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ABSTRACT 

 

Our study advances the modeling of forecast revisions by accounting for the nuanced impact 

of informational shocks across different time horizons. Specifically, we introduce 

modifications to the error structure of regression models used to detect biases in 

macroeconomic forecasts. Drawing on consensus forecasts of inflation and output growth 

from the central banks of Brazil, Chile, and Mexico, our approach offers a nuanced 

understanding of bias estimation uncertainty, leading to a more robust rejection of the null 

hypothesis of no biases. By elucidating the differential effects of informational shocks on 

forecast accuracy across time periods, our findings not only contribute to the refinement of 

forecasting methodologies but also have implications for policymakers and economic 

analysts striving for more accurate and reliable predictions in dynamic economic 

environments. 
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1. Introduction 

 

The pivotal role of expectations in shaping economic outcomes has long been 

recognized, prompting extensive investigation by academics, central bankers, and 

economists. This scholarly pursuit encompasses a multifaceted approach, ranging from the 

measurement and evaluation of expectations' performance to unraveling the intricacies of 

their formation. While the bulk of research has traditionally focused on developed 

economies, a growing body of literature also delves into the dynamics of expectations in 

emerging economies. Notably, a significant portion of this literature scrutinizes the accuracy, 

unbiasedness, and efficiency of both individual and consensus forecasts. While output 

growth commands the lion's share of attention, scholarly interest extends to other vital 

economic variables such as inflation, exchange rates, and fiscal indicators. For instance, 

Mitchell and Pearce (2007) and Ince and Molodtsova (2017) have contributed to 

understanding the behavior of exchange rates and inflation forecasts, respectively. Similarly, 

studies by Jalles et al. (2015) and de Deus and de Mendonça (2017) have shed light on the 

forecasting challenges associated with fiscal variables. Through these diverse lenses, 

researchers strive to deepen our understanding of the intricate interplay between expectations 

and economic outcomes across diverse economic landscapes. 

Many studies use fixed-event forecasts to analyze these issues. These are defined as a 

sequence of projections for the value of some macroeconomic variable at the end of a given 

year, being these projections calculated period by period. Fixed-event forecasts are often used 

to study biases in macroeconomic forecasts. Davies and Lahiri (1995) (henceforth DL) 

proposed an influential method where they are used to form a panel of forecast errors.1 Under 

their framework, each individual i  is subject to an error when he or she predicts, h  months 

before the end of year t , the value of the target variable at the end of the same year. This 

error is written as the sum of an individual bias, idiosyncratic errors and an error component 

that represents the cumulative effect of all the shocks that occurred from h  months prior to 

the end of year t  until the end of year t . This framework allows computing the error 

covariance matrix, which they use in regressions a la Mincer and Zarnowitz (1969) to assess 

 
1 Examples that also use or extend the methodology proposed by Davies and Lahiri (1995) are Boero, Smith 

and Wallis (2008), Clements, Joutz and Stekler (2007), Ager, Kappler and Osterloh (2009) and Dovern and 

Weisser (2011).  
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the null of no biases in inflation and output growth forecasts. Later, Ager, Kappler and 

Osterloh (2009) (henceforth AKO) modified DL’s methodology to deal with consensus 

forecasts. 

However, the error generating process proposed by DL has an important drawback: it 

implies that the shock occurring h  months prior to the end of year t  affects the consensus 

forecasts made for the value of the target variable at the end of years t  and 1t +  in the same 

way. This implication neither corresponds to observed data nor is justified in economic terms. 

Take, for example, the case of inflation forecasts. If new information points to a temporary 

inflationary shock, then inflation forecasts for the current year would change, but those for 

the next year would not. If incoming news point to a persistent shock, then agents would 

update their inflation forecasts for the next year – but only moderately. These two examples 

show that the hypothesis of an equally strong impact is very unlikely. 

Our paper makes a significant contribution by revising the conventional error structure 

proposed by DL and AKO. In our approach, we introduce a dynamic framework where each 

month is characterized by the arrival of two distinct types of informational shocks: one 

influencing forecasts for the current year's end and another for the following year's end. 

While these shocks exhibit correlation, they convey different information and vary in 

magnitude.2 By integrating these nuanced adjustments, we construct an error covariance 

matrix that better captures the complex interplay of informational shocks over time. 

Consequently, our bias tests yield more reliable results, offering a clearer understanding of 

forecast accuracy and enhancing the robustness of economic analysis. 

We apply our framework to a database comprising 24 fixed-event forecasts of inflation 

and output growth for each year. They come from the surveys carried out by the central banks 

of Brazil, Chile, and Mexico.3 They are “consensual” in nature, are collected monthly and 

refer to the figures prevailing at the end of the current and the following years. Observations 

belong to the period between the beginning of the 2000's until December 2020, which 

 
2 The structure we propose considers some of the issues raised by Dovern and Weisser (2011). They point out 

that, under DL, the variance of forecast errors decays linearly when the forecast horizon goes to 1. They 

recommend the use of more general functional forms, capable of better matching the data.    
3 We choose Brazil, Chile, and Mexico for some reasons. First, their central banks give free access to the bulk 

of their surveys, in particular macroeconomic forecasts informed monthly (or even daily, in the Brazilian case) 

by market experts. The monthly availability of such data is not common by international standards since most 

official institutions release information on a quarterly basis. Second, the consensus forecasts collected by these 

surveys have a strong impact on economic discussions and attract wide media coverage. 
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includes important events such as the subprime crisis of 2008, the European public debt crisis 

of 2010, the huge drop of commodity prices in international markets (which took place after 

2010) and the pandemic crisis. For each country and variable, we construct a panel of 24 

fixed-event forecasts in its transversal dimension and up to 20 years in its temporal 

dimension.  

Econometric exercises show that our framework yields a less conservative picture of 

the uncertainty surrounding bias estimates. This increased precision facilitates the rejection 

of the null of no biases in consensus forecasts. Indeed, under the “traditional” framework and 

considering a common bias, the null is rejected in Chile (in the case of output growth) and in 

Brazil – this time in both cases. However, under our framework and considering output 

growth forecasts, the null is rejected in Brazil, Chile, and Mexico. In the case of inflation and 

under our framework only in Brazil the null of no bias is rejected. Results are similar if biases 

vary with the forecast horizon. Their absolute values tend to increase with the forecast 

horizon, and Brazil stands out as the country where biases are higher and easier to detect. 

The remainder of the paper is structured as follows: Section 2 delves into the error 

decomposition proposed by DL and AKO, highlighting the shortcomings and presenting our 

novel enhancements. Section 3 details the methodologies employed to estimate both common 

biases and vectors of horizon-specific biases. Section 4 provides a comprehensive overview 

of the dataset utilized in our analysis, shedding light on its composition and relevance. 

Section 5 constitutes the core of our empirical investigation, where we meticulously estimate 

biases and thoroughly discuss the obtained results. Finally, Section 6 offers concluding 

remarks. 

 

2. Modelling forecasts errors  

 

Let 
, ,i t hF  be the forecast for the target variable for year t , made by individual i , h  

months prior to the end of year t ; and let tA  be the actual value for year t . The forecast error 

, ,i t he  is defined as the difference between tA  and 
, ,i t hF , i.e., 

, , , ,i t h t i t he A F= − . Davies and Lahiri 

(1995) decompose this error as: 

, , . , ,i t h i t h i t he   = + +     (1) 
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The term i  represents the bias for individual i , while 
, ,i t h  represents idiosyncratic 

errors due to “other factors” (e.g., private information, measurement error, etc.) that are 

specific to a given individual at a given point in time. The term 
,t h  represents the cumulative 

effect of all the shocks occurring from h  months prior to the end of year t  to the end of year 

t . It is given by: 

     , ,

1

h

t h t j

j

u
=

=      (2) 

Equation (2) shows that 
,t h  is the sum of the monthly shocks 

,t ju , which DL interpret 

as a sequence of news shocks. Each shock in (2) reflects the arrival of new information, 

which induces agents to update their forecasts. 

Ager et al. (2009) change the decomposition proposed by Davies and Lahiri to deal 

with consensus forecasts.4 They define 
,t hF  as the consensus forecast for the target variable 

for year t  made h  months before the end of that year and 
, ,t h t t he A F= −  as the error made 

by it. According to them, this error is given by: 

, ,t h h t he  = +      (3) 

The forecast error 
,t he  is the sum of the bias h , which may depend on the forecast 

horizon h , and the term 
,t h  given by (2). The idiosyncratic errors 

, ,i t h  in (1) would cancel 

each other out when calculating the average forecast. Both DL and AKO assume that the 

shocks 
,t ju  are independent and identically distributed, that their unconditional means are 

zero and that their unconditional variances are 2

u  for all h  and t .  

Under these assumptions it is easy to show that the mean value of 
,t he  is zero in the 

absence of biases, a result that abides to rational expectations. One can also show that forecast 

revisions are efficient in the sense of Nordhaus (1987), that is, they are i.i.d. as the shocks 

themselves. It seems that both DL and AKO characterization of errors aims to comply with 

some minimum requirements of rationality. Indeed, it is not based on any specific time series 

 
4 The focus on consensus forecasts is often criticized (see, for example, Keane and Runkle (1990)). However, 

this focus is still warranted because consensus forecasts are good proxies of agents’ general opinion. 

Furthermore, Gallo et al. (2002) argue that consensus forecasts work as attractors of individual expectations. 

