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Abstract

This paper proposes a minimum distance estimator for long-memory stochastic duration

models which satisfies a central limit theorem. Distinctive features of the proposed method

are: it is easy to calculate and implement, allows fast estimation even for huge data sets, and

provides asymptotic standard errors for the estimators. Monte Carlo experiments indicate

that the proposed estimator performs very well. The proposed method is illustrated with

the estimation of a real-life time series of nearly a million observations.
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1 Introduction

The topic of modelling intertrade durations of financial assets, pioneered by the study of Engle

and Russell (1998), has attracted substantial attention in the financial econometric literature;

see the reviews of Pacurar (2008) and Bhogal and Variyam (2018).

Duration models can be classified in two classes: observation-driven and parameter-driven.

In the first class, the Autoregressive Conditional Duration (ACD) model proposed by Engle and

Russell (1998)-and its extensions, consider that the conditional expected duration process given

the past is a function of past durations, and maximum likelihood estimates are easily obtained.

In the second class, the process is driven by an unobserved latent variable and the likelihood is

expressed as a multiple integral with dimension equal to the (durations) time series size. A very

popular model in this class is the Stochastic Conditional Duration (SCD) model of Bauwens and

Veredas (2004).

The cited ACD and SCD models have short-memory, and when applied to financial durations

they tipically find that the degree of persistence is very close to one, indicating that long-memory
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behaviour can exist. Empirical evidence of long-memory has been found by Deo et al. (2010)

and Zikes et al. (2017), among others.

Deo et al. (2010) proposed the Long-Memory Stochastic Duration (LMSD) model, in which

the latent variable follows an autoregressive fractionally integrated moving average (ARFIMA)

model (proposed by Granger and Joyeux (1980) and Hosking (1981)). Here, the estimation is

performed through a frequency-domain quasi-maximum likelihood estimator using the Whittle

approximation. This is a very appealing estimation approach given that nowadays time series

of intertrade durations have hundreds of thousands of observations.

This paper proposes a minimum distance estimation method for the parameters of the LMSD

model through autocovariance differences. This Generalized Method of Moments (GMM) type-

based method allows dealing with the most challenging aspects of the problem: huge sample

sizes and latent variables. Distinctive features of the proposed method are: it is easy to calculate

and implement, and it provides asymptotic standard errors for the estimators1. Moreover, the

estimates can be obtained very quickly.

The proposed method has roots in two previous GMM contributions in which the key is

the existence of a central limit theorem (CLT) for the moments. In the context of stochastic

volatility models (very close in nature to duration models), Wright (1999) proposed a minimum

distance estimator based on autocovariances. However, the CLT only holds for values of the long

memory parameter d ∈ (−1/2, 1/4), so the method has limited application because empirical

evidence supports very long memory, i.e., d ∈ (1/4, 1/2). To overcome this problem, Chen and

Deo (2005) proposed a set of moment conditions based on autocovariance differences that are

asymptotically normal, but left the matter of which moments to use for future research.

The remainder of this paper is organised as follows. The proposed MDE is described in

Section 2 and the evaluation of its performance through Monte Carlo experiments is presented

in Section 3. The application of the method to a real-life time series is presented in Section 4

and conclusions are given in Section 5.

2 Minimum Distance Estimation

Let {y1, . . . , yn} be a sequence of observations from the LMSD process defined by2:

yt = β exp(ht)εt, (1)

φ(B)(1−B)dht = θ(B)ηt, (2)

where B is the backshift operator Byt = yt−1, φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp, θ(B) =

1 + θ1B + θ2B
2 + · · · + θqB

q, and (1 − B)d is the fractional difference operator defined by

1On the contrary, to the best of our knowledge, precision estimators for the method proposed by Deo et al.

(2010) are unknown.
2Unlike Deo et al. (2010), we consider the scale parameter (β) in the observation equation instead of the

ARFIMA equation.

2



(1 − B)d =
∑∞

j=0B
jΓ(j − d)Γ(j + 1)/Γ(−d). It is assumed that {ηt} is a Gaussian zero-mean

independent identically distributed (IID) sequence with E(η2t ) = σ2. In addition, {εt} is an IID

sequence of random variables with density f(ε) having positive support (in applications, usual

choices are the exponential, gamma and Weibull densities). Moreover, ηt and εt are independent

for all t.

Applying the log transformation in Equation (1) we obtain the ARFIMA plus noise model:

xt = c+ ht + ξt, (3)

where xt = log(yt), c = log(β) + E[log(εt)] and ξt = log(εt) − E[log(εt)]. Let σ2ξ and κξ be the

variance and fourth cumulant of ξt, respectively.

