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Abstract

This paper develops a tractable endogenous network formation model

of the interbank market. Due to liquidity shocks, banks face a trade-

off between investing their resources in a liquid asset and a high-yield

illiquid asset. The interbank market is modeled as a network. A

link extended by one bank to another is interpreted as a credit line

that the former bank can use to cover liquidity outflows. The cen-

tral bank, by means of its standing facilities, lends resources to banks

that are short in liquidity and borrows from institutions with liquid-

ity surpluses at predetermined rates. These rates establish a corridor

in which the interbank rate must lie. In this setting, we characterize

the unique equilibrium of banks’ liquidity holdings for any network.

We then endogenize the network, via banks’ decision of credit lines,

and provide a sharp equilibrium characterization: every equilibrium

network is a complete core-periphery graph. This characterization is

consistent with empirically observed networks. Moreover, we intro-

duce a trade-off for central banks when choosing the corridor rate: a

narrower corridor implies more precise targeting of the interbank rate,

which is important for the conduct of monetary policy. However, if

we account for banks’ linking decisions, this may lead to an equilib-

rium with a sparser network, where total liquidity holdings are higher,

incurring an implicit cost since these funds could be invested in the

more productive illiquid asset instead. We then provide conditions

such that the central bank does not find optimal to minimize the in-

terbank rate variance and study how it should react during moments

of financial crises.
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1 Introduction

Recent work shows that banks’ liquidity management is one of the main transmission channels

of monetary policy (see, for example, a recent paper by Bianchi and Bigio (2021)). When

choosing to hold more liquidity, banks have to forgo more productive investment opportunities.

Monetary policy decisions, in turn, affect the trade-off between investments in liquid and

illiquid assets and thus have an impact on the real economy. The existence of an interbank

market also affects banks’ portfolio decisions: by allowing banks to trade liquid assets

with each other, it reduces each bank’s marginal benefit of directly holding liquid assets.

Understanding how banks decide the composition of their portfolios in the presence of an

active interbank market is, therefore, important for the conduct of monetary policy.

In this paper, we develop a tractable endogenous network formation model for the

interbank market, where (directed) links are interpreted as interbank credit lines. Banks

solve a liquidity management problem, making simultaneous decisions regarding liquidity

holdings and credit lines. Our equilibrium analysis shows that equilibrium networks display

core-periphery types of structures, which is in accordance with empirically observed networks.

Our model unveils a novel trade-off that central banks operating a corridor system face

when choosing the corridor width: a narrower corridor implies more precise targeting of

the interbank rate, which is important for monetary policy conduction. However, by letting

banks review not only their allocation to liquid assets but also their interbank credit lines, we

show that a narrower corridor reduces banks’ incentives to borrow in the interbank market.

This, in turn, can lead to excessive levels of liquidity holdings, which incurs an implicit

cost since these funds could be invested in more productive (illiquid) assets instead. In this

setting, we demonstrate that once accounting for the cost of holding (unproductive) liquid

assets, it is not optimal for the central bank to choose the corridor width that minimizes the

interbank rate variance.1 This provides a new rationale for a strictly positive spread between

1Bindseil (2016) states that the choice of the corridor width reflects the trade-off between control over
the interbank rate and interbank market activity. This trade-off is directly related to ours. In the model
developed in this paper, total liquidity is lower in equilibria with more interbank activity.
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standing facilities rates, even when the central bank’s main goal is to precisely target the

short-term interbank rate.2 Lastly, we conduct comparative statics analysis regarding the

optimal corridor width and show how failing to account for how interbank credit lines are

established (and altered) when setting the corridor rate may lead to suboptimal policy.

This can help explain, for example, why some central banks during the 2009 financial crisis

narrowed the corridor rate at first, but later decided to return to the pre-crisis width, stating

that the narrower corridor was responsible for the crowding out of the interbank market. To

the best of our knowledge, this paper is the first to study the optimal corridor rate width in

a network setting.

Bindseil (2016) highlights some aspects that have been the consensus for operational

frameworks among most central banks after 2007. First, central banks set as an operational

target a short-term interest rate that is under their control. In most cases, this target is the

overnight interbank rate. Another key aspect is that central banks offer standing facilities

to absorb liquidity from and provide liquidity to commercial banks at predetermined rates.

These rates establish a corridor within which the interbank rate fluctuates. A narrower

corridor reduces the variance of the interbank rate, allowing the central bank to target it with

higher precision.3 We argue that a central bank, when optimally deciding the corridor width,

faces a trade-off between precise targeting of the interbank rate and commercial banks’ total

allocation to liquid assets, which is generally higher for a wider corridor. Holding liquidity

bears an implicit cost since these resources could be allocated to more productive assets

instead. Consistent with this trade-off is the evidence that banks in regions such as the U.S

and Europe have drastically decreased their interbank activity and increased their holding

of reserves after the Great Recession.4 Thus, an important policy question is how narrow

2See Berentsen and Monnet (2008), Berentsen et al. (2010) and Bindseil and Jab lecki (2011) for
discussions on the optimality of a non-zero corridor.

3For a comprehensive analysis of how corridor systems are an effective way for the central bank to control
the interbank rate see Bindseil and Jab lecki (2011), Quiros and Mendizabal (2006) and Whitesell (2006).

4See Kim et al. (2020) for evidence in the U.S interbank market. During this period the Federal Reserve
Bank started paying interest on reserves, thus effectively establishing a corridor rate, while the European
Central Bank reduced the width of its corridor rate from 200 basis points to 75 basis points as of August
2022.
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should the central bank set the corridor rate.

To address this question, we model banks’ decisions in an endogenous network setting.

In our model, every bank faces a trade-off between investing its resources in liquid and

illiquid assets, such as reserves and bonds, respectively. Liquid assets can be used to cover

withdrawals from depositors and therefore provide a buffer against potentially large liquidity

outflows. However, the illiquid asset is more productive, in the sense that it yields a higher

expected return. If banks had perfect information regarding their liquidity outflows, they

would choose to hold the minimum necessary to pay all their depositors and invest the

remaining resources in the more productive asset. However, banks cannot perfectly predict

withdrawals when choosing their portfolio, and therefore face a probability of being short

of liquid assets. Our model features a central bank that offers two standing facilities. The

lending facility allows banks with liquidity needs to borrow the necessary resources from

the central bank at the so-called discount rate. The deposit facility allows banks with an

excess of liquid assets to lend these to the central bank at the deposit facility rate. Banks’

liquidity management involves two types of costs: the cost of having to borrow from the

central bank when liquidity holdings are not sufficient, and the opportunity cost of holding

excess liquidity.

The main feature of the model is an interbank market, which we model as a network. A

link extended by one bank to another allows the former to borrow up to a pre-specified share

of the latter’s liquid assets. We refer to this share as the weight of the link. These links are

interpreted as credit lines that a potential borrower must open with its counterparty before it

can obtain a loan. This setup captures the fact that interbank trading is mainly characterized

by stable relationships between banks.5 We assume there is a cost of establishing a credit

line since it requires sustaining personal relationships/working relations from the borrower

to the counterparty. Cohen-Cole et al. (2015), for example, argue that, in the Italian

5For evidence on the stability of interbank relationships, see Blasques et al. (2018) for the Dutch market,
Dordal i Carreras et al. (2021) for the German market, and Afonso et al. (2013) for the US market. See
Müller (2006) for a similar interpretation of links as credit lines.
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interbank market, operations simply consist of a phone call between banks’ managers and

are executed fast, which suggests a prior relationship between the parties. The linking cost

can be interpreted as sustaining this relationship. Note that this setup allows for reciprocated

links, i.e. two banks can both extend a link to the other, thereby establishing mutual credit

lines. But it is still the case that each one must pay the cost of establishing them. The

existence of this market gives rise to local strategic substitution effects between banks’ own

liquidity holdings. When a bank increases its investments in liquid assets, it also increases

how much liquidity banks that connect to it can access through the market. This, in turn,

generates incentives to allocate more of their own resources to illiquid assets.

Moreover, it is assumed that banks incur a marginal cost when lending liquid assets in

the interbank market. As in Bucher et al. (2020), this cost can be associated with financial

regulations and/or creditworthiness checks.6 Banks observe how costly it is to trade in

the interbank market only after credit lines are already established. When the interbank

transaction cost is realized, a bank will be willing to lend to a counterparty only if the

expected profit of the loan is weakly higher than the outside option, which is lending to

the central bank. The central bank’s deposit facility rate, thus, sets a lower bound on the

interest rate that can be charged in interbank loans. In principle, the discount rate would

set the upper bound. However, empirical studies provide evidence of stigma effects when

borrowing from the central bank (see Armantier et al. (2015) for the U.S and Lee (2016) for

the UK and the euro area).7 As Whitesell (2006) points out, in the presence of such effects,

the market rate that is equivalent to borrowing at the discount window is higher than the

discount rate. We refer to this rate as the effective discount rate, which sets an upper bound

on the interbank rate. This, in turn, implies that a bank that is short of own liquidity

6Bucher et al. (2020), argue that interbank transaction costs can be associated with asymmetric
information even if the model does not explicitly account for such asymmetry (for example, private
information regarding default risk). The authors argue that lenders, to avoid exposing themselves to any
sort of credit risk, engage in costly creditworthiness checks, which removes any asymmetries. This, in turn,
allows them to assume that all observed interbank transactions are risk-free.

7For a formal treatment on stigma effects, see Ennis and Weinberg (2013). To simplify the exposition,
we abstract from other factors that can make banks willing to borrow at the interbank market at a rate
higher than the discount rate (such as central bank’s collateral requirements).
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holdings will borrow from the central bank if either what it can borrow in the interbank

market is not sufficient to cover its liquidity outflows, or no bank is willing to lend resources

to it at a rate lower than the effective discount rate due to prohibitively high interbank

transaction costs.

Banks’ decisions to create interbank credit lines are mainly affected by the size of the

corridor width relative to the cost of sustaining a relationship with a potential lender. A

low relationship cost increases banks’ incentives to invest in these relationships because the

interbank market provides a liquidity source that is potentially cheaper than the central

bank’s lending facility. On the other hand, when the corridor is too narrow, a prohibitively

high interbank transaction cost becomes more likely. In this case, the probability that a bank

with liquidity needs will have to borrow resources exclusively at the central bank’s lending

facility, even if it established credit lines with other banks, increases. Because setting credit

lines is costly, the incentive to do so in the first place reduces. Therefore, the network of

interbank relationships is more connected when the linking cost is low and the corridor width

is wider.8

Throughout this paper, we make the following two simplifying assumptions, so as to

yield a tractable model. First, we adopt the common simplifying assumption that only one

bank is hit by a liquidity outflow per period.9 With this assumption, the amount that an

individual bank can choose to borrow in the interbank market is fully determined by the

links it extends. This follows from the fact that if a bank is hit by an adverse liquidity

shock, then it knows that other banks have not been hit and, therefore, will not borrow

resources through their interbank credit lines. Second, when a bank decides to borrow in the

interbank market, both borrower and lender must negotiate the interest rate on the loan.

8Blasques et al. (2018) estimate a network model using Dutch interbank market data and show that a
wider corridor increases bank’s incentives to operate outside of its established relationships. In the model
presented in this paper, this can be interpreted as higher incentives for a bank to establish new credit lines.

9This assumption has been mainly used to study the risk of contagion in interbank networks. We make
use of this assumption in this paper, but we abstract from the possibility of contagion. See Upper (2011)
for a survey on contagion in interbank markets, which suggests that, in this setting, contagion arising from
banks’ defaults is unlikely.
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We will make the simplifying assumption that the borrower makes a take it or leave it offer

to the lender. In this case, the borrower will offer the rate that makes the lender indifferent

between lending in the interbank market and lending to the central bank. This assumption

implies that a bank with an incoming link does not want to hold more liquidity only to lend

to other banks, since an interbank loan yields a return equal to lending liquid assets to the

central bank. Therefore, holding liquidity is valuable to a bank only because it provides a

buffer against liquidity outflows.

In this setting, we first characterize the unique equilibrium of banks’ liquidity holdings for

any network. Then, we endogenize banks’ linking decisions to characterize the equilibrium

network in the network formation game. We use this to demonstrate that the central bank

faces a trade-off between the variance of the interbank rate and total amount of liquidity held

by the banking system when optimally deciding the corridor width. We provide sufficient

conditions such that the optimal corridor width is different from the width that minimizes

the variance of the interbank rate. We conclude our analysis by presenting comparative

statics results regarding the optimal corridor width with respect to the model’s structural

parameters.

A novel contribution of this paper is to provide a micro-foundation for the linear-quadratic

payoff framework analyzed in Ballester et al.(2006) in the context of banks’ liquidity management

problem. This framework has been commonly used to study a variety of settings due to its

analytical tractability.10 We provide a sufficient condition for the existence and uniqueness

of a Nash equilibrium in the choice of liquid assets for any fixed network. This condition

can be generalized to any network game where players choose a single continuous variable,

payoffs are linear-quadratic and the game displays local payoff substitutability.

We then proceed by providing a sharp equilibrium characterization of the network formation

game when the equilibrium is strict: every strict Nash equilibrium network is a complete

10See, for example, König et al. (2014) for applications on trade and interbank networks, Bramoullé et
al. (2014) for crime networks and König et al. (2019) for R&D networks.
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core-periphery graph.11 This characterization is consistent with the empirical evidence on

interbank market networks, which has identified core-periphery structures in many countries.12

Furthermore, we study the problem of a central bank whose objective is to optimally

define standing facilities rates. In order to do so, we define a loss function for the central

bank, which takes into account the volatility of the interbank rate and total liquidity holdings.