Finally, Lahiri and Sheng (2010) and Glas and Hartmann (2016) argue that individual-specific biases are small 

and can be neglected.   
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model for the monthly evolution of the target variable. It is also not based on the observed 

behavior of errors and revisions.  

Nevertheless, the frameworks proposed by DL and AGO have some important 

drawbacks. First, they allow the shock occurring h  months prior to the end of year t  (which 

can be interpreted as the arrival of new information in that month) to exert the same impact 

on 
,t hF  and 

1, 12t hF+ +
. To see this under the AKO framework, define the revision of the 

consensus forecast occurred between h  and 1h−  as: 

; 1, , 1 ,t h h t h t hr F F− −= −     (4) 

Equation (3) implies that 
, ,t h t h t hF A  = − −  and 

, 1 1 , 1t h t h t hF A  − − −= − − . Moreover, 

definition (2) implies that , ,

1

h

t h t j

j

u
=

=  and 
1

, 1 ,

1

h

t h t j

j

u
−

−

=

= . Substituting into (4) yields: 

1

; 1, , 1 , 1 , , 1 ,

1 1

h h

t h h t h t h t h t j t h t j h h t h

j j

r F F A u A u u   
−

− − − −

= =

= − = − − − + + = − +   (5) 

Following the same path, one can show that: 

    
1; 11, 12 12 11 1, 12t h h h h t hr u + + + + + + += − +    (6) 

Results (5) and (6) imply that revisions 
; 1,t h hr −

 and 
1; 11, 12t h hr+ + +

 have the same variance 

(which is 2

u ) and are perfectly correlated, given that both revisions are affected by the same 

shock (
1, 12, t ht hu u + += ). Putting into words, consensus forecasts for the current and the next 

years are equally revised. 

This outcome is not reasonable, though. Indeed, the information disclosed in each 

month does not necessarily affects agents’ perceptions about the behavior of the target 

variable in the current and the next years in the same way. Take, for example, the case of 

inflation. If new information points to a temporary inflationary shock, then inflation forecasts 

for the current year would change, but expectations for the next year would not. If incoming 

news suggest that the inflationary shock is persistent, then agents would update their inflation 

forecasts for the next year – but changes would be attenuated. These two examples show that 

the hypothesis of an equally strong impact is very unlikely. 

A second issue is the ability of their framework to reproduce the observed behavior of 

agents’ forecasts. In Section 4 we use monthly data on inflation and output growth forecasts 
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collected by the central banks of Brazil, Chile, and Mexico to provide evidence that forecast 

revisions 
; 1,t h hr −

 and 
1; 11, 12t h hr+ + +

 neither have the same variance nor are perfectly correlated. 

This point will be further discussed in Section 4 and supplemental Appendix 4. 

Our proposal to overcome these problems is changing the way 
,t h  is formed. As DL 

and AKO, our framework preserves the minimum requirements of rationality mentioned 

earlier and is not based on a time series model for the dynamics of the target variable. Our 

contribution is increasing the adherence to observed data by imposing that different news 

arriving each month do not exert the same impact on short- and long-term forecasts.  

More specifically, let ,

s

t hu  and 1, 12

l

t hu + +  be the two informational shocks (or news) that 

arrive h  months prior to the end of year t . These shocks affect the values of the target 

variable at the end of years t  and 1t + , respectively.5,6 We assume that ( ) 2

,

s

t h sVar u = , 

( ) 2

1, 12

l

t h lVar u + + =  and that the correlation between ,

s

t hu  and 1, 12

l

t hu + +  is  . We maintain the 

hypothesis that shocks ,

s

t hu  and 1, 12

l

t hu + +  are serially uncorrelated. 

The structure above is based on some ideas. First, a real economy is hit by various 

shocks of different magnitudes and durations.7 Second, economic agents gather information 

from different sources to unveil these characteristics. A part of this information (the news 

shock ,

s

t hu ) signals the occurrence of temporary shocks, thus affecting the forecasts made for 

the current year but not for the next. The other part (which is represented by the news shock 

1, 12

l

t hu + + ) signals the occurrence of persistent disturbances, leading agents to revise the 

forecasts made for the next year. 

The aforementioned structure generates a forecast updating process in which, from 

24t −  until 13t −  (that is, as long as 12h  ), the forecast 
,t hF  responds to the type “l” 

 
5 The superscripts “s” and “l” denote short-term and long-term forecasts. Short-term forecasts target the current 

year, while long-term forecasts target the next. If 1h = , then the informational shock 
,

s

t h
u  would occur in 

December of year t  and would refer to the value of the target variable at the end of year t . The shock 
1, 12

l

t h
u

+ +
 

would occur in the same month, but it would refer to year 1t + .          
6 The sub index j  varies between 12 and 1 because we deal with data observed on a monthly frequency. 
7 Appendix 4 shows the consequences of allowing inflation and output growth to respond to several structural 

shocks. Ultimately, under this more realistic framework, the result of forecast revisions being the same 

regardless of the target (the current year or the next) is no longer valid.          
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informational shocks that arrive during year 1t − . From 12t −  until 1t −  (that is, when 12h 

) 
,t hF  is affected by the type “s” informational shocks that arrive during year t . The error 

made by long-term forecasts reflects the sum of the news shocks occurring throughout years 

1t −  and t , while the error made by short-term forecasts is driven by the news shocks that 

arrive during year t . 

Under this framework, the term 
,t h  does not obey (2); instead, it is given by:  

• If 12h  , then , ,

1

h
s

t h t j

j

u
=

= ; 

• If 12h  , then 
12

, , ,

13 1

h
l s

t h t j t j

j j

u u
= =

= +  .      (7) 

The perfect correlation between 
; 1,t h hr −

 and 
1; 11, 12t h hr+ + +

 disappears because, given that 

12h  , ( ) ( ); 1, 1; 11, 12 , 1, 12, ,s l

t h h t h h t h t hCorr r r Corr u u − + + + + += = .8 Moreover, it is easy to see that 

( ) 2

; 1,t h h sVar r − =  and ( ) 2

1; 11, 12t h h lVar r + + + = , meaning that forecast revisions for years t  and 

1t +  are not equally “strong”. Indeed, we expect 2

s  to be higher than 2

l .  

Regarding the error structure, under the framework proposed by AKO (in which 
,t h  

follows (2)), the covariance between two typical forecast errors is given by: 

• If t t= , then ( ) ( ) 2

, ,
, min ,t h ut h

Cov e e h h = ; 

• If 1t t= +  and 13h  , then ( ) ( ) 2

, ,
, min , 12t h ut h

Cov e e h h = − ;   (8) 

• ( ), ,
, 0t h t h

Cov e e =  otherwise.    

where 1t t= +  denotes the first year after t  and ( )2 2

,t h uE u =  over all t  and h . In 

supplemental Appendix 1 we show that, under our framework (in which 
,t h  follows (7)), the 

covariance between two typical forecast errors is given by: 

• If t t= , 12h   and 12h  , then ( ) ( ) 2

, ,
, min ,t h st h

Cov e e h h = ; 

• If t t= , 12h   and 13h  , then ( ) 2

, ,
,t h st h

Cov e e h= ; 

 
8 We prove this result in supplemental Appendix 1. 
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• If t t= , 13h   and 12h  , then ( ) 2

, ,
,t h st h

Cov e e h= ;    (9) 

• If t t= , 13h   and 13h  , then ( ) ( )2 2

, ,
, 12 min 12, 12t h s lt h

Cov e e h h = + − − ; 

• If  1t t= +  and 13h  , then ( ) ( ), ,
, min , 12t h s lt h

Cov e e h h  = − ;   

• ( ), ,
, 0t h t h

Cov e e =  otherwise.    

The structures described above are very parsimonious. Under AKO the only unknown 

is 2

u , being the correlation coefficient   and the variances 2

l  and 2

s  the unknowns of 

our framework. Apparently both DL and AKO try to avoid the dangers of estimating models 

with many parameters - and we follow the same approach. 

Both structures are used to characterize the uncertainty surrounding the estimation of 

a constant bias   and of a vector of biases that depend on the forecast horizon ( hα ). These 

subjects are discussed in the next section.  

 

3. Bias estimation 

 

We split this section into three subsections. The first describes the estimation of a 

common bias under the AKO framework, the second is dedicated to the same procedure 

based on our framework and the third to the estimation of horizon-specific biases. 

 

3.1. The AKO model 

 

First, we estimate the common bias   through the pooling procedure proposed by 

DL and AKO. It starts by forming a panel in which the cross-section units are the data 

observed for each forecast horizon and the time dimension contains the target years. The 

sample comprises T  target years and forecast horizons h  that range from 1 to H . Under this 

framework one can show that the regression used to estimate   can be written as:9 

TH= +e i λ      (10) 

In this regression e  is a TH  dimensional column vector of forecast errors arranged 

 
9 More details about (10) to (18) can be seen in supplemental Appendix 2. 
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in stacked form, with all the observations of a given target year grouped together. The scalar 

  is the bias, THi  is a column vector with dimension TH  whose elements are all equal to 1 

and λ  is a column vector with the same dimension. The elements of λ  reflect the sum of the 

informational shocks that occurred between t h−  and t . They are formed following (2) under 

the AKO framework.  

The ordinary least squares estimator of   is given by: 

( )
1

ˆ tr tr

TH TH TH
−

= i i i e     (11) 

which is equivalent to: 

,

1 1

1
ˆ

T H

t h

t h

e
TH


= =

=      (12)  

The consistent variance estimator of ̂  is given by: 

( ) ( ) ( )
1 1

ˆ tr tr tr

TH TH TH TH TH THVar 
− −

= i i i Σi i i   (13) 

where ( )trE=Σ λλ . It's easy to prove that (13) can be written as: 

( )
( )

,2
1 1

1
ˆ

TH TH

l c

l c

Var
TH

 
= =

=      (14) 

where 
,l c  denotes the element at row l  and column c  of Σ . Therefore, ( )ˆVar   is the mean 

value of the elements of Σ .    

