Exchange.
This series also has a daily frequency and were also transformed to a weekly frequency
using the average value of the daily data.

Finally, the geographic regions and municipalities information as well as the the num-
ber of connections between regions were obtained from IBGE (2008). This work aims at
determining the influence of the cities in Brazil. The study not only analyzed regular
transport links, such as those that go to the urban centers, but also the main destinations
of the residents to obtain products and services, such as general goods, education, airport
travel, and health services. The acquisition of agricultural inputs and the destination of
the agricultural products were also analyzed in the study. The main result of the paper is
a “Brazilian urban network” with a mapping of the connections for all 5,564 Brazilian mu-
nicipalities. This “Brazilian urban network” contains the hierarchy of the urban network
and the regions of influence of each urban center. Information on the total population,
their designation codes, were also obtained from IBGE6 as reported in 2015.

4.3 Descriptive statistics

Table 2 shows descriptive statistics for the Brent Crude Oil, nominal exchange rate, as
well as the fuel prices (Hydrous Ethanol, Diesel Oil, Regular Gasoline) for the regions that
contain the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Brasilia, and Salvador -
five of the most important cities in Brazil. The descriptive statistics for all the regions
can be found in the appendices.

6IBGE from the Portuguese Instituto Brasileiro de Geografia e Estatística
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4.4 Model configuration

The GVAR-IIS model allows for several configuration schemes. One objective of this
study is to evaluate the performance of the IIS procedure in the case of model misspecifi-
cation. To assess the issue of misspecification several models are analyzed: (i) the model is
evaluated with or without the ISS procedure, which means the GVAR-IIS or the classical
GVAR; (ii) the model can be evaluated with the long-run equilibrium estimate or with
an overestimation of the long-run relationships, in our models the long run estimation is
determined by the Johansen method and a higher rank of an extra cointegration relati-
onship is also utilized; (iii) the model can be evaluated with seasonal dummies or not;
(iv) lastly the IIS procedure can be allowed to remove the seasonal dummies or not. The
table (3) has a description of all the models.

Model IIS Cointegration Dummies Rem. Dummy Exogenous
M1 ON Higher rank ON No Brent
M2 OFF Normal rank OFF No Brent
M3 OFF Higher rank OFF No Brent
M4 OFF Normal rank ON No Brent
M5 OFF Higher rank ON No Brent
M6 ON Normal rank OFF No Brent
M7 ON Normal rank ON No Brent
M8 ON Normal rank ON Yes Brent
M9 ON Higher rank ON No Brent and Exc.Rate
M10 OFF Normal rank OFF No Brent and Exc.Rate
M11 OFF Higher rank OFF No Brent and Exc.Rate
M12 OFF Normal rank ON No Brent and Exc.Rate
M13 OFF Higher rank ON No Brent and Exc.Rate
M14 ON Normal rank OFF No Brent and Exc.Rate
M15 ON Normal rank ON No Brent and Exc.Rate
M16 ON Normal rank ON Yes Brent and Exc.Rate

Tabela 3: Forecasting Models

All models are estimated with 8 lags and the use of Autometrics in the GVAR-IIS
depends on a p-value setting for the variable selection, this value is chosen a priori. All
models that have the IIS procedure turned on have the p-value set at 10−5.

A total of 110 regional models were estimated, 84 models specified with no cointegra-
tion relationship, 24 models specified with one cointegration relationship, and 2 models
specified with two cointegration relationships. The procedure developed by Johansen
(1992) was used to validate the weak exogeneity of the foreign variables. In a total of 108
models, the weakly exogenous can not be rejected, and in 2 models the foreign variables
could not be accepted as weakly exogenous.

Taking into account structural breaks in the estimation process is one of the significant
advantages of the GVAR-IIS approach, as well as taking into account misspecification
models. A total of 18 models using different configurations were estimated: 2 VECM
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models taken to be the benchmark models, 8 models with the IIS procedure, and 8
models without the IIS procedure (classical GVAR setting). All models with the impulse
saturation procedure were able to produce more accurate forecasts when compared to the
benchmarks and the classical GVAR models. Even in the case of misspecification, the
GVAR-IIS model can make a more reliable prediction. Using the RMSE metric, the best
predictive model (M8) is the GVAR-IIS model with Brent Crude Oil as an exogenous
variable.

As a benchmark comparison we consider a Vector of Error Correction Model (VECM),
as it is one of the most popular models (Grasso and Manera, 2007). The VECM model is
also estimated with an 8 lag, and the cointegration vector is estimated using the Johansen
procedure. Two error correction models are estimated, the first considers the Brent Crude
Oil as the only exogenous variable, the second model considers the Brent Crude Oil as
well as the nominal exchange rate as exogenous variables.

4.4.1 Forecasting evaluation

When it comes to forecasting evaluation, a standard methodology is to reserve part of
the sample data for use as a comparison sample in which the actual values and forecasted
values are compared. The estimation window uses data from May 2004 to December 2018.
The data from January 1st 2019, to August 29th, 2021 is set aside for forecast evaluation.
The usual metric used to measure the differences between actual and predicted values by
a model or an estimator is the root-mean-square error (RMSE). The metric can evaluate a
specific series (diesel oil, regular gasoline, and hydrous ethanol) prediction or can evaluate
all predictions, independent of the series. Let i be a specific series then the RMSE for a
specific series can be defined as:

RMSEi =

√∑T
t=1 (ŷi,t − yi,t)

2

T
(19)

where ŷi,t is the forecast value of series i at time t and yi,t is the actual value of series i

at time t. The total RMSE can be defined as

RMSETotal =

√∑N
i=1

∑T
t=1 (ŷi,t − yi,t)

2

NT
(20)

5 Results7

Modelling a system such as the Brazilian fuel market at the regional level is not an easy
task, and it is undoubtedly subject to considerable uncertainties. There are many choices

7All models were coded by the author and estimated using OxMetrics version 8.00 64-bit edition, and
result analysis was done in R version 4.1.0.
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to consider for each region model. For instance, one might consider the variables to be
included in each regional model, the lag order of the domestic variables, and the lag order
of the foreign variables; one also might consider the number of cointegrating relations and
whether to impose long-run or short-run restrictions on the parameters.

As explained earlier, the GVAR and GVAR-IIS models comprise several specific models
solved in a two-step process. Each regional model uses the data for diesel oil, regular
gasoline, and hydrous ethanol and suffers the influence of the foreign variables using the
weight matrix defined previously. Also, all regions are affected by the Brent Crude Oil
and nominal exchange rate.

At the time of this analysis, Brazil had 5612 municipalities that are grouped in 110 me-
soregions. As stated in (18), each region has a weighting vector that is used to determine
the influences of the foreign variables.

5.1 Cointegration

The GVAR-IIS and the classical GVAR allow for cointegration among regional and foreign
variables8. All individual regional models had the deterministic components treated as
an unrestricted intercept and no trend in the error correction models.