We then show that the central bank’s problem reduces to the choice of the corridor width

that minimizes its loss function, where the corridor width is defined as the spread between

the effective discount rate and the central bank’s deposit facility rate. Note that, in this

case, the minimum corridor width that the central bank can choose is not zero. Even if it

sets the discount rate equal to the deposit facility rate, the effective discount rate would still

be higher than the latter due to stigma effects.

Under certain restrictions on the range of the linking cost, we can derive general properties

with respect to the optimal corridor width. More specifically, we assume parameter ranges

such that the star network with weighted links directed to the center is the equilibrium

network. This simplifies the problem because the equilibrium link weight changes continuously

with respect to the corridor width, which, in turn, implies that total liquidity holdings also

changes continuously.13 Also, these restrictions guarantee that the equilibrium is unique for

every size of the corridor width.

We prove that, as long as the number of peripheral banks is not too small, it is not

optimal for the central bank to set the minimum corridor width. The key intuition is that

for too narrow corridors, peripheral banks choose to borrow a very small share of the center’s

liquidity, which, in turn, increases these banks’ incentives to hold a high amount of liquidity.

In this case, the central bank can reduce its loss by widening the corridor. Although this

11Proposition 3 provides conditions such that a strict Nash equilibrium always exists. Therefore, for each
Nash equilibrium that is not strict, there exists a (different) Nash equilibrium that is strict. Strict Nash
equilibria are more robust to small perturbations in banks’ payoffs than non-strict equilibria.

12The literature that has identified core-periphery type structures on empirical interbank networks
includes, but is not restricted to, Boss et al. (2004) for Austria, Soramaki et al. (2010) for the UK,
Craig and von Peter (2014) for Germany and Soramäki et al. (2007) for the US.

13A discrete change in the number of banks in the core may lead to a discontinuous change in total
liquidity holdings with respect to the corridor width.

7



implies a less precise targeting of the interbank rate, the reduction in total liquidity is

sufficiently large to outweigh the increase in volatility. This result holds for more general

equilibria networks, i.e for networks with more than one bank in the core.

Finally, we conduct comparative statics analysis regarding the optimal corridor width

with respect to changes in the size of interbank transaction costs and liquidity outflows.

This analysis can be relevant for moments of financial distress, when such variables are

likely to rise.14 We find that these parameters have qualitatively different impacts on the

optimal corridor. This result may seem counterintuitive at first. We show that this difference

is related to how changes in interbank transaction costs and liquidity outflows have distinct

implications for how banks in the periphery adjust their links to the center. We then proceed

by presenting a numerical example that illustrates how large variations in these parameters

have non-monotonic impacts on the optimal corridor width. Our results show that the

decision to widen or narrow the corridor depends on the increase of transaction costs relative

to liquidity outflows, as well as on the increase of these variables relative to their original

size. Consistent with these findings, recent events have shown that different central banks

reacted in distinctive ways to episodes of crises. The European Central Bank, for example,

during the Great Recession, decided to first narrow the corridor and then widen it, while

during the Covid-19 outbreak the corridor was kept unchanged. On the other hand, the

FED decided to narrow the corridor in both circumstances.

The remainder of this paper is organized as follows. Section 2 reviews the relevant

literature. Section 3 describes the model. Section 4 presents the equilibrium characterization.

Section 5 presents the central bank problem, derives general properties for the optimal

corridor width and conducts comparative statics analysis. Section 6 concludes. All proofs

are relegated to the appendix.

14For discussions on how financial crises impact interbank transaction costs and liquidity outflows, see
Bindseil and Jab lecki (2011) and Bucher et al. (2020).
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2 Literature Review

This paper relates to different literatures. First, it contributes to a strand of the literature

on financial networks that studies overnight interbank loans. This work also adds to the

literature on the optimal width of the corridor rate established by central bank’s standing

facilities and, more broadly, to the literature on banks’ liquidity management and monetary

policy.

We start by discussing our contributions to the literature on financial networks. Cohen-

Cole et al. (2015) and Denbee et al. (2021) study systemic risk in a network model for the

interbank market. The former paper focuses on banks’ lending decisions in an integrated

interbank market while abstracting from liquidity risk. Assuming banks choose lending

quantities à la Cournot, the payoff functions are linear-quadratic as in Ballester et al. (2006).

The latter studies banks’ liquidity holdings decisions under the assumption that banks have

linear-quadratic utility with respect to liquid assets. Banks’ own liquidity holdings can

either be local strategic substitutes or complements, depending on the value of structural

parameters. Our approach differs from both of these papers. In our model, banks explicitly

solve a liquidity management problem. Liquidity risk arises from adverse liquidity shocks,

which generates incentives for banks to hold liquidity and also to borrow liquid resources

in the interbank market. Under appropriate simplifying assumptions on the distribution of

liquidity outflows and interbank transaction costs, the model yields linear-quadratic payoff

functions. Therefore, we contribute to the literature by providing a micro-foundation for

Ballester et al. (2006)’s framework in the context of banks’ liquidity management problem,

which also encompasses, to some extent, Denbee et al. (2021)’s framework (when liquidity

holdings are strategic substitutes).

Closer to this paper is Anufriev et al. (2021). The authors develop a model of network

formation for the interbank market. Banks enter the market to adjust their end of the day

expected reserves via bilateral agreements that set the interest rate and amount of the loan

between the two parties. A link is two-sided, unlike in this paper where links are one-sided,

9



and is defined as the amount that one bank agrees to lend to another, which differs from our

interpretation of credit lines. This difference is crucial for the interpretation of results on how

changes in the corridor width affect the interbank market: while Anufriev et al. (2021)’s

analysis focus on what one would typically observe on a single trading day, our analysis

best describes the effects on the interbank market over a longer period of time. Moreover,

Anufriev et al. (2021) abstracts from the trade-off banks face between liquidity and return

by taking as exogenous banks’ reserve holdings (in the absence of interbank borrowing or

lending). By explicitly considering this trade-off, our network approach accounts for how

the corridor width impacts banks’ reserves holdings and how this impact is related to the

network structure of interbank relationships. This allows us to set up a central bank’s

problem which unveils a trade-off between interbank rate volatility and excessive liquidity

holdings by commercial banks.

This paper contributes to the literature on the optimal corridor width established by

central bank’s standing facilities. To the best of our knowledge, we are the first to study

this topic in a network setting. The literature has focused on the rationales behind the

optimality of non-zero corridors for central banks that have the interbank rate as their

target rate. Berentsen and Monnet (2008) are the first to address this issue. In a dynamic

general equilibrium model, the authors show that a non-zero corridor is optimal as long

as loans from the central bank to commercial banks require (costly) collateral. Bindseil

and Jab lecki (2011) develop a simple model of liquidity management with two banks. The

optimal corridor width is derived from a central bank’s objective function that takes into

account the volatility of the interbank rate, interbank trading volume and central bank’s

intermediation costs. This paper makes a contribution by considering a new trade-off that

the central bank faces, which is between interbank rate volatility and banks’ opportunity cost

of holding reserves. We show that a minimum corridor width is not optimal and, therefore,

the proposed trade-off provides new insights as to why a non-minimum corridor width can

be optimal.
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We also relate to the literature on banks’ liquidity management and monetary policy.

Whitesell (2006) compares interest rate corridors regimes and reserves regimes in a model

with an interbank market. In his model, banks face a trade-off between holding liquid

assets and lending in the interbank market, while abstracting from illiquid investments. By

modeling the market as an endogenous network, we show that a corridor regime impacts the

formation of trading relationships in the interbank market, which, in turn, affects banks’

liquidity holdings and interbank trading. This effect is not considered in Whitesell (2006)

when deriving banks’ demand for reserves. Afonso and Lagos (2015) employ a search model

where a large population of atomistic banks is randomly matched to model the interbank

market. Bianchi and Bigio (2021) closely follow Afonso and Lagos (2015) formulation of

this market and integrate it into a dynamic general equilibrium model. The authors study

the transmission and implementation of monetary policy in the context of banks’ liquidity

management problem. These papers are very different conceptually from this paper. They

rely on search models as the modeling tool for the interbank market, while we opt for

an endogenous network approach. Bianchi and Bigio (2021) and Afonso and Lagos (2015)

random matching in a large population of banks implies that two banks have zero probability

of being matched more than once, thus, abstracting from the empirically observed stability in

interbank relationships and its core-periphery structure. By taking interbank relationships

into account, our network approach explains its structure and how the endogenous formation

of these relationships is affected by changes in the corridor width, which, in turn, impacts

banks’ liquidity holding decisions.

3 Model Description

There is a set N = {1, 2, . . . , n} of players, with n ≥ 3, which we refer to as banks. Each

bank i has an amount wi of resources which it can invest in a liquid asset zi and an illiquid

asset xi = wi − zi. The illiquid asset yields an expected return of rx.
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The central bank offers banks a deposit facility, in which banks can lend resources to the

central bank at the rate r, and a lending facility, known as the discount window, in which

banks can borrow resources from the central bank at the so-called discount rate r̃. When r̃

is set at a penalty rate, i.e. r̃ ≥ r, there exists a stigma cost in borrowing from the central

bank at the discount window. This implies that the market rate equivalent to borrowing at

the discount window is higher than the discount rate. We, thus, define the effective discount

rate r̄ as:

r̄ =


r̃ + δ, r̃ ≥ r

r̃, r̃ < r

where δ > 0 represents costs associated with stigma. Note that r̄ is the relevant rate for a

bank when borrowing from the central bank.

To prevent arbitrage opportunities the central bank sets r̄ > r. Otherwise, banks would

profit by borrowing from and then lending to the central bank. Note that this implies

r̄ − r ≥ δ > 0. We assume r̄ > rx > r. This assumption is necessary for banks to hold a

positive amount of both liquid and illiquid assets in equilibrium.15

Banks can borrow liquid assets from other banks via the interbank market. If bank i

extends a link gi,l ∈ [0, 1] to bank l, it pays a linking cost of κ̃gi,l, where κ̃ > 0, and it can

choose to borrow up to a fraction ψgi,l of zl, where ψ < 1. We set gi,i = 0,∀i ∈ N . This

prevents the possibility of a bank borrowing resources from itself. The total amount of liquid

assets that bank i can access through the market, which we refer to as accessible liquidity,

is equal to
∑

j∈N ψgi,jzj ≡ yi,∀i ∈ N .16

Interbank rate: For a bank l to be willing to lend to bank i, the expected profit of

the loan must be weakly higher than the outside option, i.e. lending to the central bank.

We assume that there exists a stochastic marginal cost c in lending liquid assets via the

interbank market, with cdf H(.) defined over the support [0, c̄], with c̄ ≥ r̄ − r. Hence, the

15If rx ≥ r̄, banks would invest all of their resources in the illiquid asset, whereas, if rx ≤ r, banks would
only invest in the liquid asset.

16See Denbee et al. (2021) for a similar definition of accessible liquidity.
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interest rate of a loan from bank l to bank i, ri,l, must satisfy:

ri,l − c ≥ r ⇔ ri,l ≥ r + c.

We assume that the borrower makes a take it or leave it offer to the lender. This

simplifying assumption implies that a bank with an incoming link does not want to hold more

liquidity only to lend to other banks since an interbank loan yields an expected return equal

to lending liquid assets to the central bank. Hence, holding liquidity is valuable to a bank

only because it provides a buffer against liquidity shocks. Given this assumption, bank i can

borrow liquid assets from bank l in the interbank market at a rate ri,l = r+ c ≡ r̂(c), ∀ i, l ∈

N . Of course, bank i will only borrow resources via the market if r̂(c) ≤ r̄ ⇔ c ≤ r̄ − r,

otherwise it would find it more profitable to borrow directly from the central bank at the

discount window. We thus define the realized interbank rate r(c) ≡ r+ c, with c ∈ [0, r̄− r].

Note that the support of r(c) is [r, r̄].

Network: We define bank i’s links as gi = (gi,1, . . . , gi,n) ∈ Gi = [0, 1]n and the network

as g = (g1,g2, ...,gn). We say that a bank i connects to bank j if gi,j > 0. If the link

gi,j ∈ (0, 1), then it is said to be weighted. The network is said to be directed, because i

can connect to j, without j connecting to i. We also define the undirected network ḡ, where

ḡi,j = max{gi,j , gj,i} = ḡj,i. The adjacency matrix G is defined as the n×n matrix in which

the element in the i-th row and j-th column is equal to gi,j.

Strategies: Each bank i has a set of strategies Si = [0, wi] × Gi. A strategy profile

si = (zi,gi) ∈ Si specifies the amount of liquid assets that bank i holds, zi, and the share

of other banks’ liquid assets it can borrow, ψgi. The set of strategies of all banks is S =

S1 × S2 × ...× Sn. A strategy profile s = (z,g) ∈ S then specifies each bank’s own liquidity

holdings, z = (z1, z2, ..., zn), and links, g.

Timing: One randomly chosen bank is hit by a liquidity outflow ϵ ≥ 0 with cdf F (.)

known to the bank. Agents that were not chosen are not hit by any shock. Each bank
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Figure 1: Visual representation of liquidity outflow.

zi zi + yiϵ1

zi zi + yiϵ2

zi zi + yi ϵ3

(a)

ziϵ1

zi ϵ2

(b)

Notes: Panel (a) presents the relevant regions of ϵ for bank i when c ≤ r̄− r. Panel (b) presents the relevant

regions of ϵ for bank i when c > r̄ − r.

must decide its strategy profile before a bank is chosen and before the realization of ϵ and c.