The precise form of Σ  depends on how errors 
,t he  are generated. Under the error 

structure proposed by AKO (see (8)), ( )ˆVar   is given by: 

( )
( )

( )
2

, ,2
1 1 1 1

ˆ 2 1
H H H H

u
l c l c

l c l c

Var T a T b
TH




= = = =

 
= + − 

 
    (15) 

where 
,l ca  and 

,l cb  represent the elements at row l  and column c  of the H H  matrices A  

and B , respectively. Both are defined as: 
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24 23 12 11 10 2 1

23 23 12 11 10 2 1

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A   (16)  

 

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

tr

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

B   (17)  

Matrix Σ  equals 2

u Ψ . Ψ  is formed from A  and B  in the following way: 

   

tr

tr

tr

tr

 
 
 
 

=  
 
 
 
 

A B 0 0 0

B A B 0 0

0 B A 0 0
Ψ

0 0 B

A B

0 0 0 B A

    (18) 

 

3.2. The new model of forecast errors 

 

The new forecast error model considers shocks of two types, ,

s

t ju  and 1, 12

l

t ju + + . Under 

this framework the elements of λ  (see (10)) are formed following (7) and  (9). The consistent 

variance estimator of ̂  turns out to be:10 

 
10 More details about (19) to (25) are in supplemental Appendix 2. 
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   ( )
( )

( )2 2

, , ,2
1 1 1 1 1 1

1
ˆ 2 1

H H H H H H
l s ls

l l c s l c s l l c

l c l c l c

Var T a T a T b
TH

    
= = = = = =

 
= + + − 

 
     (19) 

where ,

l

l ca , ,

s

l ca  and ,

ls

l cb  denote the elements at row l  and column c  of matrices sA , lA  and 

lsB , respectively. These matrices are defined as: 

12 12 12 11 10 2 1

12 12 12 11 10 2 1

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

s

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A    (20)  

12 11 1 0 0 0 0

11 11 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

l

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A     (21)  

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

tr

ls

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

B    (22)  

Matrices sA , lA  and lsB  are used to form Σ . Indeed, we define two H H  

submatrices A  and B  as: 
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2 2

s s l l = +A A A     (23) 

    
ls s l =B B      (24)  

Using definitions (23) and (24) one can show that Σ  is given by: 

 
 
 
 

=  
 
 
 
  

tr

tr

tr

tr

A B 0 0 0

B A B 0 0

0 B A 0 0
Σ

0 0 B

A B

0 0 0 B A

    (25) 

 

3.3. Horizon-specific biases 

 

Regarding the case in which biases may depend on h , we define the column vector 

Hα  with dimension H  as  1 1

tr

H H H  −=α . The elements of Hα  are the biases 

h  that are typical of each forecast horizon. We also define Ti  as a column vector with 

dimension T  whose elements are all equal to 1, HI  as the H H  identity matrix and M  as 

the Kronecker product between Ti  and HI . Under this framework one can show that the 

regression used to estimate Hα  can be written as: 

H= +e Mα λ      (26) 

The ordinary least squares estimator of Hα  is given by: 

( )
1

ˆ tr tr

H

−

=α Μ Μ Μ e     (27) 

which is equivalent to: 

, , 1 ,1

1 1 1 1

ˆ
T T T

tr

H t H t H t

t t t H

e e e−

= = = 

 
=  
 
  α    (28)  

It follows that ˆ
Hα  is a column vector whose element h  equals the mean value of all 

h -month-ahead forecast errors.  

The covariance matrix ( )ˆ
HVar α  is given by: 

( ) ( ) ( )
1 1

ˆ tr tr tr

HVar
− −

=α Μ Μ Μ ΣΜ Μ Μ    (29) 
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or the equivalent expression below: 

    ( ) ,2
1 1

1
ˆ

T T

H l c

c l

Var
T = =

= α σ     (30) 

Therefore, ( )ˆ
HVar α  is the H H  matrix that equals the average of the 2T  submatrices 

with dimensions H H  that comprise Σ . Under the AKO framework 2

u=Σ Ψ , where Ψ  

is given by (18). Under our framework matrix Σ  is given by (25). The t-statistics regarding 

the null 0 : 0hH  =  is obtained by using the ( ),h h  element of ( )ˆ
HVar α .  

We close Section 3 by mentioning that matrix Σ  is not observable, therefore it must 

be replaced by an estimate Σ̂ . Under AKO only the variance 2

u  is needed, but under our 

framework we need to estimate the correlation coefficient   and the variances 2

l  and 2

s

.11  

 

4. Inflation and Output Growth Forecasts in Brazil, Chile, and Mexico 

 

This section presents the data to which we apply the methodologies described in the 

previous sections. The database comprises inflation and output growth forecasts observed in 

Brazil, Chile, and Mexico from the beginning of the 2000’s until 2020. They are collected 

monthly and refer to the so-called “market consensus” (i.e., to the mean value of individual 

forecasts in the case of Brazil and Mexico; and to the median in the case of Chile).12 Forecasts 

are made for the values of each variable at the end of the current and the next years. Each 

year is targeted by 24 consecutive forecasts, whose forecast horizons range from 24 months 

(in the case of a forecast made in January of year 1t −  for the value of the variable at the end 

of year t ) to only 1 month (if the forecast is made in December of year t ). The measures of 

inflation and output growth that forecasters try to predict are year-over-year percentage 

changes. In the case of inflation, the referred measure is expressed in the end of the period, 

not annual average data. Actual inflation rates come from the April 2021 World Economic 

Outlook database. Regarding output growth, we follow Dovern and Weisser (2011) and 

 
11 We discuss how these parameters are estimated in supplemental Appendix 3. 
12 It is worth mentioning that, in the case of Chile, Vereda et al. (2021) do not find any substantial differences 

between these medians and the consensus forecasts collected from the Focus Economics survey 

(https://www.focus-economics.com/), which are measured through mean values. 

https://www.focus-economics.com/
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extract the data for a given year from the World Economic Outlook published in April or 

May of the following year.13 Forecasts are extracted from the central bank’s websites of 

Brazil, Chile, and Mexico.14,15 

The sample analyzed for each country depends on the availability of data, as reported 

below: 

• Brazil: data belong to the period between January 2001 and December 2020. The Central 

Bank of Brazil (CBB) publishes daily series of inflation and output growth forecasts. We 

collect figures released on the first business day of each month. 

• Chile: actuals and forecasts come from the period between January 2005 and December 

2020. The Central Bank of Chile (CBC) publishes inflation and output growth forecasts 

collected during the first ten days of each month. 

• Mexico: data come from the period between January 2002 and December 2020.16 The Bank 

of Mexico (BM) publishes forecasts of inflation and output growth at the beginning of each 

month. 

Figures 1a, 1c and 1e (1b, 1d and 1f) show the paths of fixed-event forecasts of output 

growth (inflation) in Brazil, Chile, and Mexico. Actual values are depicted by black squares 

labeled with the years. The forecast paths are represented by black, gray, and light gray solid 

lines. The x-axis indicates the date and the y-axis the growth rates, which are measured in 

percent per year. One can see that the paths of fixed-event forecasts tend to actual values and 

that, in most cases, the sequences of 24 forecasts move steadily up or down towards actual 

outcomes.  

In the Chilean case, both market expectations and observed inflation rates fluctuate 

 
13 According to Dovern and Weisser (2011), “... for the evaluation of macroeconomic forecasts, it has become 

standard in the literature to use data from the initial releases rather than revised ex-post data” (page 455). 

Therefore, our procedure is an attempt to follow this principle. We have also performed the same estimations 

using data collected from the World Economic Outlook of October, which is the second release of the year. Our 

results did not change significantly. 
14 These forecasts are reported by experts from financial institutions, consulting firms, real sector firms and 

academic institutions. Currently the Brazilian, Mexican, and Chilean surveys follow approximately 130, 30 and 

60 regular respondents, respectively.         
15 There are missing values in consensus forecasts of inflation and output growth in all three countries. However, 

the proportion of missing values is small – indeed, it is less than 1% in Mexico and less than 8% in Chile. 

Missing values were filled by linear interpolations based on the nearest neighboring observations. 
16 Regarding the Mexican case, we use data observed after the formal implementation of the inflation-targeting 

regime, which occurred in 2001 (De Pooter et al. (2014)). Since then, the inflation target was fixed at 3% per 

year. 
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around 3% per year, which is the long-term target pursued by the CBC. Figure 1f shows that, 

in the Mexican case, expectations and actuals rover around 4% per year, which is the upper 

limit of the tolerance band established by Mexican monetary authorities. Consensus forecasts 

of inflation in Brazil are quite unstable, as it becomes evident in Figure 1b. 

Regarding output growth, Figures 1a and 1c show that 2011 marked a significant 

decrease in consensus forecasts in Brazil and Chile. The fall in commodity prices that took 

place after 2010 is one of the causes, given that Brazil and Chile depend on the revenues of 

selling primary products in international markets. Figure 1e shows that Mexico was 

somewhat spared, maybe due to the existing economic ties with the USA. 

