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Abstract

This paper introduces BART-RDD, a sum-of-trees regression model built around
a novel regression tree prior, which incorporates the special covariate structure of
regression discontinuity designs. Specifically, the tree splitting process is constrained
to ensure overlap within a narrow band surrounding the running variable cutoff value,
where the treatment effect is identified. It is shown that unmodified BART-based
models estimate RDD treatment effects poorly, while our modified model accurately
recovers treatment effects at the cutoff. Specifically, BART-RDD is perhaps the
first RDD method that effectively learns conditional average treatment effects. The
new method is investigated in thorough simulation studies as well as an empirical
application looking at the effect of academic probation on student performance in
subsequent terms (Lindo et al., 2010).
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1 Introduction

Regression discontinuity designs (RDD), originally proposed by Thistlethwaite and Camp-

bell (1960), are widely used in economics and other social sciences to estimate treatment

effects from observational data. Such designs arise when treatment assignment is based on

whether a particular covariate — referred to as the running variable — lies above or below

a known value, referred to as the cutoff value. Thus in an RDD, deterministic treatment

assignment implies that conditional unconfoundedness is trivially satisfied, given the run-

ning variable. However, controlling for the running variable introduces a complete lack of

overlap. Identification of treatment effects from RDDs relies on assumptions that permit

coping with this lack of overlap.

Previous work has shown that treatment effects can be estimated from RDDs as the

magnitude of a discontinuity in the conditional mean response function at the cutoff (Hahn

et al., 2001), under the assumption that this conditional mean function is continuous but

for the impact of the treatment. This paper investigates the use of Bayesian additive re-

gression tree models (Chipman et al., 2010; Hahn et al., 2020) for the purpose of fitting

RDD data with additional covariates for estimating conditional average treatments effects

(CATE) at the cutoff. Broadly, our work expands on both frequentist and Bayesian meth-

ods for performing RDD analyses that incorporate covariates in addition to the running

variable. Relative to earlier works, the method proposed here accommodates a richer set

of data generating processes and admits more convenient sensitivity analysis and methods

for visualizing heterogeneity. Most importantly, our estimator is one of the few RDD esti-

mators which allow for exploring heterogeneity in a data-driven manner, instead of relying

on separate ATE estimation for predetermined subgroups.
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1.1 Previous work

The inclusion of covariates in RDD models has been studied by Calonico et al. (2019), who

extend the local linear regression to include covariates linearly and discuss the implications

of this in terms of bias and variance, and Frölich and Huber (2019) who propose a nonpara-

metric kernel regression method which increases precision and may reduce bias and restore

identification in data with discontinuities in the covariate set at the threshold, provided

that all relevant discontinuous covariates are included. Additionally, Arai et al. (2024) and

Kreiss and Rothe (2023) study RDD regressions with high-dimensional covariate sets. The

latter two essentially consist of a pre-selection step where one fits a variable selection model

(typically a Lasso) to either the full sample or a subsample closer to the cutoff and then fits

the local polynomial estimator of Calonico et al. (2019) to the reduced feature set. These

methods inherit the local polynomial’s linearity assumption which can lead to high variance

estimators in the presence of strong heterogeneity if the running variable and other features

interact in more complex ways. The estimator proposed by Frölich and Huber (2019) is

more flexible in that regard because it allows for feature-specific kernels, extending the

traditional local RDD regression. However, this can render the method computationally

infeasible as the dimension of the feature set increases.

The previous works discuss inclusion of covariates from a perspective of obtaining pre-

cision gains and barely discuss effect moderation. Regarding effect heterogeneity, Frandsen

et al. (2012) and Shen and Zhang (2016) discuss it from the perspective of distributional

effects, while Cattaneo et al. (2016) and Bertanha (2020) discuss heterogeneity arising from

settings with multiple cutoffs. These works do not focus specifically on heterogeneity in

the form of moderation by additional variables. Becker et al. (2013) extend the traditional

local regression to include interaction terms between the running variable and additional
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features. Hsu and Shen (2019) develop hypothesis tests for detecting effect moderation in

the local regression setup by means of comparison between the ATE parameter for the whole

sample and pre-specified subgroups of interest. These methods still depend on reasonable

previous knowledge about potential sources of heterogeneity.

Prominent examples of Bayesian estimators for RDDs include Chib et al. (2023), who

estimate the response curves with global splines where observations are weighted by their

distance to the cutoff; Karabatsos and Walker (2015), who propose approximating the

conditional expectations by an infinite mixture of normals; and Branson et al. (2019),

who propose a Gaussian process prior for the expectations, in which observations are also

weighted by their distance to the cutoff. All of these methods consist of global approxi-

mations of the outcome curves, while in some cases emphasizing units near the cutoff to

obtain better predictions in that region. As will be discussed later, our method can be

seen as an intermediate approach between such global approximations and the local linear

regression ubiquitous in the frequentist literature, since we use the entire data to estimate

the outcomes but take advantage of the local nature of BART for estimation near the

cutoff.

Reguly (2021) proposes what is perhaps the closest in spirit to our method. The author

proposes a modification to the basic Classification and Regression Tree (CART) algorithm

in which the tree is split using all features available except for the running variable. Then,

within each leaf the algorithm performs a separate regression for treated and untreated

units, and the leaf-specific ATE parameter is obtained as the difference between the inter-

cepts of the two regressions. The model can be seen as a non-linear polynomial regression

where the parameters depend on the covariates via the CART fit. This approach presents

two important differences compared to ours. First, it is a single tree method, whereas we
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propose a forest model. Second, the flexibility of the tree is only used for the additional

covariates, but the leaf regressions are still polynomials of the running variable.

2 Background

This paper brings together ideas from many different areas, each with their own terminology

and notation. In this section we review the basics of regression discontinuity designs, BART,

and Bayesian causal forests.