Suppose bank i is hit by a liquidity outflow. Consider first the case where c ≤ r̄−r. We then

have three possible outcomes, which are represented in Panel (a) of Figure 1. If ϵ ≤ zi, then

bank i deposits the difference, zi − ϵ, at the central bank at the rate r. Otherwise, ϵ > zi

and bank i must borrow the difference, ϵ− zi, to cover its outflows. If ϵ ≤ zi + yi, then bank

i uses its credit lines to borrow the necessary amount of resources in the interbank market

at the rate r(c). If ϵ > zi + yi, then the most that bank i can borrow in the market is not

sufficient to cover the outflow and, thus, it borrows yi at the rate r(c) and the remaining

resources, ϵ − (zi + yi), in the discount window at the rate r̄. Now consider the case where

c > r̄− r. Then there are only two possible outcomes, which are represented in panel (b) of

Figure 1. If ϵ ≤ zi, then the bank proceeds as in the previous case. Otherwise, ϵ > zi and

bank i borrows the necessary resources exclusively at the discount window at the rate r̄.17

Note that bank i does not use its credit lines since it cannot borrow in the interbank market

at a rate lower than r̄.

Payoffs: Let us break down the utility of bank i into three parts. First, the expected

17We adopt here the standard assumption that the central bank always has enough resources to lend to
the bank with liquidity needs (see Poole (1968)).
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profit from the investment in the illiquid asset is rx(wi − zi).

Second, if c ≤ r̄ − r, then bank i’s profit is:

Π(zi, c,gi) =

∫ zi

0

r(zi − ϵ)dF (ϵ) −
∫ zi+yi

zi

r(c)(ϵ− zi)dF (ϵ)−

−
∫ ∞

zi+yi

[r(c)yi + r̄(ϵ− (zi + yi))]dF (ϵ). (1)

If c > r̄ − r, then bank i’s profit is:

Π(zi, c,gi) =

∫ zi

0

r(zi − ϵ)dF (ϵ) −
∫ ∞

zi

r̄(ϵ− zi)dF (ϵ). (2)

The first term in (1) and (2) is the benefit from lending the excess reserves to the central

bank. The following terms are the cost from borrowing the necessary resources from other

banks in the interbank market (when r(c) ≤ r̄) and from the central bank. Lastly, bank i

pays the total cost of linking
∑

j∈N κ̃gi,j.

The utility of bank i can then be written as:

ui(zi,gi) = rx(wi − zi) +

∫ c̄

0

Π(zi, c,gi)dH(c) − κ̃
∑
j∈N

gi,j. (3)

For the remainder of this paper we will assume that c ∼ U [0, c̄] and ϵ ∼ U [0, ζ], where

0 < ζ < minj wj. The payoff function for bank i can then be written as:18

u(zi,gi) = ζβzi −
γ

2
z2i − λziyi + ζλyi −

λ

2
y2i − κ

∑
j∈N

gi,j, (4)

where κ ≡ ζκ̃, β ≡ r̄ − rx, γ ≡ r̄ − r, λ ≡ γ
c̄

(r̄ − E[r(c)]) = γ2

2c̄
. The term E[r(c)], which

we refer to as expected interbank rate, is equal to
∫ γ
0
r(c)
γ
dc = 1

2
(r̄ + r) . Our model thereby

provides, in the context of banks’ liquidity management problem, a micro-foundation for the

linear-quadratic payoff framework. This directly implies the existence and uniquenesses of

18For expositional clarity, we multiplied (3) by ζ and subtracted all constant terms.
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an interior equilibrium in the choice of liquidity holdings for any given network, as we show

in the next section.

Note that we have omitted from (4) the region such that zi + yi > ζ.19 In terms of

equilibrium analysis of the network formation game, the results are the same whether we

consider or not this region. To obtain intuition for this, note first that a higher yi is valuable

for bank i only because it decreases the probability that i has to resort to discount window

borrowing when r(c) ≤ r̄. However, if zi + yi ≥ ζ, then this probability is zero because i

can cover any liquidity outflow that hits it using only its interbank credit lines. It is then

straightforward that if zi + yi > ζ, then i would profit from decreasing the weight on some

of its positive links such that zi + y′i = ζ. This would reduce the cost of linking while

keeping the previously mentioned probability equal to zero. Hence, for any strategy profile

si = (zi,gi) such that zi + yi > ζ, there exists a profile s′i = (zi,g
′
i) such that zi + y′i = ζ

and u (s′i) > u (si). Moreover, for equilibrium analysis when the network is fixed, we provide

sufficient conditions in the next section such that zi + yi ≤ ζ for every Nash equilibrium in

the choice of liquid assets and any given network.

The payoff function is strictly concave in own liquidity holdings, with concavity parameter

γ =
∣∣∣∂2ui∂z2i

∣∣∣ . From bank i’s perspective, an increase in liquidity holdings from a bank such

that gi,l > 0 produces a positive externality:

∂ui
∂zl

= (ζ − (zi + yi))λψgi,l > 0.

This increase also creates incentives for i to reduce its own allocation to liquid assets:

∂2ui
∂zi∂zl

= −λψgi,l < 0.

Together, we say that the network game displays local positive externalities and strategic

substitutability.

19See the Appendix for a complete derivation of the payoff function.
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The best response function for bank i, given the network g and z−i is:

zi(g, z−i) =
ζβ

γ
− λ

γ
yi. (5)

Substituting (5) in (4) we obtain the value function, which can be written as:

V (yi,g) = v(yi) − κ
∑
j∈N

gi,j, (6)

where v(.) is strictly increasing and concave with respect to yi. We refer to v(.) as the gross

value-function. A formal derivation of the value function is provided in the Appendix.

4 Analysis - Network Formation

In this section, we provide the equilibrium analysis of our model. First, we provide a sufficient

condition such that an interior Nash equilibrium in the choice of liquidity holdings exists

for any fixed network. Then, we present the formal definition of a complete core-periphery

network and show that in any strict Nash equilibrium of the network formation game the

equilibrium network displays a core-periphery structure. We proceed by deriving a sufficient

condition such that an equilibrium exists for any linking cost value, as well as a (weaker)

condition such that an equilibrium with a non-empty network exists. Lastly, we turn to

the case when the equilibrium network is a star with at least one weighted link. We provide

general properties that will be useful for the next section when we study how the equilibrium

network adapts to changes in the corridor width, γ = r̄ − r.

Our first proposition presents a sufficient condition for the existence of a unique interior

Nash equilibrium in the choice of liquid assets for any fixed network.

Proposition 1. If ψ < γ
λ(n−1)

and β < λ, then there exists a unique NE in the choice of z

and the unique NE is interior for any given network g.

Let us build intuition for the above proposition. First, β and ψ sufficiently small
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guarantee that, in any NE, zi + yi ≤ ζ , ∀i ∈ N . To see this, note that a smaller ψ reduces

how much liquidity a bank can access through the interbank market, yi, while a smaller β

increases banks’ incentives to allocate fewer resources to liquid assets, zi. Hence, we can

consider banks’ payoffs as in (4).

Next, consider, without loss of generality, bank i’s payoff function. For i to choose a

positive amount of liquidity holdings, its own concavity parameter must be high enough

to counter effects of local substitutability. This translates into the following condition in

our model, γ >
∑

j ̸=i

∣∣∣ ∂2ui
∂zi∂zj

∣∣∣ = ψλ
∑

j ̸=i gi,j.
20 The term ψλ measures the level of this

substitution effect,
∣∣∣ ∂2ui
∂zi∂gi,jzj

∣∣∣, and
∑

j ̸=i gi,j the intensity at which these effects impact bank

i through the network. Since gi,j ≤ 1, ∀i, j ∈ N , the maximal value of
∑

j ̸=i gi,j equals n−1,

which yields the condition γ > ψλ(n− 1).

Before presenting the following proposition, which characterizes equilibrium networks, we

provide a formal definition of a complete core-periphery network for undirected networks.

Definition 1. A core-periphery network ḡ is such that there are two disjoint groups of

players, the periphery P (ḡ) and the core C(ḡ). P (ḡ) is such that players are not connected

(i.e. ∀i, j ∈ P (ḡ), ḡi,j = 0), while C(ḡ) is such that players are all connected (i.e. ∀l, k ∈

C(ḡ), ḡl,k ̸= 0). A complete core-periphery network is such that every player in P (ḡ) is

connected to every player in C(ḡ) (i.e. ∀i ∈ P (ḡ) and k ∈ C(ḡ), ḡi,k ̸= 0).

Figure 2 displays two examples of core-periphery networks. In both cases, C(ḡ) =

{1, 2, 3} and P (ḡ) = {4, 5, 6}. But note that only the graph in Panel (b) is a complete

core-periphery graph since, in Panel (a), bank 1 ∈ C(ḡ) and 6 ∈ P (ḡ) are not connected.

Note that Definition 1 applies only to undirected networks. The network that is formed

from banks’ linking decisions, g, is directed since a bank i can extend a link to bank j,

without j extending a link to i. We, thus, provide an equilibrium characterization to the

undirected network ḡ, which we defined in the previous section as the closure of g (i.e.

20Kolstad and Mathiesen (1987) refer to this condition as diagonal dominance when deriving sufficient
conditions for the uniqueness of equilibrium in a Cournot game.
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Figure 2: Two Examples of Core-Periphery Graphs.
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Notes: Panel (a) and Panel (b) display core-periphery networks. In both cases, C(ḡ) = {1, 2, 3} and

P (ḡ) = {4, 5, 6}. The graph in Panel (a) is not a complete core-periphery graph because 1 ∈ C(ḡ) and

6 ∈ P (ḡ), for example, are not connected.

ḡi,j = max{gi,j , gj,i}).

Proposition 2. In any strict NE, s = (z,g), ḡ is a complete core-periphery network.

Furthermore, there exists a partition {C(ḡ), P (ḡ)} of N such that:

• All peripheral banks display the same level of liquidity holdings.

• Core banks display higher levels of liquidity holdings than peripheral banks.

The characterization of the equilibrium network ḡ is consistent with the empirical literature

that has identified core-periphery structures in several interbank markets. To provide some

intuition for the result, suppose we have three banks i, k and j, with zi ≤ zk. If i connects

to k , then it must be that j also connects to k. To see this, suppose that j does not connect

to k. Recall that v(.), i.e. the gross value function, is increasing in the amount of accessible

liquidity. Then, it must be the case that i connects to every bank l such that zl ≥ zk

with gi,l = 1, l ̸= i. If this were not the case, then i could weakly increase its payoff by

reducing its link with k and increasing by the same amount a link to a bank with a weakly

higher amount of liquid assets. An analogous argument tells us that j can only connect to

banks that hold an amount of liquidity strictly higher than zk. Hence, yi ≥ yj + ψgi,kzk.

That is, if bank j were to extend a link of weight gi,k to k, it would still have an accessible
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liquidity weakly lower than i. Recall that v(.) is concave. So the marginal benefit of bank

j creating this link is weakly higher than the marginal benefit of i, while the marginal cost,

κ, is constant. Therefore, if i finds it weakly profitable to link to k, so does j and we have

reached a contradiction. We thus have that if some bank k receives at least one incoming link

from a bank that holds weakly less liquid than it, then every bank in the network connects

to k. The characterization of ḡ then follows from the fact that if ḡ ̸= 0, then a bank

that holds minimum liquidity in equilibrium always connects to all banks that hold strictly

more liquidity. We provide the following numerical example of two strict Nash equilibria to

illustrate Proposition 2.

Example 1. Assume n = 11, γ = 50, β = 5, λ = 15.625, ψ = 0.99, κ = 0.44, ζ = 100,

where {γ, β, λ} are expressed in basis points. Then there exists two different equilibrium

networks: a complete core-periphery graph with 5 banks in the core and binary links only

(i.e. gi,j ∈ {0, 1}, ∀i, j ∈ N), as depicted in Panel (a) of Figure 3, and a complete core-

periphery graph with 4 banks in the core and binary links only, as depicted in Panel (b)

of Figure 3. Note that when links are all binary, all core banks display the same level of

liquidity holdings. Also, we can see that, for the same set of parameter values, total liquidity

is higher when the network is sparser.

Proposition 3 provides existence results for strict Nash equilibria in the choice of liquidity

holdings and links. We present a sufficient condition such that an equilibrium exists for any

linking cost κ. We also provide a (weaker) condition such that an equilibrium with a non-

empty network exists. Let us define β̂ ≡ γλ2ψ(γ+λψ)
2γ2(γ−λ)+γλ2ψ+λ3ψ2 and note that β̂ is strictly smaller

than λ.

Proposition 3. If β < β̂, then for any linking cost κ ∈ R+ there exists a strict NE,

s = (z,g). If β < λ, then there exists κ such that a strict NE, s = (z,g), exists and the

equilibrium network g is non empty, i.e. g ̸= 0.

To satisfy at least one of the conditions above, it is sufficient for the return on the illiquid
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Figure 3: Equilibrium Networks and Liquidity Holdings.

Node z*

Core 4.47
Periphery 3.09

(a)

Node z*

Core 5.19
Periphery 3.58

(b)

Notes: Liquidity holdings are rounded to the second decimal. Panel (a) presents an equilibrium network

with 5 banks in the core. Panel (b) presents an equilibrium network with 4 banks in the core. In both

panels, all links are binary, i.e. gi,j ∈ {0, 1},∀i, j ∈ N .

asset rx to be sufficiently close to r̄ (i.e. β sufficiently close to zero). To get some intuition

for Proposition 3, define K as the set of linking costs κ such that a strict NE exists. Note

first that there always exists a sufficiently high linking cost such that it is never profitable

for a bank to extend a link. Therefore, set K is always non-empty. However, it may be the

case that, for all values of κ in K, the corresponding equilibrium always displays the empty

network.