Tables 5, 6 and 7 report results regarding forecast errors. Each line refers to a given 

forecast horizon, which ranges from 24 to 1. Tables 5, 6 and 7 refer to Brazil, Chile, and 

Mexico, respectively. For now, we are interested in columns 2, 3 and 4 and 7, 8 and 9 of each 

table. The first group concerns output growth forecasts, while the second refers to inflation 

forecasts. Columns 2 and 7 report the mean value of errors – in the absence of biases, these 

figures should be close to zero.  Columns 3 and 8 inform the root mean square error (RMSE), 

while columns 4 and 9 show the mean absolute error (MAE). 

Results confirm that the magnitudes of forecast errors shrink as the forecast horizon 

goes to 1. This outcome is not surprising, since agents improve their forecasts with the 

passage of time and the arrival of new information. Regarding output growth forecasts, mean 

errors are usually negative and attain absolute values above 1.5% in all three countries when 

h  goes to 24. Regarding inflation expectations, mean errors are usually positive. They are 

higher in Brazil, where mean errors increase substantially as h  goes to 24 – even going 

beyond 1%. In Chile and Mexico mean errors are slightly positive for longer forecast 

horizons, but they go to zero when h goes to 1. 

Taken together, these results suggest that agents are initially optimistic about future 

output growth. Indeed, actual growth rates observed two years later are 1% lower, on average. 

Inflation expectations are also initially optimistic, since inflation rates observed two years 

later tend to be higher – in the Brazilian case, by almost 1.5%. Finally, we find evidence that 

biases may depend on the forecast horizon, since the absolute values of mean errors increase 

with h . In the next section we reassess these results by applying the methodologies discussed 

in the previous sections. 
; 1, , 1 ,t h h t h t hr F F− −= −  
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We close this section by analyzing the results displayed in Tables 1, 2 and 3. They 

show some basic statistics regarding inflation and output growth forecast revisions in Brazil, 

Chile, and Mexico. The notation used is such that 
; 1,t j jr −

 (
1; 11, 12t j jr+ + +

) ( 1, ,12j = ) denote 

the revisions pertaining to the target years t  and 1t +  that occur between j  ( 12j + ) and 

1j −  ( 11j + ) periods before the end of year t  ( 1t + ). In other words, both revisions occur in 

the same month but focus on different years. The months are identified in the rows of Tables 

1, 2 and 3. Variances and correlation coefficients are informed in the columns. 

Regarding inflation forecasts, the correlation coefficients between 
; 1,t j jr −

 and 

1; 11, 12t j jr+ + +
 are always less than 1 for all countries. The correlation coefficients observed in 

Brazil, Chile and Mexico varies between 0.93 and 0.80, 0.92 and 0.77, and 0.97 and 0.78, 

respectively. Results for output growth are such that correlation coefficients are between 0.72 

and 0.18, 0.94 and 0.28, and 0.72 and 0.18, respectively. In sum, inflation forecast revisions 

pertaining to the next year are quite sensitive to news released during the current year, but 

output growth forecast revisions are relatively unaffected. Furthermore, the variances of 

inflation (output growth) forecast revisions regarding the next year are smaller than current 

year ones. All in all, these results provide some support to the notion that forecast revisions 

; 1,t j jr −
 and 

1; 11, 12t j jr+ + +
 (as well as the informational shocks that affect them) neither have the 

same variance nor are perfectly correlated. 

 

5. Results of the bias tests 

 

In this section we estimate the constant bias   and the elements of the vector Hα , 

which comprises the biases h  that depend on the forecast horizon.  

We perform the procedures described in Section 3 separately for each country and 

variable. In the constant case we use the OLS estimator of  , which is given by (11) or (12)

. Its robust standard error is given by (15) under the “traditional” error structure and by (19) 

under the structure that we propose. Regarding the case in which biases may depend on the 

forecast horizon, the OLS estimator of Hα  is given by (27) or (28), being ( )ˆ
HVar α  given by 

(29) or (30). Expression (29) yields (A.14) under the “traditional” error structure and (A.15) 



  

18 

 

under ours (see supplemental Appendix 3). As we have seen before, our structure is not only 

more convincing in economic terms, but also displays a better fit to the data – in particular, 

it conforms well with the fact that informational shocks arriving in each month do not exert 

the same impact on short- and long-term forecasts. 

Table 4 shows results of the common bias case. Columns 2, 3 and 4 (5, 6 and 7) refer 

to output growth (inflation). Columns 2 and 5 show the estimated biases. Columns identified 

as “t-stat-old” show the t  statistics obtained under the “traditional” error structure, while 

those labeled “t-stat-new” show the same statistics obtained under our structure. Results of 

the case in which biases depend on the forecast horizon are displayed in Tables 5 (Brazil), 6 

(Chile) and 7 (Mexico). Columns 5 and 6 (10 and 11) refer to output growth (inflation) 

forecasts. Columns 5 and 10 report the t  statistics obtained under the “traditional” error 

structure, while columns 6 and 11 report the same statistics calculated under ours.  

We begin with the big picture and then move on to a more detailed analysis. First, the 

error structure we propose usually yields t-statistics of greater magnitude, thus providing a 

better picture of the accuracy. Second, this greater accuracy increases the probability of 

finding statistically significant biases, thus leading to more rejections of the null of no biases. 

Finally, our results show that professional forecasters in Brazil tend to underestimate 

inflation, being this phenomenon more acute in the “long term” – that is, when forecasts are 

made for the next year. Regarding output growth, under the “traditional” error structure we 

find a statistically significant tendency of overestimating future economic growth in Brazil, 

Chile, and Mexico for various forecast horizons. Under our structure, though, this result is 

clearer. 

We can now perform a more detailed analysis of the constant bias case. Referring to 

inflation forecasts in Brazil, we reject the null 0 : 0H  =  regardless the error structure, but 

we do not reject the null in Chile and Mexico under both structures. We find that the common 

bias that affects inflation forecasts in Brazil equals ˆ 0.92 = , meaning that market analysts 

underestimate actual inflation by almost 1 percentage point. This value is statistically 

significant at the 10% confidence level under the “traditional” error structure, and at the 5% 

confidence level under ours. 

In the case of output growth forecasts, we reject the null in Brazil and Chile regardless 

the error structure. We do not reject the null in Mexico under the “traditional” error structure, 
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but we reject the null under our structure. We estimate a common bias of 1.13−  in Brazil, 

which is statistically significant at the 5% confidence level under both structures. We also 

estimate common biases of 0.96−  in Chile and Mexico. Both are statistically significant at 

the 5% confidence level under our error structure. These figures suggest that professional 

forecasters tend to overestimate actual growth by almost 1 percentage point in Brazil, Chile, 

and Mexico. 

Now we turn to the case of horizon-specific biases. Regarding output growth and 

considering the “traditional” error structure, we do not reject the null at the 10% confidence 

level in Brazil from 7h =  until 1h = , in Chile from 24h =  until 22h =  and from 9h =  

until 1h = , and in Mexico from 10h =  until 1h = . Under our error structure the null is 

rejected in Brazil from 24h =  until 8h = , in Chile from 24h =  until 8h =  and in Mexico 

24h =  until 10h = . The t-statistics are always higher, meaning that rejections of the null of 

no bias at forecast horizon h  often happen at lower confidence levels. Biases may depend on 

h , being an increasing function of it. 

Regarding inflation forecasts and considering the “traditional” error structure, we do 

not reject the null 0 : 0hH  =  at the 10% confidence level in Chile and Mexico for all forecast 

horizons. In Brazil the null is rejected from 20h =  until 1h = . Under our error structure, we 

do not reject the null in Chile and Mexico for all forecast horizons, but in Brazil we reject it 

from 24h =  until ℎ = 14 and between 5h =  and 2h = . We confirm that biases may depend 

on h ; indeed, their magnitudes increase with the forecast horizon. 

 

6. Conclusion 

 

Our paper belongs to the literature that studies the unbiasedness and efficiency of fixed-

event forecasts. Its main contribution is changing the error characterization put forward by 

Davies and Lahiri (1995), which was later improved by Ager et al. (2009) to deal with 

consensus forecasts. The two frameworks share the same feature, namely, that the 

informational shock occurring h  months prior to the end of year t  affects the consensus 

forecasts made for the value of the target variable at the end of years t  and 1t +  by exactly 

the same amount. We have shown that this feature is not only unreasonable in economic 

terms, but it also fails to match real data. Therefore, we propose a new framework in which 
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two types of informational shocks arrive each month: the first refers to the value of the target 

variable at the end of the current year, while the second concerns its value at the end of the 

next year. We assume that both shocks are correlated, but they neither have the same 

information nor are equally “powerful”. We believe the error covariance matrix arising from 

these assumptions is more realistic and better grounded theoretically. Consequently, the 

results of the bias tests become more reliable. 

Our framework and the “traditional” one proposed by DL and AKO are used to analyze 

consensus forecasts of inflation and output growth collected by the central banks of Brazil, 

Chile, and Mexico from the beginning of the 2000’s until 2020. Observations are collected 

monthly and refer to the figures prevailing in the end of the current and the following years. 

Results suggest that our error structure delivers a less pessimistic picture of the uncertainty 

surrounding parameter estimates. It also leads to more (and stronger) rejections of the null of 

no biases in macroeconomic forecasts, especially when assessing projections made many 

months before the end of the target year. It seems that our characterization of forecast errors 

is not only more realistic, but it also has some tangible implications. 