2.1 Regression Discontinuity Designs

Following Imbens and Lemieux (2008), we frame the RD setting in a potential outcomes

model, which can be briefly described as follows. Let Z denote a binary treatment variable

and Y z
i denote the potential outcome of unit i under treatment state Zi = z. The treatment

effect for unit i is defined as:

τi := Y 1
i − Y 0

i . (1)

Let X denote the running variable and W denote a set of additional covariates. Commonly,

interest lies on the average and conditional average treatment effect (ATE/CATE):

E[τi] = E[Y 1
i − Y 0

i ]

E[τi | X,W ] = E[Y 1
i − Y 0

i | X,W ].

(2)

These quantities are of course unobservable since each unit is only observed at a single

given treatment state. However, under the following assumptions we can link τ to the

observed outcome and covariates (Y, Z,X,W ).
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Assumption 2.1 (SUTVA) This assumption has two components: consistency and no-

interference, which are represented, respectively, as:

Y = Y 0 + Z(Y 1 − Y 0)

Y 1
i , Y

0
i ⊥⊥ Zj,

(3)

for all i, j ∈ {1, . . . , n}, where i ̸= j.

Assumption 2.2 (Mean conditional unconfoundedness) Y 1, Y 0 are mean indepen-

dent of Z conditional on X,W :

E[Y 1 | Z,X,W ] = E[Y 1 | X,W ]

E[Y 0 | Z,X,W ] = E[Y 0 | X,W ].

(4)

Under assumptions (2.1) and (2.2), the CATE is identified as:

E[Y 1 − Y 0 | X,W ] = E[Y | Z = 1, X,W ]− E[Y | Z = 0, X,W ]. (5)

While the previous assumptions lead to identification of the CATE, one more assump-

tion is necessary for estimation:

Assumption 2.3 (Conditional overlap) Both treatment states have a positive probabil-

ity conditional on X,W :

0 < P (Z = z | X,W ) < 1. (6)

In words, assumption (2.3) allows one to compare treated and untreated units in any

region of the support of (X,W ), leading to the construction of valid causal contrasts.

The distinctive feature of the RDD is that Z is a deterministic function of X:

Zi =


0, if Xi < c

1, if Xi ≥ c
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for a known cutoff value c1.

The deterministic assignment mechanism implies that controlling for X is sufficient

to ensure unconfoundedness. However, this control induces a complete lack of overlap.

Therefore, treatment effect estimation in the RDD requires additional assumptions to cir-

cumvent this issue. In order to discuss these assumptions, we write the expectation of Y

given (X,W,Z) as:

E[Y | X,W,Z] = µ(X,W ) + τ(X,W )Z

µ(X,W ) = E[Y | X,W,Z = 0]

τ(X,W ) = E[Y | X,W,Z = 1]− E[Y | X,W,Z = 0].

(7)

Because of the lack of overlap, one can only learn µ(X,W ) in the region X < c and

µ(X,W ) + τ(X,W ) in the region X ≥ c, so that inferences concerning τ(X,W ) at ar-

bitrary x cannot be obtained without further assumptions. We now discuss the kinds of

assumptions necessary for estimation in the RDD.

For some ϵ > 0, let X−
ε = {x | c − ϵ < x < c}, X+

ε = {x | c ≤ x < c + ϵ}, and

Xϵ = X−
ϵ ∪ X+

ϵ . Suppose that, for X ∈ Xϵ, the treatment effect function is independent

from the treatment variable conditional on X. Then:

E[E[Y | X,W,Z = 1] | X ∈ Xϵ]− E[E[Y | X,W,Z = 0] | X ∈ Xϵ]

=E[τ(X,W ) | X ∈ X+
ϵ ] + (E[µ(X,W ) | X ∈ X+

ϵ ]− E[µ(X,W ) | X ∈ X−
ϵ ]).

(8)

Suppose that:

E[µ(X,W ) | X ∈ X+
ϵ ] = E[µ(X,W ) | X ∈ X−

ϵ ] = E[µ(X,W ) | X ∈ Xϵ]

E[τ(X,W ) | X ∈ X+
ϵ ] = E[τ(X,W ) | X ∈ X−

ϵ ] = E[τ(X,W ) | X ∈ Xϵ].

(9)

1Our focus lies on the so-called “sharp” RDD, in which case there is perfect compliance — as opposed

to the “fuzzy” RDD, in which case compliance is imperfect — so the perfect compliance assumption is

implicit throughout the text.
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Then, the ATE2 is identified inside this region:

E[E[Y | X,W,Z = 1] | X ∈ Xϵ]− E[E[Y | X,W,Z = 0] | X ∈ Xϵ]

=E[τ(X,W ) | X ∈ Xϵ].

(10)

This is the basis of the continuity-based identification approach introduced by Hahn et al.

(2001). Under that setting, if these conditions can be assumed to hold at least as ϵ → 0

— i.e. if the expectation of the µ and τ functions are continuous at X = c — the ATE at

this point is identified as E[τ(X = c,W ) | X = c].

If interest lies in identification of the CATE in some region of the feature set W = w,

we need similar assumptions about the expectations conditional on W . Suppose that, for

all x− ∈ X−
ϵ and x+ ∈ X+

ϵ :

µ(X = x−,W = w) = µ(X = x+,W = w)

τ(X = x−,W = w) = τ(X = x+,W = w).

(11)

Then, the CATE at W = w is identified in the region Xϵ by τ(X,W = w). As before,

if these equalities hold as ϵ → 0, i.e. if µ and τ are continuous at X = c, the CATE for

W = w is identified at that point. Because we propose an estimator for the CATE, (11) is

assumed to hold for the remainder of the text. However, it is worth emphasizing that only

(9) is required for identification of the ATE, so that, even if τ(X,W ) does not identify any

CATE, estimates of this function can still be used to produce ATE estimates if the relevant

assumptions hold.