Out of the 110 estimated models, 84 were specified with no cointegration relationship,
24 were specified with one cointegration relationship, and 2 were set with two cointegration
relationships.

5.2 Weak exogeneity

The estimation of region-specific VAR models assumes that the foreign variables can
be treated as weakly exogenous. This is a common requirement between the classical
GVAR and the GVAR-IIS. Using the procedure developed by Johansen (1992) the weak
exogeneity is tested for the 110 models. In a total of 108 models, the test of weakly
exogenous can not be rejected, and in 2 models the foreign variables could not be accepted
as weakly exogenous. We accepted the weakly exogenous conditioning since these regions
are within the 5% expected rejection threshold. It is worth noting that, according to
Pesaran et al. (2004), even if the weak exogeneity assumption is rejected, one could still
obtain consistent estimates of the parameters of the GVAR model in two steps under
certain conditions.

8The cointegration was investigated using the Cointegration Analysis of Time Series by Jurgen A.
Doornik and Katarina Juselius, available in the Oxmetrics version 8.0
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5.3 Forecast analysis

The ability to consider structural breaks in the estimation process is one of the major
advantages of the GVAR-IIS approach. The account of structural breaks should provide
robust forecasts. In this section, we investigate how the forecasting performance of GVAR-
IIS models compares with other forecasting models, mainly the classical GVAR and the
VECM models. Table 4 show the results of the forecast exercise using the RMSE metric.

Tabela 4: Root mean squared errors

Model RMSE Total MSE Ethanol MSE Diesel MSE Gasoline
M8IIS 1.64× 10−2 1.97× 10−2 1.53× 10−2 1.36× 10−2

M6IIS 1.64× 10−2 1.96× 10−2 1.55× 10−2 1.37× 10−2

M16IIS 1.65× 10−2 1.97× 10−2 1.56× 10−2 1.38× 10−2

M14IIS 1.66× 10−2 1.97× 10−2 1.56× 10−2 1.38× 10−2

M7IIS 1.67× 10−2 1.98× 10−2 1.58× 10−2 1.38× 10−2

M15IIS 1.67× 10−2 1.99× 10−2 1.58× 10−2 1.38× 10−2

M1IIS 1.70× 10−2 2.05× 10−2 1.60× 10−2 1.40× 10−2

M9IIS 1.71× 10−2 2.07× 10−2 1.60× 10−2 1.40× 10−2

VECM21 1.74× 10−2 2.06× 10−2 1.65× 10−2 1.44× 10−2

VECM 1.78× 10−2 2.10× 10−2 1.70× 10−2 1.48× 10−2

M12 2.01× 10−2 2.26× 10−2 2.08× 10−2 1.66× 10−2

M4 2.02× 10−2 2.25× 10−2 2.09× 10−2 1.67× 10−2

M10 2.04× 10−2 2.22× 10−2 2.18× 10−2 1.69× 10−2

M2 2.05× 10−2 2.22× 10−2 2.19× 10−2 1.70× 10−2

M13 2.11× 10−2 2.49× 10−2 2.05× 10−2 1.71× 10−2

M5 2.12× 10−2 2.49× 10−2 2.07× 10−2 1.72× 10−2

M11 2.17× 10−2 2.52× 10−2 2.14× 10−2 1.77× 10−2

M3 2.17× 10−2 2.52× 10−2 2.15× 10−2 1.78× 10−2

Source: elaborated by the author
1 VECM2 refers to the model with two exogenous variables (Brent Crude Oil

and nominal exchange rate)
IIS Model with IIS procedure

From the results presented at table 4 it is possible to verify that the forecasts produced
by model M8 have the lowest root mean squared error in the overall metric. Recall that
model M8 has the IIS procedure, seasonal dummies and only the Brent Crude Oil as an
exogenous variable. Model M8 also produces the best forecast values for diesel and regular
gasoline series. As for the Hydrous Ethanol series model, M6 has the lowest root mean
squared error. Overall the models with the IIS procedure can produce better forecasts
than the classical GVAR model and better results than the benchmarks (VECM and
VECM2).

Likewise, the models can be evaluated considering each region. In particular, for the
region that contains the municipality of São Paulo, one of the most important in the
country, the best models for the series of diesel oil, hydrous ethanol, and regular gasoline
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Figura 1: Boxplot of the squared errors (region: São Paulo; fuel: Hydrous Ethanol)

are the models M8, M7 and M15 (all models were the IIS procedure is turned on). Figure
(1), Figure (2), and Figure (3) show a boxplot for the squared errors of the models. We
can notice that, in general, models with the forecasts of the GVAR-IIS models have a lower
interquartile range, indicating that these models have lower variance in the estimates.

5.4 Model Comparison

Although the root mean squared errors are a useful metric and extensively used in the
literature, the metric does not consider if two competing models can be regarded as
equals in predictive power. In other words, if the difference in two models is statistically
significant. In order to determine whether forecasts are significantly different, the Diebold-
Mariano test (Diebold and Mariano, 1995) is applied. The test originally proposed by
Diebold and Mariano (1995) considers a sample path of loss differentials. Under the
assumption that the loss differential is a covariance stationary series, the sample average
converges asymptotically to a normal distribution.

Table (5) present the p-values of the Diebold-Mariano test for predictive accuracy.
Only the models labelled: M8, M6, M16, M14, M7, M15, M1, M9, VECM2, and VECM
are presented. A table with a complete comparison between models can be found in the
appendix. According to the Diebold-Mariano test, model M8 is considered the best model
for predictive accuracy. Also, all GVAR-IIS models have better predictive accuracy than
the classical GVAR and the VECM benchmark. It is worth mentioning that both VECM
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Figura 2: Boxplot of the squared errors (region: São Paulo; fuel: Regular Gasoline)

Figura 3: Boxplot of the squared errors (region: São Paulo; fuel: Diesel Oil)
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models, considered to be the benchmark, has better predictive accuracy when compared
to the classical GVAR.
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5.5 Impulse Response Function

So far, all the GVAR-IIS models have similar results; however, the results for the GVAR-
IIS model M16, which is the model with the lowest RMSE with both the Brent Crude Oil
and nominal exchange rate as exogenous variables, will be present in this section.

Using the GVAR methodology, it is possible to estimate the dynamic response of the
fuel market for each region, considering not only the interdependence of each region but
also the effects of the exogenous variables. With this in mind, we investigate the fuel
market’s response to a shock in the Brent Crude Oil market.

The impulse response describes the system’s reaction as a function of time for each
fuel: diesel oil, regular gasoline, and hydrous ethanol. More generally, an impulse response
is the system’s response to some external change. Figure (4) presents the impulse response
function for the regions containing the municipalities of São Paulo, Rio de Janeiro, and
Belo Horizonte. Notice that, for these regions, the regular gasoline peaks at approximately
five weeks, showing no significant changes after eight weeks. As for hydrous ethanol and
diesel oil, they have similar behaviours for the selected regions. It is worth mentioning
that the diesel oil presents a more prominent correction in the eighth period reaching
stability twelve weeks after the initial shock.