We leave to future research the task of revisiting our general conclusions using data 

from other countries and projections for other economic and financial variables. One could 

reassess the issue of comparing biases in developed and emerging economies using our 

procedure. Another contribution would be further improving the characterization of errors by 

considering, for example, that the impact of news may depend on the month in which they 

are released. Indeed, the news released in December of the current year may have little effect 

on the forecasts made for this year, but they may exert a sizeable impact on those made for 

the next. We deem important, though, that new characterizations are as parsimonious as those 

analyzed in this paper.  
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Table 1 

Variances and correlation coefficients of inflation and output growth forecast revisions in Brazil 

 

Notes: This table shows the variances and correlation coefficients of inflation and output growth forecast revisions 

in Brazil. Observations come from the period between the early 2000’s and 2020. The lines identify the 

months in which forecast revisions occur. Columns identified by ( ); 1,t j j
Var r

−
( ( )1; 11, 12t j j
Var r

+ + +
) show the 

variances of forecast revisions regarding the current year (next year). Lines identified by 

( ); 1, 1; 11, 12
,

t j j t j j
Corr r r

− + + +
 inform the correlation coefficients between both types of revisions.

January  3.02 0.94 0.91 2.67 0.82 0.90

February  3.38 1.05 0.92 3.08 0.95 0.92

March  3.80 1.09 0.92 3.91 1.02 0.93

April  4.86 1.17 0.89 4.15 1.02 0.91

May  6.87 1.17 0.73 4.48 1.01 0.89

June  8.68 1.09 0.62 4.44 0.93 0.87

July  8.85 1.17 0.58 4.24 0.86 0.84

August  8.36 1.31 0.60 3.74 0.75 0.80

September  8.27 1.48 0.60 3.65 0.72 0.80

October  8.71 1.82 0.58 3.95 0.81 0.84

November  8.74 2.17 0.57 4.10 1.45 0.80

December  8.75 2.47 0.56 4.85 2.28 0.84

InflationOutput Growth
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Table 2 

Variances and correlation coefficients of inflation and output growth forecast revisions in Chile 

 
Notes: This table shows the variances and correlations of inflation and output growth forecast revisions in Chile. 

The comments made for Table 1 also apply here. 

 

Table 3 

Variances and correlation coefficients of inflation and output growth forecast revisions in Mexico 

 
Notes: This table shows the variances and correlations of inflation and output growth forecast revisions in 

Mexico. The comments made for Table 1 also apply here. 

 

Table 4 

Inflation and Output Growth Forecasts ( 0 : 0H  = ) 

 
Notes: This table shows the results of testing for the presence of a common bias  . The columns denominated 

“bias” report the estimated bias ̂ , which we measure in % per year. The columns identified as “t-stats 

old” report the t  statistics calculated when the error structure follows the “traditional” framework of 

Davies and Lahiri (1995) and Ager et al. (2009). The columns identified as “t-stats new” show the t  

statistics derived from our structure.  Cells having a light gray (dark gray, black) background indicate 

rejection of the null 0 : 0H  =  at the 10% (5%, 1%) significance level.  

January  2.37 1.05 0.94 0.22 0.01 0.81

February  2.59 1.23 0.93 0.23 0.01 0.83

March  3.01 1.31 0.92 0.44 0.04 0.81

April  5.47 1.14 0.84 0.51 0.04 0.77

May  6.05 1.17 0.77 0.67 0.03 0.84

June  8.15 1.07 0.63 1.13 0.04 0.82

July  10.13 1.25 0.48 2.21 0.16 0.92

August  10.20 1.33 0.50 2.96 0.16 0.89

September  9.72 1.27 0.46 3.71 0.25 0.89

October  9.47 1.37 0.38 3.98 0.21 0.89

November  9.47 1.62 0.33 4.87 0.20 0.89

December  10.02 1.99 0.28 5.85 0.11 0.88

InflationOutput Growth

                                                                                                              

January  1.63 0.70 0.72 2.97 1.74 0.97

February  2.02 0.75 0.71 2.63 1.67 0.96

March  4.86 0.76 0.75 2.18 1.43 0.95

April  7.98 0.67 0.60 2.13 1.46 0.93

May  10.24 0.62 0.55 1.97 1.12 0.93

June  11.53 0.60 0.48 1.97 1.09 0.91

July  13.35 0.59 0.40 1.80 1.08 0.90

August  13.82 0.53 0.33 1.80 0.99 0.86

September  13.81 0.54 0.30 1.85 0.94 0.86

October  13.55 0.81 0.26 1.88 0.86 0.85

November  13.37 1.04 0.23 2.14 0.88 0.81

December  13.41 1.21 0.18 2.23 0.84 0.78

InflationOutput Growth

                                                                                                              

bias t-stats old t-stats new bias t-stats old t-stats new

Brazil -1.125 -2.22 -2.54 0.916 1.91 1.99

Chile -0.960 -1.70 -2.08 0.203 0.42 0.46

Mexico -0.956 -1.58 -2.13 0.223 1.00 1.18

InflationOutput Growth
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Table 5 

Brazil - inflation and output growth forecasts ( 0 : 0hH  =  ) 

 
Notes: This table shows mean errors, RMSEs, MAEs and t  statistics regarding the null 0 : 0hH  =  as a function 

of the forecast horizon h  in the Brazilian case. The columns denominated “Mean Error” report the 

estimated bias ˆ
h , which is the mean value of h -month-ahead forecast errors. Biases are measured in % 

per year. The columns denominated “RMSE” and “MAE” report two common measures of forecast 

performance, the root mean squared error and the mean absolute error. The columns identified as “t-stats 

old” report the t  statistics calculated when the error structure is the “traditional” one (Davies and Lahiri 

(1995), Ager et al.  (2009)). The columns identified as “t-stats new” report the t  statistics that come from 

our error structure.  Cells having a light gray (dark gray, black) background indicate rejection of the null 

0 : 0hH  =  at the 10% (5%, 1%) significance level. 

  

h Mean Error RMSE MAE t-stats old t-stats new Mean Error RMSE MAE t-stats old t-stats new

24 -1.95 3.40 2.88 -2.15 -2.54 1.36 2.86 1.90 1.55 1.97

23 -1.93 3.38 2.89 -2.21 -2.59 1.32 2.89 1.92 1.55 1.95

22 -1.88 3.35 2.87 -2.23 -2.61 1.28 2.88 1.90 1.56 1.93

21 -1.87 3.35 2.88 -2.29 -2.67 1.27 2.87 1.86 1.60 1.95

20 -1.86 3.30 2.83 -2.38 -2.76 1.27 2.83 1.83 1.67 1.99

19 -1.80 3.20 2.72 -2.40 -2.76 1.26 2.79 1.80 1.73 2.02

18 -1.70 3.08 2.60 -2.37 -2.71 1.26 2.75 1.80 1.81 2.05

17 -1.61 2.96 2.48 -2.37 -2.69 1.25 2.68 1.77 1.89 2.09

16 -1.54 2.85 2.39 -2.39 -2.68 1.21 2.57 1.71 1.95 2.08

15 -1.51 2.74 2.29 -2.51 -2.78 1.13 2.43 1.61 1.94 1.99

14 -1.39 2.60 2.14 -2.49 -2.71 0.98 2.26 1.47 1.82 1.76

13 -1.32 2.52 2.05 -2.59 -2.75 0.88 2.28 1.52 1.77 1.62

12 -1.24 2.43 1.96 -2.72 -2.80 0.86 2.32 1.54 1.94 1.64

11 -1.21 2.37 1.90 -2.77 -2.86 0.79 2.31 1.51 1.87 1.57

10 -1.10 2.26 1.80 -2.64 -2.72 0.75 2.29 1.50 1.86 1.57

9 -0.82 1.86 1.53 -2.08 -2.14 0.72 2.18 1.40 1.88 1.58

8 -0.66 1.59 1.25 -1.77 -1.82 0.69 2.12 1.36 1.91 1.61

7 -0.41 1.47 1.17 -1.18 -1.22 0.62 2.05 1.26 1.84 1.55

6 -0.30 1.32 1.00 -0.94 -0.97 0.59 1.90 1.13 1.88 1.59

5 -0.25 1.09 0.85 -0.85 -0.88 0.61 1.73 0.99 2.13 1.79

4 -0.17 0.83 0.66 -0.66 -0.68 0.61 1.60 0.91 2.37 2.00

3 -0.18 0.67 0.54 -0.77 -0.79 0.60 1.48 0.80 2.69 2.27

2 -0.16 0.63 0.52 -0.87 -0.90 0.45 1.11 0.67 2.46 2.08

1 -0.11 0.51 0.38 -0.86 -0.89 0.23 0.53 0.35 1.83 1.54

InflationOutput Growth
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Table 6 

Chile - inflation and output growth forecasts ( 0 : 0hH  = ) 

 
Notes: This table shows the same information of Table 5, but regarding the Chilean case. The comments made 

for Table 5 also apply here. 

