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Abstract

We propose a model to study the choice between three ways of trading in over-the-
counter asset markets: principal inventory trades, agency risk-free trades, or all-to-all
(A2A) trades. Principal and agency trades occur through dealers. A2A trades occur
without dealers, as direct customer-customer transactions. We show the possibility
of multiple equilibria. Equilibrium changes may lead to substantial changes in dealer
intermediation. Increased agency trading is compatible with increased activity in A2A
markets. The model explains three facts about corporate bond markets following the
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and (3) a decrease in measured illiquidity.
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1 Introduction

We introduce a model to study the composition of trades in over-the-counter markets. We

consider three trading mechanisms: principal inventory trades, agency risk-free trades, and

all-to-all (A2A) customer-customer trades. In the model, principal and agency trades are

both executed through dealers, while in A2A trades, customers trade directly with other

customers. Trading choices made by customers and dealers influence the frequency of each

trading mechanism. Transaction fees, search costs, and other parameters affect these choices.

The model helps analyze how regulatory and technological changes impact financial markets,

particularly over-the-counter markets such as corporate bond markets.

In the model, dealers face different intermediation costs when providing on-the-spot

liquidity using their inventory in principal trades and when facilitating trading by matching

customers in agency trades. Customers can also avoid trading with dealers and trade directly

with other customers in A2A markets. A customer finds a dealer or another customer according

to a search and matching model with elements of Lagos and Rocheteau (2009) and Hugonnier,

Lester, and Weill (2022).

When the intermediation costs of principal trade increase relative to the intermediation

costs of other trading mechanisms, customers accept to wait longer until they are matched

with another customer with the assistance of the dealer, or to wait until they find another

customer in A2A markets. The intermediation cost creates a segmentation of the corporate

bond market into A2A trades and customer-dealer trades subdivided into inventory trades

and agency trades. Agency trades represent customer liquidity provision as described by Choi

et al. (2024). In agency and A2A trades, customers pay low intermediation fees, but face high

search costs. They might pay a smaller price for the asset (or sell for a higher price), but

they take longer to trade. In principal inventory trades, customers are willing to pay high

intermediation costs for immediacy.

We find that an increase in intermediation costs can lead to multiple equilibria. Equilibrium

multiplicity arises because customers need to predict the probability of matching with a dealer

or another customer based on their trading choice. They cannot coordinate their search. For

the same parameters, one equilibrium may feature a small agency market while another may

feature a large agency market. The benefits of coordination increase as intermediation costs
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rise. We show that small intermediation costs rule out equilibrium multiplicity. However, an

increase in principal or agency intermediation fees raises the likelihood of multiple equilibria.

We show that we can have different market configurations. We can have a large principal

market and small agency and A2A trades, a common configuration before 2010; and a smaller

principal market but larger agency market, as we have today. An increase in agency trade

does not necessarily imply an increase in A2A trades. Therefore, we can have a stable fraction

of A2A trades together with a faster increase in agency trade, as has been observed since the

introduction of A2A trading platforms. In addition to intermediation costs, the markets can

move according to search-intensity, bargaining, and other parameters. We interpret search

and bargaining parameters changes as being approximately the result of technological changes

whereas the intermediation costs and being approximately the result of regulatory changes.

An ingredient of the model is the ability of investors to choose to participate in customer-

dealer or customer-customer matches. In the spirit of Guerrieri et al. (2010), agents direct

their search in financial markets. An increase in dealer costs makes customers look for other

customers to trade, which represents customer liquidity provision intermediated by dealers.

For a large enough increase in dealer costs, this change in composition decreases the aggregate

bid-ask spread in equilibrium. Standard indicators of illiquidity rely on observed transactions.

Therefore, a decrease in the aggregate bid-ask spread implies an improvement in standard

indicators of liquidity. The model then generates a change in the structure of the corporate

bond market together with improvement of indicators of market illiquidity.

The model allows us to propose a new measure of illiquidity. The measure obtained from

the model takes into account equilibrium prices, search frictions, and the fraction of the

market that engages in inventory trade or customer liquidity provision.

After the 2008 financial crisis, several regulations were enacted with the objective of avoiding

future financial crises. In particular, the Dodd-Frank Wall Street Reform and Consumer

Protection Act in 2010. To some extent, the Dodd-Frank Act and similar regulations in other

countries accomplished their goal, as there was not a comparable financial crisis after 2008.

However, the focus of academics, practitioners and government officials turned to how such

regulations affect financial markets in normal times, when the economy is not under distress.

There are indications that the form in which trades take place in over-the-counter markets
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has changed after the regulations were put in place.1

The improvement in the traditional measures of market liquidity after the 2008 financial

crisis has been documented by Bessembinder et al. (2018). We confirm this finding with recent

data for the BPW and Amihud liquidity measures (respectively after Bao, Pan, and Wang

2011 and Amihud 2002). The improvement in measured market liquidity could suggest that

regulations had a minor impact on financial market liquidity. However, Bessembinder et al.

(2018) and Choi et al. (2024) report a decrease in dealer trade frequency. Especially, Choi

et al. (2024) indicate a change in the composition of the provision of liquidity. The provision

of liquidity has increasingly been made by customers rather than dealers. In practice, there is

a perceived movement of customers from principal trade to A2A trade or agency trade.2

The model is able to explain changes on the corporate bond market after the Dodd-Frank

Act. The Act includes the Volcker rule, which prohibits institutions from trading that uses

the inventory of assets purchased earlier with the intention of profiting from a higher sale

price (proprietary trade). In the context of the model, we interpret the introduction of the

Volcker rule as an increase in costs of principal trade. According to the model, the increase

in principal cost implies (1) the increase in agency trades or A2A trades; (2) longer trade

executions; and (3) the decrease in measured illiquidity, even though market participants

indicate more difficulty in trading. These predictions are in line with the observations on the

corporate bond market after the post-2008 regulations.

The model builds on Duffie, Gârleanu, and Pedersen (2005), Lagos and Rocheteau (2009)

(LR) and Hugonnier, Lester, and Weill (2022) (HLW). Depending on the parameters, it implies

LR or HLW as particular cases. Time is continuous. There is an asset that pays dividends

over time. There are two types of traders: customers and dealers. Dealers have access to a

competitive interdealer market where the asset is traded at an equilibrium price. Customers

trade with dealers or with other customers. There are search frictions when customers search
1During a 2015 congressional hearing, for example, Rep. French Hill questioned the Federal Reserve Chair

at the time, Janet Yellen, on whether regulations were to blame for the deterioration of liquidity on different
bond markets. Yellen replied: “I am not ruling out the possibility that regulations could play a role here, it is
simply we have not been able to understand through a lot of different factors and we need to look at it more to
sort out just what is going on and what the different influences are, but I am not ruling that out.”

2We obtain similar findings on the importance of illiquidity for the yield spreads as Li and Yu (2023) and
Wu (2023), which worked in independent papers. Our empirical results are different in some aspects (such as
our focus on the BPW and Amihud measures) and they complement their findings. However, our focus is on
the model to explain the movements in the corporate bond market. We discuss in more detail the liquidity
premium in Dyskant et al. (2025).
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for a trade counterparty. These search frictions are different for finding another dealer or

customer.

Each asset has a stochastic maturity date and a stochastic issue opportunity. Customers

are heterogeneous in the valuation of the asset. The heterogeneity in asset valuation implies

gains to trade. Assets trade hands over time. We characterize the stationary distribution of

asset holdings as well as the equilibrium bid-ask spreads. We show that the empirical behavior

of market illiquidity can be rationalized by the model when we interpret the Dodd-Frank act

as causing an increase in intermediation costs.

The increase in the intermediation costs of dealers increases the equilibrium bid-ask spread.

Customers that do not have the asset but have a high valuation of it still trade with dealers.

They pay a high ask price because they want to find a trade counterparty fast. Similarly,

customers that have the asset but have a low valuation of it accept a lower bid price from

dealers to sell the asset fast. On the other hand, customers with intermediary valuations

of the asset avoid trading with dealers. They wait to be matched with other customers to

avoid the surcharge in the form of large bid-ask spreads. Empirically, Choi et al. (2024) find

that matched customers in fact pay lower spreads. We show that an increase in trade costs

increases the number of customer-customer trades. As a result, the measured bid-ask spread

decreases, as well as the measured illiquidity measures.

2 Model

2.1 Environment

We model over-the-counter markets as markets in which agents take decisions under search

frictions. First search models applied to OTC markets include Gehrig (1993), Spulber (1996),

and Rust and Hall (2003).3 Our model builds more directly on Duffie et al. (2005).

Agents, time, goods and assets There are two types of agents in a continuum: a measure

one of customers and an infinite measure of dealers. Time is continuous and infinite. There

is a unique good and an endogenous supply s ≥ 0 of assets. A unit of the asset pays a unit

flow of dividends in the form of goods, which cannot be traded. The agent holding an asset
3See also Cimon and Garriott (2019), Saar et al. (2023), An and Zheng (2022).
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consumes its dividends. All agents are infinitely-lived, discount the future at rate r > 0, and

have transferable utility. Customers can hold either zero or one unit of the asset. We refer

to customers holding an asset as owners, and to those not holding an asset as non-owners.

Dealers can hold discrete amounts i of the asset, i ∈ {−1, 0, 1}. We interpreted a negative

dealer position i < 0 as either the dealer borrowing the asset to sell, a common practice for

short selling, or holding a position below the target for its private account.4

Preferences Customers are heterogeneous in the utility ν that they derive from consuming

the dividend flow of the asset. We refer to ν as the customer utility type. Types are fixed

over time, common knowledge, independent across customers, and initially drawn from a

given cumulative distribution F . The distribution F has support R, and a continuous density

f > 0. We assume that
∫

ν2f(ν)dν < ∞ and that there is no free disposal of assets. The

assumption that the distribution of types has unbounded support is convenient because we

do not have to consider corner solutions. However, we can obtain our main results with

a bounded support [
¯
ν, ν̄] if we assume that the density is sufficiently low at the extremes.

Similarly, the assumption of no free disposal can be replaced with the assumption that the

measure of agents with ν < 0 is sufficiently low. Dealers do not derive utility from holding

assets. They hold inventory only to profit from intermediation. They pay a flow cost cl ≥ 0

when they take a long position in bonds, that is, hold i = 1, and pay a flow cost cs ≥ 0 when

they take a short position in bonds, i = −1.

Decentralized market There is an OTC asset market in which customers choose to search

for another customer or for a dealer. Customers who find a dealer then choose between agency

and principal trade. Figure 1 depicts customers’ sequence of actions.

When searching for another customer, the customer finds one with Poisson arrival rate

λC/2 > 0. This implies a meeting rate of λC (the two customers search for each other at

λC/2 > 0). Customers searching for customers do not find customers searching for dealers.

We interpret customer-to-customer trades as performed in all-to-all trade platforms, which
4We could alternatively model dealers holding inventory in order to sell the bond; a form of “inventory-

in-advance” constraint proposed by Cohen et al. (2024). Both versions imply similar results because we can
pick the cost of shorting the bond to match the cost of holding inventory. We keep the current version where
dealers can take a negative position because it simplifies the analysis.
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Figure 1: Customers’ sequence of actions. A customer of type ν chooses to search for another
customer in the customer-customer market (all-to-all trade platform), or to search for a dealer.
When meeting a dealer, customers choose between agency and principal trade.

allow customers to search for a counterpart without the participation of dealers.

When searching for a dealer, the customer finds one with Poisson arrival rate λ0
D > 0.

After the customer and the dealer meet, they can trade in two ways: risky principal trade

or agency trade. In a risky principal trade, the dealer trades with the customer on its own

account and then joins an interdealer market to rebalance its portfolio. In an agency or

risk-free trade, the dealer joins the interdealer market on behalf of the customer and completes

the transaction afterwards. An agency trade takes longer to complete because the dealer has

to search in the interdealer market. In a risky principal trade, the dealer uses its own account

and completes the trade on the spot. To simplify the model and notation, we assume dealers

exit the economy once they intermediate a transaction. In the case of a principal trade, the

dealer exits the economy after rebalancing their portfolio. In the case of an agency trade, the

dealer exits the economy after completing the trade on behalf of the customer.

The interdealer market Following Lagos and Rocheteau (2009), dealers access a competi-

tive market with Poisson arrival rate λ1
D > 0, where the endogenous asset price is p. Dealers

pay an intermediation cost τ ≥ 0 when trading on behalf of customers in an agency trade.

That is, the net revenue of selling an asset in an agency trade is p − τ , and the cost of buying

an asset in an agency trade is p + τ .

Asset supply Asset issuance and maturity determine the supply of assets. Customers issue

new assets at no cost with Poisson arrival rate η > 0, and an asset matures with Poisson

arrival rate µ > 0. The asset disappears from a portfolio and from the economy at maturity.
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In an agency trade, if the customer state changes because of asset maturity or issuance,

the match ends. Dealers do not issue assets, and assets in their possession do not mature.

This assumption simplifies the model, but is not important for the qualitative results. Asset

issuance and maturity in our model follows Bethune et al. (2022) and implies that a steady

state with positive trade emerges without introducing time-varying types.

Bargaining We use Nash bargaining to model trade. In a customer-dealer trade, the

customer bargaining power is θD ∈ [0, 1]. In a customer-customer trade, the buyer bargaining

power is θn
C ∈ [0, 1] and the seller bargaining power is θo

C = 1 − θn
C . We assume the following

relation between the search and bargaining parameters.

Assumption 1. Dealers’ search technology is sufficiently better than customers’ search

technology. That is, λ0
Dλ1

DθD

r+µ+η+λ0
D+λ1

D
> λC max{θo

C , θn
C}.

Assumption 1 implies that customers are better off searching for dealers when dealers face no

principal trade cost (cs = cl = 0), or no agency trade cost (τ = 0).

2.2 Value functions and reservation value

We first specify the value function of customers as functions of the search choices. When

searching for dealers, the value function is V o
D(ν) for owners, and V n

D(ν) for non-owners. When

searching for customers, the value function is V o
C(ν) for owners, and V n

C (ν) for non-owners.

The value function yields the maximum between the two trading choices,

V o(ν) = max{V o
D(ν), V o

C(ν)}, for owners, (1)

V n(ν) = max{V n
D(ν), V n

C (ν)}, for non-owners. (2)

The value function of customers waiting in an agency trade with a dealer is Ṽ o
D(ν) for owners,

and Ṽ n
D(ν) for non-owners. Finally, the reservation value of customers, ∆(ν) = V o(ν) − V n(ν),

is the compensation that makes them indifferent between owning an asset or not.

The value function of a dealer with asset position i is W i. The reservation value of a

dealer is W l = W 1 − W 0 when buying an asset, W s = W 0 − W −1 when selling it, and W a

when in an agency trade. We anticipate the following results. Dealers’ likelihood of serving a
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customer is zero since there is an infinite measure of them, implying that W 0 = 0. Moreover,

dealers exit the economy after an agency trade, losing the option to serve future customers

and implying that dealers’ reservation value in an agency trade is W a = W 0 = 0.

The distribution of customer types is Φo(ν) for owners, and Φn(ν) for non-owners. As

each owner holds exactly one unit of the asset, the measure of assets is s =
∫

dΦo. Let

Π = {π−1, πo
0, πn

0 , π1} denote the inventory distribution among matched dealers. π−1 is the

measure of dealers matched with a customer and who sold an asset in a principal trade, πo
0

and πn
0 are the measures of dealers in an agency trade matched to owners and non-owners,

and π1 is the measure of dealers matched with a customer and who bought an asset in a

principal trade. Remember that owners try to sell an asset and non-owners try to buy an

asset. Let π0 = πo
0 + πn

0 be the measure of dealers matched with customers waiting to access

the interdealer market to trade on behalf of the customer in an agency trade.5

Let the sets Ωo
D and Ωo

C represent the customer owners that search for dealers and that

search for other customers. Analogously, Ωn
D and Ωn

C represent the set of customer non-owners

that search for dealers and that search for other customer. {Ωo
D, Ωo

C} and {Ωn
D, Ωn

C} form two

partitions of R. We denote the search partitions of customers by P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C}. We

can further partition the sets Ωo
D and Ωn

D into partitions of principal trade and agency trade,

{Ωo,p
D , Ωo,a

D } and {Ωn,p
D , Ωn,a

D }, where the superscripts p and a denote principal trade or agency

trade. Denote the trade-mode partition by PD = {Ωo,p
D , Ωo,a

D , Ωn,p
D , Ωn,a

D }.

Searching for dealers The value function of a type-ν owner searching for a dealer is

rV o
D(ν) = ν − µ∆(ν) + λ0

DθD max
{

W l − ∆(ν)︸ ︷︷ ︸
Principal

trade

, Ṽ o
D(ν) − V o

D(ν)︸ ︷︷ ︸
Agency
trade

, 0
}

. (3)

The first and second terms in the right-hand side are the utility flow of holding the asset and the

expected loss of reservation value in case of asset maturity. The third term, λ0
DθD max{W l −

∆(ν), Ṽ o
D(ν)−V o

D(ν), 0}, is the profit of an owner when meeting a dealer. The pair owner-dealer

has three options: they can trade in a principal trade so that the dealer purchases the asset

immediately, they can wait to access the interdealer market in an agency trade, or they can
5The distribution function could change over time in general, but we focus on steady-state equilibria and

omit time subscripts.
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decide not to trade. The gains from trade are respectively W l − ∆(ν), Ṽ o
D(ν) − V o

D(ν), and

zero. The owner keeps a share θD of the gains from trade.