Here we assume that {ht} is stationary with d < 1
2 and that εt has density completely

specified or indexed by a parameter ν such that κξ is finite.

The minimum distance estimation (MDE) method proposed here is intended to estimate

the parameters λ = (d, φ1, . . . , φp, θ1, . . . , θq, σ, ν), based on the minimisation of the distance be-

tween sample and theoretical autocovariance differences. Thus, let δx(k) be the k-th theoretical

autocovariance difference of process {xt}, defined as:

δx(k) = γx(0)− γx(k), (4)

for k = 1, . . . ,M , where γx(0), . . . , γx(M) are the autocovariances up to lag M . Moreover,

sample autocovariance differences are calculated by:

δ̂x(k) = γ̂x(0)− γ̂x(k), k = 1, . . . ,M, (5)

where γ̂x(k) = n−1
∑n−k

t=1 (xt − x̄)(xt+k − x̄) for k = 0, 1, . . . ,M . Assuming that sample autoco-

variance differences satisfy the central limit theorem:

√
n (δ̂ − δ)→ N(0,Ω(λ)) as n→∞ (6)

for fixed M , where δ = (δx(1), . . . , δx(M))
′

and δ̂ = (δ̂x(1), . . . , δ̂x(M))
′
, the MDE of λ is the

value that minimises the criterion function:

S(λ) = (δ̂ − δ )
′
Ω(λ)−1(δ̂ − δ ). (7)

For instance, let λ̂ be the value that minimizes S(λ) and let λ0 be the true parameter. The

MDE method intends to find conditions so that:

√
n(λ̂− λ0)→ N(0,Λ(λ)) as n→∞, (8)

where the variance-covariance matrix Λ(·) is given by:

Λ(λ) =
[
D(λ)′Ω(λ)−1D(λ)

]−1
, (9)
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with matrix D(λ) = ∂δ/∂λ.

Thus, the success of the MDE method crucially depends on the existence of the CLT (6) and

the computation of the asymptotic covariance matrix of the autocovariance differences Ω(λ).

Based on results derived by Hosking (1996), Chen and Deo (2005) showed that (6) is valid.

However, the expression of Ωi,j(λ), the (i, j)-th element of Ω(λ), provided by these authors

depends on a term written as an integral. In this respect, applying the results of Zevallos (2023)

we can compute the elements of Ω(λ) in terms of analytic functions. The next proposition

provides a procedure to calculate these elements.

Proposition 2.1. The elements of matrix Ω(λ) defined in (6), Ωi,j for i, j = 1, . . . ,M , can be

calculated recursively as:

Ω1,1 = [3τ(1)− τ(2)] + 2σ2ξ [3a(1)− a(2)] + 3σ4ξ + κξ, (10)

Ωi+1,i+1 = Ωi,i + [4τ(i+ 1)− τ(2i+ 1)− τ(2i+ 2)]

+ 2σ2ξ [4a(i+ 1)− a(2i+ 1)− a(2i+ 2)], i = 1, . . . ,M − 1 (11)

Ωi,i+1 = Ωi,i + [2τ(i+ 1)− τ(1)− τ(2i+ 1)]

+ 2σ2ξ [2a(i+ 1)− a(1)− a(2i+ 1)]− σ4ξ , i = 1, . . . ,M − 1 (12)

Ωi,i+k = Ωi,i+k−1 + [2τ(i+ k)− τ(k)− τ(2i+ k)]

+ 2σ2ξ [2a(i+ k)− a(k)− a(2i+ k)], i = 1, . . . ,M − 2, k = 2, . . . ,M − i,(13)

where functions τ(·) and a(·) are defined as

τ(s) = ϑ(s− 1)− ϑ(s), (14)

a(s) = γh(s− 1)− γh(s), (15)

for s = 1, 2, . . ., ϑ(s) =
∑∞

j=−∞ γh(j)γh(j + s) and γh(·) are the autocovariances of the process

{ht} defined in (2). Expressions for τ(s) in ARFIMA models were derived in Zevallos (2023);

see some examples in Section 2.1 below.

Proof. Chen and Deo (2005) showed that (6) holds where the (i, j)-th element of Ω(λ), denoted

by Ωij i, j = 1, . . . ,M , is equal to Ωij = Ψi,j + Ξi,j , with Ψi,j = 4π
∫ π
−π cos(iω) cos(jω)|1 −

exp(ıω)|4f2h(ω)dω, Ξi,j = E(ξ4t ) − σ4ξ + σ4ξI[i=j] + σ2ξCov(2ht − ht−i − ht+i, 2ht − ht−j − ht+j),

and I[·] is the indicator function3.