 

Table 7 

Mexico - inflation and output growth forecasts ( 0 : 0hH  = ) 

 
Notes: This table shows the same information of Table 5, but regarding the Mexican case. The comments 

made for Table 5 also apply here.  

h Mean Error RMSE MAE t-stats old t-stats new Mean Error RMSE MAE t-stats old t-stats new

24 -1.53 3.26 2.28 -1.50 -1.69 0.34 2.17 1.46 0.38 0.51

23 -1.56 3.24 2.25 -1.58 -1.78 0.35 2.16 1.46 0.41 0.53

22 -1.51 3.17 2.21 -1.57 -1.78 0.31 2.22 1.50 0.38 0.49

21 -1.52 3.18 2.21 -1.65 -1.87 0.31 2.22 1.50 0.39 0.50

20 -1.54 3.16 2.20 -1.73 -1.97 0.33 2.21 1.49 0.42 0.53

19 -1.51 3.13 2.15 -1.78 -2.03 0.30 2.22 1.47 0.40 0.49

18 -1.42 3.05 2.08 -1.75 -2.01 0.27 2.34 1.55 0.38 0.46

17 -1.37 3.03 2.06 -1.78 -2.05 0.26 2.31 1.51 0.39 0.45

16 -1.38 2.99 2.00 -1.90 -2.21 0.23 2.38 1.55 0.36 0.40

15 -1.35 2.85 1.88 -1.98 -2.32 0.24 2.34 1.54 0.41 0.44

14 -1.19 2.57 1.71 -1.89 -2.24 0.26 2.33 1.54 0.47 0.48

13 -1.09 2.34 1.59 -1.88 -2.27 0.31 2.19 1.48 0.61 0.59

12 -1.04 2.23 1.51 -2.00 -2.48 0.30 2.09 1.43 0.66 0.59

11 -1.01 2.16 1.40 -2.04 -2.53 0.31 2.04 1.40 0.73 0.65

10 -0.92 2.06 1.27 -1.94 -2.41 0.18 1.94 1.36 0.45 0.40

9 -0.69 1.34 1.01 -1.55 -1.92 0.21 1.84 1.28 0.53 0.48

8 -0.63 1.19 0.92 -1.49 -1.85 0.23 1.69 1.18 0.62 0.55

7 -0.42 0.83 0.70 -1.05 -1.31 0.25 1.47 1.05 0.73 0.65

6 -0.31 0.73 0.55 -0.85 -1.05 0.15 1.19 0.88 0.46 0.41

5 -0.29 0.66 0.47 -0.85 -1.06 0.07 1.03 0.80 0.24 0.22

4 -0.31 0.60 0.41 -1.04 -1.29 -0.04 0.86 0.69 -0.14 -0.12

3 -0.24 0.50 0.34 -0.93 -1.16 -0.07 0.79 0.66 -0.32 -0.29

2 -0.18 0.37 0.26 -0.85 -1.06 -0.10 0.83 0.67 -0.56 -0.50

1 -0.06 0.27 0.18 -0.37 -0.46 -0.13 0.92 0.70 -1.03 -0.92

Output Growth Inflation

h Mean Error RMSE MAE t-stats old t-stats new Mean Error RMSE MAE t-stats old t-stats new

24 -1.87 3.76 2.43 -1.73 -2.11 0.33 1.22 0.79 0.82 1.07

23 -1.86 3.76 2.42 -1.78 -2.17 0.35 1.21 0.79 0.89 1.16

22 -1.81 3.73 2.42 -1.79 -2.19 0.35 1.20 0.76 0.91 1.17

21 -1.77 3.69 2.41 -1.82 -2.23 0.35 1.20 0.75 0.94 1.20

20 -1.79 3.67 2.39 -1.91 -2.35 0.37 1.20 0.74 1.04 1.31

19 -1.75 3.64 2.36 -1.95 -2.40 0.37 1.20 0.74 1.10 1.36

18 -1.73 3.56 2.31 -2.02 -2.50 0.39 1.20 0.76 1.20 1.46

17 -1.64 3.47 2.23 -2.02 -2.50 0.37 1.20 0.78 1.20 1.43

16 -1.52 3.37 2.16 -1.99 -2.47 0.32 1.18 0.75 1.11 1.30

15 -1.30 3.09 1.97 -1.81 -2.27 0.29 1.17 0.78 1.08 1.22

14 -1.18 2.96 1.88 -1.77 -2.23 0.22 1.11 0.78 0.86 0.94

13 -1.16 2.90 1.84 -1.89 -2.41 0.20 1.10 0.80 0.87 0.91

12 -1.07 2.73 1.70 -1.95 -2.52 0.18 0.93 0.69 0.87 0.86

11 -1.03 2.59 1.58 -1.96 -2.53 0.16 0.91 0.66 0.82 0.80

10 -0.68 1.59 1.18 -1.37 -1.77 0.13 0.89 0.68 0.67 0.66

9 -0.48 1.14 0.92 -1.02 -1.32 0.18 0.84 0.65 0.98 0.96

8 -0.31 0.81 0.64 -0.69 -0.90 0.20 0.80 0.62 1.20 1.18

7 -0.23 0.77 0.61 -0.56 -0.72 0.20 0.71 0.57 1.25 1.23

6 -0.15 0.86 0.66 -0.38 -0.49 0.16 0.65 0.56 1.09 1.07

5 0.03 0.63 0.48 0.10 0.12 0.13 0.53 0.48 0.94 0.92

4 0.07 0.58 0.44 0.23 0.30 0.08 0.48 0.41 0.67 0.66

3 0.10 0.45 0.35 0.38 0.49 0.04 0.42 0.32 0.39 0.38

2 0.09 0.31 0.24 0.42 0.55 -0.01 0.27 0.22 -0.09 -0.08

1 0.08 0.29 0.23 0.53 0.69 -0.02 0.19 0.15 -0.28 -0.27

Output Growth Inflation
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Figure 1a  

Brazil - output growth 

 

Figure 1b 

Brazil - inflation 

 

Notes to Figures 1a and 1b: These figures show the paths of consensus forecasts of output 

growth (1a) and inflation (1b) in Brazil from 2001 until 2020, comparing them with realized 

values at the end of each year. Actual values are depicted by black squares labeled with the 

years. The forecast paths are represented by black, gray, and light gray solid lines. The x-axis 

indicates the date and the y-axis the growth rates, which are measured in percent per year. 
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Figure 1c  

Chile - output growth 

 

Figure 1d 

Chile - inflation 

 

Notes: Figures 1c and 1d show the paths of consensus forecasts of output growth and inflation 

in Chile from 2005 until 2020, comparing them with realized values at the end of each year. 

The comments made for Figures 1a and 1b also apply. 
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Figure 1e 

Mexico - output growth 

 

Figure 1f 

Mexico - inflation 

 

Notes: Figures 1e and 1f show the paths of consensus forecasts of output growth and inflation in 

Mexico from 2002 until 2020, comparing them with realized values at the end of each year. The 

comments made for Figures 1a and 1b also apply. 
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Supplemental Appendix  
 

APPENDIX 1 

In this appendix we show that if (i) there are two types of shocks 
,

s

t ju  and 
1, 12

l

t ju + +
; (ii) 

each one has its own variance, i.e., ( ) 2

,

s

t j sVar u =  and ( ) 2

1, 12

l

t j lVar u + + = ; (iii) if shocks 
,

s

t ju  

and 
1, 12

l

t ju + +
 are not perfectly correlated, that is, ( ), 1, 12, 1s l

t j t jCorr u u + + =  ; and (iv) the term 

,t h  obeys (7), then ( ); 1, 1; 11, 12,t h h t h hCorr r r − + + + =  and the covariance between two typical 

forecast errors is given by (9). 

Under this framework and supposing 12h  , one can use expressions (3) and (7) in the 

main paper to show that: 

• 
, ,t h t h t hF A  = − −  and 

,t h  equals ,

1

h
s

t j

j

u
=

 ;  

• 
, 1 1 , 1t h t h t hF A  − − −= − −  and 

, 1t h −
 equals 

1

,

1

h
s

t j

j

u
−

=

 ; 

• 
1, 12 1 12 1, 12t h t h t hF A  + + + + + += − −  and 

1, 12t h + +
 equals 

12 12

1, 1,

13 1

h
l s

t j t j

j j

u u
+

+ +

= =

+  ; 

• 
1, 11 1 11 1, 11t h t h t hF A  + + + + + += − −  and 

1, 11t h + +
 equals

11 12

1, 1,

13 1

h
l s

t j t j

j j

u u
+

+ +

= =

+  ).  

We use the results above to calculate revisions 
; 1,t h hr −

 and 
1; 11, 12t h hr+ + +

 as following: 

; 1, , 1 , 1 , 1 ,

1

1 , , 1 ,

1 1

t h h t h t h t h t h t h t h

h h
s s s

h h t j t j h h t h

j j

r F F A A

u u u

   

   

− − − −

−

− −

= =

= − = − − − + + =

= − + − = − + 

1; 11, 12 1, 11 1, 12 1 11 1, 11 1 12 1, 12

12 12 11 12

12 11 1, 1, 1, 1, 12 11 1, 12

13 1 13 1

t h h t h t h t h t h t h t h

h h
l s l s l

h h t j t j t j t j h h t h

j j j j

r F F A A

u u u u u

   

   

+ + + + + + + + + + + + + + +

+ +

+ + + + + + + + + +

= = = =

= − = − − − + + =

= − + + − − = − +   
  



  

30 

 

 

This implies that: 

( ) ( ); 1, 1; 11, 12 1 , 12 11 1, 12, ,s l

t h h t h h h h t h h h t hCorr r r Corr u u   − + + + − + + + += − + − + =  

( ), 1, 12,s l

t h t hCorr u u + += = . 

Regarding the covariance between two typical forecast errors, first suppose that the 

target year is t  (that is, t t= ), 12h   and 12h  . In this case we calculate ( ), ,
,t h t h

Cov e e  as 

following: 

( ) ( ) ( ) 2

, , , ,, ,
1 1

, , , min ,
h h

s s

t h t h t j t j st h t h
j j

Cov e e Cov Cov u u h h  
= =

 
= = = 

 
    

The last equality comes from the fact that both sums contain either the sequence of 

i.i.d. shocks 
, , 1 ,1, , ,s s s

t h t h tu u u−
 (if h h ), or the sequence of i.i.d. shocks ,1, , 1

, , ,s s s

tt h t h
u u u

−
 (if 

h h ). 