The value function of a type-ν owner matched with a dealer in an agency trade is

rṼ o
D(ν) = ν − µ[Ṽ o

D(ν) − V n(ν)] + λ1
D max{p − τ − [Ṽ o

D(ν) − V n(ν)], 0}. (4)

The expected loss in case of maturity, in the second term, now takes into account the fact

that the customer has already been matched. The third term is the profit of an owner when

selling the asset in the interdealer market.

The value function of a type-ν non-owner searching for dealers is

rV n
D(ν) = η∆(ν) + λ0

DθD max
{

∆(ν) − W s︸ ︷︷ ︸
Principal

trade

, Ṽ n
D(ν) − V n

D(ν)︸ ︷︷ ︸
Agency
trade

, 0
}

. (5)

The first term is the expected gain in reservation value in case of asset issuance. The second

term is the profit of a non-owner when meeting a dealer. The pair owner-dealer have three

options: the non-owner can buy the asset from the dealer in a principal trade, the non-owner

can wait the dealer to access the interdealer market for an agency trade, or they can decide

not to trade. The gains from trade are respectively ∆(ν) − W s, Ṽ n
D(ν) − V n

D(ν), and zero.

The non-owner keeps a share θD of the gains from trade.

The value function of a non-owner of type ν matched with a dealer in an agency trade is

rṼ n
D(ν) = η[V o(ν) − Ṽ n

D(ν)] + λ1
D max{V o(ν) − Ṽ n

D(ν) − (p + τ), 0}. (6)

The expected gain in an asset issuance takes into account that the non-owner is matched.

The second term is the profit of a non-owner when buying an asset in the interdealer market.

Value functions for the dealers The value function of a dealer holding long and short

positions are given respectively by

rW 1 = rW l = −cl + λ1
D[p − W l], (7)

rW −1 = −rW s = −cs + λ1
D[W s − p]. (8)
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The dealer long on an asset pays the flow cost cl, has an expected loss in case of asset maturity,

and sells the asset at the price p in the interdealer market. The interdealer market can be

accessed at the rate λD. Similarly, the dealer short on an asset pays the flow cost cs, has an

expected gain in case of asset issuance, and buys the asset at the price p in the interdealer

market.6

Customers searching for customers The value function of an owner of type ν searching

for a non-owner is

rV o
C(ν) = ν − µ∆(ν) + λCθo

C

∫
Ωn

C

[∆(ν̃) − ∆(ν)]1{∆(ν̃)>∆(ν)}dΦn(ν̃). (9)

The first term of the value function is the utility flow of holding the asset. The second term

is the expected loss of the reservation value in case of asset maturity. The third term is the

expected profits of an owner when meeting a non-owner. When trading with a non-owner of

type ν̃, an owner of type ν sells the asset if the reservation value of the counterparty, ∆(ν̃), is

higher than the reservation value of the owner, ∆(ν). The gains from trade are ∆(ν̃) − ∆(ν)

and the owner keeps a share θo
C of it. We obtain the expected value of the gains from trade

by integrating it in ν̃ over Ωn
C using the distribution of non-owners Φn(ν̃).

The value function of a non-owner of type ν searching for an owner is

rV n
C (ν) = η∆(ν) + λCθn

C

∫
Ωo

C

[∆(ν) − ∆(ν̃)]1{∆(ν)>∆(ν̃)}dΦo(ν̃). (10)

The first term of the value function is the expected gain of reservation value in case of asset

issuance. The second term is the expected profit of a non-owner when searching for an owner.

A non-owner of type ν buys the asset from an owner of type ν̃ if the reservation value of the

non-owner is higher than the reservation value of the owner. The non-owner keeps a share

θn
C of the gains from trade, ∆(ν) − ∆(ν̃). The expected gains from trade are obtained by

integrating it in ν̃ over Ωo
C using the distribution of owners Φo(ν̃).

6These expressions account for the fact that W 0 = 0, that is, the reservation value of a dealer holding a
position of zero is equal to zero, as the likelihood of a particular dealer meeting a customer is zero.
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Value functions, reservation value and the optimal searching choice The value

functions V o and V n of a customer of type ν satisfy

V o(ν) = max{V o
D(ν), V o

C(ν)} and V n(ν) = max{V n
D(ν), V n

C (ν)}, (11)

and the reservation value function satisfies

∆(ν) = V o(ν) − V n(ν). (12)

We characterize the search partition P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C} in the following way. For Ωo
D,

an owner searches for a dealer if it yields higher value than searching for a non-owner. In the

same way, for Ωn
D, a non-owner searches for a dealer if it yields higher value then searching

for an owner. We have

Ωo
D = {ν ∈ R; V o

D(ν) ≥ V o
C(ν)} and Ωn

D = {ν ∈ R; V n
D(ν) ≥ V n

C (ν)}. (13)

Analogously,

Ωo
C = {ν ∈ R; V o

C(ν) > V o
D(ν)} and Ωn

C = {ν ∈ R; V n
C (ν) > V n

D(ν)}. (14)

Similarly, we characterize the search partition PD = {Ωo,p
D , Ωo,a

D , Ωn,p
D , Ωn,a

D } in the following

way. An owner-dealer pair or a non-owner-dealer use a principal trade if it yields higher value

than waiting in an agency trade. Then for principal trade we have

Ωo,p
D =

{
ν ∈ Ωo

D; W l − ∆(ν) ≥ Ṽ o
D(ν) − V o

D(ν) and W l − ∆(ν) ≥ 0
}

,

Ωn,p
D =

{
ν ∈ Ωn

D; ∆(ν) − W s ≥ Ṽ n
D(ν) − V n

D(ν) and ∆(ν) − W s ≥ 0
}

. (15)

Analogously, for agency trade we have

Ωo,a
D =

{
ν ∈ Ωo

D; Ṽ o
D(ν) − V o

D(ν) > max{W l − ∆(ν), 0}
}

Ωn,a
D =

{
ν ∈ Ωn

D; Ṽ n
D(ν) − V n

D(ν) > max{∆(ν) − W s, 0}
}

. (16)
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Customers search for dealers when indifferent between searching for a dealer or other

customers (eq. 13). Customers-dealers use principal trade when indifferent between agency or

principal trade (eq. 15). There are no inactive customers. For the equilibrium class that we

consider, these assumptions are without loss of generality because there is a measure zero of

customers that are indifferent in equilibrium.

2.3 Interdealer market clearing

The interdealer market clears when the measure of dealers selling an asset is equal to the

measure of dealers buying an asset. Dealers can sell or buy assets either to rebalance their

account or on an agency trade. The measure π1 of dealers holding an asset satisfies

π̇1 = −λ1
Dπ1 + λ0

D

∫ ∞

−∞
1{ν∈Ωo,p

D }dΦo(ν) = 0. (17)

The measure π−1 of dealers short on an asset satisfies

π̇−1 = −λ1
Dπ−1 + λ0

D

∫ ∞

−∞
1{ν∈Ωn,p

D }dΦn(ν) = 0. (18)

The measure πo
0(ν) of dealers with an owner type ν̃ ≤ ν in an agency trade satisfies

π̇o
0(ν) = −

(
µ + λ1

D

)
πo

0(ν) + λ0
D

∫ ν

−∞
1{ν̃∈Ωo,a

D }d[Φo(ν̃) − πo
0(ν̃)] = 0, (19)

and the measure πn
0 of dealers with a non-owner type ν̃ ≤ ν in an agency trade satisfies

π̇n
0 (ν) = −

(
η + λ1

D

)
πn

0 (ν) + λ0
D

∫ ν

−∞
1{ν̃∈Ωn,a

D }d[Φn(ν̃) − πn
0 (ν̃)] = 0. (20)

The interdealer market clears if

λ1
D (π1 + π̄o

0) = λ1
D (π−1 + π̄n

0 ) , (21)

where π̄o
0 = limν→∞ πo

0(ν) and π̄n
0 = limν→∞ πn

0 (ν). The interdealer market clears if the

measure of dealers selling an asset on principal or agency trade equals the measure of dealers

buying an asset on principal or agency trade.
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2.4 The distribution of assets among customers

The cumulative distribution of owners and non-owners are given respectively by Φo and Φn.

The change over time of the distribution of owners Φo satisfies

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) −
∫ ν

−∞

[
λ0

D1{ν̃∈Ωo,p
D } +

λ0
Dλ1

D1{ν̃∈Ωo,a
D }

µ + λ0
D + λ1

D

]
dΦo(ν̃)

+
∫ ν

−∞

[
λ0

D1{ν̃∈Ωn,p
D } +

λ0
Dλ1

D1{ν̃∈Ωn,a
D }

η + λ0
D + λ1

D

]
dΦn(ν̃)

− λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ν̂∈Ωn
C ,∆(ν̂)>∆(ν̃)}dΦn(ν̂)dΦo(ν̃),

+ λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ,ν̂∈Ωn
C ,∆(ν̃)>∆(ν̂)}dΦo(ν̂)dΦn(ν̃) (22)

The first term on the right-hand side of (22) accounts for the inflow of owners that issue

an asset and the second term accounts for the outflow of owners because of asset maturity.

The third and fourth terms account for owners searching for dealers. The third term for the

outflow of owners with type below ν searching for dealers and that sell their asset, and the

fourth for the inflow of non-owners with type below ν searching for dealers and that buy an

asset. The fifth and sixth terms account for customers searching for other customers. The

fifth term for the outflow of owners with type below ν searching for other customers, which

sell their asset to non-owners of type above ν, and the sixth term for the inflow of non-owners

with type below ν searching for other customers, which buy an asset from owners of type

above ν. In an steady-state equilibrium, Φ̇o(ν) = 0 for all ν.

As the measure of customers F is exogenous, the measures of owners and non-owners

satisfy the equilibrium condition

Φo(ν) + Φn(ν) = F (ν). (23)

All assets in the economy are held by owners or dealers. The stock of assets held by owners is

s =
∫ ∞

−∞
dΦo(ν) = Φo(∞). (24)
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2.5 Equilibrium

We define a stationary equilibrium in the following way.

Definition 1. An equilibrium is a family of value functions, reservations value, price, distri-

butions and partitions, {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} satisfying equations (3)–(24).

An equilibrium, even in steady state, can be a complicated object. To simplify it further,

let ΩC = Ωo
C = Ωn

C = (νl, νh) and ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞). Notice that we can

have Ωo
C = Ωn

C as we have some customers of type ν holding the asset and other customers

of the same type that do not hold the asset. Moreover, let Ωo,a
D = (νa

l , νl], Ωn,a
D = [νh, νa

h),

Ωo,p
D = (−∞, νa

l ], and Ωn,p
D = [νa

h, ∞). Define the following class of equilibrium.

Definition 2. An equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} is regular if

• ΩC = Ωo
C = Ωn

C = (νl, νh),

• ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞),

• Ωo,a
D = (νa

l , νl], Ωn,a
D = [νh, νa

h), Ωo,p
D = (−∞, νa

l ], and Ωn,p
D = [νa

h, ∞)

for some νa
l , νl, νh, νa

h ∈ R satisfying νa
l ≤ νl ≤ νh ≤ νa

h with νl < νh inequality if cl, cs, τ > 0,

and the reservation value ∆(ν) is continuous and strictly increasing.

Figure 2 illustrates the partitions of a regular equilibrium. The motivation to look for an

equilibrium with the characteristics of a regular equilibrium is the following. Customers with

type close to each other, in ΩC = (νl, νh), choose to trade among themselves to avoid the costs

associated with trade with a dealer, τ and c, and because they do not gain much from trading.

Customers with moderate types, outside ΩC = (νl, νh) but neither in Ωo,p
D = (−∞, νa

l ] nor in

Ωn,p
D = [νa

h, ∞), are willing to cover higher dealer cost for an agency trade, but not the cost

associate with a principal trade. Only customers with extreme types, in Ωo,p
D = (−∞, νa

l ] or

Ωn,p
D = [νa

h, ∞), are in a hurry to trade and they are willing to cover higher dealer cost for a

principal trade.

We also impose νl < νh when the intermediation cost is strictly positive. The reason is

that we can always build an equilibrium where customers do not search for customers because

they expect other customers to do the same. In this case, the probability of finding a customer
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AgencyPrincipal

Dealers

Agency Principal

Dealers

Figure 2: Partitions P and PD in a regular equilibrium.

is zero so customers may as well search for dealers. The assumption that νl < νh if cl, cs, τ > 0

rules out equilibria built on this sort of weak inequality. In the next section, we characterize a

regular equilibrium and provide conditions that it exists.

3 Model solution: two limiting cases

To understand the results of the model, it is helpful to examine two limiting cases: one with

high principal trade costs, where all dealer intermediation occurs through agency trades, and

another with high agency trade costs, where all dealer intermediation occurs through principal

trades.

3.1 Agency trade only

Let principal trade costs, cl and cs, be sufficiently high so that dealers perform agency trades

only. From equations (7) and (8), this implies W l = −∞, W s = ∞ and, Ωo,p
D = Ωn,p

D = ∅.

The threshold types for the agency trade are then νa
l = −∞ and νa

h = ∞, and dealers engage

exclusively in agency risk-free trades.

A regular equilibrium has then two blocks. Given νl and νh, customers ν ∈ ΩD =

(−∞, νl] ∪ [νh, ∞) perform dealer-agency trades whereas customers ν ∈ ΩC = (νl, νh) trade

bilaterally with other customers in all-to-all trades. We can solve these two blocks separately

using the tools developed in Lagos and Rocheteau (2009) and Hugonnier et al. (2022). The

challenge is to characterize νl and νh that are consistent with the equilibrium equations (13)
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and (14). We need to find νl and νh such that customers searching for dealers, with ν ≤ νl or

ν ≥ νh, are not better off searching for other customers. Analogously, customers searching for

customers with intermediary types νl < ν < νh are not better off searching for dealers.

3.1.1 Dealer-agency block

The reservation value of a type-ν customer searching for a dealer is ∆(ν) = V o
D(ν) − V n

D(ν).

The value functions, V o
D(ν) and V n

D(ν), of a type-ν customer searching for a dealer when

holding and not holding an asset are stated in equations (3)–(6). It is useful to define

λal
D = λ0

Dλ1
D

r + µ + λ0
DθD + λ1

D

and λas
D = λ0

Dλ1
D

r + η + λ0
DθD + λ1

D

. (25)

Solving the four equations to isolate ∆(ν) yields the following lemma.

Lemma 1. Consider a regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} and the

set of utility types ΩD = (−∞, νl] ∪ [νh, ∞). Then, the reservation value ∆(ν) satisfies

∆(ν) =


σal

D [ν + λal
DθD(p − τ)], ν ≤ νl,

σas
D [ν + λas

D θD(p + τ)], ν ≥ νh,

(26)

where

σal
D = 1

r + µ + η + λal
DθD

and σas
D = 1

r + µ + η + λas
D θD

. (27)

Moreover, ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ .

The derivative of the reservation value with respect to ν is given by σal
D , when ν ≤ νl,

and σas
D , when ν ≥ νh. As HLW, we can interpret σal

D and σas
D as the local surplus at ν. It

captures the trade surplus generated if the asset of an agent type ν is transferred to an agent

type ν + dν. For all ν /∈ (νl, νh), the local surplus depends only on whether ν ≤ νl or ν ≥ νh.

That is because all customers type ν ≤ νl want to sell the asset and face the same price after

bargaining and intermediation costs. As a result, the trade surplus is constant in this region.

Similarly, all customers type ν ≥ νh want to buy the asset and face the same price after

bargaining and intermediation costs.

The reason the trade surplus is different in the two regions is that customers type ν ≤ νl
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holding the asset to sell face the risk of the asset depreciating before it is sold in an agency

trade, so they discount at the rate λal
D. Customers type ν ≥ νh waiting to buy an asset may

have an issuance opportunity before it purchases the asset in an agency trade, so they discount

at the rate λas
D .

In addition to the interpretation above, σal
D and σas

D are indicators of market friction. To

see this, suppose that there are no search friction for dealer intermediation. In the model, that

means λ0
D, λ1

D → ∞. In this case, σal
D = σas

D = 0 and so ∆(ν) is constant in ν at p − τ or p + τ .

The reservation value is given by the competitive price plus or minus the intermediation cost,

and there is no change in reservation value associated with search frictions. Higher values of

σal
D and σas

D are then associated with higher search frictions. We later discuss an analogous

measure of search frictions for the customer-customer market.

To establish the distributions of owners and non-owners Φo and Φn, we need to determine

the distribution of dealers in agency trade, πo
0 and πn

0 . From Lemma 1, owners ν ≤ νl always

sell in the interdealer market in agency trades and non-owners ν ≥ νh always buy. Then,

equations (19) and (20) can be written as

−
(
µ + λ1

D

)
πo

0(ν) + λ0
D [Φo(ν) − πo

0(ν)] = 0, ν ≤ νl,

−
(
η + λ1

D

)
πn

0 (ν) + λ0
D [Φn(ν) − Φn(νh) − πn

0 (ν)] = 0, ν ≥ νh.

Moreover, non-owners ν ≤ νl are inactive. It does not compensate for them searching for

other customers because owners with reservation value below ∆(ν) are not active in the

customer-customer market. It does not compensate for them buying an asset in agency

because ν ≤ νl implies that ∆(ν) ≤ p − τ , as established in lemma 1. The argument is

analogous for owners of type ν ≥ νh. Therefore, non-owners of type ν ≤ νl and owners of type

ν ≥ νh are inactive. This leads to the following result.

Lemma 2 (Agency, dealer market). A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn,
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Π, P, PD} is such that the measures of owners and non-owners in agency trade satisfy

πo
0(ν) =


λ0

DΦo(ν)
µ + λ0

D + λ1
D

, ν ≤ νl,

λ0
DΦo(νl)

µ + λ0
D + λ1

D

, ν > νl,

(28)

πn
0 (ν) =


0, ν ≤ νl

λ0
D [Φn(ν) − Φn(νh)]

η + λ0
D + λ1

D

, ν ≥ νh.