Now, Ξi,j can be written as Ξi,j = κξ + 2σ4ξ + σ4ξI[i=j] + 2σ2ξBi,j with

Bi,j = 2γh(0)− 2γh(i)− 2γh(j) + γh(j − i) + γh(j + i), (16)

3Note that we adapted the result for the j-th autocovariance defined as a ratio with the denominator 1/n

instead of 1/(n − j). Additionally, there is a typo in Chen and Deo (2005): the term σ4
ξI[i=j] is missing in the

expression (denoted here by) Ξi,j .
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and the terms Ψi,j can be evaluated using the results given in Zevallos (2023) where

Ψi,j = 2ϑ(0)− 2ϑ(i)− 2ϑ(j) + ϑ(j − i) + ϑ(j + i), (17)

with ϑ(s) =
∑∞

j=−∞ γh(j)γh(j + s). Therefore, we work with

Ωi,j = Ψi,j + 2σ2ξBi,j + (κξ + 2σ4ξ ) + σ4ξI[i=j], (18)

and it only remains to write these elements in terms of functions τ(·) and a(·) given in (14)-(15).

Note that Ψi,j and Bi,j have similar structures; thus by replacing ϑ(·) with γh(·) in Ψi,j we

obtain Bi,j and vice versa. The same occurs for τ(·) and a(·).

First, consider i = j = 1 in (18). Thus, Ω1,1 = Ψ1,1 + 2σ2ξB1,1 + (κξ + 3σ4ξ ) where by (17)

Ψ1,1 = 3ϑ(0)−4ϑ(1)+ϑ(2), which in turn is equal to 3τ(1)−τ(2) using (14). Similarly, from (16)

and (15), B1,1 = 3τ(1)− τ(2), so we obtain (10). Second, since Ωi,i = Ψi,i+2σ2ξBi,i+(κξ +3σ4ξ ),

then Ωi+1,i+1−Ωi,i = (Ψi+1,i+1−Ψi,i)+2σ2ξ (Bi+1,i+1−Bi,i). Now, Ψi+1,i+1−Ψi,i = 4ϑ(i)−4ϑ(i+

1)−ϑ(2i)+ϑ(2i+2) = 4[ϑ(i)−ϑ(i+1)]− [ϑ(2i)−ϑ(2i+ i)]− [ϑ(2i+ i)−ϑ(2i+2)] = 4τ(i+1)−

τ(2i+1)−τ(2i+2). In the same way, we obtain Bi+1,i+1−Bi,i = 4a(i+1)−a(2i+1)−a(2i+2) and

(11) follows. Third, we obtain (12) from Ωi,i+1 −Ωi,i = (Ψi,i+1 −Ψi,i) + 2σ2ξ (Bi,i+1 −Bi,i)− σ4ξ
for i = 1, . . . ,M − 1, where Ψi,i+1 − Ψi,i = 2τ(i + 1) − τ(1) − τ(2i + 1) and Bi,i+1 − Bi,i =

2a(i + 1) − a(1) − a(2i + 1). Fourth, let i = 1, . . . ,M − 2 and k = 2, . . . ,M − i. Then

(13) follows, noting that Ωi,i+k −Ωi,i+k−1 = (Ψi,i+k −Ψi,i+k−1) + 2σ2ξ (Bi,i+k −Bi,i+k−1), where

Ψi,i+k−Ψi,i+k−1 = 2τ(i+k)−τ(k)−τ(2i+k) andBi,i+k−Bi,i+k−1 = 2a(i+k)−a(k)−a(2i+k).

Therefore, to calculate the asymptotic covariance matrix Ω(λ), the elements of the first two

diagonals are calculated first and then the rest of the elements are evaluated by rows. Note that

to compute all these elements, we need to calculate τ(s) and a(s) for s = 1, . . . , 2M .

As a consequence of (6) and by standard GMM techniques we have:

Theorem 2.1. Let {yt} be a LMSD process defined in Equations (1) and (2) with parameter

vector λ0. The MDE λ̂ is a consistent estimator of λ0 and satisfies (8)-(9).

Proof. The proof is very similar to that given in Baillie and Chung (2001) so we omit it. We

must replace the theoretical and sample autocorrelations with the theoretical and sampled au-

tocovariance differences, respectively. See also Wright (1999).

2.1 Implementation of the MDE method

Given the sample y1, . . . , yn, the procedure to obtain the minimum distance estimates λ̂ can be

summarised in the next steps:

1. Choose M , the number of autocovariance differences.

2. Calculate the sampled autocovariance differences defined in (5), where xt = log(yt).
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3. Find the MDE value λ̂ by minimising the function S(λ) in (7).