To introduce some of the challenges faced by tree models in the RDD context, consider

the treatment effect estimate in a single tree model for a partition in the tree fit that contains

X = c, denoted by B. For points inside that partition, define X B
+ = {x | c ≤ x ≤ x},

2As is commonly done in the RDD literature, we refer to the CATE conditional only on X as the ATE

and use CATE only when conditioning on W as well
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X B
− = {x | x ≤ x < c}, where x and x are the smallest and largest values of X inside the

partition, respectively, and X B = X B
+ ∪ X B

− . Then:

E[Y | X ∈ X B,W, Z = 1]− E[Y | X ∈ X B,W, Z = 0]

=µ(X ∈ X B
+ ,W )− µ(X ∈ X B

− ,W ) + τ(X ∈ X B
+ ,W ).

(12)

This means that the bias for the cutoff treatment effect estimate inside this partition is

given by:

τbias = τ(X = c,W )− τ(X ∈ X B
+ ,W ) + µ(X ∈ X B

+ ,W )− µ(X ∈ X B
− ,W ). (13)

Equation (13) shows how the bias in a tree model is determined by the composition of

the leaf nodes. In particular, it implies that the bias goes to zero as x → c and x → c.

In words, although nodes that are too tight around X = c could lead to an increase in

variance due to the decreasing number of available points in the leaves, nodes that contain

too wide regions around the cutoff could lead to extremely biased estimates if µ and τ

feature a wide range of values in that partition. Therefore, when considering a split in a

tree, minimal variation of the prognostic and treatment effect functions around the cutoff

inside the generated leaves should be a key component of the tree growth process. This is

the essence of the BART-RDD model, which will be discussed in more detail in section 3.

2.2 Bayesian Additive Regression Trees

The Bayesian Additive Regression Trees model (Chipman et al., 2010), or BART, represents

an unknown mean function as a sum of regression trees, where each regression tree is

assumed to be drawn from the tree prior described in Chipman et al. (1998). Letting

f(x) = E(Y | X = x) denote a smooth function of a covariate vector X, the BART model
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is traditionally written

Yi = f(xi) + εi,

=
k∑

j=1

gj(xi;Tj,mj) + εi,

(14)

where εi ∼ N(0, σ2) is a normally distributed additive error term. Here, each gj(x;Tj,mj)

denotes a piecewise function of x defined by a set of splitting rules Tj that partitions the

domain of x into disjoint regions, and a vector, mj, which records the values g(·) takes on

each of those regions. Therefore, the parameters of a standard BART regression model are

(T1,m1), . . . , (Tk,mk) and σ.

In the context of estimating heterogeneous treatment effects, the BART model can

be used in one of two ways: by fitting a single model for the whole sample, with the

treatment variable included as just another covariate (see Hill (2011)); or by fitting a

separate model for treatment and control units. Following the recent literature on machine

learning estimators for causal inference, we name these approaches, respectively, “S-BART”

and “T-BART”3. Hahn et al. (2020) note that both the S-BART and T-BART estimators

are not ideal for causal inference because the models lead to an implicit prior over treatment

effects which is hard to control. The authors propose the Bayesian Causal Forest (BCF)

model, which reparametrizes the response as a sum of a prognostic and a treatment effect

component, each of which is assigned a separate BART prior:

Yi = µ(Xi,wi) + τ(Xi,wi)bzi + εi, εi ∼ N(0, σ2),

b0 ∼ N(0, 1/2), b1 ∼ N(0, 1/2).

(15)

where µ(·) is the prognostic function and τ(·) is the treatment effect function4.

3The “S” stands for single, and the “T” for two; see Künzel et al. (2019)
4This terminology is motivated by the case where b0 = 0 and b1 = 1, in which case µ(x) = E(Y 0 | X = x)

and τ(x) = E(Y 1 | X = x)− E(Y 0 | X = x).
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The original BART algorithm searches the tree space by making small changes at a

given tree at each step, which can make it very slow, especially for high-dimensional data, a

property evidently inherited by the BCF model. He and Hahn (2023) propose the XBART

algorithm, which uses the same tree-splitting criteria that define the BART prior, but

samples a new tree at each step, exploring the tree space more effectively. Krantsevich

et al. (2023) propose the XBCF algorithm, which adapts the XBART algorithm to the

BCF model.

Our proposal consists of an adaptation of the XBCF algorithm to the RDD context.

Because our strategy consists of adding constraints at the individual tree level, we will not

focus on specific details about the construction of the BART prior, the BCF model or the

XBART and XBCF algorithms. We refer the interested reader to the appendix for a much

more thorough discussion on these topics.

3 Bayesian Regression Trees for RDD

Unlike local polynomial regression methods, a BART-based approach to RDD does not

have to pre-specify a set of global basis functions nor must it entirely discard data outside

of a neighborhood of the cutoff. These features are particularly useful when incorporating

additional covariates W for the purpose of CATE estimation. However, this flexibility

comes at a cost and estimation can go wrong in one of two ways. First, a BART-based

T-Learner may give poor estimates of E(Y | X = c,W ) because tree ensembles with

constant leaf models are known to extrapolate poorly (but see Starling et al. (2021) and

Wang et al. (2024) for alternatives, which we do not pursue here.) Second, a BART-based

S-Learner may estimate the response surface at X = c reasonably well, but still provide

biased estimates of the treatment effect because some of its individual trees end up using

11



data very far from the cutoff. These flaws will be depicted in numerical examples below.