Using the GVAR model, it is possible to estimate the dynamic response of a single
region as well as the response of the system as a whole; figure (5) presents the system
response for the whole market. The shock reveals a significant positive effect on the
hydrous ethanol in the first week, presenting a positive response to the shock. At the
same time, gasoline and Diesel do not offer significant changes. This fast response can
be attributed to the freedom of hydrous ethanol prices. The regular gasoline, in its
turn, reveals a positive effect predominantly in the central and northern regions of the
country. After five weeks, all fuels contained the effects of the shock showing a substantial
improvement in prices, reaching the peak in price changes. After eight weeks, the shock
effects are dissipated for regular gasoline and hydrous ethanol. However, diesel oil has a
correction effect in most of the regions in the country. After ten weeks, the shock effect
is dissipated in the diesel oil series.

5.6 Individual model forecasts

On Monday 20th April, West Texas Intermediate (WTI) Crude Oil, the benchmark for US
oil, fell as low as minus 37.63 USD a barrel. On that same day, the Brent Crude Oil, the
standard measure used by Europe and the rest of the world, was trading based on June
contracts and reached a value of 35.75 USD. For the first time in history, the future price of
oil was negative. Although the economic community has provided numerous explanations
for this event, we can evaluate how the GVAR-IIS model handle the forecast in the
presence of such a shock. The GVAR-IIS model M16 is the model with the best predictive
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Figura 4: Impulse response function for the region of São Paulo, Belo Horizonte and Rio
de Janeiro
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Columns (left to right): Diesel oil, hydrous ethanol, regular gasoline.
Rows (top to bottom): 1st period, 5th period, 8th period and 10th period
(blue) increase in prices; (red) decrease in prices.

Figura 5: Impulse response function for all regions (periods 1, 5, 8 and 10)
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Figura 6: GVAR-IIS M16 forecasts of hydrous ethanol, diesel oil, and regular gasoline for
the region of São Paulo

Figura 7: VECM forecasts of hydrous ethanol, diesel oil, and regular gasoline for the
region of São Paulo

accuracy with Brent Crude Oil and nominal exchange rate as exogenous variables and
therefore will is the model chosen to be compared against the benchmark.

The GVAR-IIS model can produce solid forecasts of the diesel oil, hydrous ethanol, and
regular gasoline in each region, considering not only the effects of the macro variables such
as nominal exchange rate and the Brent Crude Oil prices but also the interdependence of
each region. We will focus on the region containing the São Paulo municipality since it is
the most populated in the country.

Figure (6) shows the forecast predictions for the GVAR-IIS model M16, and figure
(7) shows the forecast predictions for the VECM model benchmark (with Brent Crude
Oil and nominal exchange rate as exogenous variables). The benchmark model does not
capture the effects of the oil shock in the diesel oil and has a low impact on regular
gasoline. In comparison, the GVAR-IIS model M16 can capture some of the effects of the
shock over the diesel oil and has more suitable forecasts for the regular gasoline. Therefore
the GVAR-IIS forecast has a good performance in the presence of an unexpected shock,
adapting more quickly to the shock. It is worth mentioning that the COVID restrictions
caused a nine-week period of missing data for all regions, which caused a loss of predictions
in the sample.
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6 Conclusion

One of the goals of them paper was to present an extended version of classical Global Vec-
tor Autoregression proposed by Pesaran et al. (2004). The classical model was augmented
with Impulse–Indicator Saturation introduced by Hendry (1999). The second goal was to
show how the methodology performed in an empirical exercise.

With this in mind, the study discusses an empirical application focusing on forecasting
the Brazilian fuel market. The classical GVAR methodology, developed by Pesaran et al.
(2004), plays a leading role in the modelling of the fuel market since it accounts for the
interdependence and connections between economies and regions, and the IIS procedure
(Hendry, 1999) can account for structural breaks in the series and therefore produce more
reliable forecasts. As in the classical GVAR model, the assumptions of weak exogeneity
are still required for the GVAR-IIS model.

A classical Diebold-Mariano test is performed to evaluate the model’s predictive ac-
curacy. The best model is confirmed as the GVAR-IIS model with Brent Crude Oil as
an exogenous variable. It is worth mentioning that the classical GVAR forecasts perform
worse than the benchmark models.

The response of the system to a global oil price shock is examined using impulse
response functions. The study delves into the behaviour of three key fuel series: diesel
oil, regular gasoline, and hydrous ethanol.

In the initial week, diesel oil exhibited positive responses in a significant portion of
the country. By the fifth week, all three series reached their peak, demonstrating positive
reactions to the oil price shock. However, after eight weeks, the effects of the shock start
to dissipate for regular gasoline and hydrous ethanol.

Notably, diesel oil sustains its response to the shock for an extended period, with
the duration ranging from 10 to 12 weeks depending on the region. This implies a more
protracted impact of the shock on the diesel market compared to regular gasoline and
hydrous ethanol.

Finally, the model is evaluated during the oil shock of 2020, where oil prices suffered a
significant negative shock. During the period of the shock, the benchmark model is unable
to capture the effects of the oil shock in the diesel oil series and shows a low impact on the
regular gasoline series. In turn, the GVAR-IIS model M16 can capture some of the effects
of the shock over diesel oil and possess more suitable predictions for regular gasoline.
Therefore, the GVAR-IIS model is more robust in the presence of an unexpected shock,
adapting more quickly.