(29)

Moreover, since there is no principal trade, π1 = π−1 = 0.

We can now establish the distribution of owners and non-owners, Φo and Φn.

Lemma 3 (Distributions, dealer market). A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo,

Φn, Π, P, PD} is such that the cumulative distribution of owners satisfies

Φo(ν) =


ηF (ν)

µ + η + λ̃al
D

, ν ≤ νl,

η

µ + η
− (η + λ̃as

D )[1 − F (ν)]
µ + η + λ̃as

D

, ν ≥ νh,

(30)

where λ̃al
D = λ0

Dλ1
D

µ+λ0
D+λ1

D
, λ̃as

D = λ0
Dλ1

D

η+λ0
D+λ1

D
, and Φo(ν) + Φn(ν) = F (ν). Moreover, νl and νh

satisfy

ηλ̃al
DF (νl)

µ + η + λ̃al
D

= µλ̃as
D [1 − F (νh)]
µ + η + λ̃as

D

and λ̃al
DΦo(νl) + λ̃as

D Φn(νh) = λ̃as
D µ

µ + η
. (31)

Define the separating utility type νs as the value of ν such that

ηλ̃al
DF (νs)

µ + η + λ̃al
D

= µλ̃as
D [1 − F (νs)]

µ + η + λ̃as
D

⇒ νs = F −1
[

µλ̃as
D (µ + η + λ̃al

D)
ηλ̃al

D(µ + η + λ̃as
D ) + µλ̃as

D (µ + η + λ̃al
D)

]
.

(32)

If τ = 0, then νl = νh = νs and all customers trade with dealers. In this case, the marginal

type νs separates the market into owners ν < νs who want to sell the asset and non-owners

ν ≥ νs who want to buy the asset.
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3.1.2 Customer-customer block

For customers searching for other customers, the value functions and reservation values are

obtained in the following way. For the value functions, from equations (9) and (10), the value

function of a type ν ∈ ΩC customer holding an asset satisfies

rV o
C(ν) = ν − µ∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃), and (33)

rV n
C (ν) = η∆(ν) + λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃). (34)

Combined with the definition of reservation value, ∆(ν) = V o
C(ν) − V n

C (ν), given in equation

(12), the equations above imply the following lemma.

Lemma 4 (Reservation value, customer-customer market). A regular equilibrium {V o, V n,

∆, W l, W s, p, Φo, Φn, Π, P, PD} satisfies

∆(ν) = ∆(νl) +
∫ ν

νl

σC(ν̃)dν̃ (35)

for all ν ∈ (νl, νh), and

σC(ν) = 1
r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} . (36)

for almost all ν ∈ (νl, νh).

The trade surplus between a seller ν and buyer ν + dν is approximately equal to σC(ν)dν,

which agrees with the interpretation discussed in HLW of σC(ν)dν as the local surplus. The

function σC(ν) discounts the additional utility dν by the discount rate r, the likelihood that

the asset will mature µ, the loss in the likelihood of issuing an asset η, and the loss in option

value from either meeting another buyer with higher valuation λCθo
C

[
Φn(νh) − Φn(ν)

]
, or

finding another seller with lower valuation, λθn
C

[
Φo(ν) − Φo(νl)

]
.

We now turn to the distributions Φo, Φn among customers searching other customers.

Lemma 5 (Distributions, customer-customer market). A regular equilibrium {V o, V n, ∆, p,
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Φo, Φn, νl, νh} is such that the cumulative distribution of owners satisfies

Φ̃o(ν) = F (ν) − F (νl) − Φ̃n(ν)

= −µ+η+λC [F (νh)−F (ν)−sC ]
2λC

+

√
{µ+η+λC [F (νh)−F (ν)−sC ]}2+4λCη

[
F (ν)−F (νl)

]
2λC

, (37)

ν ∈ (νl, νh), where Φ̃o(ν) ≡ Φo(ν) − Φo(νl) and Φ̃n(ν) ≡ Φn(ν) − Φn(νl), and

sC ≡ Φo(νh) − Φo(νl) = η

µ + η

[
F (νh) − F (νl)

]
. (38)

Figure 3 shows a representation for the reservation value as function of ν. Lemma 1 implies

that ∆(ν) is linear for ν ≤ νl and ν ≥ νh. Moreover, ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ . That

is, owners with ν ≤ νl choose sell to dealers and non-owners with ν ≥ νh choose to buy from

dealers. Lemmas 4 and 5 imply the nonlinear shape of ∆ in (νl, νh). Customers that trade

with dealers have ν ≤ νl. Customers that trade with other customers have ν ∈ (νl, νh).

ν

∆(ν)

νl νh

∆(νl)

∆(νh)

Figure 3: Reservation value as function of the customer type, ∆(ν). Customers that trade
with dealers have ν ≤ νl. Customers that trade with other customers have ν ∈ (νl, νh).

3.1.3 Characterization

The results in sections 3.1.1 and 3.1.2 establish necessary conditions for the equilibrium objects

V o, V n, ∆, p, Φo, Φn, s, νl and νh. The equilibrium objects can all be written as functions of

νl and νh. We now provide necessary conditions on νl and νh and show that, together with
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equations (5)–(38), these conditions are also sufficient for a regular equilibrium. These results

provide a full characterization of the equilibrium.

Lemma 6. A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} satisfies

2τθD =
∫ νh

νl

w(ν)σC(ν) − σas
D

λas
D σas

D

+ [1 − w(ν)] σC(ν) − σal
D

λal
Dσal

D

dν, (39)

where w(ν) = θo
C

[
Φn(νh)−Φn(ν)

]
θo

C

[
Φn(νh)−Φn(ν)

]
+θn

C

[
Φo(ν)−Φo(νl)

] . Moreover,

p = ∆(νl) + τ + λCθo
C

λal
DθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= ∆(νh) − τ − λCθn
C

λas
D θD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (40)

Lemmas 3 to 6 establish necessary conditions that are satisfied in all regular equilibria. In

the proposition below, we show that these conditions are not only necessary but sufficient.

Therefore they fully characterize a regular equilibrium.

Proposition 1. If a family {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} is a regular equilibrium,

it satisfies equations (26)–(40). Reversely, if {∆, p, Φo, Φn, Π, P, PD} satisfies equations

(26)–(40), then {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} is a regular equilibrium where

the value functions W l, W s, V o and V n are constructed using equations (3)–(11).

3.2 Principal trade only

Let now agency trade cost τ be sufficiently high so that dealers undertake principal trades

only. From equations (7) and (8), this implies that the threshold types for the agency trade

are νa
l = νl and νa

h = νh. Dealers and customers engage exclusively in principal trades and

the sets of agency trades disappears, Ωo,a
D = Ωn,a

D = ∅.

3.2.1 Dealer-principal trades

The dealer reservation value can be obtained from equations (7) and (8). It yields

W l = λ1
D(p − c̃l)
r + λ1

D

and W s = λ1
D(p + c̃s)
r + λ1

D

, (41)
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where c̃l = cl

λ1
D

and c̃s = cs

λ1
D

. The reservation value of a type-ν customer searching for a

dealer is ∆(ν) = V o
D(ν) − V n

D(ν). The value functions, V o
D(ν) and V n

D(ν), of a type-ν customer

searching for a dealer when holding and not holding an asset are stated in equations (3)–(6).

It is useful to define

λp
D = λ0

Dλ1
D

r + λ1
D

. (42)

Solving the four equations to isolate ∆(ν) yields the following lemma.

Lemma 7. Consider a regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} and the

set of utility types ΩD = (−∞, νl] ∪ [νh, ∞). Then, the reservation value ∆(ν) satisfies

∆(ν) =


σp

D[ν + λp
DθD(p − c̃l)], ν ≤ νl,

σp
D[ν + λp

DθD(p + c̃s)], ν ≥ νh,

(43)

where

σp
D = 1

r + µ + η + λp
DθD

. (44)

Moreover, ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ .

The derivative of the reservation value with respect to ν is given by σp
D, when ν ≤ νl, and

σp
D, when ν ≥ νh. The interpretation of σp

D and σp
D are analogous to the interpretation of σal

D

and σas
D discussed in Section 3.1.

Before establishing the distributions of owners and non-owners Φo and Φn, we establish

the distribution of dealers holdings, π1 and π−1. From Lemma 1, owners of type ν ≤ νl always

sell in the interdealer market in principal trades, whereas non-owners of type ν ≥ νh always

buy. Equations (17) and (18) can be rewritten as

−λ1
Dπ1 + λ0

DΦo(νl) = 0 (45)

for ν ≤ νl, and

−λ1
Dπ−1 + λ0

D[1 − s − Φn(νh)] = 0 (46)

for ν ≥ νh, where s = Φo(∞) is asset holdings of owners. This leads to the following result.

Lemma 8 (Principal, dealer market). A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn,
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Π, P, PD} is such that the distribution of dealers’ holdings satisfies

π1 = λ0
DΦo(νl)

λ1
D

and π−1 = λ0
D[1 − s − Φn(νh)]

λ1
D

. (47)

Moreover, since there is no agency trade, πn
0 (ν) = πn

0 (ν) = 0 for all ν.

We can now establish the distribution of owners and non-owners, Φo and Φn.

Lemma 9 (Distributions, dealer market). A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo,

Φn, Π, P, PD} is such that the cumulative distribution of owners satisfies

Φo(ν) =


ηF (ν)

µ + η + λ0
D

, ν ≤ νl,

η

µ + η
− (η+λ0

D)[1−F (ν)]
µ+η+λ0

D
ν ≥ νh,

(48)

where Φo(ν) + Φn(ν) = F (ν). Moreover, νl and νh satisfy

ηF (νl) = µ[1 − F (νh)] and Φo(νl) + Φn(νh) = µ

µ + η
. (49)

Analogously to the previous section, define the separating utility type νs as

ηF (νs) = µ[1 − F (νs)] =⇒ νs = F −1
(

µ

η + µ

)
. (50)

If cl = cs = 0, then νl = νh = νs and all customers trade with dealers. In this case, νs is the

marginal type and separates the dealer-customer market into owners type ν < νs who want

to sell the asset, and non-owners type ν ≥ νs that want to buy the asset.

3.2.2 Customer-customer block

The customer-customer block of the model is the same whether dealers perform agency or

principal trades. For this reason, in this section we only repeat the results obtained in Section

3.1.2 when studying the limit case with only agency trade.

Lemma 10 (Reservation value, customer-customer market). A regular equilibrium {V o, V n,
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∆, W l, W s, p, Φo, Φn, Π, P, PD} satisfies

∆(ν) = ∆(νl) +
∫ ν

νl

σC(ν̃)dν̃ (51)

for all ν ∈ (νl, νh), and

σC(ν) = 1
r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} . (52)

for almost all ν ∈ (νl, νh).

Lemma 11 (Distributions, customer-customer market). A regular equilibrium {V o, V n, ∆,

p, Φo, Φn, νl, νh} is such that the cumulative distribution of owners satisfies

Φ̃o(ν) = F (ν) − F (νl) − Φ̃n(ν)

= −µ+η+λC [F (νh)−F (ν)−sC ]
2λC

+

√
{µ+η+λC [F (νh)−F (ν)−sC ]}2+4λCη

[
F (ν)−F (νl)

]
2λC

, (53)

ν ∈ (νl, νh), where Φ̃o(ν) ≡ Φo(ν) − Φo(νl) and Φ̃n(ν) ≡ Φn(ν) − Φn(νl), and

sC ≡ Φo(νh) − Φo(νl) = η

µ + η

[
F (νh) − F (νl)

]
. (54)

3.2.3 Characterization

The results in sections 3.2.1 and 3.2.2 establish necessary conditions for the equilibrium objects

V o, V n, ∆, p, Φo, Φn, s, νl and νh. The equilibrium objects can all be written as functions of

νl and νh. We now provide necessary conditions on νl and νh and show that, together with

equations (53)–(54), these conditions are also sufficient for a regular equilibria. These results

provide a full characterization of the equilibrium.

Lemma 12. A regular equilibrium {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} satisfies

λp
DθD(c̃l + c̃s) =

∫ νh

νl

σC(ν) − σp
D

σp
D

dν. (55)
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Moreover,

p = λ0
D

λp
D

∆(νl) + c̃l + λCθo
C

λp
DθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= λ0
D

λp
D

∆(νh) − c̃s − λCθo
C

λp
DθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (56)

Lemmas 9 to 12 establish necessary conditions that are satisfied in all regular equilibria.

In the proposition below, we show that these conditions are not only necessary but sufficient.

Therefore they fully characterize a regular equilibrium.

Proposition 2. If a family {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} is a regular equilibrium,

it satisfies equations (41)–(56). Reversely, if {∆, p, Φo, Φn, Π, P, PD} satisfies equations

(41)–(56), then {V o, V n, ∆, W l, W s, p, Φo, Φn, Π, P, PD} is a regular equilibrium where

the value functions V o and V n are constructed using equations (3)–(11).

4 Principal vs agency trade

The decision to engage in agency or principal trading is based on the costs associated with

each form of intermediation, the speed of trade, bargaining power, and customer valuation.

Proposition 3 characterizes the regions where customers and dealers engage in principal or

agency trade.

Proposition 3. Consider a regular equilibrium. Owners type ν ≤ νl sell in principal trade

when meeting a dealer if and only if

pθD(σp
Dλp

D − σal
Dλal

D)︸ ︷︷ ︸
Gain from payment

in fast execution

− θDσp
Dλp

D c̃l︸ ︷︷ ︸
Principal
trade cost

≥ (σal
D − σp

D)ν︸ ︷︷ ︸
Gain from value
in slow execution

− θDσal
Dλal

Dτ︸ ︷︷ ︸
Agency

trade cost

. (57)

Similarly, non-owners type ν ≥ νh buy in principal trade when meeting a dealer if and only if

(σas
D − σp

D)ν︸ ︷︷ ︸
Gain from value
in fast execution

− θDσp
Dλp

D c̃s︸ ︷︷ ︸
Cost of

principal trade

≥ pθD(σp
Dλp

D − σas
D λas

D )︸ ︷︷ ︸
Gain from payment
in slow execution

− θDσas
D λas

D τ︸ ︷︷ ︸
Cost of

agency trade

. (58)

Moreover, equation (57) holds with equality at ν = νa
l if νa

l < νl, and equation (58) holds with
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equality at ν = νa
h if νa

h > νh.

Equations (57) and (58) provide a framework to characterize the decision between principal

or agency trade. In equation (57), owners gain by selling assets fast because they receive the

payment earlier with its faster execution. As they own the asset, they gain by selling assets

in agency trade because they hold the asset for longer with its slower execution. This effect

is more relevant as ν increases. Owners compare these gains net of the costs of principal

and agency trade. As σal
D > σp

D, smaller values of ν makes this equation more like to be

satisfied and so principal trade more likely. In (58), similarly, non-owners gain with principal

trade because they will own the asset faster. They gain with agency trade because they delay

payment given its slower execution. Higher values of ν will make principal trade more likely.

We have agency trade for intermediary values of ν and principal trade for extreme values of ν.

Proposition 4. Consider a regular equilibrium. The cumulative distribution of owners of

types ν ≤ νl satisfies

Φo(ν) =


ηF (ν)

µ + η + λ0
D

, ν ≤ νa
l ,

ηF (νa
l )

µ + η + λ0
D

+ η[F (ν) − F (νa
l )]

µ + η + λ̃al
D

, νa
l < ν ≤ νl;

(59)

and the cumulative distribution of non-owners of types ν ≥ νh satisfies

Φn(∞) − Φn(ν) =


µ[1 − F (ν)]
µ + η + λ0

D

, ν ≥ νa
h,

µ[1 − F (νa
h)]

µ + η + λ0
D

+ µ[F (ν) − F (νh)]
µ + η + λ̃as

D

, νa
h > ν ≥ νh,

(60)

where Φn(∞) = 1 − s = η
µ+η . Moreover, the market clearing condition implies

λ0
DηF (νa

l )
µ + η + λ0

D︸ ︷︷ ︸
Supply from

principal

+ λ̃al
Dη[F (νl) − F (νa

l )]
µ + η + λ̃al

D︸ ︷︷ ︸
Supply from

agency

= λ0
Dµ[1 − F (νa

h)]
µ + η + λ0

D︸ ︷︷ ︸
Demand from

principal

+ λ̃as
D µ[F (νa

h) − F (νh)]
µ + η + λ̃as

D︸ ︷︷ ︸
Demand from

agency

. (61)

Proposition 4 describes the distribution of owners and non-owners who trade with dealers,

that is, with types ν ≤ νl and ν ≥ νh. Owners ν ≤ νa
l choose principal trade, with measure

determined by the arrival of dealer meetings, λ0
D. Owners ν ∈ (νa

l , νl] choose agency trade,
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with measure determined by the arrival of dealer meetings combined with the arrival rate of

access to the inter-dealer market λ̃al
D. Similarly,non-owners ν ≥ νa

h choose principal trade, with

measure determined by λ0
D, and non-owners ν ∈ [νh, νa

h) choose agency trade, with measure

determined by λ̃as
D . The market clearing condition in (61) equates supply and demand of

bonds in the inter-dealer market, constituted by dealers carrying a position after a principal

trade and by customers in agency trade.

5 Equilibrium multiplicity

The results above imply a procedure for solving for an equilibrium. The procedure involves the

determination of the equilibrium values of νl, νa
l , and p. To facilitate the exposition, consider

the symmetric case, for which λas
D = λal

D ≡ λa
D, and so σal

D = σas
D ≡ σa

D, and c̃l = c̃s ≡ c̃.