To overcome these problems, we introduce novel splitting constraints, which ensure that

the data used to make predictions at X = c warrant a causal interpretation. Specifically,

we impose the constraint that our ensembles must be composed of trees where any partition

containing the point (x = c, w) is estimated from data “close enough” to the cutoff from

both sides.

3.1 Splitting Constraints for RDD with Regression Trees

The proposed constraints have two distinct, though related, goals. First, we need the

treatment-control contrast – upon which τ(x = c, w) will be estimated – to be well-defined:

for this we require observations from both treatment arms (e.g. overlap). Second, because

we cannot rely on observations far from the cutoff to estimate the treatment effect, we

insist that a partition that includes x = c have a strong majority of its observations within

a narrow, user-defined band about the cutoff. This constraint defines a set of suitably

localized basis functions from which to perform causal inference at the cutoff.

More formally, these constraints can be expressed as follows. For a user-defined band-

width parameter h > 0, we assume that the potential outcome mean function does not

vary abruptly inside the interval [c − h, c + h], which we refer to as the “identification

strip”. Let B ⊂ X be a hypercube corresponding to a node in a regression tree and let Nb

denote the number of observations falling within B. Further, let nl denote the number of

observations in B ∩ [c − h, c) and nr denote the number of observations in B ∩ [c, c + h].

For user-specified variables NOmin ∈ N+ and α ∈ (0, 1), the leaf node region B is valid if it
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satisfies the following condition:

(
∀w | (x = c, w) /∈ B

)
∪(

(∃w | (x = c, w) ∈ B) ∩ (min (nl, nr) ≥ NOmin) ∩ ((nl + nr)/Nb ≥ α)

)
.

(16)

The initial clause says that any node which does not make predictions at the cutoff remains

entirely unrestricted; the second clause says that any node that does make predictions at

x = c has to have both i) a minimum number of observations within the cutoff region on

either side of the cutoff, as well as ii) not too many observations, proportionally, outside of

the identification strip.

3.2 Stochastic search for valid partitions

For nodes predicting at the cutoff, the two conditions (i and ii) above have qualitatively dif-

ferent ramifications for the stochastic search for valid partitions. In particular, the first con-

dition, if unsatisfied, can never become satisfied by further branching, while the second con-

dition, if unsatisfied, can be satisfied by further branching, by trimming away observations

outside of the identification strip. This observation motivates us to use XBART/XBCF

rather than standard BART MCMC for our model fitting. An unmodified local random

walk would violate recurrence because certain valid states can only be reached by passing

through invalid states; as a practical matter, reaching valid partitions by a random walk

would be highly inefficient. By utilizing the Grow-From-Root algorithm from XBART,

described in the appendix, passing through invalid states to reach favorable valid states

is a simple matter of not terminating the growth process at an invalid state. Specifically,

never accept a partition that violates condition i, and never stop at a partition that violates

condition ii.

In practice, this new stochastic search procedure is implemented by modifying the
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likelihood calculation in steps 8 and 10 of the GFR algorithm for XBCF as follows. Consider

a candidate split with cutpoint cjk which splits the current node into left and right nodes.

Let B
(l)
x denote the range of x which the left node covers and similarly define B

(r)
x . Let nll

and nlr denote the number of observations such that x ∈ [c− h, c) and x ∈ [c, c+ h] in the

left node, and nrl and nrr denote the same quantities in the right node, respectively. If,

c ∈ B(l)
x and max(nll, nlr) < NOmin (17)

or if

c ∈ B(r)
x and max(nrl, nrr) < NOmin, (18)

this split violates condition (i). Therefore, we consider this an invalid partition and set

L(cjk) = 0. If the split does not violate condition (i), we calculate its likelihood as in the

GFR algorithm. For condition (ii), we check whether:

c ∈ Bx and
nl + nr

Nb

< α. (19)

If so, we set the likelihood of the no-split option L(∅) = 0 unless there are no other valid

splits, in which case we set L(∅) = 1. In the latter case, we end up with a tree that is still

invalid, as it violates condition ii; our implementation monitors for this eventuality and

find that it rarely if ever occurs in most data sets.

3.3 Illustration of the constraints and search

The impact of expression (16) on the fitted trees may be visualized by considering a concrete

example. Consider a tree fit with only the running variable (X). Figure 1 plots X against

some outcome Y for a dataset with 75 observations, presenting different partitions in X.

For this example, the cutoff is c = 0 – denoted by the dotted line – and the ATE at that

point is equal to 0.5. We consider a window of h = 0.06, denoted by the dashed lines in
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the plots. The treated units (x ≥ c) are denoted by black triangle dots and the control

units are denoted by white round dots. Splits in X are denoted by solid lines. For each

partition, we represent the inferred potential outcome as a red line for untreated and blue

line for treated outcomes. For the partitions that include both types of observations — i.e.

points from both sides of the cutoff — we represent both potential outcomes.

Panel 1a shows a split which is invalid since it cuts through the identification strip,

leading to a node that contains only one point to the right of the cutoff in that region. The

ATE at the cutoff for that tree is predicted to be 0.78. Panel 1b presents a split which only

violates condition (ii), since it does not cut through the identification strip, but features

a node with too many points outside the strip. The ATE at the cutoff for that tree is

predicted to be 0.7. This tree can be made valid by ‘trimming out’ points too far from the

cutoff in the right node. Panel 1c presents an additional split that does exactly that. The

ATE at the cutoff for that tree is predicted to be 0.67. Finally, panel 1d presents another

tree, with a couple of additional splits to the left of the identification strip, and a split

to the right that’s closer to the strip. Since the new nodes generated do not include the

identification strip, they are all potentially valid. The ATE at the cutoff for that tree is

predicted to be 0.6.