Now suppose that 12h   and 13h  . In this case ( ), ,
,t h t h

Cov e e  is calculated as 

following: 

( ) ( )
12

2

, , , , ,, ,
1 13 1

, , ,
h h

s l s

t h t h t j t j t j st h t h
j j j

Cov e e Cov Cov u u u h  
= = =

 
= = + = 

 
    

The last equality comes from the fact that the two arguments of the covariance operator 

contain the same sequence of i.i.d. shocks 
, , 1 ,1, , ,s s s

t h t h tu u u−
. 

Now suppose that 13h   and 12h  . In this case ( ), ,
,t h t h

Cov e e  comes from: 

( ) ( )
12

2

, , , , ,, ,
13 1 1

, , ,
h h

l s s

t h t h t j t j t j st h t h
j j j

Cov e e Cov Cov u u u h  
= = =

 
= = + = 

 
    

The last equality comes from the fact that the two arguments of the covariance operator 
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contain the same sequence of i.i.d. shocks ,1, , 1
, , ,s s s

tt h t h
u u u

−
. 

If h  and h  are either greater than or equal to 13, then ( ), ,
,t h t h

Cov e e  is evaluated as 

follows: 

( ) ( )

( )

12 12

, , , , , ,, ,
13 1 13 1

2 2

, , ,

12 min 12, 12

h h
l s l s

t h t h t j t j t j t jt h t h
j j j j

s l

Cov e e Cov Cov u u u u

h h

 

 

= = = =

 
= = + + = 

 

= + − −

   
 

The last equality comes from the fact that the two arguments of the covariance operator 

either have the sequence of i.i.d. shocks 
, , 1 ,13 ,12 ,11 ,1, , , , , , ,l l l s s s

t h t h t t t tu u u u u u−
 (if h h ), or the 

sequence of i.i.d. shocks ,13 ,12 ,11 ,1, , 1
, , , , , , ,l l l s s s

t t t tt h t h
u u u u u u

−
 (if h h ). 

In the case of two adjacent target years ( t  and 1t t= + ), 12h   and 12h  , the 

covariance between two typical forecast errors would be: 

( ) ( )

( )

12

, , , 1, 1,1, 1,
1 13 1

, 1,

1 13

, , ,

, min , 12

h h
s l s

t h t h t j t j t jt h t h
j j j

h h
s l

t j t j s l

j j

Cov e e Cov Cov u u u

Cov u u h h

 

 

+ ++ +
= = =

+

= =

 
= = + = 

 

 
= = − 

 

  

 
 

This result comes from the facts that ,

1

h
s

t j

j

u
=

  contains the sequence of i.i.d. shocks

, , 1 ,1, , ,s s s

t h t h tu u u−
, and 1,

13

h
l

t j

j

u +

=

  contains the sequence of i.i.d. shocks 1,131, 1, 1
, , ,l l l

tt h t h
u u u ++ + −

. 

It also results from the fact that, if 12h h − , then the pairs 

( ) ( ) ( ), 1,12 , 1 ,11 ,1 ,13, , , , , ,s l s l s l

t h t h t h t h t tu u u u u u+ + − +  are common to both summations and are 

correlated. Similarly, if 12h h − , then the pairs 

( ) ( ) ( ),1 1,13, 12 1, , 13 1, 1
, , , , , ,s l s l s l

t tt h t h t h t h
u u u u u u +− + − + −

 are common to both summations and are 

correlated. 
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The same result would apply in the case of two adjacent target years ( t  and 1t + ), 

12h   and 12h  . The proof follows below: 

( ) ( )

( )

12 12

, , , , 1, 1,1, 1,
13 1 13 1

12

, 1,

1 13

, , ,

, min , 12

h h
l s l s

t h t h t j t j t j t jt h t h
j j j j

h
s l

t j t j s l

j j

Cov e e Cov Cov u u u u

Cov u u h h

 

 

+ ++ +
= = = =

+

= =

 
= = + + = 

 

 
= = − 

 

   

 
 

The last equality comes from the fact that the pairs 

( ) ( ) ( ),1 1,13, 12 1, , 13 1, 1
, , , , , ,s l s l s l

t tt h t h t h t h
u u u u u u +− + − + −

 (which are all inside 
12

,

1

s

t j

j

u
=

  and ,

13

h
l

t j

j

u
=

 ) are 

correlated. It also reflects the fact that there are 12h−  such pairs and that 

( )( )12 min , 12h h h− = −  if 12h   and 12h  . 

In all other cases, the summations inside the covariance operator would not contain 

shocks occurring at the same time and ( ), ,
,t h t h

Cov e e  would be zero. 
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APPENDIX 2 

It is straightforward to show that results (11) and (12) in the main paper are equivalent. 

First notice that tr

TH THi i  equals TH , that its inverse equals 1 TH  and that ,

1 1

T H
tr

TH t h

t h

e
= =

=i e , 

where we define vector e  as 1 2

tr tr tr tr

T
  e e e e . Its “representative” component tr

te  is 

defined as , , 1 ,2 ,1 1

tr

t t H t H t t H
e e e e− 
  e . 

The proof that expressions (13) and (14) in the main paper are equivalent goes as 

follows: first we recognize that the product tr

THi Σ  yields the row vector 

,1 ,2 ,

1 1 1 1

TH TH TH

l l l TH

l l l TH

  
= = = 

 
 
 
   , then that the product between this vector and 

THi  yields 

,

1 1

TH TH

l c

c l


= =

 , then that ( )
1 1tr

TH TH
TH

−

=i i  and finally that 
1

TH
 appears twice in (13). 

When biases depend on h , the error vector e  follows (17) and the OLS estimator of 

Hα  comes from: 

( )
1

ˆ tr tr

H

−

=α Μ Μ Μ e  

where the matrix M  is the Kronecker product between Ti  and HI , Ti  is a column vector 

with dimension T  whose elements are all equal to 1 and HI  is an H H  identity matrix. 

Consequently, M  can be written as: 

H H

H H

H H TH H

I

I

I





 

 
 
 =
 
 
 

Μ        

The transpose of M  is  tr

H H H H H H H TH
I I I   

=M  , since the transpose of the 

identity matrix is equal to itself. Therefore, the product 
trΜ e  yields a column vector with 
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dimension H  whose element at row h  corresponds to ,

1

T

t h

t

e
=

 . 

The next step is recognizing that the product 
tr

Μ Μ  is a matrix with dimensions T T  

and that the elements located on its main diagonal are all equal to T . As a result, the inverse 

of 
tr

Μ Μ  is the scalar 1 T  multiplied by the identity matrix HI . Finally, one can show that: 

   ( )

,

1

1 , 1

1

,1

1 1

1

1
1

ˆ

1

T

t H

t

T

t Htr tr tr
tH H H

T

t

t H

e
T

e
I T

T

e
T

=

− −

=

= 

 
 
 
 
 = = =
 
 
 
 
  







α Μ Μ Μ e Μ e  

Expression (19) in the main paper results from calculating the transpose of the vector 

ˆ
Hα  derived above. 

To show that expression (20) is equivalent to (21), first partition matrix Σ  into 
2T  

submatrices 
,l cσ , each one with dimensions H H : 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

T

T

T T T T

 
 
 =
 
 
 

σ σ σ

σ σ σ
Σ

σ σ σ

    

Next, calculate the product 
tr

Μ ΣΜ  as: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

T H H

T H Htr

H H H H H H

T T T T H H

I

I
I I I

I





  



   
   
   = =
   
   

  

σ σ σ

σ σ σ
Μ ΣΜ

σ σ σ

  

,1 ,2 , ,

1 1 1 1 1

H H

T T T T T
H H

l l l T l c

l l l c l

H H

I

I

I





= = = = =



 
 

   = =    
 
 

   σ σ σ σ  
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Finally, recall that ( )
1 1tr

H
T

−

=Μ Μ I  and that this term appears twice in (20).  