According to lemmas 3 and 6, νh can be expressed as functions of νl ∈ (−∞, νs]. Therefore,

define the functions G, H : (−∞, νs] → R as

G(νl) = 1
2

∫ g(νl)

νl

σC(ν) − σa
D

λa
DθDσa

D

dν, (62)

H(νl) = 1
2

∫ h(νl)

νl

σC(ν) − σp
D

λp
DθDσp

D

dν, . (63)

g(νl) yields the value of νh such that the measure of dealers in agency trade that want to sell

is equal to the measure of those that want to buy, and analogously for h(νl) for principal

trade. G and H are such that G(νs) = H(νs) = 0, and positive for νl sufficiently small.

Suppose that the parameters are such all trade with dealers is made with agency. According

to lemma 6, an equilibrium νl solves

τ = G(νl). (64)

After obtaining νl, we can obtain the other equilibrium variables through proposition 3. Given

the equilibrium price p, define the principal-agency condition line q(ν) by

q(ν) = σp
Dλp

D − σa
Dλa

D

σp
D

p + σa
Dλa

D

σp
D

τ − σa
D − σp

D

θDσp
D

ν. (65)

The value of q(νl) is equal to the relative gain from principal trade relative to agency trade,
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not taking into account the cost of principal trade. It is a linear function of ν because investors

evaluate the asset linearly and because the interdealer price p is obtained competitively. As

σa
D > σp

D, the slope of q is negative. The gain of principal trade declines as the valuation of

investor increases. Owners gain less by selling the asset fast as ν increases.

According to proposition 3, owners ν ≤ νl sell in principal trade if and only if

λp
D c̃ ≤ q(ν). (66)

If there is a value νa
l that satisfies this equation with equality such that νa

l < νl then we have

found an equilibrium νa
l for which principal and agency trades coexist equilibrium. Agents

ν < νa
l engage in principal trade, agents νa

l ≤ ν < νl engage in agency trade and agents

νl ≤ ν ≤ νs engage in all-to-all trade with other customers. There are analogous thresholds

νh, νa
h for of non-owners with ν ≥ νs that want to buy assets. Agents select themselves into

different forms of trade.

If νa
l that satisfies (66) is such that νa

l > νl then there is no agency trade. This situation is

more likely if the cost of principal trade c̃ is low relative to the cost of agency trade τ . There

is principal trade only in this case, and we use equation (63) to determine the equilibrium

value of νa
l .

The equilibrium might not be unique. For small τ , equation (64) implies νl close its highest

possible value, νs, and unique. However, depending on the distribution of investor types, we

can have multiple equilibria as agents decide how to trade depending on their expectations

for the number of agents on the other side of trade.

Figures 4 and 5 show how to obtain the equilibrium. They show cases of unique and

multiple equilibria. The meeting rates are such that it is faster to find a dealer than finding

another customer in A2A markets, λC = 1 and λ0 = 5, and that it is easier to find a customer

with the help of the dealer, λ1 = 3 > λC . Panel 4a shows the distribution of investors for

ν ∈ [0, 10]. There is a concentration of investors with low and high types.7

Panels 4b-5b show different equilibrium patterns for low, median, and high tau, and

different values of c̃. We have unique equilibrium for low τ . We have multiple equilibrium
7The distribution is a combination of three normal distributions N(µ, σ), f(ν) = 0.475N(2, 0.25) +

0.05N(5, 0.25) + 0.475N(8, 0.25). Other parameters are r = 0.05, µ = η = 0.15, and θD = θn
C = θo

C = 0.5.
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in the agency or principal markets for median and high τ depending on the value of c̃. The

panels show the functions G and H multiplied by λa
D λp

D so that they can be shown in the

same graph and compared with the agency and principal costs. We explain each case below.8
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(a) Density f(ν) and thresholds of equilibrium B
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(b) Unique equilibrium for low τ

Figure 4: Low agency cost τ and an increase in principal flow cost c̃ (right). Equilibrium A,
with low c̃, has no agency trade as νl < νa

l . Equilibria B and C have coexistence of principal
and agency trade. Agency trade increases as the cost of principal trade c̃ increases. The
market composition changes.

Panel 4b shows the case with low τ . Given τ and equation (64), an equilibrium νl is

given by the intersection of λa
DG and λa

Dτ . For c̃ = c̃1, the value of νa
l implied by the

principal-agency condition line q is such that νa
l > νl. Therefore, the pair νl with this νa

l

cannot be an equilibrium. The equilibrium is given by νa
l,1, for which λp

DH and λp
D c̃1 intersect.

This is equilibrium A. We have unique equilibrium with principal trade only.

As c̃ increases in panel 4b, we move to equilibria B and C. For these equilibria, νa
l < νl,

where νa
l is such that λp

D c̃ = q(νa
l ). Agency trade coexists with principal trade in each case.

Panel 4a shows the values of νa
l , νl, νh and νa

h of equilibrium B. We principal trade for ν ≤ νa
l ,

agency trade in (νa
l , νl], A2A trade in (νl, νh), and again agency and principal trade for [νh, νa

h)

and ν ≥ νa
h. As the cost of principal trade increases, the market for agency trade increases.

Panel 5a shows the case with median τ . We have multiple equilibrium in this case for

agency trade, as λa
Dτ crosses λa

DG in multiple points. The thresholds νl,1, νl,2 determine
8The panels show ν ∈ (−∞, νs] and they determine νl and νa

l . There are symmetrical panels for ν ∈ [νs, ∞)
to determine νh and νa

h .
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stable equilibria and we concentrate on these values (we discuss stability later in this section).

Equilibrium A occurs with low principal cost c̃1 and has unique equilibrium with principal

trade only, similar to panel 5b.
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(a) Multiple equilibrium for median τ
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(b) Multiple equilibrium for high τ

Figure 5: Multiple equilibrium with median and for high τ . Left: Cost c̃2 implies two equilibria,
one with principal and agency (B1) and one with principal only (B2). Cost c̃3 has principal
and two possible equilibria with agency trade. Right: Equilibrium B has multiple equilibria
with principal only (no agency trade). The interaction between parameters imply different
market structures. Principal trade can shrink abruptly in the case of an increase in c̃.

With c̃2 in panel 5a, we have multiple equilibrium with agency or principal only. If the

agency market is large, with νl,1 at equilibrium B1, then the principal-agency condition line

q and c̃2 determines νa
l < νl,1, which is the equilibrium threshold for the principal market.

The market has agency and principal trade in coexistence (in addition to the A2A trade

for ν ∈ (νl,1, νh,1)). If the agency market is small, with νl,2, then q and c̃2 would determine

νa
l < νl,1, which rules out νl,2 as equilibrium. The equilibrium νa

l,2 is then determined by λp
DH

and q, at B2, and has principal only. The market has two possible equilibria: B1 with agency

and principal, and B2 with principal only. A change from B1 to B2 implies less revenues for

dealers either from principal trade or from facilitating agency trades. It implies an abrupt

loss of business for dealers.

As c̃ increases to c̃3 in panel 5a we have multiple equilibria for the agency market and

unique equilibrium for the principal market, C. q and c̃3 determine νa
l,3, which is smaller than

νl,2 and νl,1. These two values are then equilibrium thresholds for the agency market and νa
l,3
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is an equilibrium threshold for the principal market. If the equilibrium changes from νl,1 and

νl,2 then the set of principal trades would not change, but the set of agency trades facilitated

by dealers would shrink from (νa
l,3, νl, 1] to (νa

l,3, νl, 2]. More investors would coordinate in

the A2A market. Dealers would lose a substantial amount of brokerage fees.

Panel 5b shows multiple equilibria in the principal market. τ is high and consequently

the agency market is small. We have a unique νl. On the other hand, as c̃ increases, we

can have unique equilibrium with principal only (A), multiple equilibria with principal only

(B1, B2), and unique equilibrium with principal and agency (C). For equilibria B1, B2, the

principal-agency condition line q with λp
D c̃2 implies νa

l > νl which rules out the agency market.

The equilibrium νa
l is then determined by λp

DH and λp
D c̃2, which implies two stable values for

νa
l . We then have principal only but the volume of principal trades can decrease abruptly for

A2A if the equilibrium changes from νa
l,2 to νa

l,3.

Multiple equilibria arise because G or H may not be monotone. The non-monotonicity

occurs because more customers search for customers in A2A if they are convinced that others

will follow this strategy. When they do so, the probability of matching is higher and the gain

of searching in A2A increases. As the figures above show, multiple equilibrium happens when

intermediation costs are sufficiently high.

Proposition 5. For a given c̃, there exists τ̄ > 0 such that a regular equilibrium is unique

for τ ∈ [0, τ̄). Analogously, for a given τ , there exists a ¯̃c such that a regular equilibrium is

unique for c̃ ∈ [0, ¯̃c).

The reinforcement of searching when others search (strategic complementarity) is not

strong enough to generate multiplicity when intermediation costs are small. Assumption 1

implies that the technology of dealers is superior to A2A net of trading costs. If τ is small, no

matter how many customers search for customers, it is still preferable to search for dealers.

Multiplicity happens only if τ is large enough so that the measure of customers searching for

customers affects the decision on the trading mode.

About stability, we argue that an equilibrium threshold ν is stable when it is determined

in a region where G or H are decreasing. We focus next on the argument for G, as is the

same for H.

An interpretation of G is that it is a proxy for the expected difference in valuation of an
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owner with νl and a non-owner with νh, both using A2A trade. A large G implies that a

non-owner might need to pay a substantial amount to buy the asset. If G(νl) > τ , it is better

to switch from A2A to dealer agency trade. A buyer might pay τ in a DC trade, but the total

payment would still be smaller than the expected price to pay in A2A trade. A switch from

A2A to dealer-agency implies an increase in νl and a smaller interval (νl, νh).

G(νl) decreases with νl if the valuation of agents that engage in A2A trades gets closer to

each other as νl increases. This is the case in panel 5a for equilibria B1 and C. An increase

in τ decreases the gain of agency trades. The equilibrium νl would decrease and the set of

A2A trades would increase. Similarly, an increase in λC makes A2A trades more effective. It

implies a downward shift in G. For a constant τ , it would decrease νl and increase the set of

dealer agency trades.

There is a point in between equilibria B1 and C, however, that determines an additional

equilibrium. G intersects with τ , but G is increasing in this region. This region includes

the higher density of utility types shown in panel 5a. An increase in τ would increase the

equilibrium νl. Dealer agency trades would increase with τ . Similarly, an increase in λC ,

would shift G downward and decrease the set of A2A trades.

These counterfactual effects are related with the instability of equilibrium for intermediary

value of νl. For this equilibrium, suppose that a small set of agents to the left of νl switch their

decisions from dealer agency trade to A2A trade. The set of agents in A2A would increase to

(νl − ϵ, ν ′
h), where ν ′

h = g(νl − ϵ). We would then have G(νl − ϵ) < G(νl) < τ2, which implies

that it is beneficial for an agent to the left of νl − ϵ also to switch from dealer-agency to A2A.

All agents to the left would behave in the same way, which would increase further the set of

agents in CC trades, until the equilibrium with νl,2 in C reached.

The equilibrium is stable for B1 and C. A switch of a small set of agents to the left of νl,2

from dealers to A2A would increase G. It would be better to return to trade with dealers.

The same reasoning can be applied to a switch from A2A to dealers to the right of νl,2 and

also to the other stable equilibrium at νl,1.

A stable equilibrium is therefore associated with a region where G is decreasing; and an

unstable equilibrium with a region where G is increasing. In regions where G is decreasing,

small perturbations in A2A or in dealer agency trades would make agents return to their

33



previous decisions on the counterparty. In regions where G is increasing, such perturbations

would make agents switch the trading counterparty permanently toward a new equilibrium.

We then focus on regions where G is decreasing and, therefore, have stable equilibria.

6 Market Composition and Liquidity

The US corporate bond market is experiencing a shift in how trades are executed. The model

of dealers holding large inventories and engaging in principal trade is expanding towards

agency trades, where dealers primarily act as intermediaries between buyers and sellers, and

all-to-all trades, where customers access a broader range of counterparties directly. Several

sources have documented this transition. Choi et al. (2024) provide evidence for the shift

towards agency trades using TRACE data, documenting a significant increase in the fraction

of agency trades in corporate bonds since 2011, and Kargar et al. (2023a) provide evidence

for the shift towards all-to-all trades using MarketAxess data, documenting that the platform

represented approximately 21% of the total trade volume in corporate bonds by the third

quarter of 2022. It is also evident in the declining net position of primary dealers in corporate

debt instruments, shown in Figure 6. The median monthly net position of primary dealers

in corporate debt instruments was over $100 billion before 2011, decreased to less than $40

billion between 2013 and 2020, and has recently reached below $20 billion.
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Figure 6: Primary dealers median net monthly position in corporate debt. Data: see appendix.
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Market participants in the US corporate bond market attribute this shift largely to two

factors. The 2010 Dodd-Frank Act, which increased capital requirements for banks, and the

establishment of electronic bond markets, which made it easier for dealers to perform agency

trading and fostered the growth of all-to-all trading platforms.

These factors exert competing effects on market efficiency and liquidity. Financial regula-

tions increase dealers’ holding costs, leading to longer execution time, wider bid-ask spreads,

and lower trade volume. The rise of electronic trading and all-to-all platforms increases access

to counterparties, leading to shorter execution times, tighter bid-ask spreads, and higher trade

volume. We use our model to understand the impact of these changes. Specifically, we study

the impact of changes in the model parameters governing trade speed and cost on dealers’ net

position, bid-ask spread and turnover.

6.1 Dealers’ asset holdings

A key indicator of dealer activity and market structure is the net assets holdings of dealers.

In our model, dealers can hold long (+1) or short (-1) positions in the asset after engaging

in principal trades. Dealers involved in agency trades are pure intermediaries and do not

contribute to asset holdings. Therefore, the dealers’ net asset holdings is

HD = π1 − π−1 (67)

where π1 is the measure of dealers with a long position after buying the asset from a customer

in a principal trade, and π−1 is the measure of dealers with a short position after selling the

asset to a customer in a principal trade. A positive value of HD implies that dealers hold

more assets in inventory than they have shorted, and a negative value of HD implies that

dealers have shorted more assets than they hold in inventory.

Net asset holdings (67) capture the overall directional exposure of dealers, but it is the

gross position that provides a measure of the total scale of dealer involvement in principal

trading. We define dealers’ gross position as

GD = π1 + π−1 (68)
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where π1 and π−1 retain their definitions from equation (67). In contrast to net holdings,

the gross position is insensitive to the balance between buying and selling by dealers; it only

reflects the magnitude of their principal trading activity. A higher value of GD indicates a

greater overall dealer activity to provide immediacy through principal trades.

Proposition 6. Consider a region with a unique regular equilibrium in which agency trade is

active for both buying and selling bonds. Then,

(a) Dealers’ net position is decreasing in cl and increasing in cs.

(b) Dealers’ gross position is decreasing in cl and cs.

(c) Dealers’ net and gross positions do not depend on λC .

Consider a region with a unique regular equilibrium in which agency trade is inactive. Then,

(d) Dealers’ net position equals zero.

(e) Dealers’ gross position is decreasing in cl and cs.

(f) Dealers’ gross position is decreasing in λC .

When the cost for dealers to hold long positions (cl) increases, principal trades where

customers sell to dealers become less attractive. To see this, note that the set of customers

selling to dealers in principal trades are those of type ν ≤ νa
l . From Proposition 3, we have

pθD(σp
Dλp

D − σal
Dλal

D)︸ ︷︷ ︸
Gain from payment

in fast execution

− θDσp
Dλp

D c̃l︸ ︷︷ ︸
Principal
trade cost

= (σal
D − σp

D)νa
l︸ ︷︷ ︸

Gain from value
in slow execution

− θDσal
Dλal

Dτ︸ ︷︷ ︸
Agency

trade cost

,

where c̃l = cl

λ1
D

. An increase in cl reduces the net benefit of fast trade execution. As a result,

νa
l has to decrease to account for the marginal types that strictly prefer agency trade after

the change. This shift leads to a decrease in π1 and, consequentially, a decrease in HD and

GD. The effect of an increase in cs is analogous. An increase in cs reduces the net benefit

of fast trade execution. As a result, νa
h has to increase and π−1 decreases. This decrease, in

turn, causes a decrease in gross holdings GD. The effect on net holdings is the opposite since

it is defined as HD = π1 − π−1. So a decrease in π−1 leads to an increase in HD.
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6.2 Bid-ask spread

Bid-Ask Spread in Principal Trade The bid-ask spread in principal trade is the average

difference in principal trade between how much customers pay when buying an asset and how

much customers receive when selling an asset. That is,

BAP = pbuy
D,P − psell

D,P (69)

where pbuy
D,P and psell

D,P are the average price paid and received by customers in principal trades.

In a regular equilibrium, these are

psell
D,P =

∫ νa
l

−∞[θDW l + (1 − θD)∆(ν)]dΦo(ν)
Φo(νa

l ) =

∫ νa
l

−∞

[
θD

λ1
D[p−c̃l]
r+λ1

D
+ (1 − θD)∆(ν)

]
dΦo(ν)

Φo(νa
l )

= (1 − θD)E
[
∆(ν)|ν ≤ νa

l

]
+ θD

λ1
D[p − c̃l]
r + λ1

D

, and (70)

pbuy
D,P =

∫ ∞
νa

h
[θDW s + (1 − θD)∆(ν)]dΦn(ν)

Φn(∞) − Φn(νa
h) =

∫ ∞
νa

h

[
θD

λ1
D(p+c̃s)
r+λ1

D
+ (1 − θD)∆(ν)

]
dΦn(ν)

Φn(∞) − Φn(νa
h)

= (1 − θD)E
[
∆(ν)|ν ≥ νa

h

]
+ θD

λ1
D(p + c̃s)
r + λ1

D

. (71)

Substituting (70) and (71) into (69), we get

BAP = (1 − θD)
{
E

[
∆(ν)

∣∣ν ≥ νa
h

]
− E

[
∆(ν)

∣∣ν ≤ νa
l

]}
+ θD

cs + cl

r + λ1
D

, (72)

where we used that c̃s = cs

λ1
D

and c̃l = cl

λ1
D

.