In conclusion, our analysis indicates that the GVAR-IIS methodology can deal with
the curse of dimensionality, misspecification and structural breaks. The GVAR-IIS can
produce reliable forecasts in the case of model misspecification and has a better perfor-
mance when compared to classical GVAR or VECM models.
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Tabela 6: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
1 Hydrous Ethanol 2.66 2.44 5.22 1.40 0.80 0.67 2.73
1 Diesel Oil 2.73 2.32 4.86 1.51 0.74 0.66 2.46
1 Regular Gasoline 3.34 2.99 6.08 2.20 0.80 1.02 3.43
2 Hydrous Ethanol 2.80 2.46 5.59 1.57 0.90 0.80 2.68
2 Diesel Oil 2.76 2.37 5.02 1.56 0.76 0.77 2.77
2 Regular Gasoline 3.49 3.02 6.29 2.36 0.85 1.14 3.61
3 Hydrous Ethanol 3.02 2.72 5.96 1.80 0.85 1.05 3.89
3 Diesel Oil 3.15 2.69 5.85 1.71 0.94 0.82 2.76
3 Regular Gasoline 3.74 3.24 6.75 2.39 0.93 1.09 3.51
4 Hydrous Ethanol 2.72 2.57 4.95 1.54 0.75 0.52 2.37
4 Diesel Oil 2.75 2.37 5.00 1.52 0.77 0.63 2.42
4 Regular Gasoline 3.41 3.02 6.17 2.04 0.86 0.78 2.67
5 Hydrous Ethanol 2.84 2.60 5.10 1.30 0.76 0.56 2.35
5 Diesel Oil 2.81 2.49 4.85 1.58 0.66 0.81 3.35
5 Regular Gasoline 3.30 2.96 5.70 2.00 0.69 0.96 3.78
6 Hydrous Ethanol 2.95 2.60 5.64 1.74 0.78 0.88 2.94
6 Diesel Oil 2.72 2.30 5.05 1.49 0.81 0.70 2.45
6 Regular Gasoline 3.58 3.10 6.44 2.39 0.87 0.90 2.85
7 Hydrous Ethanol 2.80 2.44 5.48 1.69 0.81 0.89 3.01
7 Diesel Oil 2.64 2.22 4.73 1.42 0.78 0.63 2.18
7 Regular Gasoline 3.33 2.88 6.02 2.22 0.80 1.03 3.23
8 Hydrous Ethanol 2.53 2.24 5.25 1.22 0.87 0.87 2.93
8 Diesel Oil 2.54 2.16 4.70 1.42 0.75 0.79 2.62
8 Regular Gasoline 3.37 2.95 6.21 2.08 0.88 1.09 3.39
9 Hydrous Ethanol 2.53 2.27 5.27 1.24 0.87 0.82 2.95
9 Diesel Oil 2.51 2.11 4.59 1.48 0.69 0.89 2.92
9 Regular Gasoline 3.33 2.92 6.22 2.10 0.86 1.15 3.58

110 Hydrous Ethanol 2.90 2.49 6.35 1.71 0.88 0.86 3.01
110 Diesel Oil 2.80 2.36 5.03 1.52 0.82 0.73 2.54
110 Regular Gasoline 3.36 2.99 5.94 2.25 0.73 1.10 3.87
10 Hydrous Ethanol 2.56 2.27 5.18 1.28 0.82 0.78 2.73
10 Diesel Oil 2.51 2.15 4.66 1.36 0.73 0.75 2.66
10 Regular Gasoline 3.15 2.79 5.90 1.96 0.77 1.12 3.78
11 Hydrous Ethanol 2.60 2.24 5.19 1.57 0.80 0.79 2.73
11 Diesel Oil 2.52 2.11 4.69 1.35 0.76 0.78 2.55
11 Regular Gasoline 3.25 2.79 6.06 2.01 0.82 1.03 3.38

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)

37



Tabela 7: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
12 Hydrous Ethanol 2.65 2.40 3.93 1.46 0.68 0.53 1.78
12 Diesel Oil 2.51 2.13 3.98 1.35 0.69 0.52 1.87
12 Regular Gasoline 3.25 2.85 4.84 2.04 0.74 0.72 2.15
13 Hydrous Ethanol 2.70 2.41 5.08 1.59 0.78 0.85 2.74
13 Diesel Oil 2.52 2.14 4.64 1.36 0.76 0.85 2.84
13 Regular Gasoline 3.35 2.93 5.91 2.16 0.80 1.18 3.85
14 Hydrous Ethanol 2.69 2.43 5.41 1.57 0.74 1.09 4.13
14 Diesel Oil 2.60 2.16 5.08 1.41 0.79 0.88 2.93
14 Regular Gasoline 3.29 2.78 6.50 2.10 0.92 1.31 3.99
15 Hydrous Ethanol 2.57 2.33 5.46 1.46 0.71 1.13 4.48
15 Diesel Oil 2.55 2.13 4.88 1.33 0.78 0.81 2.80
15 Regular Gasoline 3.17 2.71 6.50 2.04 0.89 1.31 4.12
16 Hydrous Ethanol 2.67 2.39 3.90 1.66 0.62 0.48 1.80
16 Diesel Oil 2.51 2.14 3.90 1.38 0.68 0.52 1.91
16 Regular Gasoline 3.25 2.76 5.02 2.16 0.80 0.80 2.15
17 Hydrous Ethanol 2.72 2.38 5.59 1.66 0.83 1.05 3.48
17 Diesel Oil 2.60 2.19 4.91 1.51 0.78 0.82 2.71
17 Regular Gasoline 3.42 2.95 6.21 2.22 0.84 1.10 3.46
18 Hydrous Ethanol 2.68 2.34 5.55 1.52 0.82 0.94 3.11
18 Diesel Oil 2.61 2.19 4.90 1.59 0.77 0.76 2.39
18 Regular Gasoline 3.41 2.90 6.21 2.19 0.86 1.01 2.97
19 Hydrous Ethanol 2.60 2.33 5.52 1.41 0.83 0.94 3.34
19 Diesel Oil 2.63 2.20 4.82 1.52 0.78 0.76 2.44
19 Regular Gasoline 3.35 2.86 6.14 2.24 0.86 1.08 3.27
20 Hydrous Ethanol 2.57 2.27 5.50 1.27 0.85 0.86 3.12
20 Diesel Oil 2.58 2.14 4.91 1.48 0.81 0.71 2.36
20 Regular Gasoline 3.29 2.82 6.09 2.10 0.88 0.97 2.96
21 Hydrous Ethanol 2.67 2.34 5.45 1.55 0.82 1.03 3.61
21 Diesel Oil 2.62 2.19 4.94 1.57 0.78 0.84 2.67
21 Regular Gasoline 3.38 2.86 6.39 2.09 0.89 1.03 3.21
22 Hydrous Ethanol 2.53 2.29 5.64 1.18 0.85 1.00 3.80
22 Diesel Oil 2.51 2.10 4.64 1.30 0.76 0.72 2.49
22 Regular Gasoline 3.29 2.87 6.47 1.91 0.89 1.08 3.57
23 Hydrous Ethanol 2.58 2.35 4.87 1.42 0.79 0.89 3.23
23 Diesel Oil 2.53 2.11 4.64 1.36 0.79 0.83 2.72
23 Regular Gasoline 3.25 2.82 5.81 1.98 0.87 1.08 3.52