This example highlights problems that unmodified BART models face in the context of

the RDD. Note that all trees above are valid under the standard BART prior. If the nodes

that contain X = c include points close to the cutoff from both sides, but many points far

from it, these trees will only lead to reasonable causal contrasts if Y is relatively constant

with respect to X. Otherwise, such trees should exhibit strong bias if the prognostic or

treatment effect functions vary substantially, as is the case in the previous example, which

illustrates the bias described in equation (13). In fact, as we move closer towards the kinds
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Figure 1: Tree examples: panel (a) shows a tree with a split that violates condition i;

panel (b) presents a tree with a split that violates condition ii; the tree in panel (c) is an

example of the kind of tree that would be accepted by the algorithm; the tree in panel

(d) is the same as the one in panel (c) with some additional splits that do not contain the

identification strip
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of trees that would be accepted by BART-RDD — i.e. moving from the first panel to the

last — we decrease the bias in the predicted ATE at the cutoff. The important distinction

here is that, while all BART-based models could reach reasonable trees, only BART-RDD

is guaranteed to do so by rejecting trees that do not behave appropriately.

3.4 Prior elicitation

The question remains as to how one should set the relevant parameters in order to obtain

good predictions. A completely general rule cannot be expected, as the impact each pa-

rameter has in the estimation is highly data-dependent. Nonetheless, it is instructive to

consider what kinds of restrictions our parameters imply to the tree search process and

how they impact prior bias.

First, consider the bandwidth parameter h. On the one hand, h should be set as low

as possible for two reasons. First, setting h too high makes it more likely that a given tree

would cut through the identification strip. In particular if h is such that the strip covers all

the support of X, the algorithm would only accept trees that do not use X for partitions.

Given the essential role that X plays in the outcome distribution in an RDD setting, not

using it for the tree splits would lead to severely biased trees. Additionally, since the goal

is to make inference enforcing smoothness over X at a specific point (X = c), one should

only use points as close to c as possible to obtain better approximations of the true function

around that point.

On the other hand, there is also a limit to how low one can set h for any particular

dataset. In particular, if h is so small that there are no points inside the identification

strip, any tree will produce nodes with an empty overlap region and, thus, be invalid. This

means that h also interacts with NOmin in that extreme: even if there are points in the
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identification strip, if there are less than NOmin points, the same phenomenon happens,

making all trees invalid.

Next, we turn to NOmin: if it is set to 0, the trees could produce nodes which contain

the overlap region but have no points inside it. Thus, predictions near the cutoff could be

based only on observations too far from the cutoff, which would undermine the constraint

associated with this parameter. Setting NOmin too high could be too restrictive since there

would be fewer valid nodes containing the overlap region, which could bias the individual

posterior distributions or at least make it harder to detect heterogeneity in the data, since

we could have very short trees.

Finally, we note that if α is set too low, we allow for many points outside the strip to

influence the results from nodes that do include the strip. However, setting it high is not

necessarily a problem since, as discussed in the previous section, nodes that do not satisfy

this criterion can be made to satisfy it by simply ‘trimming’ the outer region of nodes

containing the identification strip. It is important to note, however, that setting α too

high could lead to many forced splits in the boundaries of the identification strip, which

can lead to an increase in variance if these additional splits are not particularly relevant.

Therefore, this parameter should also be chosen carefully.

Clearly, it is nontrivial how these considerations might interact in a given sample. This

reflects the immense delicacy of the regression discontinuity design itself, rather than a

limitation intrinsic to the BART-RDD proposed; all RDD methods require grappling with

how to set tuning parameters. Our proposed approach is via a prior predictive elicitation

procedure. Specifically, we recommend, for a given sample (x,w, y), the following:

1. Generate s samples of a synthetic data from a known DGP using (x,w)

2. Fit BART-RDD to each sample for different values of the prior parameters
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3. Choose the parameter values which lead to lower RMSE values for the ATE in those

s synthetic samples.

We find that generating the synthetic data from a simple model with no treatment

effect heterogeneity and relatively small ATE leads to finding good values for the prior

parameters even when the true data exhibits strong heterogeneity or large effects. This is

also a reasonable prior for the treatment effects, unless one has strong reason to believe in a

more complex scenario. In the simulation studies to follow, we use this procedure to choose

h, NOmin and α. A detailed analysis of this procedure may be found in the supplemental

appendix, where we discuss its application in the context of the simulations.

4 Simulation studies

4.1 Setup

In order to investigate the properties of the BART-RDD algorithm, we perform a simulation

study comparing its performance to an S-learner BART fit (S-BART), a T-learner BART

fit (T-BART), the robust bias-corrected local linear regression (LLR), as implemented by

Calonico et al. (2015), and the cubic spline estimator (CGS) of Chib et al. (2023). The

goal of this exercise is twofold. First, we want to investigate how BART-RDD compares

with off-the-shelf implementations of BART applied to the RDD context. We are able to

show that our modification does in fact make the BART prior more suited to this context.

Second, we want to compare BART-RDD to estimators that were designed specifically to

the RDD context, in particular the local polynomial estimator, by far the most commonly

used in the literature, and the cubic splines estimator which is possibly the closest in spirit

to that in the Bayesian literature. Besides showing BART-RDD is more suited to the RDD
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setup than unmodified BART models, we also show that BART-RDD generally performs

better and never far worse than the estimators designed specifically for the RDD.