4. The precision of the estimates are obtained by evaluating (9) in λ̂.

Regarding step 1, it is expected that the theoretical precision of the estimators increases

(closer to the maximum likelihood precision) as M increases. However, in practice sampled au-

tocovariances at high lags can exhibit substantial uncertainty, and in addition, the optimisation

procedure becomes slow when using very large values of M . Monte Carlo experiments presented

in the next section show that values of M ∈ {50, 75} are a good choice.

To implement step 3, we need the expressions for the autocovariance function and the asymp-

totic variance-covariance matrix Ω(λ). In addition, to implement step 4 we need the derivatives

D(λ). Next we describe how to calculate these expressions efficiently for the fractional noise

ARFIMA(0,d,0) model and the ARFIMA(1, d, 0) model. The parameter vector is λ = (λh, ν),

where λh = (d, σ) for the fractional noise model and λh = (d, φ, σ) for the ARFIMA(1, d, 0)

model. We illustrate the method assuming that εt follows an exponential or Weibull density.

Thus, when εt follows a Weibull(ν, 1) distribution with density

f(εt) = νεν−1t exp(−ενt ), εt > 0, ν > 0, (19)

it is easily shown that

σ2ξ = ψ′(1)/ν2, κξ = ψ′′′(1)/ν4, (20)

where ψ′(·) and ψ′′′(·) are the first and third derivatives of the digamma function ψ(·). When εt

follows an exponential distribution with rate one, we replace ν by one in expressions (19)-(20).

(a) Autocovariances and autocovariance differences. From Equation (3), given that ht and

ξt are independent processes, then γx(k) = γh(k) + σ2ξI[k=0] where I[·] is the indicator function.

Therefore

δx(k) = δh(k) + σ2ξ , k = 1, 2, . . . . (21)

where σ2ξ is given in (20) and δh(k) = γh(0)− γh(k). The autocovariances γh(k) are calculated

as follows. Note that in order to compute τ(k) and a(k) given in (14)-(15), we have to consider

k = 0, . . . , 2M .

For the fractional noise model, the autocovariances, denoted by γ0(k), can be easily calculated

recursively by γ0(k + 1) = γ0(k)(k + d)/(1 + k − d) for k = 0, 1, . . . , 2M − 1, with γ0(0) =

σ2Γ(1 − 2d)/Γ2(1 − d). For the ARFIMA(1, d, 0) model, the method suggested in Section 3.1

of Doornik and Ooms (2003) is followed. First, calculate γ0(k) for k = 0, . . . , 2M as described

above. Second, let function G defined as G(a; c; ρ) =
∑∞

i=0 ρ
i(a)i+1/(c)i+1 with (b)i = b(b +

1) . . . (b + i − 1), (b)0 = 1. Define g(k) = G(d + k; 1 − d + k;φ) and compute g(2M − 1) using

a finite sum. Then calculate the rest of the values of g(·) recursively backwards by g(k − 1) =

[1 +φg(k)](d+ k− 1)/(k− d) for k = 2M − 1, 2M − 2, . . . , 2− 2M . Third, evaluate C(d, k, φ) =
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γ0(k)[φ2g(k) + φ + g(−k)] for k = 1 − 2M, . . . , 1 and then γh(k) = C(d, 1 − k, φ)/(1 − φ2) for

k = 0, . . . , 2M .

(b) Calculation of Ω(λ). The elements of matrix Ω(λ) are calculated using Proposition

2.1 with σ2ξ and κξ given by (20), and τ(·) values are obtained from Zevallos (2023). Thus,

for the ARFIMA(0,d,0) process, τ(s) = σ4∆(s), s = 1, 2, . . . , 2M , where the terms ∆(s) can

be easily computed recursively as follows: ∆(s + 1) = ∆(s)(s − 1 + 2d)/(s + 1 − 2d), for

s = 1, 2, . . . , 2M − 1, with ∆(1) = 0.5Γ(3 − 4d)/Γ2(2 − 2d). For the ARFIMA(1,d,0) model,

τ(s) = σ4(1 − φ2)−2∆(2 + s)Υ(d, 2 + s, φ), where ∆(s) values are given above and Υ(·) is

calculated by means of Corollary 3 in Zevallos (2023).