To illustrate the conditions in Proposition 3, let us consider a complete core-periphery

graph with nC ∈ {2, . . . , n− 1} banks in the core and binary links only, which we refer to as

g (nC). For s = (z,g (nC)) to be a strict NE, the linking cost must lie in between two linking

thresholds κ̄(nC) and κ(nC), which are formally defined in the appendix (Lemma 8). These

thresholds are such that: (i) if κ ≥ κ(nC), then a bank in the core does not find it profitable

to extend a link to a peripheral bank, (ii) if κ ≤ κ̄(nC), then a bank in the periphery does

not find it profitable to reduce the weight of the link it extends to a core bank. The condition

β < λ implies κ̄(nC) > κ(nC),∀nC , which guarantees the existence of a κ that satisfies (i)
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Figure 4: Visual representation of the intervals K(nC).
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Notes: Consider n = 5 and nC ∈ {2, 3, 4}. Panel (a) displays the case when adjacent intervals have an empty

intersection. Panel (b) displays the case when adjacent intervals intersect.

and (ii) simultaneously for a given nC .

Moreover, define K(nC) ≡ [κ(nC), κ̄(nC)] and consider the set
⋃
nC
K(nC) ⊆ K. Figure

4 displays two possibilities for the union of K(nC). For simplicity, we assume n = 5. In

Panel (a), adjacent intervals do not intersect and, therefore, the union of K(nC) is not an

interval in R+. In Panel (b), we have that adjacent intervals always overlap and, thus,

[κ(n− 1), κ̄(2)] =
⋃
nC
K(nC) ⊆ K. When we also consider linking cost intervals such

that the equilibrium network is the empty, star or complete network, then the overlapping

condition guarantees that K = R+. In turn, the overlapping condition holds if β < β̂.

Next, we derive properties of strict NE that display a star network with at least one

weighted link. More specifically, we show that, in this case, the equilibrium is unique and

the equilibrium link weight changes continuously with respect to the corridor width. These

results will be useful for the next section when we study how the equilibrium network adapts

to changes in the corridor width, γ = r̄ − r.

Define gs as the set of networks g that are a star network with at least one weighted

link.21 Also, consider two linking cost thresholds κ0 ≡ v′(0)ψzs and κ1 ≡ v′ (ψzs)ψzs, where

zs = ζβ
γ

is the liquidity holding of the center. κ0 and κ1 represent the marginal benefit of a

21Formally, a star network g is such that some bank i receives an incoming link from every other bank
(i.e. ∀j ̸= i, gj,i ̸= 0) and the remaining banks do not receive any incoming links (i.e. ∀j, k ̸= i, gj,k = 0).
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bank increasing the weight of the link to the center when its accessible liquidity is zero and

zs, respectively. We then have the following result.

Proposition 4. Assume β < λ. Then a strict NE s = (z,g) exists for some g ∈ gs if and

only if κ ∈ (κ1, κ0). Moreover:

• All peripheral banks extend a weighted link to the center and the weight is the same

across banks.

• The equilibrium link weight g∗ ∈ (0, 1) satisfies κ = v′ (ψg∗zs)ψzs, where zs = ζβ
γ

is

the liquidity holding of the center.

• s is the unique strict NE.

We briefly provide some intuition for the results. First, for g ∈ gs to be part of an

equilibrium, the linking cost must be low enough for a peripheral bank to not find it profitable

to access zero liquidity (i.e. κ < κ0). But it also must be sufficiently high to prevent a

peripheral bank from accessing as much liquidity as it can from the center (i.e. κ > κ1).

The fact that links extended to the center are all of equal weight follows from the fact

that, in any strict NE, s = (z,g), any two banks i and k that are not connected have the

same strategy profile in equilibrium (Lemma 3). To see why this holds, suppose si ̸= sk and,

without loss of generality, assume u (si) ≥ u (sk). Since i does not connect to k, a possible

deviation for k is s′k = si, which is weakly profitable for bank k.

The condition for the equilibrium weight g∗ can be obtained by simply taking the

derivative of the value function in (6) with respect to the link extended to the center.

Note that, by the strict concavity of v(.), we can uniquely solve for g∗ and the solution

is continuous in the parameters of the model (including the corridor width, γ).

Finally, we discuss the uniquenesses of s. Since v′(.) is strictly decreasing, condition

κ = v′ (ψg∗zs)ψzs shows that any link to the center g′ ∈ [0, 1] different from g∗ cannot be

part of an equilibrium. Consider then a network g′ with at least two banks in the core. In
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any strict NE that displays g′, some bank i extends at least two links. In equilibrium, banks

extend at most one weighted link (Lemma 1). Hence, i extends a link of weight one to some

bank j. From (5), we have that j holds weakly less liquidity than zs. From the concavity of

v(.), if i were to only connect to j, it would again extend a link of weight one. Since zj ≤ zs,

this implies that it is optimal for a peripheral bank in a star to extend a link of weight one

to the center. This contradicts the fact that peripheral banks extend a link of weight less

than one to the center in the strict NE s.

5 Policy Analysis

5.1 The Central Bank’s Problem

The model developed in this paper contains two variables that are under the control of the

central bank: the discount rate r̃ (which ultimately defines r̄) and the deposit facility rate r.

These rates affect banks’ liquidity holdings and credit lines decisions since they determine

the cost of borrowing from the central bank when necessary and the opportunity cost of

holding excess liquidity. In addition, r̄ and r also impact the distribution of the realized

interbank rate r(c) = r + c, where c is the marginal lending cost for interbank loans. To

see the this, recall that r(c) only assumes values in [r, r̄]. Also, the interbank rate expected

value, E[r(c)] = 1
2

(r̄ + r) , and volatility, V ar[r(c)] = 1
12

(r̄− r)2, are defined by the standing

facilities rates.

Following the design of central banks’ operational frameworks in Bindseil (2016), we

assume that the central bank sets a target rate r∗ for the expected interbank rate E[r(c)].

We abstract from how the central bank sets the level of the target rate r∗. It is assumed

that r∗ derives from an exogenous goal (e.g. price stability). Hence, the primary goal of the

central bank is to choose a pair {r̄, r} such that:

r∗ =
r̄ + r

2
. (7)
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The following section explores how the central bank should set the optimal corridor width,

γ = r̄− r, conditional on its target to the interbank rate. The central bank faces a trade-off

when setting the corridor width: a narrower corridor reduces the variance of the interbank

rate, allowing the central bank to target it with higher precision. However, the equilibrium

network may change in response, yielding a sparser network, in which interbank activity is

lower, and, thus, increasing total liquidity holdings in equilibrium. This incurs an implicit

cost since these funds could be invested in the more productive illiquid asset. To study

this trade-off, we define a loss function to the central bank which is a convex combination

between interbank rate volatility and total liquidity holdings. The central bank chooses a

pair of standing facilities rates {r̄, r} to minimize its loss function. We show that as long

as the expected return on the illiquid asset, rx, has a positive premium with respect to the

target rate, the central bank’s problem can be reduced to the choice of the corridor width

that minimizes the loss function.

In light of this, let us characterize the central bank’s problem. The central bank controls

r̄ and r, which is equivalent to choosing r̄ and γ = r̄ − r. Define the set of endogenous

parameters as {r̄, γ}, and the set of exogenous parameters as Φ = {c̄, δ, rx, ψ, κ, ζ}. Starting

from a strict NE s = (z,g), the volatility of the interbank rate is given by:

V (γ) ≡ γ2

12
. (8)

Total liquidity is defined as:

Z(r̄, γ) ≡
n∑
i=1

zi (r̄, γ,Φ) . (9)

We define a loss function to the central bank that is increasing in both the volatility of the

interbank rate and total liquidity holdings. We opt for the most parsimonious specification,

which is a convex combination of these terms:
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L(r̄, γ) = θV (γ) + (100 − θ)Z(r̄, γ) ,

where θ ∈ (0, 100) is given and measures the relative importance of the precise targeting of

the interbank rate for the central bank.22

To fully characterize the problem, let us discuss the restrictions on {r̄, γ}. First, recall

the assumption c̄ ≥ r̄ − r ⇔ c̄ ≥ γ. This assumption guarantees that the interbank rate,

r(c), can assume any value in between r and r̄. Second, we have a no arbitrage condition

r̄ > r, which implies r̄− r ≥ δ ⇔ γ ≥ δ. We also have condition (7), which can be rewritten

as r∗ = r̄ − γ
2
. We make one last assumption that allows us to write the loss function and

the constraints in terms of γ only. We assume that the expected return on the illiquid asset,

rx, has a positive premium with respect to the target rate. We can then write:

rx = r∗ + η, (10)

with η > 0, where η can be interpreted as a liquidity premium, risk premium, or a combination

of both. Replacing (10) in (7), yields the following condition:

β =
γ

2
− η. (11)

Replacing (11) in (5) allows us to rewrite (9) as Z(γ) ≡
∑n

i=1 zi (γ,Φ) where Φ =

{c̄, δ, η, ψ, κ, ζ}. We are now able to define an optimal corridor width.

Optimal corridor width: γ ∈ R+ such that:

minγ {L(γ) | c̄ ≥ γ ≥ δ} . (12)

The solution to (12) is denoted as γ∗ (Φ, θ). When γ∗ (Φ, θ) = δ, we say that the minimum

corridor width is optimal. For the remainder of this paper, we assume that δ > 2η and 8η > c̄.

22Alternatively, one could define the convex combination for θ ∈ (0, 1). We opt for the interval (0, 100)
just for expositional clarity of the numerical examples.
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The first condition guarantees that for every γ ∈ [δ, c̄], β > 0, and, thus, liquidity holdings

are always strictly positive. The second assumption implies λ > β, which, by Proposition 3,

assures that for some linking cost value we have a non-empty equilibrium network.

5.2 Optimal Corridor Width

This section analyzes the optimal corridor width. We first derive restrictions on the range of

the linking cost, κ, such that for each corridor width the equilibrium network is a star with

weighted links directed to the center. In this setting, the equilibrium is unique and total

liquidity holdings decrease continuously with respect to increases in the corridor width. Our

main result shows that, if the number of peripheral banks is larger than some threshold,

then it is not optimal for the central bank to set the corridor to its minimum width, δ. This

result follows from the fact that for corridors that are too narrow, peripheral banks access a

small share of the center’s liquidity and, therefore, hold large amounts of liquidity. We then

provide a numerical example that illustrates how failing to account for the endogeneity of

links can lead to suboptimal policy.

In order to derive general properties regarding the optimal width of the corridor rate,

we restrict our analysis to sets Φ such that for every γ ∈ [δ, c̄], the equilibrium network

is a star network with weighted links directed to the center. This restriction in the set of

exogenous parameters simplifies the problem for two reasons: first, it rules out multiplicity

of equilibria, as we can see from Proposition 4. Second, it implies that Z(γ) (and, therefore,

L(γ)) is continuous with respect to γ. To see this second point, let us further analyze how

the equilibrium network changes with respect to γ. From Proposition 4, the equilibrium link

weight g∗ must satisfy:

κ = v′ (ψg∗zs)ψzs. (13)

From the strict concavity of v(.), we can uniquely solve for g∗. The solution will then
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be continuous in γ. Hence, Z(γ) is continuous because the intensity of the link g∗ changes

continuously with γ, while the size of the core remains constant.23

Next, we ask what restrictions to the set Φ are necessary to ensure that, for every γ ∈ [δ, c̄],

the corresponding strict NE displays a star network with weighted links. From Proposition

4, we have that for each γ, it must be that:

κ ∈ (κ1(γ), κ0(γ)), (14)

where we have made explicit that linking cost thresholds depend on the corridor width.24

Both κ1(γ) and κ0(γ) are increasing in γ. Hence, to satisfy (14) for all γ, it is sufficient:

κ ∈ (κ1(c̄), κ0 (δ)) . (15)

Finally, we need κ1(c̄) < κ0 (δ) to guarantee that, for some positive κ, (15) holds. This

inequality is satisfied as long as
√

c̄2+4ηc̄−4η2

2
< δ and

2(c̄2−δ2)
(c̄−2η)2

< ψ < 1. Unless otherwise

stated, we take Φ such that (15) holds.

We now turn to the properties of γ∗ (Φ, θ). Note that L(γ) is continuous. Since [δ, c̄] is

compact, γ∗ (Φ, θ) is always non-empty. Our first proposition establishes conditions under

which it is not optimal for the central bank to set the corridor width to its minimum size, δ.

More specifically, it shows that, for any weight that the central bank assigns to the targeting

of the interbank rate, θ, one can find a (finite) number of banks in the periphery such that

it is not optimal for the central bank to minimize the interbank rate variance.

Proposition 5. For each θ, there exists a n̄ ∈ R such that, for all n > n̄, the loss function,

L(γ), is decreasing in the size of the corridor at γ = δ. Moreover, the optimal corridor width,

γ∗ (Φ, θ), is then strictly larger than the minimum corridor width, δ.

23Changes in the equilibrium network that come from discrete changes in the size of the core can create
discontinuities in Z(γ).

24The exact expressions for the linking thresholds are κ0(γ) ≡ ζ2ψ
8c̄

(
γ2 − 4η2

)
and κ1(γ) ≡

ζ2ψ
16c̄2

(
2c̄

(
γ2 − 4η2

)
− ψ(2c̄− γ)(γ − 2η)2

)
.
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This result highlights the importance of the trade-off between volatility of the interbank

rate and total liquidity to the central bank’s decision. L(γ) decreasing at γ = δ implies that

the central bank can reduce the loss function by a sufficiently small increase of the corridor

width. Although this implies a higher variance of the interbank rate, there exists a marginal

reduction in total liquidity that compensates for the increase in volatility. It then follows

from this trade-off that the minimum corridor width is not optimal.

Let us discuss the conditions under which Proposition 5 holds. First, recall the assumption

δ > 2η. Note that, if to the contrary δ ≤ 2η, then the optimal corridor is the minimum

corridor since β < 0 when γ < 2η, which, in turn, implies that total liquidity is zero

in equilibrium. Hence, due to stigma costs, the proposed trade-off affects central bank’s

optimal decision.