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 8: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
24 Hydrous Ethanol 2.54 2.29 5.64 1.20 0.86 0.98 3.98
24 Diesel Oil 2.52 2.10 4.90 1.31 0.81 0.87 2.89
24 Regular Gasoline 3.21 2.76 6.36 1.94 0.91 1.12 3.60
25 Hydrous Ethanol 2.37 2.21 5.23 1.21 0.73 1.10 4.38
25 Diesel Oil 2.47 2.07 4.62 1.29 0.73 0.80 2.76
25 Regular Gasoline 3.06 2.63 5.92 1.96 0.82 1.12 3.51
26 Hydrous Ethanol 2.49 2.25 5.22 1.43 0.77 0.96 3.49
26 Diesel Oil 2.51 2.10 4.63 1.35 0.75 0.70 2.37
26 Regular Gasoline 3.18 2.74 6.02 2.04 0.83 0.98 3.00
27 Hydrous Ethanol 2.59 2.34 5.40 1.35 0.79 0.98 3.76
27 Diesel Oil 2.49 2.10 4.90 1.36 0.75 0.77 2.63
27 Regular Gasoline 3.33 2.84 6.37 2.06 0.89 1.04 3.34
28 Hydrous Ethanol 2.68 2.48 5.58 1.42 0.78 1.02 3.80
28 Diesel Oil 2.57 2.16 4.84 1.34 0.79 0.75 2.63
28 Regular Gasoline 3.52 2.99 6.58 2.12 0.92 1.03 3.26
29 Hydrous Ethanol 2.39 2.20 5.27 1.16 0.77 1.02 4.06
29 Diesel Oil 2.45 2.09 4.60 1.35 0.70 0.80 2.88
29 Regular Gasoline 3.15 2.73 5.91 1.92 0.81 1.12 3.61
30 Hydrous Ethanol 2.69 2.44 5.90 1.30 0.90 0.92 3.25
30 Diesel Oil 2.61 2.13 5.29 1.36 0.88 0.98 3.03
30 Regular Gasoline 3.44 2.91 6.57 2.08 0.96 1.06 3.18
31 Hydrous Ethanol 2.56 2.33 5.42 1.17 0.81 0.86 3.39
31 Diesel Oil 2.53 2.08 4.95 1.36 0.80 0.90 2.91
31 Regular Gasoline 3.31 2.83 6.19 2.08 0.88 1.16 3.55
32 Hydrous Ethanol 2.51 2.32 5.46 1.10 0.82 0.86 3.44
32 Diesel Oil 2.53 2.10 5.03 1.35 0.80 0.92 3.01
32 Regular Gasoline 3.28 2.81 6.18 2.10 0.85 1.17 3.59
33 Hydrous Ethanol 2.54 2.33 4.60 1.31 0.72 0.77 2.96
33 Diesel Oil 2.51 2.15 4.42 1.33 0.72 0.70 2.49
33 Regular Gasoline 3.19 2.83 5.50 1.99 0.77 1.05 3.40
34 Hydrous Ethanol 2.56 2.32 5.53 1.26 0.76 0.96 3.85
34 Diesel Oil 2.53 2.13 5.07 1.31 0.77 0.87 2.99
34 Regular Gasoline 3.21 2.80 6.09 1.94 0.86 1.09 3.43
35 Hydrous Ethanol 2.46 2.31 4.83 1.33 0.65 0.84 3.10
35 Diesel Oil 2.60 2.19 4.85 1.42 0.76 0.75 2.52
35 Regular Gasoline 3.39 2.98 6.09 2.22 0.79 1.05 3.21

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 9: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
36 Hydrous Ethanol 2.59 2.26 5.59 1.38 0.79 1.15 4.03
36 Diesel Oil 2.56 2.17 4.79 1.33 0.76 0.82 2.71
36 Regular Gasoline 3.43 2.93 6.58 2.05 0.90 1.08 3.45
37 Hydrous Ethanol 2.41 2.15 4.92 1.41 0.74 1.09 3.77
37 Diesel Oil 2.44 2.06 4.78 1.29 0.74 0.82 2.80
37 Regular Gasoline 3.25 2.80 6.04 2.02 0.85 1.09 3.37
38 Hydrous Ethanol 2.35 2.15 3.73 1.27 0.63 0.48 1.76
38 Diesel Oil 2.38 2.02 3.92 1.26 0.66 0.51 1.88
38 Regular Gasoline 3.18 2.79 4.89 1.91 0.74 0.64 2.02
39 Hydrous Ethanol 2.42 2.16 4.97 1.27 0.76 0.99 3.62
39 Diesel Oil 2.47 2.10 4.64 1.31 0.72 0.77 2.74
39 Regular Gasoline 3.24 2.81 5.96 1.92 0.85 1.05 3.42
40 Hydrous Ethanol 2.44 2.18 5.23 1.41 0.75 1.09 3.89
40 Diesel Oil 2.52 2.11 4.78 1.34 0.77 0.78 2.65
40 Regular Gasoline 3.33 2.83 6.54 2.07 0.91 1.17 3.63
41 Hydrous Ethanol 2.54 2.24 5.29 1.42 0.80 0.96 3.33
41 Diesel Oil 2.58 2.14 4.90 1.41 0.77 0.81 2.67
41 Regular Gasoline 3.38 2.87 6.41 2.11 0.90 1.10 3.36
42 Hydrous Ethanol 2.35 2.21 4.84 1.25 0.62 0.95 3.98
42 Diesel Oil 2.58 2.21 4.96 1.37 0.79 0.69 2.41
42 Regular Gasoline 3.39 2.96 6.59 2.02 0.97 0.93 2.90
43 Hydrous Ethanol 2.32 2.21 4.62 1.39 0.59 1.12 4.51
43 Diesel Oil 2.55 2.20 4.67 1.36 0.76 0.71 2.44
43 Regular Gasoline 3.37 2.98 6.28 2.18 0.90 1.07 3.21
44 Hydrous Ethanol 2.29 2.14 4.72 1.17 0.66 0.98 3.99
44 Diesel Oil 2.54 2.16 4.74 1.35 0.78 0.76 2.58
44 Regular Gasoline 3.32 2.93 6.35 1.99 0.95 1.01 3.13
45 Hydrous Ethanol 2.34 2.17 4.81 1.23 0.62 0.92 3.63
45 Diesel Oil 2.51 2.14 4.71 1.34 0.76 0.71 2.52
45 Regular Gasoline 3.30 2.94 6.27 2.01 0.93 0.92 2.84
46 Hydrous Ethanol 2.29 2.19 4.69 1.15 0.65 0.95 3.88
46 Diesel Oil 2.52 2.19 4.65 1.34 0.77 0.70 2.45
46 Regular Gasoline 3.22 2.87 6.19 1.89 0.95 0.97 3.02
47 Hydrous Ethanol 2.35 2.18 4.81 1.32 0.66 1.11 4.31
47 Diesel Oil 2.51 2.16 4.68 1.34 0.76 0.75 2.60
47 Regular Gasoline 3.30 2.87 6.33 2.06 0.96 1.04 3.11