(c) Computation of D(λ). We use results obtained in (a). For each parameter λi ∈ λ we

have to compute Dλi(k) = ∂δx(k)/∂λi for k = 1, . . . ,M . These values constitute a row in

matrix D(λ). From (21) and (20), we obtain Dν(k) = ∂σ2ξ/∂ν = −2ψ′(1)/ν3 and Dλi(k) =

∂δh(k)/∂λi = ∂γh(0)/∂λi − ∂γh(k)/∂λi when λi ∈ λh. For instance, when λi = σ, Dσ(k) =

2δh(k)/σ for k = 1, . . . ,M .

Next we present how to compute ∂γh(k)/∂λi when λi ∈ {d, φ} for k = 0, . . . ,M , in each

model. For fractional noise models, let γ′0d(k) = ∂γ0(k)/∂d and ω(k) = γ′0d(k)/γ0(k). Since

ω(0) = 2[ψ(1−d)−ψ(1−2d)] where ψ(·) is the digamma function, values of ω(k) for k = 1, . . . ,M

can be calculated recursively by ω(k) = ω(k − 1) + (2k − 1)/((k − 1 + d)(k − d)), and therefore

γ′0d(k) = ω(k)γ0(k) for k = 0, . . . ,M .

For ARFIMA(1,d,0) models, let g′d(k) = ∂g(k)/∂d and g′φ(k) = ∂g(k)/∂φ. First compute

g′d(M−1) and g′φ(M−1), and then calculate g′d(k) and g′φ(k) recursively backwards by g′d(k−1) =

φg′d(k)(d + k − 1)/(k − d) + [1 + φg(k)](2k − 1)/(k − d)2 and g′φ(k − 1) = [g(k) + φg′φ(k)](d +

k − 1)/(k − d) for k = M − 1,M − 2, . . . , 2 −M . Then, evaluate C ′d(d, k, φ) = ∂C(d, k, φ)/∂d

and C ′φ(d, k, φ) = ∂C(d, k, φ)/∂φ through C ′d(d, k, φ) = C(d, k, φ)ω(k)+γ0(k)[φ2g′d(k)+g′d(−k)],

C ′φ(d, k, φ) = γ0(k)[1 + 2φg(k) + φ2g′φ(k) + g′φ(−k)], for k = 1 −M, . . . , 0, 1. Next, γ′d(k) =

∂γh(k)/∂d and γ′φ(k) = ∂γh(k)/∂φ are calculated by γ′d(k) = C ′d(d, 1 − k, φ)/(1 − φ2) and

γ′φ(k) = C ′φ(d, 1− k, φ)/(1− φ2) + 2φC(d, 1− k, φ)/(1− φ2)2 for k = 0, 1, . . . ,M .

2.2 Estimation of β

For completeness we discuss the estimation of the scale parameter β in (1). For instance, from

Equation (3) we have E(xt) = log(β) + E[log(εt)]. Then a moment estimator of β is given by

β̂ = exp(x̄ − e(ν̂)), where x̄ = n−1
∑n

t=1 xt and e(ν) = E[log(εt)]. Thus, when εt follows the

Weibull distribution given in (19), it can be shown that e(ν) = −ν−1C, where C is the Euler

constant (C = 0.577215). Accordingly, when εt follows the exponential distribution with rate

one, e(ν) = −C.
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3 Simulations

The performance of the proposed estimator is assessed through Monte Carlo experiments. We

considered LMSD models where the latent process ht follows an ARFIMA(1,d,0) model and

the perturbations εt follow Weibull and exponential distributions. For the Weibull case, the

parameters were chosen based on some estimates obtained by Deo et al. (2010) in real-life

duration data, and for the exponential case we selected from the latter reference some cases

with values of ν near one. Additionally, in all cases β = 1. For each parameter combination,

1, 000 replications of time series of sizes n were generated, where n = 50, 000 for the exponential

case and n ∈ {50, 000; 250, 000} for the Weibull case.

We report MDE results using M ∈ {25, 50} and M ∈ {25, 50, 75} for the exponential and

Weibull cases, respectively. In order to obtain these estimates, we used a program written in the

R package (R Core Team, 2017) with a Fortran subroutine. The optimisation was performed

using the method of Nelder and Mead (1965) implemented in the optim library. Since this

method performs unrestricted optimisation, we used transformations to account for the following

restrictions: d ∈ (−0.5, 0.5), φ ∈ (−1, 1), σ > 0 and ν > 0. In all setups the initial values in the

optimisation process were: d0 = 0.25, φ0 = −0.25, and σ0 equal to the standard deviation of

the {xt} series. In turn, for the Weibull case, ν0 = 1.

The quantities reported in this simulation study are: the bias, the standard deviation and the

root mean squared error (RMSE). These results are exhibited in tables 1, 2 and 3. In addition,

we report the theoretical standard errors of the MDE method.