Furthermore, the fact that n has to be sufficiently large is intuitive. Note that the

bank at the center of the star holds zs = ζ
(

1
2
− η

γ

)
, which is strictly increasing in the size

of the corridor. Therefore, for total liquidity to decrease, it must be that banks in the

periphery reduce their liquidity holdings. It follows that the larger the number of banks in

the periphery, the more liquidity decreases when the corridor increases. Of course, how large

n must be depends on θ (See Proposition 5 in the Appendix for a formal derivation of the

threshold n̄). More precisely, the more weight the central bank puts on the interbank rate

volatility, the larger must be n.

Next, we present a numerical example to illustrate Proposition 5.

Example 2. Assume n = 3, c̄ = 70, δ = 60.6, η = 8.8, ψ = 0.9, κ = 6.9948 ∗ 10−7, ζ =

0.036, θ = 99.9897, where {c̄, δ, η} are expressed in basis points. Then γ∗ (Φ, θ) ≈ 64.4.

Panel (a) of Figure 5 displays the loss function over the relevant range of the corridor width.

As we can see, it is not optimal to set a corridor too close to δ. Panel (b) shows that

this is the case because the equilibrium link weight g∗ is close to zero, which implies an

excessive amount of total liquidity. As we increase the corridor width, peripheral banks

start strengthening their link to the center, total liquidity goes down and the loss function
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Figure 5: Optimal Corridor Width: A Numerical Example.
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Notes: Panel (a) presents the loss function L(γ) over the domain [δ, c̄]. The loss function is multiplied by 104.

Panel (b) presents the equilibrium link weight g∗ for each γ ∈ [δ, c̄]. Vertical lines are drawn at γ = γ∗ (Φ, θ).

decreases up to the point that it reaches the minimum. At this point, the gain from reducing

total liquidity no longer compensates for the increase in volatility that comes with a wider

corridor. Note that even for θ close to 100, it is still the case that for relatively low values

of n, the optimal corridor width is larger than δ.

To understand the role that the endogeneity of the network plays in Proposition 5, let us

discuss how the widening of the corridor affects peripheral banks’ incentives to hold liquidity.

On one hand, a wider corridor implies a higher r̄, which increases the cost of being short

of liquid assets, thus, increasing peripheral banks’ incentives to hold more liquidity. On the

other hand, r is lower, reducing incentives to hold liquid assets. We have also seen that

30



the bank at the center of the star increases its liquidity holdings when the corridor widens,

which, due to local substitutability, reduces peripheral banks’ incentives to allocate resources

to liquid assets. If one were to fix the weight of the link to the center, then, for a sufficiently

low fixed weight, the widening of the corridor would result in an increase in peripheral banks’

liquidity holdings (See Proposition 7 in the Appendix).

Instead, if banks can optimally choose the weight of their links, then liquidity holdings

decrease. This follows from the fact that a link becomes more valuable when the corridor

widens since this reduces the probability that a bank with liquidity needs cannot borrow

in the interbank market at a rate lower than r̄. As a result, a bank in the periphery finds

it profitable to increase the weight of its link to the center, as we can see in Panel (b) of

Figure 5. This, in turn, increases its accessible liquidity, which, again, reduces incentives

to hold own liquidity. This additional effect always outweighs remaining peripheral banks’

incentives to hold more liquidity, if any.

Note that Proposition 5 may not hold if banks cannot revise their linking decisions since

for a fixed network the trade-off in narrowing the corridor may not be present. This, in turn,

implies that the central bank may set the corridor width at a suboptimal level if it does not

account for how links adapt to changes in the corridor.

5.3 Comparative Statics

We conclude the analysis by providing comparative statics results regarding the optimal

corridor width with respect to structural parameters. More specifically, as in Bindseil and

Jab lecki (2011), we focus on changes in the size of interbank transaction costs, c̄, and liquidity

outflows, ζ. As in the previous section, we consider the restrictions in the linking cost, κ,

such that the equilibrium network is a star network with weighted links directed to the

center. First, we provide conditions such that the optimal corridor width is decreasing in c̄

and increasing in ζ. The fact that the central bank reacts differently depending on which

parameter changes may seem counterintuitive at first. We show that this result is related to
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how changes in interbank transaction costs and liquidity outflows have different implications

for how banks in the periphery adjust their links to the center. Next, we provide a numerical

example to illustrate that, when such conditions do not hold, sufficiently large changes in c̄

and ζ may lead to non-monotonic changes in the optimal corridor width. This implies that

the central bank should react differently to relatively small and large changes in the size of

interbank transaction costs and liquidity outflows.

We start by presenting Proposition 6, which provides comparative statics results regarding

the optimal corridor width. As in the previous section, we consider values for ζ and c̄ such

that, for each corridor width, the equilibrium network is a star with weighted links directed

to the center. Our results show that the optimal corridor width is then increasing in the size

of liquidity outflows and decreasing in the size of interbank transaction costs.

Consider a original set of exogenous parameters Φ = {c̄, δ, η, ψ, κ, ζ} and the corresponding

optimal corridor width γ∗ (Φ, θ). When ζ changes to ζ ′, the new set of exogenous parameters

is Φζ′ = {c̄, δ, η, ψ, κ, ζ ′}. Analogously, we define Φc̄′ as the set of exogenous parameters

when c̄ changes to c̄′. We consider sets Φ, Φζ′ and Φc̄′ such that (15) holds, i.e. such that

κ0 (δ) > κ > κ1(c̄) (and, therefore, the unique equilibrium network is a star with weighted

links). We then have the following proposition.

Proposition 6. If ζ ′ ≥ ζ, then the optimal corridor width increases, i.e. γ∗(Φζ′ , θ) ≥

γ∗(Φ, θ). If c̄′ ≤ c̄ and c̄′ is not lower than the original optimal corridor width, i.e. c̄′ ≥

γ∗(Φ, θ), then the optimal corridor width increases, i.e. γ∗(Φc̄′ , θ) ≥ γ∗(Φ, θ).

Proposition 6 follows mainly from Topkis’s Theorem.25 It shows that the optimal corridor

width is increasing in ζ and decreasing in c̄. For a decrease in the size of interbank transaction

costs, note that the reduction must be such that γ∗(Φ, θ) is still a feasible option for the

central bank, i.e. γ∗(Φ, θ) ∈ [δ, c̄′]. If this is not the case, then it is straightforward that

Proposition 6 does not hold, since γ∗ (Φ, θ) > c̄′ ≥ γ∗ (Φc̄′ , θ).

25Topkis’s Theorem cannot be directly applied to arbitrary changes in c̄, since the constraint in (12) is
decreasing in c̄. We show in the appendix how the restriction c̄′ ≥ γ∗(Φ, θ) circumvents this issue, using the
same reasoning as in Topkis’s Theorem.
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Let us discuss the intuition for why an increase in the size of liquidity outflows, ζ, has

the opposite effect on the corridor width as an increase in the size of interbank transaction

costs, c̄. For that, we will assume n is large enough such that total liquidity is increasing in

both ζ and c̄. The reason why Proposition 6 holds may not be clear at first since ζ and c̄

affect total liquidity in the same direction. However, these variables have different effects on

the equilibrium link weight g∗. All else equal, when c̄ increases, links become less valuable,

since it is less likely that they will be used to cover outflows, and, therefore, g∗ decreases. On

the other hand, when ζ is higher, peripheral banks’ incentives to increase g∗ are higher due

to the increased risk of being short of liquid assets, which makes it profitable to access more

liquidity through the interbank market. Now note that liquidity holdings decrease more in

response to an increase in the corridor width when the equilibrium link weight is higher due

to local substitutability. Therefore, a higher g∗ increases central bank’s incentive to widen

the corridor, and vice-versa.

Next, we go back to the set of parameter values of example 2 to provide a numerical

example for Proposition 6. Figure 6 presents the analysis with respect to changes in the

size of the liquidity outflow.26 Panel (a) shows the optimal corridor width as a function of ζ

when (15) holds. By Proposition 6, we know that the corridor gets wider for higher values

of ζ. Panel (b) extends the analysis to values of ζ such that (15) does not hold. In this

case, we can see that there exists a threshold value ζ̄ ≈ 0.0365, such that for ζ > ζ̄, the

corridor width is no longer increasing in ζ. From Panel (c), which displays, for each ζ, the

corresponding equilibrium link weight g∗, we get an intuition for this result. Note that for

ζ > ζ̄, g∗ equals one and, therefore, the equilibrium network is a star network with binary

links only. Now, when ζ increases, peripheral banks cannot further increase the weight of

the link they extend to the center and, thus, only adjust their liquidity holdings.

We show in Panel (b) how the existence of such a threshold ζ̄ implies that the central

bank should react differently to relatively small and large changes in ζ. Suppose we originally

26For expositional clarity, we have scaled ζ up by 103 in the horizontal axis.
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Figure 6: Comparative Statics: Changes in the Size of Liquidity Outflows.
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Notes: ζ has been scaled up by 103 in the horizontal axis. Panel (a) presents the optimal corridor width

γ∗ (Φ, θ) as a function of ζ, when (15) holds. The black dot represents ζ and γ∗ (Φ, θ) as in example 2.

Panel (b) extends the range of ζ to regions such that (15) does not hold. Top and bottom dashed gray lines

represent, respectively, c̄ and δ. Points 1, 2 and 3 are different combinations of ζ and γ∗ (Φ, θ). Panel (c)

displays the equilibrium link weight for each value of ζ and corresponding optimal corridor width γ∗ (Φ, θ).

have a size of liquidity outflow ζ1 and optimal corridor width γ∗1 , represented by point 1. For

small increases in ζ, such as the one from point 1 to point 2, we see that the central bank

reacts by widening the corridor. However, when the increase is relatively large, such as the

change from point 1 to point 3, the central bank’s response is to narrow the corridor.

Figure 7 displays an analogous analysis with respect to changes in the size of interbank

transaction costs. One difference with respect to the previous analysis is what drives the

existence of a threshold value for c̄ such that for values below the threshold, the optimal

corridor is increasing in c̄. In Panel (c), we see that is never the case that g∗ equals one.

Instead, what happens for sufficiently low values of c̄ is that the restriction c̄ ≥ γ is binding,

as we can see in Panel (b) by the intersection of γ∗ (Φ, θ) and c̄.

Understanding how the central bank should react to changes in the size of transaction
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Figure 7: Comparative Statics: Changes in the Size of Interbank Transaction Costs.
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Notes: Panel (a) presents the optimal corridor width γ∗ (Φ, θ) as a function of c̄, when (15) holds and

c̄ > γ∗ (Φ, θ) . The black dot represents c̄ and γ∗ (Φ, θ) as in example 2. Panel (b) extends the range of c̄

to regions such that either (15) does not hold or c̄ = γ∗ (Φ, θ). Top and bottom dashed gray lines represent,

respectively, c̄ and δ. Points 1, 2 and 3 are different combinations of c̄ and γ∗ (Φ, θ). Panel (c) displays the

equilibrium link weight for each value of c̄ and corresponding optimal corridor width γ∗ (Φ, θ).

costs and liquidity outflows can be important during moments of financial distress, when ζ

and c̄ are likely to rise. Our comparative statics analysis shows that the decision to widen

or narrow the corridor depends on two dimensions: (i) the increase in ζ relative to c̄, since

by Proposition 6 these two increases can have different implications for how the optimal

corridor width changes, and (ii) the increase in ζ and c̄ relative to their size, given the non-

monotonicity observed in Figures 6 and 7. The failure to account for one of these dimensions

may lead to suboptimal policy.
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6 Conclusion

In this paper, we develop a simple and tractable endogenous network formation model of

the interbank market. Banks solve a liquidity management problem, making simultaneous

decisions regarding liquidity holdings and interbank credit lines, which are modeled as

(directed) links. When deciding optimally, banks take the corridor rate that is established

by central bank’s standing facilities into account.

In this setting, we define a loss function to the central bank, which is a convex combination

between interbank rate volatility and total liquidity held by banks, and focus on the case

when the equilibrium network is a star network with directed links to the bank at the center of

the star. Our results show that, as long as the number of peripheral banks is not too small,

the central bank does not find it optimal to minimize interbank rate volatility since this

implies a large amount of total liquidity in the banking system. This paper, thus, provides

a new rationale for a positive spread between standing facilities rates, even when the main

goal of monetary policy is to control the short-term interbank rate. We also show how the

central bank should optimally react to changes in the size of interbank transaction costs and

liquidity outflows. We find that changes in transaction costs relative to liquidity outflows, as

well as the magnitude of these changes, impact the central bank’s optimal decision regarding

the corridor width and failing to account for one of these dimensions can lead to suboptimal

policy.
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A Appendix

A.1 Derivation of the value function

When writing the utility in (4) we only considered the region where zi + yi ≤ ζ. If we also

consider zi + yi > ζ, then the utility writes:

u(zi,gi) =


ζβzi − γ

2
z2i − λziyi + ζλyi − λ

2
y2i − κ

∑
j∈N gi,j, zi + yi ≤ ζ

µ+ ζβ̄zi − γ̄
2
z2i − κ

∑
j∈N gi,j, zi + yi > ζ

where β̄ ≡ β − λ , γ̄ ≡ γ − λ , µ ≡ ζ2λ
2

. Note that (γ − β) = rx − r > 0 and (γ − λ) =

γ
c̄

(
c̄− γ

2

)
> 0, where the inequality follows from c̄ ≥ r̄ − r = γ. Consider the best response

function derived in (5). If we add yi to both sides of the equation we get:

zi + yi =
ζβ

γ
+

(
1 − λ

γ

)
yi.