Bid-Ask Spread in Agency Trade The bid-ask spread in agency trade, denoted by

BAA, is defined analogously to the principal trade bid-ask spread. It is the average difference

between how much customers pay when buying an asset and how much they receive when

selling an asset in agency trades. That is,

BAA = pbuy
D,A − psell

D,A (73)

where pbuy
D,A and psell

D,A are the average prices paid and received by customers.
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In an agency trade, the dealer acts as an intermediary, connecting an asset owner with

a buyer in the interdealer market. When we write the value function of owners we assume

that the owner pays the dealer a fraction 1 − θD of the gains from this service. In practice,

however, the payment should be made at the time of the trade — not when the customer

meets the dealer. That is, the dealer charges a fee, denoted by fo(ν), to the owner of type ν

so the final price in an agency trade is p − τ − fo(ν). The same applies to non-woners when

buying an asset. In this case, the final price in an agency trade is p + τ + fn(ν). The fees

fo(ν) and fn(ν) are formally defined implicitly by

θD[Ṽ o
D(ν) − V o

D(ν)] = ˜̃V o
D(ν) − V o

D(ν) and θD[Ṽ n
D(ν) − V n

D(ν)] = ˜̃V n
D(ν) − V n

D(ν)

where

r ˜̃V o
D(ν) = ν − µ[ ˜̃V o

D(ν) − V n(ν)] + λ1
D max{p − τ − fo(ν) − [ ˜̃V o

D(ν) − V n(ν)], 0},

r ˜̃V n
D(ν) = η[V o(ν) − ˜̃V n

D(ν)] + λ1
D max{V o(ν) − ˜̃V n

D(ν) − (p + τ + fn(ν)), 0}.

We then obtain that, in a regular equilibrium, the fee paid to the dealer upon successful

execution of an agency trade are

fo(νo) = (1 − θo
D)[p − τ − ∆(νo)] and fn(νn) = (1 − θn

D)[∆(νn) − p − τ ] (74)

by an owner of type νo ∈ Ωo,a
D and non-owner of type νn ∈ Ωn,a

D , where

θo
D = θD(λ0

D + r + µ + λ1
D)

r + µ + λ0
DθD + λ1

D

and θn
D = θD(λ0

D + r + η + λ1
D)

r + η + λ0
DθD + λ1

D

.

We are now in a position to compute psell
D,A and pbuy

D,A. In a regular equilibrium, these are

psell
D,A =

∫ νl
νa

l
[p − τ − fo(ν)]dΦo(ν)

Φo(νl) − Φo(νa
l ) = θo

D(p − τ) + (1 − θo
D)E

[
∆(ν)|νa

l ≤ ν ≤ νl

]
, (75)

pbuy
D,A =

∫ νa
h

νh
[p + τ + fn(ν)]dΦn(ν)
Φn(νa

h) − Φn(νh) = θn
D(p + τ) + (1 − θn

D)E
[
∆(ν)|νh ≤ ν ≤ νa

h

]
. (76)
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Substituting (75) and (76) into (73), we get

BAA = (θn
D − θo

D)p + (θn
D + θo

D)τ

+ (1 − θn
D)E

[
∆(ν)|νh ≤ ν ≤ νa

h

]
− (1 − θo

D)E
[
∆(ν)|νa

l ≤ ν ≤ νl

]
. (77)

Agency vs. Principal Trade

Proposition 7 (Agency vs. Principal Trade Prices). Consider a region with a unique regular

equilibrium in which agency trade is active for both buying and selling bonds. Then the

following relationships holds.

(a) The average price customers pay to buy an asset in an agency trade, pbuy
D,A, is lower than

the average price they pay in a principal trade, pbuy
D,P .

(b) The average price customers receive to sell an asset in an agency trade, psell
D,A, is higher

than the average price they receive in a principal trade, psell
D,P .

(c) The bid-ask spread charged by dealers in agency trades, BAA, is smaller than the bid-ask

spread charged by dealers in principal trades, BAP .

Proposition 7 highlights the trade-off between trade speed and cost present in agency and

principal trading. Parts (a) and (b) show that agency trades offer better prices: buyers pay

a lower average price in agency trades (pbuy
D,A < pbuy

D,P ), while sellers receive a higher average

price (psell
D,A > psell

D,P ). Principal trades offer immediacy — customers can trade with the dealer

upon a meeting — but this convenience comes at a price premium for buyers or a discount for

sellers. Agency trades, while slower due to the search process, offer better prices because the

dealer acts purely as an intermediary, bearing no inventory risk. Part (c) of the proposition

formalizes this price difference as a smaller bid-ask spread in agency trades (BAA < BAP ).

Dealers Bid-Ask Spread Having established the differences between agency and principal

trade prices, we now turn to the overall bid-ask spread in the market, which reflects the

combined effect of both trading mechanisms. We define the average dealer bid-ask spread,

denoted by BA, as the difference between the average price paid by customers when buying

an asset and the average price received by customers when selling an asset, considering all
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dealer-intermediated trades (both principal and agency). Formally,

psell
D =

λ0
DΦo(νa

l )psell
D,P + λ1

D[πo
0(ν) − πo

0(νa
l )]psell

D,A

λ0
DΦo(νa

l ) + λ1
D[πo

0(ν) − πo
0(νa

l )] (78)

pbuy
D =

λ0
D[1 − s − Φn(νa

h)]pbuy
D,P + λ1

D[πn
0 (νa

h) − πn
0 (ν)]pbuy

D,A

λ0
D[1 − s − Φn(νa

h)] + λ1
D[πn

0 (νa
h) − πn

0 (ν)] . (79)

Taking the difference between (78) and (79) we get

BA = pbuy
D (θn

D − θo
D)p + (θn

D + θo
D)τ

+ (1 − θn
D)E

[
∆(ν)|νh ≤ ν ≤ νa

h

]
− (1 − θo

D)E [∆(ν)|νa
l ≤ ν ≤ νl] . (80)

where πbuy
1 represents the measure of dealers buying the asset in principal trade, πsell

−1 the

measure of dealers selling in principal trade. This measure is a weighted average, as it reflects

the relative frequencies of principal, agency, and all-to-all (A2A) trades. The numerator sums

the total value paid or received by customers across all trade types, and the denominator sums

the total number of trades of each type. The bid-ask spread BA provides a comprehensive

measure of transaction costs. It encompasses the pricing impact of dealer immediacy provision

in principal trades and dealer-facilitated matching in agency trades, as well as direct customer-

to-customer trading in A2A trades.

6.3 Turnover

Turnover is the ratio of trade volume to the outstanding bond amount. High turnover is

associated with greater liquidity. It suggests that it is easy and cheap to find counterparties.

In our model, turnover is expressed as

T =
λ1

D (π1 + π̄o
0) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)

π1 − π−1 +
∫

dΦo(ν)

=
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)

η/(µ + η) . (81)

The volume of assets sold by customers to dealers is λDΦo(νl) and the volume of assets

bought by customers from dealers is λD[Φn(∞) − Φn(νh)]. As market clearing implies that

λDΦo(νl) = λD[Φn(∞) − Φn(νh)], we have that the total volume of bonds traded between
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customers and dealers is 2λDΦo(νl). The total volume of bonds traded between customers is

λC
∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν). Finally, the amount of bonds outstanding is s =

∫
dΦo(ν) = η

µ+η .

Empirically, turnover in the corporate bond market has declined since the 2008 financial

crisis, mirroring the trend observed in dealer inventories and consistent with the model’s

predictions when dealer intermediation costs increase. Proposition 8 provides theoretical

support. It shows that turnover is always decreasing in the the intermediation cost τ in a

neighborhood of τ = 0.

Proposition 8. Turnover is always decreasing in τ in a neighborhood of τ = 0.

In conclusion, the changing composition of the corporate bond market, with the increased

prevalence of customer-to-customer trades, has profound implications for market liquidity.

While traditional measures based on transaction data might suggest improvements in liquidity,

a more comprehensive analysis that accounts for search costs and the evolving roles of dealers

and customers reveals a more complex reality. The model presented in this paper provides a

valuable framework for understanding these intricate dynamics and underscores the importance

of considering factors beyond observed transaction prices and volumes when evaluating market

liquidity, especially in the context of evolving market structures and regulatory landscapes.

7 Observed changes in the corporate bond market

7.1 Trade composition and perception of illiquidity

Our first observation is the change in the composition of trades and increased perception

of illiquidity in the corporate bond market. As documented by Choi et al. (2024), after

the regulations that followed the 2008 financial crisis, it is more common to find trades for

which customers are matched with other customers instead of trades for which dealers use

their inventory to provide liquidity. Dealers facilitate both forms of trade. However, when

customers are matched with other customers, customers provide liquidity. In this case, the

dealer does not use its inventory of bonds. It is a customer that provides liquidity to other

customers either as a seller or a buyer.9

9See Dyskant et al. (2025) for more empirical evidence on the corporate bond market and for changes in
the liquidity premium.
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The changes in the composition of trades have been connected with the enactment of

regulations that affect depository institutions, such as banks, with access to the Federal

Reserve as a lender of last resort or to FDIC insurance (Adrian et al. 2017, Bao et al. 2018,

Choi et al. 2024; Duffie 2012 pointed out some risks of the new regulations). Especially, the

Volcker rule prohibits banks from engaging in proprietary trading, that is, trading that uses

the inventory of assets purchased earlier with the intention of profiting from a higher sale price.

The Volcker rule is part of the Dodd-Frank Wall Street Reform and Consumer Protection

Act. The Dodd-Frank act was enacted in July 2012. The Volcker rule was put into effect

in July 2015 after a period of transition. The objective of the Volcker rule is to limit risk

taking of protected institutions. However, as the rule prohibits proprietary trade, it decreases

incentives of maintaining an inventory of assets.

Choi et al. (2024) classify trades as being the result of a match customer-customer (DC-

DC), a match customer-dealer intermediated by an interdealer (DC-ID), and inventory trades.

They focus on over-the-counter trades in the corporate bond market. The classification is

made with TRACE data, using dealer identifiers, counterparty pair types, and the time

record of the trades. DC-DC and DC-ID trades have matches identified within a period of 15

minutes. Inventory trades are not matched with the opposing side, which implies that the

asset is held after the trade as inventory. Since 2011, they find an increase in the fraction of

customer-customer trades.

Customer-customer trades require a longer search and matching process for the trade

execution. Suppose that a customer contacts a dealer to sell an asset. This customer demands

liquidity. Conventionally, the dealer would buy the asset and provide liquidity. Instead,

especially for trades equal to or larger than 1 million dollars, it is now more frequent that the

dealer uses its relationships with other clients to find a customer willing to purchase the asset.

The second customer found by the dealer provides liquidity. This process takes time. Kargar

et al. (2021) examine corporate bond market liquidity and trade composition during COVID.

They find an increase in the costs of customer-dealer trades and a shift of customers toward

slower customer-customer trades.10

10However, they do not investigate the effects of regulations and only imply that the decrease in the liquidity
provision of dealers during the crisis might have been a consequence of regulatory restrictions. Their model is
also silent about the connection between regulations and measures of liquidity.
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An evidence of the value of the provision of liquidity is that customers are compensated

for it (Choi et al. 2024). Customers that provide liquidity by buying the asset pay smaller,

even negative spreads. The same happens for customers that provide liquidity by selling the

asset. Giannetti et al. (2023) find that bond mutual funds engage more frequently in liquidity

provision since 2015, and that the performance of funds with strategies of liquidity provision

has improved. Rapp and Waibel (2023) show that regulatory costs are associated with the

use of the client network for the provision of liquidity. As we discuss below, the decrease in

spreads charged to customers implies a decrease in bid-ask spreads and an improvement of

liquidity measures, even though these DC-DC trades could take longer to be executed.

There is evidence that the search process can be costly. Transactions datasets such as

TRACE contain only the final outcome of successful transactions. It is then not possible

to measure the duration of the whole search process. Using data from electronic platforms,

Kargar et al. (2023b) find that a substantial number of requests for quote are not promptly

fulfilled. If the quote is not fulfilled initially, it takes on average from 2 to 3 days for a trade

to be finalized. Another indicator of the need to match customers is the advent of electronic

platforms to facilitate matching between trade counterparties (Hendershott et al. 2021).

The Volcker rule does not allow proprietary trading, but allows trading to facilitate

transactions that were driven by customers. The law recognizes the role of dealers in the

functioning of markets. Dealers cannot transact in a way intended to make profits based on

the increase in the price of the asset, but they can profit from bid-ask spreads. As a result, a

change in the market structure, with more frequent customer liquidity provision, would imply

higher transaction costs for those trades that are executed with the inventory of dealers.

In fact, Choi et al. (2024) find that inventory trades have a transaction cost 60% higher

than before the financial crisis. According to the classification above, inventory trades do not

require a match of another dealer or customer to be executed. These trades are faster to be

finalized. Therefore, the higher transaction cost reflects a higher premium on immediacy after

the change in the market structure.

Early evidence that the new regulations affected markets was shown by Adrian et al. (2017)

and Bao et al. (2018). Adrian et al. (2017) found that the ability to intermediate customer

trades of affected institutions decreased. Bao et al. (2018) note that dealers affected by the
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Volcker rule have been the main liquidity providers. They found that the illiquidity of bonds

in time of stress has increased after the Volcker rule. As stated above, there was an increase

in the fraction of liquidity provided by customers, but only with a more costly matching

procedure. The increase in illiquidity during stress events can be explained by a change in

the structure of markets toward costly matching.

There is therefore evidence that the structure of the corporate bond market has changed

toward the prearrangement of trades between customers. This prearrangement is made to save

on inventory of securities. The complete trade from the first contact until the final transaction

becomes costly and protracted.

The changes in market structure, however, are not fully captured by standard measures of

illiquidity. These measures do not take into account the time for the arrangement of matches.

They use recorded prices at the final moment of the trade. We next discuss the behavior of

the illiquidity measures over time.

7.2 Illiquidity measures

Our second observation is the improvement of the illiquidity measures since 2008. This

improvement is surprising given the changes in the market structure, as discussed above.

Trade in over-the-counter markets has moved toward prearranged matching of customers

instead of a faster trade using existing dealer inventory. As these trades take longer to be

executed, it is surprising to observe an improvement of measured illiquidity. As we argue

later, the source of the difference is the fact that these measures use observed trading records.

We later offer an alternative measure of illiquidity implied by the model in section 2.

We discuss the behavior of two measures of illiquidity: the γ measure, proposed by BPW,

and the Amihud measure, proposed by (Amihud, 2002). Figure 7 shows the evolution of the

measures over time.

The γ measure (BPW) is given by the covariance of subsequent price changes. The γi

measure for bond i is defined as

γi = −Cov(∆pit, ∆pit+1), (82)

where ∆pit = pit − pit−1 and pit is the logarithm of the clean price Pit of bond i on trade
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t. The clean price is the bond price minus accrued interest since the last coupon payment.

We require a bond to have at least ten pairs of consecutive annualized-returns to estimate γi.

The objective of the measure is to extract a transitory component from observed prices. This

transitory component is interpreted as the impact of illiquidity, as efficient markets with no

trading frictions imply uncorrelated returns.

In addition to γ, we estimate the Amihud measure (Amihud 2002). The Amihud measure

for each bond is given by the average of absolute returns divided by the volume of trades,

AMDid = 1
Nid

Nid∑
j=1

|rij |
Vid

, (83)

where Nid is the number of available returns rij of bond i on day d, and Vid is the volume of

trade of bond i on day d in millions of dollars. We require at least two trades on each day to

estimate AMDid.

High Amihud measure implies high price change per unit of volume, that is, high impact

or order flow. Liquid markets should not show large changes in price relative to volume.

Therefore, a high Amihud measure is interpreted as lack of market liquidity. Table 1 shows

the correlations between γ, Amihud and other variables.11

Table 1: Correlations between illiquidity measures and other variables

γ AMD Spread CDS Volume Frequency Maturity Age Turnover ZTD
γ 1.00
AMD .466 1.00
Spread .385 .444 1.00
CDS .290 .347 .816 1.00
Volume −.002 −.055 .040 .056 1.00
Frequency .047 .196 .146 .140 .420 1.00
Maturity .163 .149 .092 −.026 .097 −.052 1.00
Age .017 .109 .079 .056 −.202 −.001 −.075 1.00
Turnover .013 −.008 .125 .127 .588 .303 .110 −.209 1.00
ZTD −.051 −.198 −.080 −.088 −.199 −.356 .084 .016 −.034 1.00

Correlations between our main illiquidity measures, γ and AMD, and other commonly-used liquidity metrics,
the spread, and the CDS. Data description in appendix B. Spread is the corporate bond yield spread with
respect to the US Treasury with the same maturity (appendix B). Maturity is the issue’s time to maturity.
Maturity and age are calculated in years at the last business day of each month. Turnover is the traded volume
divided by the amount outstanding. ZTD is the percentage of zero-trading days.