For the exponential distribution case, the numbers reported in Table 1 indicate that the

MDE method is very good in terms of bias and the standard deviations are almost equal to

their theoretical counterparts. Moreover, for each parameter combination, by comparing the

results in terms of RMSE, we obtained slightly better results using M = 50 than using M = 25.

However, even though (as expected) the theoretical standard deviation with M = 50 is lower

than with M = 25, this difference is small. Therefore, in practice regarding the bias and

precision, selecting M = 25 for calculating minimum distance estimates suffices.

Next, we discuss the results for the Weibull distribution. For sake of clarity, we denote the

chosen parameter combinations as Case I to Case IV (see tables 2 and 3). For the Weibull

distribution with n = 50, 000, the results of Table 2 reveal that the MDE method is very good in

terms of bias. In addition, for (d̂, φ̂, σ̂) the standard deviations are very close to their theoretical

counterparts for cases II and III and moderately close for cases I and IV. Moreover, when

comparing the standard deviation of ν̂ with its theoretical counterpart, in general we did not

find good results for M = 25. On the contrary, for M ∈ {50, 75}, overall we found good results

except for Case I (however, even here the sampled and theoretical standard deviations had the

same order of magnitude). Furthermore, when comparing the RMSE values in terms of M for a

fixed estimator and case, we found smaller values using M = 75, but in many cases these values
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Table 1: Monte Carlo experiments. 1,000 replications of LMSD-(1,d,0) exponential processes with β = 1
of size n = 50, 000. Parameters d, φ and σ are estimated by the MDE method with M ∈ {25, 50}. For
each combination, a is the sample bias, b is the standard deviation and c is the RMSE. In addition,
theoretical asymptotic standard deviations for the MDE method are given in d.

M=25 M=50

d φ σ d̂ φ̂ σ̂ d̂ φ̂ σ̂

0.45 -0.5 0.7 -0.001a 0.001 0.002 -0.002 0.003 0.005
0.016b 0.019 0.014 0.013 0.018 0.014
0.016c 0.019 0.014 0.013 0.018 0.015
0.017d 0.019 0.014 0.014 0.018 0.014

0.45 -0.6 0.9 -0.000 0.000 0.002 -0.001 0.001 0.004
0.011 0.011 0.012 0.010 0.010 0.012
0.011 0.011 0.012 0.010 0.010 0.012
0.011 0.011 0.012 0.010 0.010 0.012

0.40 -0.4 0.9 -0.001 0.001 0.002 -0.001 0.002 0.004
0.013 0.016 0.011 0.011 0.015 0.011
0.013 0.016 0.012 0.011 0.015 0.012
0.013 0.016 0.011 0.011 0.015 0.011

0.30 -0.5 0.8 -0.002 0.002 0.003 -0.002 0.003 0.005
0.016 0.014 0.012 0.013 0.014 0.012
0.016 0.015 0.013 0.013 0.014 0.013
0.017 0.015 0.012 0.014 0.015 0.012

were very close to those obtained with M = 50.

Table 3 reports the results for the Weibull distribution with n = 250, 000. It can be seen

that the results are very good in terms of bias. Additionally, for M ∈ {50, 75}, the standard

deviations are close or moderately close to their theoretical counterparts, except for ν̂ in Case

III. Moreover, when comparing the RMSE values in terms of M for a fixed estimator and case,

we found smaller values using M = 75, except in cases I and III, where we observed slightly

greater values using M = 75 compared to M = 50.

For a given parameter combination, estimator and M value, when comparing tables 2 and

3, we observe that both the bias and RMSE values decrease as the sample size increases, except

for Case III, where the biases are almost the same, and the RMSE of ν̂ with M = 25 is slightly

smaller for n = 50, 000.

For completeness, we report a summary of the performance of the estimator of β presented

in Section 2.24. For the Weibull distribution when n = 250, 000 and using M = 75, the figures

of (bias, RMSE) are: (-0.005,0.052), (-0.003,0.028), (-0.005,0.027) and (-0.003,0.030) for cases 1

to 4, respectively. These values are very close to those obtained when M = 50. Therefore, the

results are very good.

4Full results are available upon request.
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Table 2: Monte Carlo experiments. 1,000 replications of LMSD-(1,d,0) Weibull processes with β = 1 of size n = 50, 000. Parameters d, φ, σ and ν are estimated
by the MDE method with M ∈ {25, 50, 75}. For each combination, a is the sample bias, b is the standard deviation and c is the RMSE. In addition, theoretical
asymptotic standard deviations for the MDE method are given in d.