For the right-hand side of the above expression to be lower than ζ, yi must satisfy:

yi ≤
ζ(γ − β)

(γ − λ)
.

If yi >
ζ(γ−β)
(γ−λ) , then we have:

zi(g, z−i) =
ζ max{β̄, 0}

γ̄
. (16)

The value function then writes :

V (yi,g) =


(ζβ)2

2γ
+ ζ(γ−β)λ

γ
yi − (γ−λ)λ

2γ
y2i − κ

∑
j∈N gi,j, yi ≤ ζ(γ−β)

(γ−λ)

µ+ (ζ max{β̄,0})2
2γ̄

− κ
∑

j∈N gi,j, yi >
ζ(γ−β)
(γ−λ)

Define v(yi) ≡ V (yi,g) − κ
∑

j∈N gi,j. One can easily check that v(.) is continuous at

yi = ζ(γ−β)
(γ−λ) . To show that v(.) is increasing and concave, it is sufficient to show that this
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holds for yi ∈
[
0, ζ(γ−β)

(γ−λ)

]
since v(.) is constant for yi >

ζ(γ−β)
(γ−λ) . Taking the derivative with

respect to yi ∈
[
0, ζ(γ−β)

(γ−λ)

]
:

v′(yi) =
ζ(γ − β)λ

γ
− (γ − λ)λ

γ
yi. (17)

It is straightforward that the expression above is strictly decreasing in
[
0, ζ(γ−β)

(γ−λ)

]
. To see that

(17) is also non-negative, it is then sufficient to check that v′
(
ζ(γ−β)
(γ−λ)

)
= 0 is non-negative.

We argue that the relevant domain for v(.), in terms of network formation analysis, is[
0, ζ(γ−β)

(γ−λ)

]
. To see this, take s = (z,g) and assume that for some i ∈ N , si = (zi,gi) is

such that yi >
ζ(γ−β)
(γ−λ) . We will show that si = (zi,gi) is strictly dominated by some strategy

profile s′i such that y′i = ζ(γ−β)
(γ−λ) . Consider a strategy profile s′i = (z′i,g

′
i) such that y′i = ζ(γ−β)

(γ−λ)

and g′
i ≤ gi. Because v(.) is constant for yi ≥ ζ(γ−β)

(γ−λ) , v(yi) = v(y′i). However, the total cost

of linking under s′i is strictly smaller than under si. This implies V (y′i,g
′) > V (yi,g).

A.2 Proposition 1

If ψ < γ
λ(n−1)

and β < λ, then there exists a unique NE in the choice of z and the unique

NE is interior for any given network g. Proof. First, let us show that, in any NE,

zi + yi ≤ ζ , ∀ i ∈ N . Assume to the contrary that zi + yi > ζ for some i ∈ N . From (16) and

β < λ, we have zi = 0 and, therefore, yi > ζ. From (5), we can see that, in any NE, zj ≤ ζβ
γ

for every j ∈ N . Hence, yi ≤ ψ(n − 1) ζβ
γ

. From ψ < γ
λ(n−1)

, we then get that yi <
ζβ
λ
< ζ

and we have reached a contradiction. It then follows that, in any Nash equilibrium, (5) must

hold ∀i ∈ N . Therefore, z must solve:

z =
ζβ

γ
1−

(
λψ

γ

)
Gz ⇒

[
I +

(
λψ

γ

)
G

]
z =

ζβ

γ
1, (18)

where 1 is the n-dimensional vector of ones. A unique solution to the above system of

equations exists if and only if
[
I +

(
λψ
γ

)
G
]

is invertible. Let σ(G) denote G’s spectrum.
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Then
[
I +

(
λψ
γ

)
G
]−1

is well-defined if and only if:

− γ

λψ
/∈ σ(G). (19)

Denote by ρ(G) the spectral radius of G. Then a sufficient condition for (19) is:

ρ(G) <
γ

λψ
, (20)

which can be rewritten as ψ < γ
λρ(G)

. Since G is non-negative, we can apply the Perron-

Frobenius Theorem.27 This Theorem provides an upper bound for the value of ρ(G):

ρ(G) ≤ max
i∈N

∑
j

gi,j.

Since gi,j ≤ 1, ∀i, j ∈ N and gi,i = 0, ∀i ∈ N , we have ρ(G) ≤ n − 1 for any adjacency

matrix G. Hence, ψ < γ
λ(n−1)

implies that (20) holds for every G. Thus,
[
I +

(
λψ
γ

)
G
]

is

always invertible.

Denote by z∗(G) the solution to (18). To show that z∗(G) is interior, define W = [w1, w2, . . . , wn]′.

We want to prove that, for every G, 0 < z∗(G) < W. We first show that z∗(G) > 0. Start

by rewriting (18) as:

[I + ωG] z∗(G) = α1,

where α ≡ ζβ
γ
> 0 and ω ≡ λψ

γ
. We have already shown that if ω < 1

n−1
, then [I + ωG] is

invertible for any adjacency matrix G. Inverting [I + ωG] yields:

z∗(G) = α [I + ωG]−1 1.

27Perron-Frobenius Theorem provides some properties of positive square matrices. We use the property
that if A = (ai,j) is a positive n× n matrix, then ρ(A) ≤ maxi

∑
j ai,j holds.
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The matrix [I + ωG]−1 is well-defined and can be written as:

[
I− ωG+ (ωG)2 − (ωG)3 . . .

]
=

∞∑
k=0

[
(ωG)2k − (ωG)2k+1

]
.

We can rewrite the above infinite sum of matrices as:

∞∑
k=0

[
(ωG)2k − (ωG)2k+1

]
=

∞∑
k=0

(ωG)2k (I− ωG) =

[
∞∑
k=0

(ωG)2k

]
(I− ωG) .

Therefore, z∗(G) is equal to:

α

[
∞∑
k=0

(ωG)2k

]
(I− ωG)1.

We have that α > 0. Also,
[∑∞

k=0(ωG)2k
]

is a positive matrix since ωG is a positive matrix.

Therefore, it is sufficient to show that the column matrix (I− ωG)1 is a positive matrix.

Consider then the element in the i-th row of (I− ωG)1. This can be written as:

1 − ω
∑
j∈N

gi,j.

This expression is positive for every i ∈ N . To see this note that maxi∈N
∑

j gi,j = (n − 1)

and recall that ω < 1
n−1

. Therefore, z∗(G) > 0. Now let us show that z∗(G) <W. Consider

again (5). By z∗(G) > 0, we have that, for every i ∈ N and adjacency matrix G:

z∗i =
ζβ

γ
−
(
λ

γ

)
ψ
∑
j∈N

gi,jz
∗
j ≤

ζβ

γ
. (21)

Note that (γ − β) = (rx − r) > 0, which implies β
γ
< 1. Therefore:

z∗i ≤
ζβ

γ
< ζ < min

j
wj ≤ wi, ∀i.

Hence, z∗(G) <W, which concludes the proof. ■
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A.3 Proposition 2

In any strict NE, s = (z,g), ḡ is a complete core-periphery network. Furthermore, there

exists a partition {C(ḡ), P (ḡ)} of N such that:

• All peripheral banks display the same level of liquidity holdings.

• Core banks display higher levels of liquidity holdings than peripheral banks.

Proof. First, we present five lemmas, which directly imply that any strict NE network is a

complete core-periphery graph.

Lemma 1. In any strict NE, s = (z,g), every bank i ∈ N has at most one link with weight

in (0, 1). Moreover, if gi,k ∈ (0, 1), then bank k holds less liquidity than every other bank to

which i extends a link of weight one, i.e zk < zm, ∀m such that gi,m = 1.

Proof. For the first part, assume contrary to the above statement that for some bank i with

strategy profile si = (zi,gi) there exist at least two links with weights in (0, 1). Take two

links gi,l and gi,k and assume, without loss of generality, that zk ≥ zl. Consider the deviation

s′i = (zi,g
′
i), where g′

i is defined as follows:


g′i,j = gi,j, ∀j ∈ N \ {k, l}

g′i,k = gi,k + ν

g′i,l = gi,l − ν

for some ν > 0 such that g′i,k < 1 and g′i,l > 0. Bank i’s liquidity holding zi is the same under

both strategies. The total cost of linking for agent i is also the same, since κ
∑

j∈N g
′
i,j =

κ
(∑

j /∈{k,l} gi,j + gi,k + ν + gi,l − ν
)

= κ
∑

j∈N gi,j. However, agent i’s accessible liquidity is

weakly higher under s′i, since y′i = ψ
∑

j∈N g
′
i,jzj = ψ

∑
j∈N gi,jzj +ψν(zk−zl) = yi+ψν(zk−

zl) ≥ yi. Therefore, s′i yields a weakly higher payoff than si, which contradicts the fact that

s is a strict Nash equilibrium. For the second part, assume there exists a bank m such that
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gi,m = 1 and zm ≤ zk. Just as in the first part, bank i can weakly increase its payoff by

increasing the weight in the link with bank k to g′i,k = gi,k + ν and reducing the weight in

the link with bank m to g′i,m = gi,m − ν, for some ν > 0 such that g′i,k < 1 and g′i,m > 0,

which again contradicts the fact that s is a strict Nash equilibrium. ■

Lemma 2. In any strict NE, s = (z,g), if gi,l > 0, then gi,k = 1, ∀k : zk ≥ zl.

Proof. Assume contrary to the above statement that gi,k ̸= 1 for some k such that zk ≥ zl.

Suppose first that gi,k = 0. If bank i deletes its link with l, then yi decreases by ψgi,lzl.

Moreover, if bank i creates a link with k such that gi,k = gi,l
zl
zk
> 0, then yi increases by

ψgi,kzk = ψgi,l
zl
zk
zk = ψgi,lzl. So yi is unaltered. But note that gi,k ≤ gi,l since zl ≤ zk. So

bank i now has a weakly smaller total cost of linking. Therefore, there exists a deviation

that weakly increases bank i’s payoff, which contradicts the fact that s is a strict Nash

equilibrium. Now suppose that gi,k ∈ (0, 1). If gi,l ∈ (0, 1), by Lemma 1, we have reached a

contradiction since bank i cannot extend more than one weighted link. If gi,l = 1, again by

Lemma 1, we reach a contradiction, since zk ≥ zl. ■

Lemma 3. In any strict NE, s = (z,g), if ḡi,l = 0, then si = sl.

Proof. Take i and l ∈ N such that ḡi,l = 0 and assume contrary to the above statement

that si ̸= sl. Without loss of generality, assume u (si) ≥ u (sl). Since i does not connect to l

(i.e. gi,l = 0), a possible deviation for l is s′l =si, which is weakly profitable for bank l. This

contradicts the fact that s is a strict NE. ■

Lemma 4. In any strict NE, s = (z,g), if ḡi,l > 0 and zi ≤ zl, then gi,l > 0.

Proof. Take i and l ∈ N such that ḡi,l > 0 and zi ≤ zl. Note that, by (5), zi ≤ zl implies

yi ≥ yl. Assume contrary to the above statement that gi,l = 0. Then it must be that gl,i > 0.

By Lemma 2, we have gl,m = 1, ∀m : zm ≥ zi,m ̸= l. We then have:

yl = ψ
∑
j∈N

gl,jzj ≥ ψ

gl,izi +
∑

{j ̸=l | zj>zi}

zj

 . (22)
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Also, by Lemma 2, we have gi,m = 0,∀m : zm ≤ zl, which implies:

yi = ψ
∑
j∈N

gi,jzj ≤ ψ
∑

{j | zj>zl}

zj. (23)

Since zi ≤ zl, {j | zj > zl} ⊆ {j ̸= l | zj > zi}, which yields:

∑
{j ̸=l | zj>zi}

zj ≥
∑

{j | zj>zl}

zj. (24)

From (22), (23) and (24), we have:

yi ≤ ψ
∑

{j | zj>zl}

zj < ψ

gl,izi +
∑

{j ̸=l | zj>zi}

zj

 ≤ yl.

Thus, yi < yl and we have reached a contradiction. ■

Lemma 5. In any strict NE, s = (z,g), if gi,l > 0 for i and l such that zi ≤ zl, then

gk,l ≥ gi,l, ∀ k ∈ N \ {l}.

Proof. Assume contrary to the above statement that gi,l > gk,l for some i and k, with zi ≤ zl.

We will show that it is profitable for agent k to increase the weight of the link it extends to

l from gk,l to gi,l. Note that gk,l < 1. By Lemma 2, we must have gk,m = 0,∀m : zm ≤ zl.

Define the set Z̄l = {j ∈ N |j ̸= k and zj > zl} as the set of banks different from k that hold

strictly more liquidity than l (note that i /∈ Z̄l). We then have:

yk = ψ
∑
j∈N

gk,jzj ≤ ψgk,lzl + ψ
∑
j∈Z̄l

zj. (25)

Also, by Lemma 2, we have gi,m = 1,∀m : zm ≥ zl,m ̸= i. This yields:

yi = ψ
∑
j∈N

gi,jzj ≥ ψgi,lzl + ψ
∑
j∈Z̄l

zj. (26)
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Adding ψgi,lzl to both sides of (25) we obtain:

yk − ψgk,lzl + ψgi,lzl ≤ ψgi,lzl + ψ
∑
j∈Z̄l

zj ≤ yi. (27)

For gi,l > gk,l to be part of a strict NE it must be that bank i does not find it profitable to

change the weight of its link to l from gi,l to gk,l, which implies:

v(yi) − v(yi − ψgi,lzl + ψgk,lzl) > κ(gi,l − gk,l). (28)

From the concavity of v(.) and (27) it follows that:

v(yk − ψgk,lzl + ψgi,lzl) − v(yk) ≥ v(yi) − v(yi − ψgi,lzl + ψgk,lzl) > κ(gi,l − gk,l).