Let X denote the running variable, W an additional set of features, Z the treatment

indicator and Y a continuous outcome. We investigate 500 samples of size 1000 of varia-

tions of the following DGP:

X ∼ 2B(2, 4)− 0.75

W1 ∼ U(−0.1, 0.1)

W2 ∼ N (0, 0.2)

W3 ∼ Binomial(1, 0.4)

W4 ∼ Binomial(1, p(x))

Z = 1(X ≥ c)

µ(X,W ) =
µ0(X,W )

σ(µ0(X,W ))
δµ

τ(X,W ) = τ̄ +
τ0(X,W )

σ(τ0(X,W ))
δτ

Y = µ(X,W ) + τ(X,W )Z + ε

c = 0

τ̄ = {0.2, 0.5}

δµ = {0.5, 1.25}

δτ = {0.1, 0.3}

ε ∼ N (0, 1),

where B(2, 4) denotes a Beta distribution with parameters 2 and 4, p(x) denotes the Gaus-

sian probability density of x with mean c and standard deviation 0.5, and:

µ0(X,W ) = 3x5 − 2.5x4 − 1.5x3 + 2x2 + 3x+ 2 +
1

2

4∑
p=1

(wp − E[wp])

τ0(X,W ) = −0.1x+
1

4

4∑
p=1

(wp − E[wp])

(20)

For the BART-based models, we fit the model for the whole sample and consider only

points inside the BART-RDD window for prediction. Let S = {x | c− h < x < c+ h}. We

then obtain CATE estimates at X = c for the NS points in S. For the ATE, we focus on

the sample ATE in S, E[τ(X = c,W ) | X ∈ S], which we estimate by averaging over the

CATE estimates in our window:

τ̄ =
1

Ns

∑
i:xi∈S

τ(xi = c, wi). (21)

Some remarks on the design of this DGP: Although there are other parameters that

affect the performance of any estimator, the spread in µ and τ were the only factors that

we found to have distinct impacts on different estimators. In other words, the effect of
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other DGP characteristics in the results were common across estimators in the expected

ways. We control these features in the data through the parameters (δµ, δτ ). The particular

choices for these parameters were made in an attempt to replicate realistic behavior in µ

and τ . Particularly, we made sure that there are generally no sign changes in the individual

treatment effects and that the spread in the prognostic component is larger than the spread

in the treatment effects.

4.2 Results

4.2.1 Comparison of ATE Estimates

We begin by examining its performance on the ATE for comparison with other methods

and because a good CATE learner should be able to provide good ATE estimates as well.

Table 1 and figure 2 present the RMSE for the ATE point estimate produced by each

estimator5.

Table 1: RMSE - ATE

τ̄ δµ δτ BART-RDD S-BART T-BART CGS LLR

0.2 0.5 0.1 0.114 0.214 0.253 0.370 0.233
0.2 0.5 0.3 0.114 0.228 0.264 0.388 0.243
0.2 1.25 0.1 0.226 0.298 0.424 0.411 0.234
0.2 1.25 0.3 0.250 0.321 0.440 0.445 0.255
0.5 0.5 0.1 0.158 0.257 0.249 0.387 0.247
0.5 0.5 0.3 0.147 0.250 0.258 0.372 0.239
0.5 1.25 0.1 0.251 0.397 0.432 0.437 0.251
0.5 1.25 0.3 0.247 0.402 0.429 0.443 0.245

The results indicate that high variation in µ makes estimation harder for all estimators,

although the difference is not so sizeable for LLR. In that setting, BART-RDD and LLR

perform similarly. However, when δµ is low, BART-RDD clearly outperforms all estimators.

Regarding the other BART-based estimators, S-BART and T-BART perform similarly, but

5In the case of the Bayesian estimators, we consider the posterior mean as the point estimate.
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the former is less sensitive to high variability in µ. Overall, CGS is the worst performer in

terms of the RMSE.

In order to better understand the behavior of the RMSE, figures 3 and 4 present,

respectively, the absolute bias and variance for each estimator, separated by the parameter

values of the DGPs. This decomposition highlights some important patterns. First, the

consistently low bias of the LLR and CGS estimators is remarkable, which means any

variation in their RMSE is coming from the estimator variance. For LLR, this should not

come as a surprise given this method’s focus on reducing bias, but it is worth noting how

effective it is in that regard. On the contrary, BART-RDD presents bias comparable to

LLR and CGS when heterogeneity in µ is low, but a much greater bias otherwise. This

trend is true for all BART-based models, although, for a given value of δµ, BART-RDD

almost always presents much lower — and never far worse — bias than the others. Finally,

δµ is the only factor that significantly affects bias for the BART-based models. These

results corroborate the bias described in equation (13) for tree-based RDD estimators. In

particular, although both variation in µ and τ near the cutoff point can pose problems, the

models are potentially much more sensitive to the former, since they require low variation

for the prognostic function at both sides of the cutoff. The results also highlight how

BART-RDD is particularly effective in decreasing the off-the-shelf BART sensititivity to

such issues

Regarding variance, BART-RDD is always the best performer, with a consistently lower

variance than the other estimators. LLR presents much larger variance than BART-RDD.

T-BART presents a slightly larger variance than BART-RDD, whereas S-BART presents

larger variance that is very sensitive to δµ. Finally, CGS presents the worst variance in all

scenarios, which explains this method’s poor RMSE performance.
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Figure 2: RMSE for the ATE point estimate produced by each estimator, divided by the

different DGP parameters
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Figure 3: Absolute bias for the ATE point estimate produced by each estimator, divided

by the different DGP parameters
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Figure 4: Variance for the ATE point estimate produced by each estimator, divided by the

different DGP parameters

Although Bayesian intervals are generally not expected to achieve any particular cover-

age rate, frequentist coverage is a helpful metric to consider. Table 2 presents the coverage

rate and interval size (in parenthesis) for each estimator. CGS and LLR present near 95%

coverage in all cases, while S-BART presents near 95% coverage in all cases when τ̄ = 0.2

and near 90% coverage when τ̄ = 0.5. Coverage rates for BART-RDD and T-BART follow

a common pattern of decreasing coverage when δµ increases. However BART-RDD presents

better coverage than T-BART, reaching 95% coverage in one case and never falling below

70% coverage. Meanwhile, T-BART reaches at most 82.8% coverage.