M=25 M=50 M=75

Case d φ σ ν d̂ φ̂ σ̂ ν̂ d̂ φ̂ σ̂ ν̂ d̂ φ̂ σ̂ ν̂

I 0.40 -0.5 0.8 0.9 -0.014a 0.019 0.036 0.020 -0.007 0.010 0.018 0.007 -0.006 0.009 0.018 0.006
0.053b 0.067 0.116 0.066 0.038 0.050 0.079 0.032 0.036 0.048 0.077 0.031
0.055c 0.069 0.122 0.069 0.039 0.051 0.081 0.033 0.036 0.049 0.079 0.032
0.037d 0.045 0.065 0.021 0.033 0.043 0.064 0.021 0.031 0.041 0.062 0.020

II 0.35 -0.4 0.5 1.3 -0.010 0.011 0.022 0.025 -0.004 0.004 0.014 0.015 -0.002 0.002 0.010 0.010
0.073 0.086 0.091 0.073 0.061 0.076 0.081 0.063 0.054 0.069 0.074 0.055
0.074 0.087 0.094 0.077 0.061 0.076 0.083 0.065 0.054 0.069 0.074 0.055
0.073 0.087 0.083 0.052 0.061 0.077 0.076 0.047 0.053 0.069 0.069 0.044

III 0.25 -0.4 0.5 1.3 -0.007 0.009 0.017 0.019 -0.006 0.008 0.016 0.017 -0.006 0.008 0.016 0.016
0.049 0.077 0.081 0.065 0.048 0.078 0.081 0.063 0.047 0.077 0.081 0.067
0.050 0.078 0.083 0.068 0.049 0.078 0.082 0.066 0.048 0.078 0.083 0.069
0.046 0.072 0.069 0.044 0.045 0.071 0.068 0.043 0.044 0.071 0.068 0.043

IV 0.25 -0.2 0.5 2.0 0.016 -0.015 -0.009 0.020 0.009 -0.008 -0.002 0.033 0.004 -0.004 0.002 0.039
0.065 0.058 0.080 0.203 0.055 0.049 0.076 0.208 0.048 0.043 0.073 0.206
0.067 0.060 0.080 0.204 0.055 0.050 0.076 0.210 0.048 0.043 0.073 0.210
0.118 0.100 0.160 0.379 0.073 0.063 0.107 0.252 0.059 0.052 0.090 0.212

10



Table 3: Monte Carlo experiments. 1,000 replications of LMSD-(1,d,0) Weibull processes with β = 1 of size n = 250, 000. Parameters d, φ, σ and ν are estimated
by the MDE method with M ∈ {25, 50, 75}. For each combination, a is the sample bias, b is the standard deviation and c is the RMSE. In addition, theoretical
asymptotic standard deviations for the MDE method are given in d.

M=25 M=50 M=75

Case d φ σ ν d̂ φ̂ σ̂ ν̂ d̂ φ̂ σ̂ ν̂ d̂ φ̂ σ̂ ν̂

I 0.40 -0.5 0.8 0.9 -0.007a 0.010 0.018 0.010 -0.001 0.001 0.002 0.001 -0.001 0.001 0.002 0.000
0.036b 0.046 0.082 0.050 0.015 0.020 0.030 0.010 0.015 0.020 0.030 0.010
0.036c 0.047 0.084 0.051 0.015 0.020 0.030 0.010 0.015 0.020 0.030 0.010
0.017d 0.020 0.029 0.010 0.015 0.019 0.028 0.009 0.014 0.018 0.028 0.009

II 0.35 -0.4 0.5 1.3 -0.010 0.011 0.014 0.012 -0.003 0.004 0.006 0.005 -0.001 0.002 0.003 0.002
0.040 0.048 0.051 0.037 0.031 0.039 0.041 0.029 0.025 0.033 0.033 0.022
0.042 0.050 0.052 0.039 0.031 0.040 0.041 0.030 0.025 0.033 0.034 0.022
0.033 0.039 0.037 0.023 0.027 0.034 0.034 0.021 0.024 0.031 0.031 0.020

III 0.25 -0.4 0.5 1.3 -0.011 0.018 0.022 0.020 -0.010 0.016 0.020 0.018 -0.010 0.017 0.022 0.019
0.032 0.053 0.060 0.053 0.031 0.050 0.058 0.053 0.031 0.052 0.062 0.058
0.034 0.056 0.064 0.056 0.032 0.053 0.062 0.056 0.033 0.055 0.066 0.061
0.021 0.032 0.031 0.019 0.020 0.032 0.031 0.019 0.020 0.032 0.031 0.019

IV 0.25 -0.2 0.5 2.0 0.012 -0.010 -0.012 -0.011 0.002 -0.002 -0.001 0.009 0.002 -0.002 -0.001 0.008
0.037 0.032 0.049 0.122 0.028 0.025 0.042 0.104 0.025 0.023 0.039 0.098
0.039 0.034 0.050 0.123 0.028 0.025 0.042 0.105 0.025 0.023 0.039 0.098
0.053 0.045 0.072 0.169 0.033 0.028 0.048 0.113 0.026 0.023 0.040 0.095
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4 Illustration

In this section we briefly illustrate the application of the proposed method to a real time series.