Hence, bank k finds it profitable to increase the weight of the link it extends to l to gi,l.

We have reached a contradiction. ■

Define the set of i’s neighbors in ḡ as Ni(ḡ) = {j ∈ N |ḡi,j ̸= 0}. To show that ḡ is a

complete core-periphery graph, it is sufficient to show that ∀k ∈ C(ḡ), Nk(ḡ) = N \{k} and

∀i ∈ P (ḡ), Ni(ḡ) = C(ḡ).

Let us start by defining z = min{z1, . . . , zn} as the lowest amount of liquidity that is

held by some bank in equilibrium. Also, define the set Z = {i ∈ N | zi = z} as the set of

banks that have liquidity holdings equal to z. Note that Z is non-empty. We then consider

two different cases.

First, assume that for some i and j ∈ Z, gi,j > 0. By Lemma 2, gi,l > 0, ∀ l ∈ N \ {i},

which implies Ni(ḡ) = N \ {i}. Now take k ∈ N \ {i}. Note that bank i holds weakly less

liquidity than k and i extends a link to k. By Lemma 5, every other bank in the network also

extends a link to k. Hence, Nk(ḡ) = N \ {k}. To show that ḡ is a complete core-periphery

graph, define C(ḡ) = N and P (ḡ) = ∅.

Second, assume that for all i and j ∈ Z, gi,j = 0. Set P (ḡ) = Z and C(ḡ) = N \ Z. If
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Z = N , then ḡ is the empty network, which is a complete core-periphery graph. Otherwise,

note that, by construction, ∀ i ∈ P (ḡ) and k ∈ C(ḡ), si ̸= sk. By Lemma 3, ḡi,k > 0.

Therefore, Ni(ḡ) = C(ḡ) ,∀i ∈ P (ḡ). Now since zi < zk, by Lemma 4, gi,k > 0. By Lemma

5, Nk(ḡ) = N \ {k}, ∀ k ∈ C(ḡ). Hence, ḡ is a complete core-periphery graph.

To conclude the proof, note that by construction, all banks in P (ḡ) hold the same amount

of liquidity, which is strictly smaller than that of banks in C(ḡ). ■

A.4 Proposition 3

If β < β̂, then for any linking cost κ ∈ R+ there exists a strict NE, s = (z,g). If β < λ,

then there exists κ such that a strict NE, s = (z,g), exists and the equilibrium network g is

non empty, i.e. g ̸= 0.

Proof. First, recall our assumptions r̄ > rx > r and c̄ > r̄ − r, which imply β < γ and

λ < γ. Define K ⊆ R+ as the set of linking costs κ such that a strict NE exists We start

by demonstrating that K is non-empty. Define ze = ζβ
γ

and κe ≡ v′(0)ψze = ζ2βλψ(γ−β)
γ2

> 0.

The following lemma shows that κe is a linking threshold such that for higher values of the

linking cost κ there exists a strict NE such that the equilibrium network is empty.

Lemma 6. For all κ ≥ κe, there exists a strict NE, s = (z,g), with g = 0. Therefore, if

κ ≥ κe, then κ ∈ K.

Proof. Consider the empty network (i.e. g = 0). In this case, yi = 0, ∀i ∈ N . From (5), we

can then see that in equilibrium every bank must hold the same level of liquidity, ze. For the

empty network to be an equilibrium, no bank can weakly increase its payoff by extending a

link to another bank, which yields the following condition:

v′(0)ψze ≤ κ.

Therefore, if κ ∈ [κe,∞), there exists a strict NE, s = (z,0), which concludes the proof. ■
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Define the non-empty set K1 = [κe,∞). By Lemma 6, K1 ⊆ K, which implies that K is

non-empty.

Moreover, define zs ≡ ze and κ̄ ≡ v′ (ψzs)ψzs. We provide a condition such that for

κ ∈ (κ̄, κe) there exists a strict NE in which g ̸= 0.

Lemma 7. If β < λ, then κ ∈ (κ̄, κe) if and only if there exists a strict NE, s = (z,g),

in which g is a star network with at least one weighted link. Therefore, if κ ∈ (κ̄, κe), then

κ ∈ K.

Proof. Consider the star network with at least one weighted link. The bank at the center

of the star is the unique core bank and, therefore, does not extend any link. Hence, zs

is the liquidity holding of the center. At least one peripheral bank extends a weighted

link g ∈ (0, 1) to the center. By Lemma 3, all remaining peripheral banks also extend

a link of weight g to the center. From (5), the liquidity holding of a peripheral bank is

zp(g) ≡ ζβ
γ
− λ

γ
ψgzs = zs

(
1 − λ

γ
ψg

)
. The liquidity peripheral banks access through the

network is yp(g) = ψgzs, while the center does not access any liquidity. From the strict

concavity of v(.), if a peripheral bank extends a link of weight g to the center, then g must

satisfy:

v′(yp(g))ψzs = κ⇔ κ =
ζ2βλψ (γ2 − β(γ + gψ(γ − λ)))

γ3
≡ κ(g). (29)

For the star with weighted links equal to g to be an equilibrium, the center cannot find it

weakly profitable to extend a link to a bank in the periphery. Therefore:

v′(0)ψzp(g) ≤ κ(g). (30)

We can see that (30) holds for any g ∈ (0, 1). as long as λ > β :

κ(g) − v′(0)ψzp(g) =
ζ2gβλ(λ− β)ψ2

γ2
> 0,∀g ∈ (0, 1)

Hence, κ = κ(g) for some g ∈ (0, 1) if and only if there exists a strict NE such that g is the
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star with weighted links equal to g. Now we can see from (29) that κ(g) is strictly decreasing

in g. Note that κ(1) = κ̄ and κ(0) = κe. Therefore, κ ∈ (κ̄, κe) if and only if κ = κ(g) for

some g ∈ (0, 1), which concludes the proof. ■

Define K2 = (κ̄, κe) . If β < λ, then by Lemma 7, K2 ⊆ K. Therefore, for any κ ∈ K2,

there exists a strict NE, s = (z,g), with g ̸= 0.

For the remainder of the proof, assume β < β̂ ≡ γλ2ψ(γ+λψ)
2γ2(γ−λ)+γλ2ψ+λ3ψ2 . One can show by

algebraic manipulation that β̂ < λ. Note then, that this assumption implies β < λ. Let us

present one more lemma that, together with lemmas 6 and 7, directly implies that a strict

NE exists for any non-negative κ and, therefore, K = R+.

Lemma 8. For every κ ∈ [0, κ̄] there exists nC ∈ {1, . . . , n} and a strict NE s = (z,g) such

that g is a complete core-periphery graph with nC banks in the core and no weighted links

(i.e. gi,j ∈ {0, 1},∀i, j ∈ N). Therefore, if κ ∈ [0, κ̄], then κ ∈ K.

Proof. In any non-empty equilibrium network with no weighted links, gi,j = gj,i = 1 for

every i, j ∈ C(ḡ). Let us consider first nC ∈ {1, . . . , n−1}. Define zC(nC) as the the level of

liquidity that every core bank holds in an equilibrium with nC core banks and no weighted

links. We can explicitly solve for zC(nC) in (5):

zC(nC) =
ζβ

γ
−

(
λ

γ

)
ψ(nC − 1)zC(nC) ⇒ zC(nC) =

ζβ

γ + (nC − 1)λψ
. (31)

The liquidity holdings of a peripheral bank as function of nC , zP (nC), can be written as:

zP (nC) =
ζβ

γ
−

(
λ

γ

)
ψnCzC(nC) ⇒ zP (nC) = zC(nC)

(
1 − λψ

γ

)
. (32)

Let yC(nC) = ψ(nC − 1)zC(nC) and yP (nC) = ψnCzC(nC) be the liquidity accessed through

the network by a core and peripheral bank, respectively, and note that yP > yC .

For every nC , each bank extends a link to every core bank. Because core banks hold more

liquidity than peripheral banks and the value function v(.) is increasing, the only relevant

51



deviations for each bank i is to either create links to peripheral banks, which increases both

yi and the total cost of linking, or reduce the weight of the existing links with the core, which

decreases yi and the total cost of linking. If for every agent these two deviations are not

weakly profitable, then so is every other possible deviation. Consider first creating links to

peripheral banks. Since v(.) is strictly concave, the marginal benefit of an increase in yi is

higher if i is a core bank than if it is a peripheral bank, given that yP > yC . Therefore, we

only need to check that the marginal benefit of creating a link for a core bank is not higher

than the marginal cost, which yields the following condition:

v′(yC(nC))ψzP (nC) ≤ κ. (33)

Consider now a bank reducing the weights of the existing links with the core. From the strict

concavity of v(.), we have that the marginal loss of a decrease in yi is lower if i belongs to

the periphery. Hence, we need the marginal loss of reducing a link for a peripheral bank to

be higher than the marginal reduction in cost:

v′(yP (nC))ψzC(nC) ≥ κ. (34)

Define v′(yC(nC))ψzP (nC) ≡ κ(nC) and v′(yP (nC))ψzC(nC) ≡ κ̄(nC). Since v(.) is strictly

increasing and in equilibrium every bank i chooses a positive zi, we have κ̄(nC) > 0 and

κ(nC) > 0, ∀nC . Replacing (17) and (31), these expressions are given by:

κ̄(nC) =
ζ2βλψ(γ(γ + (nC − 1)λψ) − β(γ + γnCψ − λψ))

γ(γ + (nC − 1)λψ)2

κ(nC) =
ζ2βλψ(γ − λψ)(γ − β + (nC − 1)(λ− β)ψ)

γ(γ + (nC − 1)λψ)2
(35)

It is clear from (33) and (34) that, for a complete core-periphery graph with nC banks in the

core and no weighted links to be part of a strict NE for some κ > 0, we need κ̄(nC) ≥ κ(nC).
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We can check from (35) that this is indeed the case:

κ̄(nC) − κ(nC) =
ζ2βλψ2(λ− β)

γ(γ + (nC − 1)λψ)
> 0.

Define K(nC) = [κ(nC), κ̄(nC)]. If κ ∈
n−1⋃
nC=1

K(nC), then there exists a nC ∈ {1, . . . , n − 1}

and a strict NE s = (z,g) such that g is a complete core-periphery graph with nC banks

in the core and no weighted links. Next, we show the existence of κ such that [κ, κ̄] =
n−1⋃
nC=1

K(nC). First, we state that κ(nC) and κ̄(nC) are both decreasing in nC . To see this,

note that (31) implies zC(nC) is decreasing in nC . From (32), we see that this in turn implies

zP (nC) is decreasing in nC . Since zC(nC) and zP (nC) decrease with nC , it follows from the

best response function that yC(nC) and yP (nC) are both increasing in nC . Because v(.) is

concave, v′(yC(nC)) and v′(yP (nC)) are also decreasing in nC . Hence, v′(yC(nC))ψzP (nC)

and v′(yP (nC))ψzC(nC) are both decreasing in nC . Now set κ = κ(n − 1) and note that

κ̄(1) = κ̄. It is straightforward that
n−1⋃
nC=1

K(nC) ⊆ [κ, κ̄]. For the converse to hold, a sufficient

condition is:

K(nC)
⋂

K(nC − 1) ̸= ∅,∀nC ∈ {2, . . . , n− 1}. (36)

i.e. adjacent intervals overlap. Since κ(.) and κ̄(.) are decreasing functions, we can state

condition (36) as:

κ̄(nC) ≥ κ(nC − 1),∀nC ∈ {2, . . . , n− 1}. (37)

To see that this condition is sufficient, take any κ ∈ [κ, κ̄]. If κ > κ(1), then κ ∈ K(1) ⇒ κ ∈
n−1⋃
nC=1

K(nC). Otherwise, there exists n′
C ∈ {2, . . . , n − 1} such that κ(n′

C) ≤ κ ≤ κ(n′
C − 1).

From (37), κ̄(n′
C) ≥ κ(n′

C − 1). Therefore, κ ∈ K(n′
C) ⇒ κ ∈

n−1⋃
nC=1

K(nC).

Replace (35) in (37). We can then isolate β such that (37) holds if and only if:

β ≤ B(nC), ∀nC , (38)
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where:

B(nC) ≡ λ2ψ(nC−1)(γ+(nC−2)λψ)(γ+(nC−1)λψ)
2γ3+γ2λ(3(nC−2)ψ−2)+λ3ψ2(2nC−3+(nC−2)(nC−1)2ψ)+γλ2ψ(5−2nC+(nC−2)(2nC−3)ψ)

One can check by taking the derivative with respect to nC that B(nC) is strictly increasing

in nC . Therefore, (38) is satisfied ∀nC ∈ {2, . . . , n− 1}, as long as it holds for nC = 2. This

yields the following condition for β:

β ≤ γλ2ψ(γ + λψ)

2γ2(γ − λ) + γλ2ψ + λ3ψ2
(39)

(39) holds by assumption and, therefore, [κ, κ̄] ⊆
n−1⋃
nC=1

K(nC).

Furthermore, consider the case when nC = n. Denote by zc ≡ zC(n) the level of liquidity

that every bank holds in the complete network and by yc = ψ(n − 1)zc the liquidity each

bank accesses through the network. In the complete network, we only need to check that a

bank does not find it weakly profitable to reduce the weight of the links it extends to other

banks. From the strict concavity of v(.), this is true as long as the marginal loss of reducing

a link is weakly higher than the marginal reduction in cost:

v′(yc)ψzc ≥ κ.