11Additional measures of illiquidity are given, among others, by Mahanti et al. (2008) and Dick-Nielsen et al.
(2012). Mahanti et al. present a liquidity measure based on the accessibility of the issues. Dick-Nielsen et al.
introduce a measure computed by an average of different illiquidity measures.
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We define a measure of aggregate market level illiquidity over time by taking the median,

mean or volume-weighted average of bond measures in each cross-section. Figure 7 shows

the aggregate measures for the corporate bond market γ and AMD over time. γ and AMD

increase when liquidity worsens. Both illiquidity measures strongly increased during the

financial crisis. After the crisis, liquidity gradually improved. The covid shock was large but

brief and did not affect the trend.
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Figure 7: Illiquidity measures γ and AMD. The decline in the illiquidity measures indicate
improvement in market liquidity. The covid period shows a peak, but it does not affect the
trend.

According to our first point, liquidity provision by dealers has been replaced by customer

liquidity provision. At the same time, however, illiquidity indicators declined. Figure 6 shows

the net position of Primary Dealers in corporate debt instruments and illiquidity over time.

It shows the decrease in inventories together with a decrease in γ. We explain this paradox

with the model of section 2.

Also used as a measure of liquidity, turnover has declined after the 2008 financial crisis.

We calculate daily turnover for an individual bond by dividing the amount traded in each

day by the amount outstanding at the end of the corresponding month. We then define the

monthly turnover measure for an individual bond by the median of its daily turnover. Figure

8 shows the median turnover of all bonds as an aggregate measure (the behavior looks similar

for the mean turnover). The figure also shows the moving average of 12 months.

The turnover rate decreased after January 2010. The 12-month average decreased from
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12.4% in January 2010 to 7.8% in August 2017. This decline is consistent with the decrease

in inventories as discussed above. The decline in turnover is consistent with our results in

proposition 8, which states that an increase in intermediation costs, such as the one induced

by the Dodd-Frank regulations, leads to a decrease in turnover.
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Figure 8: Monthly turnover (median from daily values). Turnover has decreased since 2010.

8 Conclusions

We propose a model to explain the composition of trades in financial markets, especially in

over-the-counter markets such as the corporate bond market. It has been identified a larger

fraction of trades for which dealers do not need to maintain asset inventory. In these trades,

customers provide liquidity to other customers. Although these trades take longer to be

executed, standard measures of liquidity show an improvement of liquidity since 2010. The

model explains these at first sight conflicting observations.

The model combines Lagos and Rocheteau (2009) and Hugonnier, Lester, and Weill (2022).

Lagos and Rocheteau study trades between customers and dealers. Hugonnier, Lester, and

Weill study trades between customers and customers. We combine the two models to include

the decision of a customer to trade with dealers or with other customers. Both models study

decisions on OTC markets with search frictions, as in Duffie et al. (2005).

47



We interpret the regulations in Dodd-Frank, which include increased capital requirements,

increased reporting requirements, and increased restrictions on trading activities, as an increase

in the intermediation cost parameters of the model. The regulations made it more expensive

for dealers to provide liquidity. We then examine the equilibrium outcomes from the model.

When intermediation costs of dealers increase, customers seek liquidity from other cus-

tomers, which increases A2A and agency trades and decreases principal trades. In the context

of the model, the measure of customers in A2A and agency markets increases. The average

bid-ask spread, which considers final transaction prices, decreases. However, the average trade

becomes more costly. A measure of illiquidity based on final prices would imply a decrease in

illiquidity, as we find empirically.

The model allows us to propose a new measure of illiquidity. This measure takes into

account the distortions caused by the search frictions, as well as the bargaining power, number

of customers engaged in principal, agency, and A2A trades, and other variables. An increase

in agency and A2A trades increases the value of this comprehensive measure of illiquidity.

The model implies the possibility of multiple equilibria. Depending on the intermediation

cost parameters, there can be equilibria with a large or small number of trades undertaken by

dealers. This is so because the decision to direct search on one market or the other depends

on the expected number of agents that engage in the same activity.

The 2008 financial crisis generated a strong response in financial regulations. Our results

indicate a way to connect the changes in regulations with changes in the structure of financial

markets. Especially, in the structure of financial markets based on over-the-counter trades

such as the corporate bond market.
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A Proofs

Proof of Lemma 1

Proof. First note that we can rewrite Ṽ o
D(ν) in equation (4) as

rṼ o
D(ν) = ν − µ[Ṽ o

D(ν) − V n(ν)] + λ1
D max{p − τ − [Ṽ o

D(ν) − V n(ν)], 0}

= ν − µ[Ṽ o
D(ν) − V o

D(ν) + ∆(ν)] + λ1
D max{p − τ − [Ṽ o

D(ν) − V o
D(ν) + ∆(ν)], 0}.
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Take the difference between the equation above and (3) to obtain

Ṽ o
D(ν) − V o

D(ν) =
λ1

D max{p − τ − [Ṽ o
D(ν) − V n(ν)], 0} − λ0

DθD max
{

Ṽ o
D(ν) − V o

D(ν), 0
}

r + µ
.

The above equation implies that Ṽ o
D(ν) − V o

D(ν) ≥ 0. Otherwise, we would have

Ṽ o
D(ν) − V o

D(ν) = λ1
D max{p − τ − [Ṽ o

D(ν) − V n(ν)], 0}
r + µ

< 0,

which is a contradiction. Since Ṽ o
D(ν) − V o

D(ν) ≥ 0, we can rewrite the difference as

Ṽ o
D(ν) − V o

D(ν) = λ1
D max{p − τ − ∆(ν), Ṽ o

D(ν) − V o
D(ν)}

r + µ + λ0
DθD + λ1

D

.

Finally, if max{p − τ − ∆(ν), Ṽ o
D(ν) − V o

D(ν)} = Ṽ o
D(ν) − V o

D(ν), then the above equation

implies that Ṽ o
D(ν) − V o

D(ν). As a result, we can conclude that

Ṽ o
D(ν) − V o

D(ν) = λ1
D max{p − τ − ∆(ν), 0}

r + µ + λ0
DθD + λ1

D

.

After replacing Ṽ o
D(ν) − V o

D(ν) above in the equation (3) we obtain

rV o
D(ν) = ν − µ∆(ν) + λl

DθD max{p − τ − ∆(ν), 0}, (84)

where λl
D = λ0

Dλ1
D

r+µ+λ0
DθD+λ1

D
. Analogously,

rV n
D(ν) = η∆(ν) + λs

DθD max{∆(ν) − (p + τ), 0}, (85)

where λs
D = λ0

Dλ1
D

r+η+λ0
DθD+λ1

D
. Take the difference between equations (84) and (85) to obtain

r∆(ν) = ν − µ∆(ν) − η∆(ν) + λal
DθD max{p − τ − ∆(ν), 0} − λas

D θD max{∆(ν) − p − τ, 0},

(86)

which implies

∆(ν) = ν + λal
DθD max{p − τ, ∆(ν)} + λas

D θD min{p + τ, ∆(ν)}
r + ν + µ + [λal

D + λas
D ]θD

(87)
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for all types ν ∈ (−∞, νl] ∪ [νh, ∞). Equation (87) is associated with a functional operator

satisfying all Blackwell’s conditions for a contraction. Then, by the contraction mapping

theorem, there is a unique function ∆ satisfying the equation (87). Also note that if τ = 0,

then the results follow directly from equation (87). So we focus on the case with τ > 0.

As ∆ is strictly increasing and continuous, we must have that ∆(νl) ≤ p − τ . To see this,

notice first that, if p − τ < ∆(νl) < p + τ , then the customer would not trade with a dealer

because of transaction costs, as the reservation value of a potential seller is higher than the

highest bid price of a dealer, p − τ , and the reservation value of a potential buyer is smaller

than the lowest ask price of a dealer, p + τ . The last terms in equations (3) and (5) would be

zero. Therefore, searching for a dealer is equivalent to be inactive. In this case, the customer

would be better off searching for customers type ν ∈ (νl, νh) to obtain a share of the gains

from trade. This implies that νl /∈ ΩD, which is a contradiction. Implicit in this argument is

the fact that the densities of Φo and Φn are bounded away from zero in the set (νl, νh) because

of issuance and maturity (see proof of Lemma 3), and νl ̸= νh (which holds by assumption on

a regular equilibrium with τ > 0).

Moreover, if ∆(νl) ≥ p + τ , then either p − τ < ∆(ν) < p + τ for some customer type

ν ∈ ΩD or ∆(ν) ≥ p + τ for all customer type ν ∈ ΩD. The first cannot hold because again

it would imply ν /∈ ΩD. The second would be inconsistent with interdealer market clearing

because all customers searching for a dealer would want to buy assets as their reservation

value would be greater than or equal to the highest ask price.

Therefore, we must have ∆(νl) ≤ p − τ . An analogous argument applies for νh in the

opposite direction. That is, ∆(νh) ≥ p + τ . With ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ , we can

solve for the max relations in equation (87), which then implies equation (26). ■

Proof of Lemma 2

Proof. The proof of this result can be found in the text. Specifically, equations (19) and (20)

can written as

−
(
µ + λ1

D

)
πo

0(ν) + λ0
D [Φo(ν) − πo

0(ν)] = 0
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for ν ≤ νl, and

−
(
η + λ1

D

)
πn

0 (ν) + λ0
D [Φn(ν) − Φn(νh) − πn

0 (ν)] = 0.

for ν ≥ νh. Moreover, non-owners of type ν ≤ νl and owners of type ν ≥ νh are inactive,

which leads to the result stated in Lemma 2. ■

Proof of Lemma 3

Proof. First note that equation (22) implies

Φ̇o(∞) = ηΦn(∞) − µΦo(∞) (88)

as, when ν goes to infinity, both the inflow and outflow from trading goes to zero. Then, from

Φ̇o(∞) = 0 and equation (23), we have that

η[F (∞) − Φo(∞)] − µΦo(∞) = 0 ⇐⇒ Φo(∞) = η

µ + η
, (89)

which characterizes the total supply of assets s = Φo(∞), equal, by definition, to the measure

of owners. This also establishes that the measure of non-owners is given by

Φn(∞) = F (∞) − Φo(∞) = 1 − Φo(∞) =⇒ Φn(∞) = µ

µ + η
. (90)

And by definition we have that 1 − s = Φn(∞). Consider now the case ν ≤ νl. According the

law of motion for Φo, given by equation (22), we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λ1
Dπo

0(ν) = ηΦn(ν) − µΦo(ν) − λ̃al
DΦo(ν), (91)

as no-owners with ν̃ ≤ ν ≤ νl will neither purchase the asset in agency or from other customers.

Substituting Φn(ν) = F (ν) − Φo(ν) and setting Φ̇o(ν) = 0 implies

Φo(ν) = ηF (ν)
µ + η + λ̃al

D

, ν ≤ νl. (92)

Consider now the case ν ≥ νh. In this case, it is useful to work with the measure of

54



non-owners of type above ν, Φn(∞) − Φn(ν). Using equations (23) and (22), we have

0 = Φ̇n(∞) − Φ̇n(ν) (93)

= −η[Φn(∞) − Φn(ν)] − λ1
D[πn

0 (∞) − πn
0 (ν)] + µ[Φo(∞) − Φo(ν)] (94)

= −η[Φn(∞) − Φn(ν)] − λ̃as
D [Φn(∞) − Φn(ν)] + µ[Φo(∞) − Φo(ν)] (95)

= −η[1 − s − F (ν) + Φo(ν)] − λ̃as
D [1 − s − F (ν) + Φo(ν)] + µ[s − Φo(ν)] (96)

= −(η + λD)[1 − F (ν)] + (µ + η + λ̃as
D )[s − Φo(ν)] (97)

=⇒ s − Φo(ν) = (η + λ̃as
D )[1 − F (ν)]

µ + η + λ̃as
D

. (98)

As s = η
µ+η , we have

Φo(ν) = η

µ + η
− (η + λ̃as

D )[1 − F (ν)]
µ + η + λ̃as

D

, ν ≥ νh. (99)

Now let us show that ηλ̃al
DF (ν)

µ+η+λ̃al
D

= µλ̃as
D [1−F (ν)]
µ+η+λ̃as

D

. According to the market clearing condition

(21) and Lemmas 1 and 2,

λ1
Dπo

0(∞) = λ1
Dπn

0 (∞) =⇒ λ̃al
DΦo(νl) = λ̃as

D [Φn(∞) − Φn(νh)] . (100)

We know that Φo(νl) = ηF (νl)
µ+η+λ̃al

D

. Moreover,

Φn(∞) − Φn(νh) = F (∞) − Φo(∞) − [F (νh) − Φo(νh)]

= 1 − s −
[
F (νh) − η

µ + η
+ (η + λ̃as

D )[1 − F (νh)]
µ + η + λ̃as

D

]
= µ[1 − F (νh)]

µ + η + λ̃as
D

. (101)

Thus, ηλ̃al
DF (ν)

µ+η+λ̃al
D

= µλ̃as
D [1−F (ν)]
µ+η+λ̃as

D

. Finally, the result that λ̃al
DΦo(νl) = µλ̃as

D
µ+η − λ̃as

D Φn(νh) comes

from equation (100) and the fact that Φn(∞) = F (∞) − Φo(∞) = 1 − η
µ+η = µ

µ+η . ■

Proof of Lemma 4

Proof. By taking the difference between equations (33) and (34), we know that the reservation
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value satisfies

∆(ν) =
ν + λC

∫ νh
ν θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃) − λC
∫ ν

νl
θn

C [∆(ν) − ∆(ν̃)]dΦo(ν̃)
r + µ + η

. (102)

Moreover, because ∆ is continuous and monotone, equation (102) implies that ∆ is Lipschitz

continuous in the interval (νl, νh). To see this, note that we can rearrange equation (102) to

show that ∣∣∣∣∆(ν + t) − ∆(ν)
t

∣∣∣∣ ≤
∣∣∣∣1 + 2λC supx f(x)[∆(νh) − ∆(νl)]

r + µ + η

∣∣∣∣
for all ν and ν + t in the interval (νl, νh), where f is the density of the distribution F . Given

that ∆ is Lipschitz continuous in the interval (νl, νh), ∆ is differentiable almost everywhere

in the interval (νl, νh) and satisfies ∆(ν) = ∆(νl) +
∫ ν

νl
σC(ν̃)dν̃, where σC(ν) denote the

derivative of ∆. Using this result, take the derivative on both sides of equation (102) to obtain

σC(ν) = 1 − λCθo
C [Φn(νh) − Φn(ν)]σC(ν) − λCθn

C [Φo(ν) − Φo(νl)]σC(ν)
r + µ + η

. (103)

We then obtain σC(ν) by rearranging the equation above. ■

Proof of Lemma 5

Proof. We have ˙̃Φo(ν) = Φ̇o(ν) − Φ̇o(νl). From equation (22), we have

˙̃Φo(ν) = ηΦ̃n(ν) − µΦ̃o(ν) − λC

∫ ν

νl

∫ νh

ν
dΦn(ν̂)dΦo(ν̃)

= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)
[
Φn(νh) − Φn(ν)

]
= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)

[
F (νh) − F (ν)

]
+ λCΦ̃o(ν)

[
Φ̃o(νh) − Φ̃o(ν)

]
= η

[
F (ν) − F (νl)

]
− Φ̃o(ν)

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
− λCΦ̃o(ν)2. (104)

We can then solve the quadratic equation above with ˙̃Φo(ν) = 0 to obtain equation (37).

Equation (38) is obtained by the solution of the quadratic equation for ν = νh. ■

Proof of Lemma 6

Proof. In a regular equilibrium, customers of type νl are indifferent between searching for
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dealers or customers. The reason is that equations (3)–(10) and the continuity of ∆ imply

the continuity of V o
C , V n

C , V o
D and V n

D . As a result,

rV o
C(νl) = νl − µ∆(νl) + λC

∫ νh

νl

θo
C [∆(ν) − ∆(νl)]dΦn(ν)

= νl − µ∆(νl) + λCθo
C

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= νl − µ∆(νl) + λl
DθD[p − τ − ∆(νl)] = rV o

D(νl). (105)

Which implies that

p = ∆(νl) + τ + λCθo
C

λl
DθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (106)

And similarly,

rV n
C (νh) = η∆(νh) + λC

∫ νh

νl

θn
C [∆(νh) − ∆(ν)]dΦo(ν)

= η∆(νh) + λCθn
C

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν)

= η∆(νh) + λs
DθD[∆(νh) − p − τ ] = rV n

D(νh). (107)

Which implies that

p = ∆(νh) − τ − λCθn
C

λs
DθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (108)

Equalizing the above two price equations and using lemma 4 we obtain

2τ = λDθD

∫ νh

νl

σC(ν)dν

− λCθn
C

λs
DθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν) − λCθo

C

λl
DθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (109)
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Applying integration by parts in the last two terms we obtain

2τ =
∫ νh

νl

σC(ν)dν

−
∫ νh

νl

{
λCθn

C

λs
DθD

[
Φo(ν) − Φo(νl)

]
+ λCθo

C

λl
DθD

[
Φn(νh) − Φn(ν)

]}
σC(ν)dν

=
∫ νh

νl

{
1 − λCθn

C

λs
DθD

[
Φo(ν) − Φo(νl)

]
− λCθo

C

λl
DθD

[
Φn(νh) − Φn(ν)

]}
σC(ν)dν. (110)

Define w(ν) = θo
C

[
Φn(νh)−Φn(ν)

]
θo

C

[
Φn(νh)−Φn(ν)

]
+θn

C

[
Φo(ν)−Φo(νl)

] . Then we can rewrite the above equation as

2τ =
∫ νh

νl

w(ν)
{
λs

DθD − λCθn
C

[
Φo(ν) − Φo(νl)

]
− λCθo

C

[
Φn(νh) − Φn(ν)

]}
λs

DθD
σC(ν)dν

+
∫ νh

νl

[1 − w(ν)]
{

λl
DθD − λCθn

C

[
Φo(ν) − Φo(νl)

]
− λCθo

C

[
Φn(νh) − Φn(ν)

]}
λl

DθD
σC(ν)dν.