Comparing the interval sizes provides an explanation of the coverage rate behavior. CGS

presents, by far, the largest intervals so it is still able to get good coverage despite being

the worst in terms of the RMSE. S-BART produces the second largest intervals on average,

which also helps compensate the larger bias in some cases, leading to very good coverage

generally. LLR produces the third largest intervals on average, which, combined with the

relatively good RMSE performance leads to great coverage. T-BART comes next, and

the combination of shorter intervals and bad RMSE performance leads to poor coverage.
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Finally, BART-RDD produces the shortest intervals. However, because of the really good

RMSE performance, it is still able to obtain good coverage in all cases.

Table 2: Coverage rate and interval sizes (in parenthesis) for the ATE

τ δµ δτ BART-RDD S-BART T-BART CGS LLR
0.2 0.5 0.1 0.924 0.954 0.798 0.962 0.94

(0.424) (0.713) (0.719) (1.598) (0.855)
0.2 0.5 0.3 0.954 0.95 0.724 0.95 0.932

(0.442) (0.757) (0.677) (1.604) (0.877)
0.2 1.25 0.1 0.782 0.94 0.538 0.97 0.93

(0.546) (0.97) (0.797) (1.792) (0.863)
0.2 1.25 0.3 0.718 0.95 0.52 0.964 0.938

(0.539) (1.068) (0.794) (1.814) (0.88)
0.5 0.5 0.1 0.9 0.866 0.828 0.958 0.946

(0.536) (0.859) (0.743) (1.604) (0.87)
0.5 0.5 0.3 0.92 0.89 0.772 0.962 0.942

(0.519) (0.913) (0.704) (1.607) (0.87)
0.5 1.25 0.1 0.722 0.87 0.558 0.966 0.918

(0.579) (1.239) (0.81) (1.788) (0.87)
0.5 1.25 0.3 0.702 0.894 0.572 0.962 0.934

(0.567) (1.313) (0.818) (1.798) (0.872)

4.2.2 Comparison of CATE estimates

This section compares the various BART-based models in terms of their CATE estimation

(the polynomial estimators do not provide CATE estimates). Table 3 presents the RMSE

and coverage for each estimator. The results for the RMSE are qualitatively the same as

before for all estimators. Regarding coverage, BART-RDD is the best model, with S-BART

and T-BART performing slightly worse. Overall, these results suggest a similar trend as

with the ATE: S-BART and T-BART present similar performance, with the latter being

more sensitive to variability in µ. BART-RDD comes out as the best estimator among the

BART variants in all scenarios but one.

For a more detailed look into the CATE predictions of each model, figures 5 and 6

present the CATE fit for an illustrative sample of the DGP described earlier, with δµ = 0.5

and δµ = 1.25 respectively. We set δτ = 0.3 and τ̄ = 0.5 for these examples. The values are

presented for units inside the identification strip in ascending order. Two patterns stand
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Table 3: RMSE and coverage - CATE

(a) RMSE

τ δµ δτ BART-RDD S-BART T-BART

0.2 0.5 0.1 0.164 0.204 0.280
0.2 0.5 0.3 0.216 0.287 0.298
0.2 1.25 0.1 0.262 0.255 0.445
0.2 1.25 0.3 0.302 0.345 0.463
0.5 0.5 0.1 0.228 0.247 0.281
0.5 0.5 0.3 0.249 0.297 0.295
0.5 1.25 0.1 0.315 0.363 0.451
0.5 1.25 0.3 0.321 0.411 0.452

(b) Coverage

τ δµ δτ BART-RDD S-BART T-BART

0.2 0.5 0.1 0.993 0.969 0.951
0.2 0.5 0.3 0.986 0.904 0.936
0.2 1.25 0.1 0.985 0.949 0.828
0.2 1.25 0.3 0.974 0.897 0.816
0.5 0.5 0.1 0.986 0.919 0.955
0.5 0.5 0.3 0.985 0.933 0.941
0.5 1.25 0.1 0.980 0.909 0.820
0.5 1.25 0.3 0.982 0.922 0.835
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Figure 5: Fit for τ(X = c,W ) for each method when δµ = 0.5 versus the true function

out in these comparisons. First, although increasing δµ evidently makes it harder to recover

τ in general, the results from BART-RDD are a lot less sensitive to these changes. Second,

S-BART seems to have a lot more difficulties in picking up variations inW , producing much

more constant CATE estimates than the other methods. Overall, the figures suggest that

the BART-RDD CATE predictions are less biased and more able to capture heterogeneity

than the unmodified BART models.

The results of this section show how the bias described in (13) for tree-based models

shows up empirically. In particular, figures 5 and 6 show how high variation in µ leads to

a strong bias in the CATE estimates for unmodified BART models, whereas BART-RDD

produces CATE estimates that are much less sensitive to that. Figure 2a then shows that

these features carry over to the ATE estimates produced by each model. Overall, the
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Figure 6: Fit for τ(X = c,W ) for each method when δµ = 1 versus the true function

evidence in this section is clear that BART-RDD is more suited to the RDD setup than its

unmodified counterparts.

5 Academic Probation and Student Performance

We now conclude with a detailed empirical application of BART-RDD to illustrate its usage

in a real data setting. The data analyzed in this section comes from Lindo et al. (2010)

and consists of information on college students enrolled in a large Canadian university.

Students who, by the end of each term, present GPA lower than a certain threshold (which

differs between the three university campuses) are placed on academic probation and must

improve their GPA in the next term and face threat of punishment if they fail to achieve

this goal, which can range from 1-year to permanent suspension from the university.