We use the time series of nonzero durations (in seconds) adjusted for daily seasonality of the

Caterpillar stock in the period from January 4, 2010 to May 28, 20105. Daily seasonal adjustment

was performed using the method described in Deo et al. (2010). The time series consists of n =

985, 365 observations and has the following statistics: 1.350 (mean), 1.404 (standard deviation),

0.459 (minimum), 0.572 (Q1), 0.720 (Q2), 1.455 (Q3) and 48.880 (maximum). Figure 1 shows

the autocorrelation function and the histogram based on the durations up to the 99% quantile.

Here, it can be seen that the series exhibits long-memory and that a Weibull distribution instead

an exponential distribution is more suitable for modelling purposes.

0 50 100 150

0.
0

0.
4

0.
8

Lag

A
C

F

(a)

(b)

Durations

P
ro

po
rt

io
n

0 1 2 3 4 5 6 7

0.
0

0.
4

0.
8

Figure 1: (a) ACF of the durations; (b) Histogram of the durations up to quantile 99%.

LMSD models with Weibull perturbations were fitted for two specifications of the latent

ARFIMA process: (0,d,0) and (1,d,0). Minimum distance estimation results forM ∈ {50, 75, 100}

are presented in Table 4. Here, it can be seen that in all cases the estimates are highly significant

for the (0,d,0) specification, and for each parameter the estimates are very stable (have similar

values) in terms of M . Besides this, for the (1,d,0) specification, we obtain non-significant es-

timates for the autoregressive parameter φ, but the rest of estimates are highly significant and

stable across M for each parameter. For both specifications, the results support the presence

of long-memory, with memory parameter estimates around 0.38, and distribution parameter

estimates around 2.1. In addition, based on the consistent estimator shown in Section 2.2, we

obtain estimates of β around 1.3.

5The row data were downloaded from https://faculty.chicagobooth.edu/ruey-s-tsay/research/an-introduction-

to-analysis-of-financial-data-with-r, inside the ch6data.zip file. A subset of this time series was analysed in Chapter

6 of Tsay (2013) based on ACD models.
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Table 4: Minimum distance estimates of Caterpillar duration time series. Standard errors are given in
parentheses.

Specification M d̂ φ̂ σ̂ ν̂

(0,d,0)-Weibull 50 0.3790 0.2412 2.1380
(0.0083) (0.0055) (0.0075)

75 0.3900 0.2351 2.1302
(0.0070) (0.0047) (0.0064)

100 0.3878 0.2364 2.1316
(0.0063) (0.0045) (0.0062)

(1,d,0)-Weibull 50 0.3708 -0.0213 0.2534 2.1536
(0.0140) (0.0258) (0.0171) (0.0231)

75 0.4034 -0.0318 0.2354 2.1269
(0.0107) (0.0263) (0.0136) (0.0163)

100 0.3780 -0.0262 0.2506 2.1487
(0.0097) (0.0228) (0.0133) (0.0176)

5 Conclusions

A new estimation method based on minimum distance is proposed. The main features of the

MDE estimator can be summarized as follows: First, it is easy to calculate and implement,

since the computation of the estimates is based on a reduced number of sample autocovariance

differences. Second, the computation is very fast even for time series with nearly a million

observations. For instance, the computing time to obtain all the estimates of Table 4 was

73.1 seconds6, while it was 17.7 and 55.4 seconds for the (0, d, 0) and (1, d, 0) specifications,

respectively. Third, it provides precision estimates based on asymptotic standard errors.

Monte Carlo experiments with LMSD-(1, d, 0) models indicate that the proposed method

exhibits very small bias. Moreover, precision estimates are very accurate using M = 50 in time

series of size 50,000 for the exponential case, and using M ∈ {50, 75} in time series with size

250, 000 for the Weibull case.

To sum up, given its numerical efficiency, the MDE technique is useful for handling huge

datasets, typically found in real intertrade duration time series.
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