(111)

From the definition of σC(ν), we have λCθo
C

[
Φn(νh) − Φn(ν)

]
+ λCθn

C

[
Φo(ν) − Φo(νl)

]
=

1
σC(ν) − (r + µ + η). Substituting above and rearranging it implies

2τθD =
∫ νh

νl

w(ν)σC(ν) − σas
D

λas
D σas

D

+ [1 − w(ν)] σC(ν) − σal
D

λal
Dσal

D

dν, (112)

where we used that r + µ + η + λal
DθD = 1/σal

D and r + µ + η + λas
D θD = 1/σas

D . This concludes

the proof. ■

Proof of Proposition 1

Proof. The necessity of equations (26)–(40) are established in Lemmas 3–6. So let us fo-

cus on the sufficiency. Consider a family {∆, p, Φo, Φn, νl, νh} satisfying equations (26)–

(40) and value functions V o and V n constructed using equations (3)–(11) given the family

{∆, p, Φo, Φn, νl, νh}. Let us show that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular

equilibrium—that is, it satisfies equations (3)–(23) and definition 2.

Equations (3)–(11): These equations are satisfied by the construction of V o and V n.
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Equations (13)–(14): First let us show that V o
D(ν) ≥ V o

C(ν) for all ν ≤ νl.

V o
D(ν) ≥ V o

C(ν) ⇐⇒ λDθD[(p − τ) − ∆(ν)] ≥ λCθo
C

∫ νh

νl

[∆(ν̃) − ∆(ν)]dΦn(ν̃)

⇐⇒ (p − τ) − ∆(ν) ≥ λCθo
C

λDθD

∫ νh

νl

[∆(ν̃) − ∆(νl)]dΦn(ν̃)

+ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].

From equation (40) we know that λCθo
C

λDθD

∫ νh

νl
[∆(ν̃) − ∆(νl)]dΦn(ν̃) = (p − τ) − ∆(νl), therefore

V o
D(ν) ≥ V o

C(ν) ⇐⇒ ∆(νl) − ∆(ν) ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].

Assumption 1 implies that λCθo
C

λDθD
∈ (0, 1). From (48), we have that Φn(νh) − Φn(νl) =

µ[F (νh)−F (νl)]
µ+η ∈ [0, 1). Using (26) in Lemma 1, we have that

V o
D(ν) ≥ V o

C(ν) ⇐⇒ νl − ν ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][νl − ν].

We can then see that V o
D(ν) ≥ V o

C(ν) holds. Moreover, it holds with strictly inequality for all

ν < νl. The proofs that V n
D(ν) ≥ V n

C (ν) for all ν ≤ νl; V o
D(ν) ≤ V o

C(ν) for all ν ∈ (νl, νh); and

V n
D(ν) ≤ V n

C (ν) for all ν ∈ (νl, νh) are analogous.

Equation (12): Let us start with ν ≤ νl. In this case we have that V o(ν) = V o
D(ν) and

V n(ν) = V n
D(ν) based on equation (13). Then, from equations (3) and (5) we have that

V o(ν) − V n(ν) = ν + λDθD(p − τ) − (µ + η + λDθD)∆(ν)
r

= (r + µ + η + λDθD)∆(ν) − (µ + η + λDθD)∆(ν)
r

= ∆(ν).

The result for ν ≥ νh is analogous. For ν ∈ (νl, νh) we have that

r[V o(ν) − V n(ν)] = ν − (µ + η)∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃)

− λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃)
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Replacing equation (35) and applying integration by parts we get

r[V o(ν) − V n(ν)] = ν − (µ + η)∆(νl) − (µ + η)
∫ ν

νl

σC(ν̃)dν̃

+ λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ − λC

∫ ν

νl

θn
C [Φo(ν̃) − Φo(νl)]σC(ν̃)dν̃

= ν − (µ + η)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

−
∫ ν

νl

{µ + η + λCθn
C [Φo(ν̃) − Φo(νl)]} σC(ν̃)dν̃

= ν − (µ + η)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

− ν + νl −
∫ ν

νl

{r + λCθo
C [Φn(νh) − Φn(ν̃)]} σC(ν̃)dν̃

= νl − (r + µ + η)∆(νl) + λC

∫ νh

νl

θo
C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ + r∆(ν).

Now we can replace equation (40) to obtain

r[V o(ν) − V n(ν)] = νl − (r + µ + η)∆(νl) + λCθo
C [p − τ − ∆(νl)] + r∆(ν)

= νl + λCθo
C(p − τ) − (r + µ + η + λCθo

C)∆(νl) + r∆(ν) = r∆(ν),

where the last equality we obtained using equation (26) applied to ∆(νl).

Equation (21): The left-hand side of Equation (21) is given by

λD

∫
Ωo

D

1{∆(ν)<p−τ}dΦo(ν) = λD

∫ νl

−∞
dΦo(ν) = λDΦo(νl).

The right-hand side is

λD

∫
Ωn

D

1{∆(ν)>p+τ}dΦn(ν) = λD

∫ ∞

νh

dΦn(ν) = λD [Φn(∞) − Φn(νh)] .

Therefore, we have market clearing if, and only if, Φo(νl) = Φn(∞) − Φn(νh). This equation

holds because, from the second equation of (30), Φo(∞) = η
µ+η =⇒ Φn(∞) = 1−Φo(∞) = µ

µ+η ,

and, from equation (31), µ
µ+η − Φn(νh) = Φo(νl).
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Equation (22): First, consider ν ≤ νl. Then, equation (22) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(ν) = ηF (ν) − (η − µ − λD)Φo(ν).

Equation (30) states that Φo(ν) = ηF (ν)
η−µ−λD

. Thus, Φ̇o(ν) = ηF (ν) − ηF (ν) = 0. Consider now

ν ≥ νh. Then, equation (22) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) + λD[Φn(ν) − Φn(νh)]

= (η + λD)F (ν) − (µ + η + λD)Φo(ν) − λD[Φo(νl) + Φn(νh)].

Using the second equation of (30) and (31), we then have

Φ̇o(ν) = (η + λD)F (ν) + (η + λD)[1 − F (ν)] − η(µ + η + λD)
µ + η

− λDµ

µ + η

= η + λD − η(µ + η) + λD(µ + η)
µ + η

= η + λD − (η + λD) = 0.

Finally, let us consider ν ∈ (νl, νh). In this case we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) − λC [Φo(ν) − Φo(νl)][Φn(νh) − Φn(ν)]

= η[Φn(ν) − Φn(νl)] − µ[Φo(ν) − Φ0(νl)] + ηΦn(νl) − µΦo(νl) − λDΦo(νl)

− λC [Φo(ν) − Φo(νl)][F (νh) − F (ν)] + λC [Φo(ν) − Φo(νl)][Φo(νh) − Φo(ν)].

We have shown that ηΦn(νl) − µΦo(νl) − λDΦo(νl) = 0 when considering the case ν ≤ νl. By

using this result and the notation Φ̃o(ν) = Φo(ν) − Φ0(νl) and sC = Φ̃o(νh), we obtain

Φ̇o(ν) = η[F (ν) − F (νl)] − (µ + η)Φ̃o(ν)

− λCΦ̃o(ν)[F (νh) − F (ν)] + λCΦ̃o(ν)Φ̃o(νh) − λCΦ̃o(ν)2

= η[F (ν) − F (νl)] − (µ + η)Φ̃o(ν)

− Φ̃o(ν) {µ + η + λC [F (νh) − F (ν) − sC ]} − λCΦ̃o(ν)2.

The distribution Φ̃o(ν), as defined in equation (37), is the positive root of the equation above.

Therefore, Φ̇o(ν) = 0.
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Equation (23): This is directly stated in equations (30) and (37).

We showed that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is an equilibrium. That is, that

it satisfies equations (3)–(23). It is easy to see that it must also be a regular equilibrium

because equation (40) implies that νl ≤ νh with strict inequality if τ > 0, and equations (26)

and (35) imply that ∆ is continuous and strictly increasing. ■

Proof of Proposition 5

Proof. First note that equation (40) is necessarily satisfied by all regular equilibrium. There-

fore, it suffices to show that in a neighborhood of τ = 0, there is a unique pair (νl, νh) satisfying

equation (40) for all τ in this neighborhood. Equation (40) can be rewritten as

G(νl) = 1
2λDθD

∫ g(νl)

νl

[
σC(ν; νl, g(νl))

σD
− 1

]
dν = τ. (113)

When τ = 0, then G(νl) = τ implies that νl = g(νl) = νh = νs. That is because
σC(ν;νl,g(νl))

σD
− 1 is bounded away from zero. To see this notice that

σC(ν;νl,g(νl))
σD

− 1 > 0 ⇔ r+µ+η+λDθD

r+µ+η+λC{θo
C [Φn(νh)−Φn(ν)]+θn

C [Φo(ν)−Φo(νl)]} > 1 (114)

⇔ λDθD > λC {θo
C [Φn(νh) − Φn(ν)] + θn

C [Φo(ν) − Φo(νl)]} . (115)

But note that λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
< λC max{θo

C , θn
C} < λDθD,

which implies that σC(ν;νl,g(νl))
σD

− 1 is bounded away from zero. As a result, we can only

have G(νl) = 0 if the limits in the integral are the same. Then, since G(·) is continuous, it

suffices to show that it is strictly monotone in a neighborhood (ν̄l, νs]. Note also that G(·) is

differentiable and that

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl);νl,g(νl))

σD
− 1

]
−

[
σC(νl;νl,g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν;νl,g(νl))

∂νl
+ g′(νl)∂σC(ν;νl,g(νl))

∂νh

]
dν. (116)

The first term on the right-hand is negative, as g′(νl) = − ηf(νl)
µf(g(νl)) , and σC(ν;νl,g(νl))

σD
− 1 is

62



bounded away from zero. Moreover, using the definition of σC , we can bound it above by

− 1
2λDθD

[
r + µ + η + λDθD

r + µ + η + λC max{θo
D, θn

D}
− 1

]
. (117)

Therefore, to establish that G′(νl) < 0 in a neighborhood of (ν̄l, νs] we just have to show that

the second term converges to zero when νl ↗ νs. As g(νl) → νs when νl ↗ νs, it suffices to

show that the terms inside the integral, ∂σC(ν;νl,g(νl))
∂νl

and ∂σC(ν;νl,g(νl))
∂νh

, are bounded. We can

write the first term as

∂σC(ν;νl,g(νl))
∂νl

= −σC(ν; νl, g(νl))2λC
∂{θo

C [Φn(νh)−Φn(ν)]+θn
C [Φo(ν)−Φo(νl)]}

∂νl
(118)

= −σC(ν; νl, g(νl))2λC
∂{θo

C [Φn(νh)−Φn(νl)+Φn(νl)−Φn(ν)]+θn
CΦ̃o(ν)}

∂νl
(119)

= −σC(ν; νl, g(νl))2λC

∂

{
θo

C

µ[F (νh)−F (νl)]
µ+η −θo

C [F (ν)−F (νl)]+Φ̃o(ν)
}

∂νl
(120)

= −σC(ν; νl, g(νl))2λC

{
θo

C
ηf(νl)
µ+η + ∂Φ̃o(ν)

∂νl

}
. (121)

The first term in parenthesis is bounded. The second term is obtained by applying the implicit

function theorem to equation (104) and it yields

∂Φ̃o(ν)
∂νl

= −
ηf(νl)

[
1 + λCΦ̃o(ν)

µ+η

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

, (122)

which is also bounded. Similarly, for ∂σC(ν;νl,g(νl))
∂νh

,

∂σC(ν; νl, g(νl))
∂νh

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

µ[F (νh)−F (νl)]
µ+η − θo

C [F (ν) − F (νl)] + Φ̃o(ν)
}

∂νh

(123)

= −σC(ν; νl, g(νl))2λC

{
θo

C

µf(νh)
µ + η

+ ∂Φ̃o(ν)
∂νh

}
. (124)

Again, the first term in parenthesis is bounded. The second term is

∂Φ̃o(ν)
∂νh

= −
µf(νh)λCΦ̃o(ν)

µ+η{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

,
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which is also bounded. Therefore, G is strictly monotone in a neighborhood (ν̄l, νs] with

G′(ν) < 0 in this neighborhood. If we then define the neighborhood [0, τ̄), where τ̄ = G(ν̄l),

we can conclude that there is a unique regular equilibrium for any τ ∈ [0, τ̄). ■

Proof of Lemmas 7, 8, 9, 10, 11 and 12

Proof. The proof of Lemmas 7–12 are analogous to the proof of Lemmas 1–6. ■

Proof of Proposition 8

Proof. We know that there exists neighborhood [0, τ̄) of τ = 0 that regular equilibrium is

unique. Moreover, because G(νs) = 0, we must have G′(νl) ≤ 0 for any νl < νs with an unique

equilibrium in a neighborhood around it. To see this note that if G′(νl) > 0 for an νl with

G(νl) = τ , then there exists ν ′
l > νl such that G(ν ′

l) > G(νl). But then G(ν ′
l) > G(νl) ≥ G(0)

and we can conclude by continuity that there must be another ν ′′
l with G(ν ′′

l ) = τ . This is a

contradiction since we started assuming that there is an unique regular equilibrium at νl.

Consider then any (τ0, τ1) and (ν0
l , ν1

l ) such that all τ ∈ (τ0, τ1) is associated with a

unique regular equilibrium at some νl(τ) ∈ (ν0
l , ν1

l ). Since these regular equilibrium are

characterized by G(νl) = τ and G′(νl) ≤ 0, we must then have that νl(τ) is decreasing in τ for

all τ ∈ (τ0, τ1). Therefore, to obtain that the turnover is decreasing in τ in the neighborhood

(τ0, τ1), it suffices to show that it is increasing in νl.

From equation (81) we have that

T =
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃)dΦo(ν)

η
µ+η

=
2λDΦo(νl) + λC

∫ νh
νl

Φ̃o(ν)dΦ̃n(ν)
η

µ+η

.

From equation (30) we have Φo(νl) = ηF (νl)
µ+η+λD

, which is increasing in νl with its derivative

given by ∂Φo(νl)
∂νl

= ηf(νl)
µ+η+λD

. For the second term we have that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= −�������

Φ̃o(νl)ϕn(νl) + g′(νl)Φ̃o(νh)ϕn(νh)

+
∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν.
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Again for the first term inside the integral

dΦ̃o(ν)
dνl

= ∂Φ̃o(ν)
∂νl

+ g′(νl)
∂Φ̃o(ν)

∂νh
= −ηf(νl){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Now we can apply the implicit function theorem to equation (104) and obtain that

ϕo(ν) = [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Thus,

dϕo(ν)
dνl

= −
2λCηf(ν) dΦ̃o(ν)

dνl[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

+ λCf(ν)
dΦ̃o(ν)

dνl

[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]
[{

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

− λCf(ν)
2λCΦ̃o(ν)dΦ̃o(ν)

dνl[{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

]2

=
λCf(ν) dΦ̃o(ν)

dνl
−2λCϕo(ν) dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

=
λC [ϕn(ν)−ϕo(ν)] dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

.

Also note that from the above we obtain ϕn(ν) and dϕn(ν)
dνl

from the identity f(ν) = ϕo(ν) +

ϕn(ν). Then we obtain that

ϕn(ν) = f(ν) − [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

=

[
{µ + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]
} + λCΦ̃o(ν)

]
f(ν){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.
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Now we can write that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= g′(νl)Φ̃o(νh)ϕn(νh) +

∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν

= −Φ̃o(νh) ηf(νl)
µ + η + λCΦ̃o(νh)

− ηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.

With this equation in hand we now can show that dT
dνl

≥ 0, which is equivalent to show that

2λDηf(νl)
µ + η + λD

≥

λCΦ̃o(νh)ηf(νl)
µ + η + λCΦ̃o(νh)

+ λCηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν,

which happens if, and only if,

2λD

µ + η + λD
≥

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.

Note that

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν) = µ + η + λC

[
Φ̃n(νh) − Φ̃o(ν) + Φ̃o(ν)

]
.
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Then we have that

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]
µ+η+λC

[
Φ̃n(νh)−Φ̃o(ν)+Φ̃o(ν)

] dν =
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

−
∫ νh

νl

ϕo(ν)
{

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}
−λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}2 dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν −
∫ νh

νl

d

dν

[
Φ̃o(ν)

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]]
dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν − Φ̃o(νh)
µ + η + λCΦ̃o(νh)

.

So, again, it suffices to show that

2λD
µ+η+λD

≥ λCΦ̃o(νh)
µ+η+λCΦ̃o(νh)

+λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν =

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

f(ν)
µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]dν − λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

⇔ 2λD

µ + η + λD
≥

∫ νh

νl

λCf(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

⇔
∫ νh

νl

[
2λD

µ + η + λD
− λC [F (νh) − F (νl)]

µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]]
dF (ν) ≥ 0.

First note that the above inequality holds in a neighborhood of τ = 0 because it implies that

νl ≈ νh. Moreover, if λC ≤ λD ≤
√

2−1√
2 (µ + η), we must have

2λD
µ+η+λD

≥ λC [F (νh)−F (νl)]
µ+η+λC [Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)] .