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 10: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
48 Hydrous Ethanol 2.33 2.18 4.78 1.22 0.67 0.96 3.85
48 Diesel Oil 2.52 2.16 4.77 1.35 0.76 0.76 2.69
48 Regular Gasoline 3.29 2.88 6.27 1.99 0.96 0.98 2.97
49 Hydrous Ethanol 2.28 2.17 4.79 1.12 0.67 1.01 4.29
49 Diesel Oil 2.54 2.15 4.80 1.36 0.78 0.77 2.62
49 Regular Gasoline 3.31 2.89 6.41 1.96 0.97 0.99 3.11
50 Hydrous Ethanol 2.37 2.23 4.79 1.21 0.65 0.95 3.90
50 Diesel Oil 2.55 2.21 4.84 1.41 0.76 0.74 2.58
50 Regular Gasoline 3.32 2.90 6.30 2.02 0.93 0.98 3.03
51 Hydrous Ethanol 2.39 2.26 4.87 1.19 0.68 1.01 4.27
51 Diesel Oil 2.52 2.14 4.76 1.35 0.77 0.75 2.61
51 Regular Gasoline 3.32 2.91 6.40 1.96 0.96 1.01 3.16
52 Hydrous Ethanol 2.42 2.26 5.03 1.33 0.67 1.24 4.92
52 Diesel Oil 2.58 2.23 4.73 1.39 0.77 0.73 2.53
52 Regular Gasoline 3.36 2.96 6.55 2.08 0.96 1.11 3.49
53 Hydrous Ethanol 2.68 2.51 5.43 1.10 0.90 0.63 2.88
53 Diesel Oil 2.56 2.16 4.85 1.45 0.74 0.86 2.94
53 Regular Gasoline 3.32 2.98 6.12 1.99 0.88 1.05 3.43
54 Hydrous Ethanol 2.63 2.46 5.16 1.16 0.87 0.56 2.58
54 Diesel Oil 2.49 2.14 4.41 1.40 0.69 0.70 2.40
54 Regular Gasoline 3.29 2.93 6.10 2.01 0.85 1.05 3.41
55 Hydrous Ethanol 2.58 2.49 5.30 1.03 0.83 0.62 3.13
55 Diesel Oil 2.52 2.18 4.65 1.40 0.70 0.76 2.74
55 Regular Gasoline 3.22 2.88 6.18 1.97 0.83 1.17 3.96
56 Hydrous Ethanol 2.66 2.52 5.59 1.23 0.82 0.74 3.33
56 Diesel Oil 2.57 2.20 4.79 1.47 0.70 0.77 2.64
56 Regular Gasoline 3.37 2.99 6.49 2.10 0.86 1.14 3.82
57 Hydrous Ethanol 2.48 2.21 5.65 1.09 0.90 0.92 3.38
57 Diesel Oil 2.46 2.07 4.59 1.28 0.74 0.69 2.45
57 Regular Gasoline 3.43 2.93 6.78 2.08 1.00 1.03 3.12
58 Hydrous Ethanol 2.57 2.27 5.73 1.10 0.94 0.77 2.82
58 Diesel Oil 2.52 2.11 4.69 1.34 0.75 0.67 2.40
58 Regular Gasoline 3.45 3.03 6.58 2.05 1.00 0.94 2.94
59 Hydrous Ethanol 2.56 2.32 5.50 1.10 0.89 0.81 2.93
59 Diesel Oil 2.49 2.10 4.55 1.32 0.74 0.67 2.47
59 Regular Gasoline 3.41 2.94 6.72 2.05 0.98 1.05 3.24

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 11: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
60 Hydrous Ethanol 2.64 2.38 5.61 1.19 0.93 0.85 3.16
60 Diesel Oil 2.59 2.17 4.75 1.39 0.78 0.69 2.42
60 Regular Gasoline 3.50 3.04 6.69 2.12 1.01 1.00 3.13
61 Hydrous Ethanol 2.68 2.40 5.84 1.15 0.99 0.85 3.12
61 Diesel Oil 2.59 2.16 4.80 1.42 0.79 0.74 2.43
61 Regular Gasoline 3.52 3.03 6.71 2.13 1.02 0.98 3.07
62 Hydrous Ethanol 2.54 2.27 5.44 1.04 0.91 0.84 3.12
62 Diesel Oil 2.52 2.12 4.57 1.36 0.75 0.69 2.39
62 Regular Gasoline 3.36 2.92 6.49 1.98 1.00 0.99 3.10
63 Hydrous Ethanol 1.92 1.84 4.38 0.71 0.68 0.82 3.69
63 Diesel Oil 2.46 2.10 4.62 1.35 0.71 0.84 2.89
63 Regular Gasoline 3.12 2.75 5.83 1.89 0.81 1.02 3.34
64 Hydrous Ethanol 1.95 1.85 4.47 0.77 0.69 0.82 3.62
64 Diesel Oil 2.47 2.09 4.63 1.33 0.72 0.81 2.84
64 Regular Gasoline 3.12 2.72 5.87 1.92 0.83 0.99 3.21
65 Hydrous Ethanol 1.95 1.82 4.30 0.76 0.67 0.86 3.69
65 Diesel Oil 2.50 2.13 4.63 1.38 0.72 0.78 2.74
65 Regular Gasoline 3.17 2.84 5.82 1.93 0.82 1.00 3.35
66 Hydrous Ethanol 1.98 1.86 4.42 0.77 0.69 0.84 3.61
66 Diesel Oil 2.50 2.12 4.63 1.37 0.72 0.79 2.76
66 Regular Gasoline 3.11 2.74 5.75 1.92 0.80 1.01 3.28
67 Hydrous Ethanol 1.94 1.81 4.45 0.79 0.69 0.94 3.87
67 Diesel Oil 2.49 2.13 4.55 1.37 0.70 0.80 2.83
67 Regular Gasoline 3.11 2.69 5.80 1.94 0.81 1.06 3.33
68 Hydrous Ethanol 1.93 1.84 4.38 0.72 0.69 0.81 3.54
68 Diesel Oil 2.44 2.08 4.52 1.35 0.69 0.84 2.93
68 Regular Gasoline 3.05 2.70 5.69 1.87 0.80 1.05 3.43
69 Hydrous Ethanol 1.95 1.85 4.40 0.77 0.69 0.83 3.55
69 Diesel Oil 2.45 2.09 4.53 1.35 0.70 0.82 2.88
69 Regular Gasoline 3.04 2.67 5.67 1.88 0.78 1.05 3.40
70 Hydrous Ethanol 1.95 1.84 4.33 0.81 0.65 0.89 3.84
70 Diesel Oil 2.50 2.13 4.66 1.36 0.71 0.77 2.76
70 Regular Gasoline 3.13 2.76 5.79 1.93 0.81 1.04 3.33
71 Hydrous Ethanol 1.99 1.89 4.30 0.81 0.68 0.81 3.58
71 Diesel Oil 2.50 2.12 4.70 1.38 0.73 0.78 2.63
71 Regular Gasoline 3.13 2.76 5.62 1.92 0.80 0.99 3.15