Set κc ≡ v′(yc)ψzc = ζ2βλψ(γ−β+(n−1)(λ−β)ψ)
(γ+(n−1)λψ)2

. Since γ > λ > β, we can see that κc is strictly

positive. Next, we show that κ < κc. Recall that we have shown κ̄(nC) − κ(nC − 1) ≥

0, ∀nC ∈ {2, . . . , n − 1}. Note that this holds for any nC ≥ 2. Of course, κ̄(.) and κ(.)

only have a meaningful interpretation if nC ∈ {2, . . . , n − 1}. But we can set nC = n and
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κ̄(n) − κ(n− 1) ≥ 0 still holds. We then have:

κc − κ = κc − κ(n− 1) = (κc − κ̄(n)) + (κ̄(n) − κ(n− 1)) ≥

κc − κ̄(n) =
(ζβψ)2λ(γ − λ)

γ(γ + (n− 1)λψ)2
> 0

Hence, [0, κc] ∪ [κ, κ̄] = [0, κ̄], which concludes the proof. ■

In order to prove that K = R+, note first that K ⊆ R+ by definition. Next, define

K3 = [0, κ̄]. By Lemma 8, K3 ⊆ K. Recall that, by lemmas 6 and 7, K1 = [κe,∞) and

K2 = (κ̄, κe) are also contained in K. Hence,
⋃3
i=1Ki ⊆ K. Lastly, note that

⋃3
i=1Ki = R+,

which concludes the proof. ■

A.5 Proposition 4

Assume β < λ. Then a strict NE s = (z,g) exists for some g ∈ gs if and only if κ ∈ (κ1, κ0).

Moreover:

• All peripheral banks extend a weighted link to the center and the weight is the same

across banks.

• The equilibrium link weight g∗ ∈ (0, 1) satisfies κ = v′ (ψg∗zs)ψzs, where zs = ζβ
γ

is

the liquidity holding of the center.

• s is the unique strict NE.

Proof. Note that κ0 ≡ v′(0)ψzs = κe and κ1 ≡ v′ (ψzs)ψzs = κ̄. Then it follows directly

from Lemma 7 that s = (z,g) is a strict NE for some g ∈ gs if and only if κ ∈ (κ1, κ0). The

fact that peripheral banks extend links with equal weights to the center follows directly from

Lemma 3. Now, to obtain the condition in g∗, consider the value function of a peripheral

bank when g ∈ gs:

V (yi,g) = v (ψgzs) − κg (40)
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Take the derivative of (40) with respect to g and set it equal to zero. This yields the following

condition:

v′ (ψg∗zs)ψzs = κ. (41)

To show that s is unique, assume to the contrary that there exists s’ = (z′,g′) ̸= s such that

s’ is also a strict NE. Let us consider three different cases which cover all possible cases.

First, assume g′ is the star network with weighted links equal to g′ ∈ [0, g∗). Note that if

g′ = 0, then g′ is the empty network. From (40), we must have:

v′ (ψg′zs)ψzs ≤ κ.

From the strict concavity of v(.) and g′ < g∗ it follows that v′ (ψg∗zs)ψzs < v′ (ψg′zs)ψzs ≤

κ, which contradicts (41). Next, assume g′ is the star network with weighted links equal to

g′ ∈ (g∗, 1]. Note that if g′ = 1, then g′ is the star network with binary links only. From

(40), we must have:

v′ (ψg′zs)ψzs ≥ κ.

From the strict concavity of v(.) and g′ > g∗ it follows that v′ (ψg∗zs)ψzs > v′ (ψg′zs)ψzs ≥

κ, which contradicts (41).

Lastly, assume g′ is a complete core-periphery graph with at least two banks in the core.

Then, there exists i ∈ N such that i extends at least two links. By Lemma 1, at least one of

these links has weight one. Take player j such that gi,j = 1. By (5), zj ≤ zs. For gi,j = 1 to

be part of a strict NE, it must be that:

v′(yi)ψzj ≥ κ.

From the strict concavity of v(.), we then have v′(ψzj)ψzj > v′(yi)ψzj ≥ κ. If v′(ψzj)ψzj

is increasing in zj, then we have a contradiction. To see this, note that this implies
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v′ (ψzs)ψzs > κ, which contradicts (41). Let us then show that v′(ψzj)ψzj is indeed

increasing in zj. We start by substituting v′(.) for (17) in v′(ψzj)ψzj to obtain:

λψzj(ζ(γ − β) − ψzj(γ − λ))

γ
. (42)

Differentiating (42) with respect to zj then yields:

λψ(ζ(γ − β) − 2ψzj(γ − λ))

γ
. (43)

It is sufficient to check that the above expression is positive for all zj ∈ [0, zs]. Note that (43)

is strictly decreasing in zj since γ > λ. Hence, it is sufficient to check that (43) is positive

for zj = zs. Replace zj for zs in (43). We then have:

ζλψ (γ2 − β(γ + 2γψ − 2λψ))

γ2
.

One can show by algebraic manipulation that the above expression is strictly positive given

β < λ and γ > 2λ = γ2

c̄
.28 ■

A.6 Proposition 5

For each θ, there exists a n̄ ∈ R such that, for all n > n̄, the loss function, L(γ), is decreasing

in the size of the corridor at γ = δ. Moreover, the optimal corridor width, γ∗ (Φ, θ), is then

strictly larger than the minimum corridor width, δ. Proof. Recall that Φ is such that

κ0 (δ) > κ > κ1(c̄) holds. We begin by deriving the functional form of Z(γ) ≡
∑n

i=1 zi (γ,Φ)

when g ∈ gs. Recall λ ≡ γ2

2c̄
and condition (11), i.e. β = γ

2
− η. The liquidity holding of the

bank at the center of the star is zs = ζ
(

1
2
− η

γ

)
. Moreover, there are n− 1 peripheral banks

that access ψg∗zs of liquidity. Therefore, the liquidity holding of a bank in the periphery is

zp ≡ ζ
(

1
2
− η

γ

) (
1 − γψg∗

2c̄

)
. By Proposition 4, g∗ solves v′ (ψg∗zs)ψzs = κ. Solving for g∗,

28The calculations were executed in Mathematica and are available from the author.
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we obtain:

g∗ =
2c̄(ζ2ψ(γ2 − 4η2) − 8c̄κ)

ζ2ψ2(2c̄− γ)(γ − 2η)2
. (44)

Condition κ0 (δ) > κ > κ1(c̄) guarantees that g∗ ∈ (0, 1), ∀ γ ∈ [δ, c̄]. Replacing (44) in zp,

we get:

zp = ζ

(
1

2
− η

γ

)(
1 − γ(ζ2ψ(γ2 − 4η2) − 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
.

Z(γ) then writes:

Z(γ) = zs + (n− 1)zp = ζ

(
1

2
− η

γ

)(
n− (n− 1)γ(ζ2ψ(γ2 − 4η2) − 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
.

From (8) we have the functional form of the interbank rate variance γ2

12
. We then obtain the

functional form of the loss function:

L(γ) =

θ
γ2

12
+ (100 − θ)ζ

(
1

2
− η

γ

)(
n− (n− 1)γ(ζ2ψ(γ2 − 4η2) − 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
. (45)

Taking the derivative of L(γ), evaluating at γ = δ and collecting terms with respect to n

yields:

L′(δ) = A2 (Φ, θ) − A1 (Φ, θ)n,

where the expressions for A1 (Φ, θ) and A2 (Φ, θ) are given by:

A1 (Φ, θ) ≡ c̄(100 − θ) (ζ2ψ(δ − 2η)2 (δ2 − 4η(c̄− δ)) + 8δ2κ(c̄− δ + η))

δ2ζψ(2c̄− δ)2(δ − 2η)2

A2 (Φ, θ) ≡
θ (δ(2c̄− δ)2 − 6ζ(c̄+ η)) + 600ζ(c̄+ η) + 48(100−θ)c̄κ(c̄−δ+η)

ζψ(δ−2η)2

6(2c̄− δ)2

To show the existence of n̄ such that L′(δ) < 0, it is sufficient to show that A1 (Φ, θ) >

0, ∀Φ, θ. From the functional form of A1 (Φ, θ), it is sufficient to check that δ2− 4η(c̄− δ) >

0 ⇔ δ2 > 4η(c̄ − δ). This, in turn, holds due to the condition that
√

c̄2+4ηc̄−4η2

2
< δ ⇔
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δ2 > c̄2+4ηc̄−4η2

2
. To see this, let us show that

(
c̄2+4ηc̄−4η2

2

)
> 4η(c̄− δ). Start by subtracting

4η(c̄− δ) from both sides of the inequality:

(
c̄2 + 4ηc̄− 4η2

2

)
− 4η(c̄− δ) =

1

2

(
c̄2 − 4η2 − 4η(c̄− 2δ)

)
> 0,

where the last inequality holds since c̄ > δ > 2η > 0. Define n̄ ≡ A2(Φ,θ)
A1(Φ,θ)

. If n > n̄,

we have L′(δ) < 0. Since L(γ) is continuously differentiable, there exists γ′ > δ such

that L′(γ) < 0, ∀ γ ∈ [δ, γ′). Hence, for some γ̃ ∈ (δ, γ′), L(γ̃) < L(δ), which implies

γ∗ (Φ, θ) > δ. ■

A.7 Proposition 6

If ζ ′ ≥ ζ, then the optimal corridor width increases, i.e. γ∗(Φζ′ , θ) ≥ γ∗(Φ, θ). If c̄′ ≤ c̄ and

c̄′ is not lower than the original optimal corridor width, i.e. c̄′ ≥ γ∗(Φ, θ), then the optimal

corridor width increases, i.e. γ∗(Φc̄′ , θ) ≥ γ∗(Φ, θ). Proof. Note first that the constraint

γ ∈ [δ, c̄] does not depend on ζ. Therefore, to show the first result it is sufficient to check

that L(.) has decreasing differences in (γ, ζ) (Topkis’s Theorem). Starting from (45), which

presents the functional form of L(γ) when κ0 (δ) > κ > κ1(c̄) , we can see that L(γ) is

twice continuously differentiable with respect to γ, ζ. Therefore, it is sufficient to check that

∂2L
∂γ ∂ζ

≤ 0. Taking the cross derivative with respect to γ, ζ yields:

(100 − θ) (4nc̄2η − 4nγc̄η − γ2(c̄(n− 1) − η))

γ2(2c̄− γ)2
. (46)

One can show by algebraic manipulation that (46) is negative given κ0 (δ) > κ > κ1(c̄).
29

Moreover, to show the second result, consider first the constraint in (12), γ ∈ [δ, c̄]. The

set [δ, c̄] is not increasing in c̄. Therefore, even if L(.) has increasing differences in (γ, c̄), we

cannot state that γ∗ (Φ, θ) will increase for arbitrary decreases in c̄. Let us then consider

29The calculations were executed in Mathematica and are available from the author.
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decreases in c̄ such that c̄ ≥ c̄′ ≥ γ∗(Φ, θ). We write the loss function as L(γ, c̄) to make

it explicit that it depends on c̄. By definition, γ∗(Φc̄′ , θ) = argminγ{L(γ, c̄′) | c̄′ ≥ γ ≥ δ}

and γ∗(Φ, θ) = argminγ{L(γ, c̄) | c̄ ≥ γ ≥ δ}. Since c̄′ ≥ γ∗(Φ, θ), we have that γ∗(Φ, θ) =

argminγ{L(γ, c̄) | c̄′ ≥ γ ≥ δ}. Notice then that we do not need to consider the impact

that the reduction in c̄ has in the constraint of (12) when comparing γ∗(Φ, θ) to γ∗(Φc̄′ , θ).

Therefore, for changes in c̄ such that c̄ ≥ c̄′ ≥ γ∗(Φ, θ), it is sufficient to check that L(.) has

increasing differences in (γ, c̄). To show this, it is sufficient that ∂2L
∂γ ∂c̄

≥ 0. Taking the cross

derivative with respect to γ, c̄ yields:

(100 − θ)(n− 1) (ζ2ψ(γ − 2η)2(γ + 2c̄+ 4η) + 8ηκ(γ + 2c̄) − 8γ2κ)

ζψ(γ − 2η)2(2c̄− γ)3
. (47)

One can show by algebraic manipulation that (47) is positive given κ0 (δ) > κ > κ1(c̄).
30 ■

A.8 Proposition 7

Proposition 7. Define Ẑ(γ, g) and γ̂∗ (Φ, θ, g), respectively, as total liquidity holdings and

the solution to (12) when the equilibrium network g is a star with fixed links of weight g. If

g < 4η
c̄ψ
, then Ẑ(γ, g) is strictly increasing in γ. Therefore, γ̂∗ (Φ, θ, g) = δ, ∀Φ, θ.

Proof. We begin by deriving the functional form of Ẑ(γ, g). The liquidity holding of the

bank at the center of the star is ẑs = ζ
(

1
2
− η

γ

)
. Moreover, there are n− 1 peripheral banks

that access ψgẑs of liquidity. Therefore, the liquidity holding of a bank in the periphery is

ẑp ≡ ζ
(

1
2
− η

γ

) (
1 − γψg

2c̄

)
, where g is fixed. We can see that ẑs is strictly increasing in γ.

Let us show that this is also the case for ẑp. Taking the derivative of ẑp with respect to γ

yields:

ζη

γ2
− gζψ

4c̄
.

For the expression above to be strictly positive for all γ ∈ [δ, c̄], it is sufficient to check it for

30The calculations were executed in Mathematica and are available from the author.
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γ = c̄, which yields the condition:

g <
4η

c̄ψ
.

Hence, if g < 4η
c̄ψ

, then ẑp is strictly increasing in γ. This in turn implies that Ẑ(γ, g) is

also strictly increasing in γ. It is then straightforward that the solution that minimizes

L̂(γ) = θ γ
2

12
+ (100 − θ)Ẑ(γ, g) is γ̂∗ (Φ, θ, g) = δ since L̂′(γ) > 0,∀γ ∈ [δ, c̄].

■
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