We can see this by comparing the two functions 2x
µ+η+x and ax

µ+η+bx , where a = F (νh) − F (νl)

and b = Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν). Both functions are strictly increasing in x, and equal zero

at x = 0. Moreover, the derivative of the first function is strictly greater than the derivative

of the second one for x ≤
√

2−1√
2 (µ + η), which implies that

2λD
µ+η+λD

> λD[F (νh)−F (νl)]
µ+η+λD[Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)] ≥ λC [F (νh)−F (νl)]

µ+η+λC [Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)] ,
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which concludes the proof. ■

Proof of Proposition ??

Proof. The bid-ask spread, defined in (80), is

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+µ+η+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) . (125)

To see the first part, note that, for τ = 0, νl = νh = νs, and the equilibrium is unique. So, we

can take the derivative of BA in (??) with respect to τ evaluated at τ = 0 and show that it

has to be strictly positive. Given that all the functions are differentiable, we must have this

derivative strictly positive in a neighborhood of τ = 0.

We have that

d BA
dτ

= ∂ BA
∂τ

+ ∂ BA
∂νl

× ∂νl

∂τ
. (126)

For the first term in the right-hand side, we have

∂ BA
∂τ

= 2λDΦo(νl)
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) ,

which implies that ∂ BA
∂τ = 2 when evaluated at τ = 0 since in this case νl = νh = νs. For the

second term we have that

∂ BA
∂νl

∣∣∣∣τ=0,
νl=νs

= λD(1 − θD)

d
dνl

[∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+µ+η+λDθD

]
λDΦo(νl)[

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2 (127)

− λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+µ+η+λDθD

d
dνl

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2 .

(128)
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Note that

d

dνl

[∫ ∞

νh

νdΦn(ν) −
∫ νl

−∞
νdΦo(ν)

]
= d

dνl

[∫ ∞

νh

νµf(ν)
µ + η + λD

dν −
∫ νl

−∞

νηf(ν)
µ + η + λD

dν

]
= −νhµf(νh)g′(νl) − νlηf(νl)

µ + η + λD
= [νh − νl]ηf(νl)

µ + η + λD
,

which is zero when evaluated at νl = νh = νs. Moreover,

d

dνl

[
λDΦo(νl) + λC

∫ νh

νl

∫ ν

νl

dΦn(ν̃)dΦo(ν)
]

is positive in a neighborhood of τ = 0 since this is basically turnover, which we showed in the

previous proof that is increasing in νl in a neighborhood of τ = 0. Thus, ∂ BA
∂νl

∣∣∣τ=0,
νl=νs

≤ 0. We

also have shown that ∂νl
∂τ < 0 in a neighborhood of τ = 0. Therefore, we have that

d BA
dτ

∣∣∣∣τ=0,
νl=νs

= ∂ BA
∂τ

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

= 2 + ∂ BA
∂νl

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

≤0

× ∂νl

∂τ

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

≤0

> 0.

This proves the first part of the proposition. Namely, that the bid-ask spread is increasing in

τ in a neighborhood of τ = 0.

To show the second part of the proposition, it suffices to show that BA converges to zero

as τ converges to infinity. First lets us show that νl converges to −∞ when τ converges to

infinity. In equilibrium we must have that

G(νl) = 1
2λDθD

∫ g(νl)

νl

σC(ν; νl, νh) − σD

σD
dν = τ. (129)

The term σC(ν;νl,νh)−σD

σD
is bounded below by λDθD−λC max{θn

C ,θo
C}

µ+η+λDθD
, and above by λDθD

µ+η+λDθD
.

Therefore, as τ converges to infinity, in order to obtain an equilibrium we must have νl

converging to −∞, and νh = g(νl) converging to ∞.

Consider now the formula for the bid-ask spread,

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+µ+η+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) . (130)
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We can see that
∫ ∞

νh
νdΦn(ν) −

∫ νl
−∞ νdΦo(ν) converge to zero since

∫ ∞
−∞ ν2f(ν)dν is bounded.

To show that Φo(νl)τ = ηF (νl)τ
µ+η+λD

converges to zero is not as simple because F (νl) converges to

zero and τ converges to infinity. But note that

lim
τ↗∞

F (νl)τ = lim
τ↗∞

τ

1/F (νl)
= lim

τ↗∞

1
f(νl)dνl

dτ /F (νl)2
= lim

νl↘−∞

G′(νl)F (νl)2

f(νl)
.

And, as we have established in the of Proposition 5,

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
−

[
σC(νl; νl, g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν; νl, g(νl))

∂νl
+ g′(νl)

∂σC(ν; νl, g(νl))
∂νh

]
dν.

So we only need to show that each of the terms above, when multiplied by F (νl)2

f(νl) , converges

to zero as νl converges to −∞. Let us start showing that F (νl)2

f(νl) converges to zero. Note that

0 ≤ lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

∫ νl

−∞
|νl|f(ν)dν ≤ lim

νl↘−∞

∫ νl

−∞
|ν|f(ν)dν = 0,

where the equality in the end comes from the fact that
∫

ν2f(ν)dν is finite. Therefore we can

conclude that limνl↘−∞ νlF (νl) = 0. But then

0 = lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

−νl

1/F (νl)
L’Hôpital= lim

νl↘−∞

−1
−f(νl)/F (νl)2 = lim

νl↘−∞

F (νl)2

f(νl)
.

Now let us look the individual terms of G′(νl). We have that

lim
νl↘−∞

F (νl)2

f(νl)

[
σC(νl; νl, g(νl))

σD
− 1

]
= 0

because
[

σC(νl;νl,g(νl))
σD

− 1
]

is bounded. We have that

lim
νl↘−∞

F (νl)2

f(νl) g′(νl)
[

σC(g(νl);νl,g(νl))
σD

− 1
]

= lim
νh↗−∞

[1−F (νh)]2
f(νh)

[
σC(νh;g−1(νh),νh)

σD
− 1

]
= 0

because again
[

σC(νh;g−1(νh),νh)
σD

− 1
]

is bounded and we can show that limνh↗−∞
[1−F (νh)]2

f(νh) = 0
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in the same way that we showed that limνl↘−∞
F (νl)2

f(νl) = 0. Moreover,

0 ≤
∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν =
∫ g(νl)

νl

σC(ν; νl, g(νl))2λC

{
θo

C

ηf(νl)
µ + η

− ∂Φ̃o(ν)
∂νl

}
dν

=
∫ g(νl)

νl

θo
C

λCησC(ν;νl,g(νl))2

µ+η +
λCησC(ν;νl,g(νl))2

[
1+ λCΦ̃o(ν)

µ+η

]
{

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

 f(νl)dν

≤
∫ g(νl)

νl

θo
C

λCησC(ν;νl,g(νl))2

µ+η +
λCησC(ν;νl,g(νl))2

[
1+ λCΦ̃o(ν)

µ+η

]
{

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

 f(ν)dν

which is bounded because the term in brackets is bounded and
∫ g(νl)

νl
f(ν)dν ≤ 1. Therefore,

we have that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν = 0.

The proof that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

g′(νl)
∂σC(ν; νl, g(νl))

∂νh
dν = 0.

is analogous. With that, we can conclude that limτ↗∞ BA = 0, which implies the second part

of Proposition ??, and concludes the proof. ■

Proof of Proposition (premium)

Proof. First note that, due to the assumed symmetry in the parameters, we have that

pA(τ) = σDν̄A and pB(τ + dτ) = σDν̄A. Therefore, the liquidity premium can be written as

We have shown in the proof of Proposition ?? that d BA
dτ > 0 in a neighborhood of τ = 0,

which implies that BA(τ + dτ) − BA(τ) > 0 and LP (τ) < ν̄A−ν̄B

L̄B−L̄A .

We have also shown that limτ→∞ BA = 0. As BA(τ) > 0 in a neighborhood of τ = 0,

then d BA
dτ < 0 for some τ , which implies that BA(τ + dτ) − BA(τ) < 0 and LP (τ) > ν̄A−ν̄B

L̄B−L̄A .

Moreover, as limτ→∞ BA(τ + dτ) − BA(τ) = limτ→∞ BA(τ + dτ) − limτ→∞ BA(τ) = 0, we

have that limτ→∞ LP (τ) = ν̄A−ν̄B

L̄B−L̄A . This concludes the proof. ■
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B Data

We use corporate bonds transactions data from the TRACE Enhanced (ETRACE) database

from January 2005 to June 2021. This initial data set provides us with a total of 171,140,493

trades as well as with 283,250 uniquely-identifiable bonds.12

We use a procedure based in Dick-Nielsen (2009) and Dick-Nielsen (2014) to filter out

errors, cancellations, reversals and double counting as well as transactions missing individual

CUSIP identification. We subsequently drop trades missing yield information and trades

that are either on a when-issued basis, in a non-secondary Market, with a special condition,

automatic give-ups, or in equity-linked notes.13

To avoid having many bonds in our sample that trade only momentarily, we add the

following two conditions: (1) the bond must have existed in ETRACE for at least one complete

year; and (2) the bond must have traded at least 75% of its relevant trading days (BPW and

Anderson and Stulz 2017). Bonds must also have sufficient trades to satisfy the conditions, as

defined in the following section, necessary to calculate their individual illiquidity measures.

Having applied all these trade-based criteria, we are left with 55,753,160 transactions in 5,410

unique issues.

We use Bloomberg to collect bond information on issuance and maturity dates, provisions,

coupons, currency denomination, amount outstanding, and ratings. We use the amount

outstanding of each issue at the last business day of each month. A bond is defined as

investment grade if its rating is greater than or equal to BBB– from S&P and Fitch or Baa3

from Moody’s. We first use the rating from Standard & Poor’s; if this rating is unavailable, we

use the rating from Fitch; and if this rating is unavailable, we use the rating from Moody’s.14

12The Trade Reporting and Compliance Engine (TRACE) is the “FINRA-developed vehicle that facilitates
the mandatory reporting of over-the-counter secondary market transactions in eligible fixed income securities.”
The bond transactions report was implemented in different phases. It started with Phase I, on July 2002, for
investment grade bonds and with issue size greater than or equal to $1 bi, and it continued later with the
requirements expanded in Phase II in 2003. The complete implementation occurred in 2005, with Phase III.
The report of corporate bond transactions is mandatory for all broker-dealers FINRA members. Therefore,
Phase III virtually contains complete coverage of all public transactions. For consistency of the selection into
the dataset, our dataset focus on Phase III. The Enhanced TRACE differs from the Standard TRACE in that
it discloses more detailed information in individual transactions, e.g., actual trade size.

13To remove any potentially erroneous trades still remaining in the database, we also add a price filter for
trades with prices deviating more than 25% from the daily average. This procedure cleans only about 0.1% of
the trades.

14Although we use a different order based on data availability, this process is similar to Dick-Nielsen et al.
(2012).
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We exclude trades that took place outside the range of issuance and maturity dates of an

issue, and bonds for which the outstanding amount at the last business day of that specific

month was zero. Defaulting bonds are eliminated from the sample for as long as they are

considered in default, and so are bonds with missing information. We only keep in our sample

callable or non-provisional, fixed-rate bonds issued in the US. Callable bonds comprise a

significant portion of our sample. Removing these bonds would negatively impact the quality

of our results. Instead, we control our results for callability by introducing a dummy to our

model. At this stage, our sample consists of 45,026,565 trades in 4,255 individual bonds.

We calculate the individual yield spread as the difference between the yield of the corporate

bond and the yield of the government bond with the same maturity, as in BPW. The constant

maturity yield curve is obtained from the Federal Reserve Bank of St. Louis FRED dataset.

We use linear interpolation to calculate the yield of the government bond matching the exact

maturity of the corporate bond. The monthly cross-sectional yield spread of a corporate bond

is then calculated as the average daily spread in the month.

We use the Eikon dataset to collect each issuer’s daily 5-year Credit Default Swap (CDS)

quotes, which we use to proxy for the issuer’s credit risk. Our measure of credit risk for each

monthly cross-section is the average of the issuer’s end-of-day CDS spreads. As this data is

sufficiently large for the bonds in our database from December 2007, we redefine our sample

period to begin in December 2007. We use stock prices to calculate the annualized equity

return volatility of each issuer. Bonds missing CDS and equity volatility data are excluded

from our dataset. We collect the daily stock prices of the issuers from CRSP.

Our final bond sample consists of 32,435,392 trades in 3,073 unique issues, which are

distributed over a period of 115 months starting from December 2007. In total, we have

139,168 combinations of bond-month observations. The number of observations varies between

monthly cross-sections depending on, among other things, newly-issued and matured bonds,

trade frequency, and issues satisfying our selection criteria in the observed cross-section. Our

final sample is predominantly composed by investment grade bonds.

We separate our sample period in three time intervals characterized by different macroeco-

nomic conditions: (1) the financial crisis period from December 2007 to December 2009; (2)

the post-crisis period with historically low interest rates from January 2010 to November 2015;
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and (3) the monetary tightening period from December 2015 to June 2017. Table 2 presents

a summary of our data together with the illiquidity measures described in the next section.

Table 2: Summary statistics

Complete Period Crisis Post-Crisis Monetary Tightening
Dec ‘07–June ‘17 Dec ‘07–Dec ‘09 Jan ‘10–Nov ‘15 Dec ‘15–June ‘17

Observations 139,168 17,165 91,424 30,579
Investment Grade 87% 86% 87% 87%
N. of Bonds 3,073 1,134 2,688 1,905
Callable 33% 33% 33% 31%
N. of Firms 416 227 388 310
N. of Trades 32,435,392 6,078,875 20,192,250 6,164,267

Mean Median SD Mean Median SD Mean Median SD Mean Median SD
γ 2.225 1.044 3.931 5.776 2.623 11.648 1.284 .639 1.842 1.067 .480 1.586
AMD (×103) 2.933 1.755 3.945 6.497 3.789 9.603 2.003 1.255 2.386 1.717 .947 2.325
Spread 2.163 1.543 2.179 4.160 2.856 4.634 1.598 1.202 1.387 1.646 1.090 1.909
CDS (×10−2) 1.674 1.063 2.008 2.712 1.529 3.837 1.385 .972 1.375 1.390 .789 1.969

This table reports a summary of our sample variables together with a summary of the main variables calculated.
The observations are the bond-month combinations. The mean, median and standard deviation are the
time-series averages of the respective cross-sectional measures within each sub-period. Spread is the corporate
bond yield spread detailed in section B. γ and AMD are the illiquidity measures detailed in section B.

C Additional empirical results

C.1 The determinants of bond illiquidity

Given the importance of bond illiquidity for yield spreads, we now study the determinants of

illiquidity for individual bonds. We regress illiquidity on characteristics such as CDS, time to

maturity, volume, issuance size, callability, and issuer’s credit rating. We estimate pooled

OLS regressions with two-dimensional clustered standard errors. Results are in table 3. In

summary, our results indicate that the main determinants of illiquidity of a particular bond

are credit risk and time to maturity.

We find that credit risk and time to maturity are the most important characteristics of

a bond for illiquidity. Illiquidity is positively correlated to credit risk and time to maturity.

When the CDS of an issuer widens 100 basis points, γ of its bonds increases .901. This

increase corresponds to about 40% of the average γ (table 2). One additional year in time to

maturity increases γ by .165, which corresponds to 7% of the average γ.

Volume and frequency show contrasting results. Bonds with greater volume are more
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Table 3: γ and AMD on bond characteristics

γ AMD
CDS .817 .901 .697 .719

[6.75] [6.50] [7.89] [6.93]

Maturity .161 .165 .128 .139
[11.02] [11.84] [7.87] [9.29]

Age −.002 .117
[−.12] [5.42]

Coupon .078 .079
[2.14] [2.17]

Volume −.750 −2.01
[−3.78] [−7.32]

Frequency .510 3.24
[2.15] [12.82]

ln(Issuance Size) −.787 −1.17
[−8.31] [−8.59]

EqVol. .481 .308
[1.38] [1.70]

IG 2.18 2.19
[5.05] [6.78]

Call −.318 −.053
[−3.08] [−.50]

Constant .526 .666 2.27 1.39 1.57 5.01
[4.26] [6.15] [3.28] [10.17] [13.06] [5.94]

Adj.R2 .089 .032 .142 .111 .035 .226
Obs. 139, 168 139, 168 139, 168 139, 168 139, 168 139, 168
Bond-level illiquidity measures regressed on bond characteristics. We run a pooled OLS regression with
standard-errors clustered by bond and month. T-statistics in square brackets. γ and AMD are the illiquidity
measures detailed in section B. AMD is multiplied by 103. Maturity is the issue’s time to maturity. Maturity
and age are calculated in years at the last business-day of each month. Volume is calculated as the total $
amount traded ×10−11 and frequency is in thousands of trades. Issuance size is in $ millions. EqVol. is the
issuer’s annualized equity return volatility. IG is 1 if the bond is Investment Grade and 0 if otherwise. Call is 1
if the bond is callable and 0 if otherwise.
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liquid, but so are bonds that trade less frequently. Bonds with larger average size per trade

are potentially more liquid. Callable bonds are more liquid for both γ and AMD.

The results for the credit rating and coupon are surprising. We find that investment-grade

bonds have substantially higher γ’s. We interpret that the effect of credit quality is captured

more strongly by the CDS than by the credit rating. This effect occurs because high-yield

bonds have on average significantly higher CDS spreads than investment-grade bonds. Coupon

has a non-intuitive positive slope, but it is small are not highly significant.

The results for γ and AMD in general indicate the same direction. An exception is for

age, negative and not significant for γ, but positive and strongly significant for AMD. A

positive coefficient for age indicates a market preference for on-the-run securities as opposed

to older, off-the-run issues from the same firm. This finding is consistent with the on-the-run

and off-the-run spread (for example, Krishnamurthy 2002).
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