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 12: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
72 Hydrous Ethanol 1.96 1.84 4.44 0.77 0.68 0.90 3.70
72 Diesel Oil 2.50 2.12 4.69 1.36 0.73 0.81 2.76
72 Regular Gasoline 3.12 2.70 5.78 1.92 0.81 1.06 3.28
73 Hydrous Ethanol 1.97 1.87 4.38 0.76 0.70 0.80 3.46
73 Diesel Oil 2.47 2.10 4.60 1.35 0.71 0.83 2.86
73 Regular Gasoline 3.03 2.70 5.64 1.85 0.80 1.02 3.31
74 Hydrous Ethanol 2.03 1.91 4.48 0.79 0.71 0.78 3.40
74 Diesel Oil 2.47 2.12 4.65 1.38 0.70 0.88 2.99
74 Regular Gasoline 3.06 2.70 5.69 1.93 0.78 1.08 3.47
75 Hydrous Ethanol 1.99 1.89 4.44 0.74 0.70 0.78 3.46
75 Diesel Oil 2.48 2.12 4.59 1.39 0.70 0.82 2.86
75 Regular Gasoline 3.05 2.70 5.71 1.84 0.81 1.03 3.35
76 Hydrous Ethanol 2.04 1.89 4.60 0.84 0.71 0.80 3.33
76 Diesel Oil 2.50 2.10 4.72 1.38 0.73 0.85 2.78
76 Regular Gasoline 3.11 2.69 5.89 1.91 0.80 1.02 3.23
99 Hydrous Ethanol 2.38 2.16 4.58 1.19 0.72 0.83 2.78
99 Diesel Oil 2.66 2.28 4.54 1.51 0.70 0.63 2.26
99 Regular Gasoline 3.25 2.86 5.89 2.03 0.76 1.28 4.19

100 Hydrous Ethanol 2.50 2.34 4.87 1.25 0.75 0.81 3.00
100 Diesel Oil 2.73 2.36 4.87 1.51 0.72 0.58 2.23
100 Regular Gasoline 3.38 3.00 6.26 2.14 0.79 1.13 3.85
101 Hydrous Ethanol 2.52 2.30 5.17 1.30 0.75 0.95 3.40
101 Diesel Oil 2.76 2.36 4.92 1.54 0.73 0.70 2.62
101 Regular Gasoline 3.36 2.95 6.23 2.14 0.81 1.25 4.32
102 Hydrous Ethanol 2.31 2.14 4.61 1.50 0.60 1.14 4.38
102 Diesel Oil 2.92 2.53 5.26 1.67 0.79 0.75 2.52
102 Regular Gasoline 3.54 3.14 6.21 2.45 0.78 1.21 3.62
103 Hydrous Ethanol 2.10 1.98 4.60 1.20 0.58 1.14 4.97
103 Diesel Oil 2.74 2.40 4.94 1.55 0.73 0.74 2.63
103 Regular Gasoline 3.34 2.96 6.16 2.28 0.76 1.29 4.04
104 Hydrous Ethanol 2.16 1.98 4.62 1.35 0.61 1.24 4.85
104 Diesel Oil 2.75 2.38 4.99 1.55 0.77 0.77 2.61
104 Regular Gasoline 3.37 2.98 6.10 2.34 0.74 1.34 4.08
105 Hydrous Ethanol 2.20 2.02 4.72 1.12 0.71 1.12 4.25
105 Diesel Oil 2.55 2.12 4.84 1.42 0.78 0.82 2.70
105 Regular Gasoline 3.31 2.98 6.08 2.03 0.87 1.10 3.51

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)

43



Tabela 13: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
106 Hydrous Ethanol 2.12 1.95 4.66 1.02 0.72 0.94 3.71
106 Diesel Oil 2.49 2.11 4.76 1.39 0.76 0.79 2.67
106 Regular Gasoline 3.23 2.82 6.33 1.93 0.93 1.06 3.43
107 Hydrous Ethanol 2.32 2.15 4.86 1.28 0.66 1.24 4.89
107 Diesel Oil 2.58 2.18 4.85 1.45 0.78 0.87 2.87
107 Regular Gasoline 3.29 2.87 6.48 2.02 0.90 1.20 4.01
108 Hydrous Ethanol 2.22 2.03 4.68 1.16 0.71 1.01 3.87
108 Diesel Oil 2.57 2.19 4.80 1.45 0.77 0.81 2.70
108 Regular Gasoline 3.33 2.94 6.24 2.05 0.90 1.09 3.49
109 Hydrous Ethanol 2.49 2.27 5.41 1.22 0.76 0.92 3.75
109 Diesel Oil 2.58 2.13 4.73 1.44 0.78 0.68 2.32
109 Regular Gasoline 3.24 2.88 6.48 1.94 0.84 1.14 4.08
77 Hydrous Ethanol 2.11 1.95 4.65 0.86 0.74 0.77 3.21
77 Diesel Oil 2.45 2.10 4.45 1.37 0.67 0.77 2.74
77 Regular Gasoline 3.21 2.80 5.90 1.94 0.85 0.93 2.99
78 Hydrous Ethanol 2.05 1.90 4.57 0.82 0.72 0.80 3.34
78 Diesel Oil 2.42 2.09 4.41 1.35 0.67 0.80 2.91
78 Regular Gasoline 3.11 2.74 5.69 1.90 0.82 0.92 3.03
79 Hydrous Ethanol 2.13 1.95 4.84 0.87 0.72 1.00 4.10
79 Diesel Oil 2.45 2.10 4.46 1.36 0.68 0.80 2.85
79 Regular Gasoline 3.15 2.78 5.98 2.00 0.85 1.04 3.42
80 Hydrous Ethanol 2.17 2.02 4.76 0.89 0.73 0.72 3.06
80 Diesel Oil 2.43 2.10 4.31 1.37 0.65 0.64 2.42
80 Regular Gasoline 3.22 2.85 5.87 1.98 0.83 0.82 2.70
81 Hydrous Ethanol 2.23 2.06 4.66 1.00 0.71 0.87 3.44
81 Diesel Oil 2.43 2.09 4.43 1.35 0.66 0.81 2.90
81 Regular Gasoline 3.18 2.80 5.78 1.98 0.80 0.97 3.08
82 Hydrous Ethanol 2.14 2.02 4.62 0.93 0.72 0.74 3.11
82 Diesel Oil 2.47 2.13 4.48 1.40 0.68 0.77 2.73
82 Regular Gasoline 3.20 2.83 5.85 1.98 0.84 0.90 2.87
83 Hydrous Ethanol 2.23 2.05 4.69 0.99 0.72 0.79 3.16
83 Diesel Oil 2.45 2.12 4.32 1.38 0.65 0.71 2.50
83 Regular Gasoline 3.21 2.87 5.87 1.99 0.82 0.94 3.00
84 Hydrous Ethanol 2.14 2.01 4.68 0.92 0.70 0.87 3.56
84 Diesel Oil 2.40 2.06 4.35 1.36 0.65 0.82 2.94
84 Regular Gasoline 3.07 2.74 5.69 1.90 0.79 1.02 3.36