Among the performance outcomes analyzed by Lindo et al. (2010), we focus on GPA

in the term after a student is placed on probation (Y ). Following the authors, we define

the running variable (X) as the negative distance between a student’s first-year GPA and

the probation threshold, meaning students below the limit have a positive score and the

cutoff is 0. Additional student features in the data include gender (‘male’), age when
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student entered the university (‘age at entry’), a dummy for being born in North America

(‘bpl north america’), attempted credits in the first year (‘totcredits year1’), dummies for

which campus each student belongs to (‘loc campus’ 1, 2 and 3), and the student’s position

in the distribution of high school grades of students entering the university in the same year

as a measure of high school performance (‘hsgrade pct’). An analysis of some summary

statistics of the data is presented in the appendix.

In order to determine the appropriate prior parameters for this sample, we perform the

prior elicitation procedure described in section 3.4: fix X,W , generate 10 samples of the

DGP described in the appendix, take a grid of candidate values for (NOmin, NOpct, h) and

calculate the RMSE over the 10 synthetic samples for each combination in the grid6. We set

the parameters at the values which yield the lowest RMSE: (NOmin, NOpct, h) = (5, 0.6, 0.1).

The full results of the procedure are presented in the appendix.

The CATE and ATE estimates are obtained as described in section 4. We present ad-

ditional summary statistics for the prediction sample in the appendix as well. We generate

100 draws from the individual-level posterior distribution which, averaging over observa-

tions, lead to 100 draws from the ATE posterior distribution. Table 4 presents a summary

of the ATE posterior. The distribution is centered at 0.14 with all the posterior mass

above zero, indicating strong evidence for positive effects of the probation policy. The 95%

credible interval suggests the average effect can be as low as 0.08 and as high as 0.2177.

We now discuss heterogeneity in the BART-RDD posterior distribution. Figure 7

presents a regression tree fit to posterior point estimates of the individual effects as a

6Because of the sample size of over 40,000 points, we are able to explore the prior reasonably with as

few as 10 synthetic samples; for data with smaller sample sizes, more synthetic samples might be necessary

to clearly distinguish between the candidates.
7For comparison, in the supplemental appendix we present the ATE results for the other estimators

analyzed in the simulation exercise.
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Table 4: BART-RDD posterior summary for the ATE

Mean SD 2.5% 97.5% Median Min Max

0.140 0.036 0.080 0.217 0.140 0.068 0.253

summarization tool. The summary trees are fit for the full sample and per campus. High-

school performance is flagged as an important moderator for the full sample. Looking into

each campus separately reveals more heterogeneity. For students who performed poorly

in high-school in campus 1, we see additional moderation by birth place and credits at-

tempted in the first year. In campus 2, we can see that the effect for women is larger than

for men among those who feature above the 31-st percentile of high-school grades. Finally,

for campus 3, the most important moderators are gender, birth place and age at entry.

Full sample

hsgrade_pct >= 43

bpl_north_america = 0

male = 1

loc_campus1 = 0

totcredits_year1 >= 4.8

0.14
100%

0.08
30%
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0.067
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0.18
61%
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0.1
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0.097
3%

0.28
5%

0.21
37%

yes no
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hsgrade_pct >= 43

totcredits_year1 >= 4.8

bpl_north_america = 0
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0.072
49%

0.18
51%

0.11
18%

0.22
33%

0.046
5%

0.25
29%

yes no
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hsgrade_pct >= 31

male = 1 hsgrade_pct >= 13
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30%

−0.1
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yes no
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0.007
10%

0.23
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31%
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Figure 7: Regression tree fit to posterior point estimates of individual treatment effects:
top number in each box is the average subgroup treatment effect, lower number shows the
percentage of the total sample in that subgroup

The results described so far are consistent with those presented by Lindo et al. (2010),

both in magnitude and, to some degree, in potential sources of treatment effect heterogene-

ity. In particular, the authors also find a greater effect for students who performed below

average in high-school and for women. Our posterior predictions however flag additional
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features as potential moderators, such as age at entry, birth place and campus, which high-

lights how depending on pre-specification of relevant subgroups might lead researchers to

miss other interesting features of the data. Lindo et al. (2010) note that interpreting these

results as true effects requires caution since there is evidence that the probation policy

leads to differential dropout rates, which changes the composition of students before and

after the evaluation of first-year GPA. However, further discussion on this topic is out of

the scope of this project.

We conclude this section with an illustration of how to perform posterior inference

about heterogeneity in the effects with the results of our model. Based on the moderators

flagged by the summarization trees, we investigate the posterior difference in treatment

effects across some subgroups. The first panel in figure 8 presents the posterior difference

between students in the bottom 43% versus those in the upper 57% of the high-school grade

distribution for campus 1. There is a 92% posterior probability that the treatment effect

is larger for the former group. The second panel presents a similar analysis for campus 2,

where the threshold was the 31-st percentile of the high-school grade distribution. There

is also strong evidence for a larger effect for students lower in that distribution, with a

posterior probability of a larger effect of 95%. The third panel presents the posterior

difference for students who entered college younger than 19 versus those who entered older

than that in campus 3. There is also strong evidence of a larger effect for the former group,

with posterior probability of 84%. Finally, the last panel presents the posterior difference

in average effects between each campus. The biggest difference is between campus 3 and

campus 1, in which case there is a 66% probability of a larger effect for the former. There

is a 59% posterior probability that the effect is larger for campus 2 than campus 1 and a

54% posterior probability that the effect is larger for campus 3 than campus 2.
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Figure 8: Differences in subgroup treatment effects: the first panel shows the posterior
difference between students below and above the 43-rd percentile of high-school grades re-
spectively in campus 1; the second panel performs the same analysis for the 31-st percentile
of high-school grades for students in campus 2; the third panel presents the posterior dif-
ference between students that got into college younger versus older than 19 in campus 3;
the last panel presents the posterior differences in the ATE between each campus
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