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 14: Descriptive statistics

Region Series Mean Median Max Min Std_Error Skewness Kurtosis
85 Hydrous Ethanol 2.23 2.09 4.75 1.00 0.71 0.88 3.48
85 Diesel Oil 2.46 2.13 4.48 1.38 0.66 0.78 2.77
85 Regular Gasoline 3.19 2.82 5.87 1.99 0.79 0.95 3.14
86 Hydrous Ethanol 2.61 2.45 5.45 1.25 0.85 0.74 3.06
86 Diesel Oil 2.52 2.17 4.63 1.39 0.68 0.76 2.76
86 Regular Gasoline 3.20 2.87 5.95 2.04 0.78 0.98 3.35
87 Hydrous Ethanol 2.52 2.40 5.18 1.21 0.81 0.72 3.06
87 Diesel Oil 2.51 2.19 4.77 1.42 0.69 0.80 2.91
87 Regular Gasoline 3.11 2.79 5.62 2.05 0.71 1.06 3.45
88 Hydrous Ethanol 2.59 2.45 5.40 1.28 0.83 0.80 3.30
88 Diesel Oil 2.52 2.17 4.59 1.43 0.66 0.75 2.67
88 Regular Gasoline 3.17 2.79 5.87 2.09 0.77 1.15 3.75
89 Hydrous Ethanol 2.51 2.39 5.22 1.18 0.82 0.81 3.31
89 Diesel Oil 2.50 2.15 4.54 1.40 0.67 0.78 2.88
89 Regular Gasoline 3.10 2.75 5.70 2.02 0.74 1.27 4.23
90 Hydrous Ethanol 2.51 2.36 5.26 1.28 0.84 0.77 3.06
90 Diesel Oil 2.52 2.21 4.57 1.38 0.70 0.72 2.73
90 Regular Gasoline 3.13 2.73 5.88 2.14 0.78 1.15 3.75
91 Hydrous Ethanol 2.55 2.45 5.21 1.17 0.81 0.69 3.01
91 Diesel Oil 2.45 2.14 4.42 1.40 0.65 0.86 3.07
91 Regular Gasoline 3.13 2.79 5.73 2.06 0.73 1.19 3.93
92 Hydrous Ethanol 2.80 2.47 5.95 1.25 1.02 0.85 2.89
92 Diesel Oil 2.55 2.21 4.59 1.42 0.67 0.80 2.75
92 Regular Gasoline 3.35 2.87 6.28 2.16 0.89 1.08 3.25
93 Hydrous Ethanol 2.82 2.51 6.11 1.31 1.01 0.92 3.21
93 Diesel Oil 2.57 2.23 4.59 1.44 0.67 0.81 2.84
93 Regular Gasoline 3.35 2.91 6.28 2.22 0.89 1.12 3.44
94 Hydrous Ethanol 2.76 2.43 5.98 1.13 1.05 0.81 2.76
94 Diesel Oil 2.57 2.21 4.79 1.40 0.72 0.88 3.02
94 Regular Gasoline 3.33 2.90 6.41 2.17 0.91 1.18 3.59
95 Hydrous Ethanol 2.78 2.44 5.99 1.19 1.03 0.85 2.96
95 Diesel Oil 2.55 2.21 4.60 1.40 0.68 0.82 2.93
95 Regular Gasoline 3.30 2.87 6.16 2.18 0.88 1.13 3.37
96 Hydrous Ethanol 2.70 2.40 5.91 1.09 0.99 0.88 3.08
96 Diesel Oil 2.48 2.17 4.41 1.38 0.65 0.83 2.88
96 Regular Gasoline 3.21 2.79 6.22 2.01 0.88 1.16 3.55

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and
“Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 15: Descriptive statistics

Region Serie Mean Median Max Min Std_Dev Skewness Kurtosis
97 Hydrous Ethanol 2.93 2.57 6.41 1.37 1.08 0.95 3.22
97 Diesel Oil 2.62 2.24 4.90 1.44 0.75 0.91 3.01
97 Regular Gasoline 3.50 2.93 6.63 2.23 0.98 1.15 3.51
98 Hydrous Ethanol 2.87 2.57 6.20 1.35 1.01 0.92 3.19
98 Diesel Oil 2.58 2.23 4.70 1.41 0.69 0.83 2.91
98 Regular Gasoline 3.44 2.94 6.44 2.25 0.89 1.10 3.39

Brent crude oil 73.61 67.75 143.05 21.61 25.23 0.49 2.19
Exchange rate BRL/USD 2.78 2.34 5.85 1.55 1.06 1.04 3.28

Source: elaborated by the author
Weekly data from May 9th, 2004 to September 4th, 2021
All values are in Brazilian Reais per liter of fuel. Except for the “Brent crude oil” and “Exchange rate”

1 Value for the Brent crude oil prices in United States Dollar.
2 Value for the nominal exchange rate (Brazilian Real per United States Dollar)
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Tabela 16: Grouping of the regions

Region1 Group2 Region1 Group2 Region1 Group2 Region1 Group2

1504 1598 3111 3111 2104 2104 3303 3303
2605 2699 3201 3201 4101 4101 2204 2204
2102 2102 2201 2201 1506 1597 2501 2599
3508 3508 2901 2901 4104 4104 2602 2602
2601 2601 3502 3502 5001 5099 2101 2101
5204 5204 3515 3515 2304 2304 5202 5202
2904 2904 2504 2504 2307 2307 1202 1299
4306 4306 2302 2398 4301 4301 5105 5105
1501 151699 3306 3306 1201 1299 4303 4303
3110 3110 3107 3107 2701 2701 3104 3199
4110 4110 2603 2699 3103 3199 4109 4199
5101 5101 4302 4302 1702 1702 1502 151699
1505 1597 4205 4205 3109 3109 1402 1499
4305 4305 1401 1499 5004 5099 1601 151699
3507 3507 3106 3106 2907 2907
1503 1598 5301 5301 4107 4107
5203 5203 2906 2906 3509 3509
3305 3305 4201 4201 2604 2699
3511 3599 3513 3513 1101 1101
4103 4103 4307 4307 4108 4199
2803 2803 5104 5104 1304 1399
3503 3503 4304 4304 2306 2399
3202 3202 3204 3204 2301 2301
1701 1701 2402 2402 2802 2802
3105 3105 5205 5205 1303 1399
2702 2702 2905 2905 3514 3599
4206 4206 2503 2599 3301 3301
3505 3505 2903 2903 3102 3102
3506 3506 5002 5002 4202 4202
3304 3304 2202 2202 3101 3101
1102 1102 4102 4102 2902 2902
3510 3510 3302 3302 4203 4203
4106 4106 3108 3108 2305 2399
3512 3512 3203 3203 1602 151699
3504 3504 4105 4105 2703 2703
2103 2199 3112 3112 2401 2401
4204 4204 3501 3501 2404 2404
2105 2199 2303 2398 5003 5003

Source: elaborated by the author
1 Mesoregion Code according to Brazilian Institute of Geography and Statistics
2 Group code.
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