Ager, Kappler and Osterloh point out that the precise form of ( )trE=Σ λλ  depends 

on the forecast structure and forecast horizon of the variable of interest. They show that, if 

the error terms in (3) meet conditions (8), then Σ  can be written as follows: 

     2

u=Σ Ψ       (A.1) 

where Ψ  is the TH TH  matrix defined on page 172 of their paper. Matrix Ψ  is formed by 

T  submatrices A , 1T −  submatrices B  and 1T −  submatrices 
tr

B , all of them with 

dimensions H H  and defined on the same page. The rest of Ψ  is formed by the H H  

submatrix 0 , whose elements are all equal to zero. We repeat these definitions below for 

convenience:  

 

tr

tr

tr

tr

 
 
 
 

=  
 
 
 
 

A B 0 0 0

B A B 0 0

0 B A 0 0
Ψ

0 0 B

A B

0 0 0 B A

    (A.2) 

 

24 23 12 11 10 2 1

23 23 12 11 10 2 1

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A   (A.3)  
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12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

tr

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

B   (A.4)  

 

Therefore, under the error structure assumed by Ager, Kappler and Osterloh, the mean 

value of the elements of Σ  is 2

u  multiplied by the mean value of the elements of Ψ , which 

conforms to: 

( ) ( )
( ), , ,2 2

1 1 1 1 1 1

1 1
2 1

TH TH H H H H

l c l c l c

l c l c l c

T a T b
TH TH


= = = = = =

 
= + − 

 
    (A.5)  

where 
,l c , 

,l ca  and 
,l cb  denote the elements at row l  and column c  of matrices Ψ , A  and 

B , respectively.17 

When the error structure follows our framework (see (7) and (9)), then Σ  conforms to: 

 
 
 
 

=  
 
 
 
  

tr

tr

tr

tr

A B 0 0 0

B A B 0 0

0 B A 0 0
Σ

0 0 B

A B

0 0 0 B A

   (A.6)  

The H H  submatrices A  and B  are defined below: 

2 2

s s l l = +A A A     (A.7) 

 
17 We use the fact that the sum of the elements of B  equals the sum of the elements of its transpose. The same 

property is used to derive result (A.12). 
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ls s l =B B      (A.8)  

… where sA , lA  and lsB  are given by: 

 

12 12 12 11 10 2 1

12 12 12 11 10 2 1

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

s

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A    (A.9)  

 

12 11 1 0 0 0 0

11 11 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

l

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A    (A.10)  

 

12 12 12 11 10 2 1

11 11 11 11 10 2 1

10 10 10 10 10 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

tr

ls

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

B    (A.11)  
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We call attention to the fact that the matrix A  defined in (A.3) equals the sum of lA  

and sA  defined above. Furthermore, the matrix 
tr

B  defined in (A.4) matches matrix tr

lsB  

defined in (A.11). Both facts will be useful shortly. 

Under our framework, the mean value of the elements of Σ  comes from: 

( ) ( ) ( )

2 2

, ,

1 1 1 1

,2 2
1 1

,

1 1

1 1

2 1

H H H H
l s

l l c s l cTH TH
l c l c

l c H H
l c ls

s l l c

l c

T a T a

TH TH
T b

 



 

= = = =

= =

= =

 
+ + 

 =
 

+ − 
 

 



  (A.12)  

where 
,l c , 

,

l

l ca , 
,

s

l ca  and 
,

ls

l cb  denote the elements at row l  and column c  of matrices Σ , sA

, lA  and lsB , respectively. 

Regarding the case in which biases may depend on h , we have seen that 

( ) ,2
1 1

1
ˆ

T T

H l c

c l

Var
T = =

= α σ  (see (22)). Under the error structure assumed by Ager, Kappler and 

Osterloh, one can show that: 

( ) ( )
2

2
ˆ 2 1u

HVar T T
T


= + −  α A B    (A.14) 

where matrices A  and B  are defined in (A.3) and (A.4). The result above follows from (i) 

for 1,2, ,l T= , matrices 
,l lσ  are all equal to 2

u A ; (ii) for 1,2, , 1l T= − , matrices 
1,l l+σ  

(
, 1l l+σ ) are all equal to 2 tr

u B  ( 2

u B ); and (iii) 
,l c =σ 0  elsewhere.  

Under our framework, matrices A  and B  are replaced by 2 2

s s l l = +A A A  and 

ls s l =B B , being sA , lA  and lsB  given by (A.9), (A.10) and (A.11). Consequently, 

( )ˆ
HVar α  comes from: 

( ) ( ) ( )( )2 2

2

1
ˆ 2 1H s s l l s l lsVar T T

T
    = + + −

 
α A A B   (A.15) 

Result (A.15) follows from (i) for 1,2, ,l T= , matrices 
,l lσ  are all equal to 2

u A ; (ii) 
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for 1,2, , 1l T= − , matrices 
1,l l+σ  (

, 1l l+σ ) are all equal to 2 tr

u B  ( 2

u B ); and (iii) 
,l c =σ 0  

elsewhere. 

Finally, expressions (A.14) and (A.15) yield the same result only if 2 2 2

l s u  = =  

and 1 = . Indeed, under these assumptions we get ( )2 2

u s l u = + =A A A A  and 

2

ls s l s l u    = = =B B B B , thus (A.15) converges to (A.14). Incidentally, notice that

( )
2

ˆ u
HVar

T


=α A  when shocks 

,

s

t ju  and 
1, 12

l

t ju + +
 have the same variance but are uncorrelated. 

APPENDIX 3 

In this appendix we discuss the methods used to estimate 2

u , 2

l , 2

s  and  . We 

adopt the procedure followed by Davies and Lahiri (1995), Clements et al. (2007) and Ager 

et al. (2009) to estimate 2

u . If the bias does not depend on h , first subtract the estimated 

bias from the residuals to yield ˆ ˆ
TH= −λ e i , then estimate the auxiliary OLS regression 𝝀̂ ⊙

𝝀̂ = 𝜙𝝉 + 𝒘.18 The column vector τ  is defined as the Kronecker product between Ti  and 

Hτ , where Ti  is a column vector with dimension T  whose elements are all equal to 1 and 

Hτ  is another column vector with H  elements obeying  
1

1 2 1tr

H H
H H


= −τ .  

The estimated value of 2

u  corresponds to the ̂  estimated from this auxiliary regression. If 

there is dependence with the forecast horizon, then estimate ˆ ˆ
H= −λ e Mα  and proceed as 

before. 

When the error structure follows (9) and the bias does not depend on the forecast 

horizon, an estimator of 2

s  can be obtained by first calculating ˆ ˆ
TH= −λ e i  and then 

 
18 The operator  refers to the element by element multiplication (Hadamard product). 
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forming the column vector ˆ
sv , which has 12T  elements and complies with

,1 ,2 , 1 ,
ˆ ˆ ˆ ˆ ˆtr tr tr tr tr

s s s s T s T−
 =  v v v v v .19 Each row vector 

,
ˆ tr

s tv  comprising ˆ tr

sv  has 12 elements 

and obeys 
, ,12 ,11 ,2 ,1

ˆ ˆ ˆ ˆˆ tr

s t t t t t    =
 

v . Next, estimate the auxiliary OLS regression 

𝒗̂𝑠 ⊙ 𝒗̂𝑠 = 𝜙𝝉𝑠 +𝒘𝑠, where the column vector sτ  is defined as the Kronecker product 

between Ti  and 12τ , and vector 12τ  has 12 elements and conforms to 

 12 1 12
12 11 2 1tr


=τ . The estimated value of 2

s  corresponds to the ̂  estimated 

from this auxiliary regression. If the bias depends on h , then estimate ˆ ˆ
H= −λ e Mα  and 

proceed as before. 

The procedure used to estimate 2

l  goes as follows: form the column vector ˆ
lv  with 

12T  elements and complying with ,1 ,2 , 1 ,
ˆ ˆ ˆ ˆ ˆtr tr tr tr tr

l l l l T l T−
 =  v v v v v . Each row vector 

,
ˆ tr

l tv  

inside ˆ tr

lv  has 12 elements and conforms to , ,24 ,23 ,14 ,13
1 12

ˆ ˆ ˆ ˆˆ tr

l t t t t t   


 =
 

v . Next, 

estimate the auxiliary OLS regression 𝒗̂𝑙 ⊙ 𝒗̂𝑙 = 12𝜎̂𝑠
 + 𝜙𝝉𝑙 + 𝒘𝑙, where the column 

vector lτ  is defined as the Kronecker product between Ti  and 12τ . The estimated value of 

2

l  corresponds to the ̂  estimated from this last regression. If the bias depends on h , then 

estimate ˆ ˆ
H= −λ e Mα  and proceed as before. 

Lastly, the procedure used to estimate   goes as follows: the first step is calculating 

estimates of the shocks ,

s

t ju  and 1, 12

l

t ju + +  by using: 

( ), , 1 , 1
ˆ ˆˆs

t j t j t j j ju F F  − −= − − −    (A.16) 

( )1, 12 1, 11 1, 12 12 11
ˆ ˆˆl

t j t j t j j ju F F  + + + + + + + += − − −    (A.17) 

 
19 We have already taken into consideration that 24H = . 
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where j  varies from 12 to 1 and 1,2, ,t T= .20 Then estimate   by calculating: 

( )

1 12

, 1, 12
2 2

1 1

1 1
ˆ ˆ ˆ

12 1ˆ ˆ

T
s l

t j t j

t j
l s

u u
T


 

−

+ +

= =

= 
−
    (A.18) 

 

  

 
20 If 1j = , then ,1 ,1 1

ˆˆ s

t t tu X F = − − .  
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APPENDIX 4 

In this appendix we try to strengthen the arguments in favor of our framework. First, 

take inflation as an example and assume that ( )ln 1t tx = + , where t  is realized inflation 

(monthly frequency). Suppose that tx  follows an AR(1), that is, 1t t tx x −= + , being  

between 0 and 1 and t  a white noise (𝜀 ∼ 𝑁(0 𝜎 )). Under these circumstances we know 

that the expectation of 
t jx +

 made at t is j

t t j tE x x+ = . 

Assume that t corresponds to January of year a. Hence, the rational forecast of the 

accumulated inflation over this year is: 

( )2 11

1 2 11 1t t t t t t t tx E x E x E x x  + + ++ + + + = + + + +    (A.19) 

The rational forecast for the accumulated inflation over the next year (a + 1) is: 

( )12 13 23

12 13 23t t t t t t tE x E x E x x  + + ++ + + = + + +    (A.20) 

Consider a shock that occur in February of year a, which is equivalent to 1t + . This 

shock will affect the expectations for years a  and 1a+ in the following way: 

Forecast for the current year: 

( )

( )( )

1 1 2 1 3 1 11

2 10

1 1 1 1

2 10

1

2 10

1

2 3 11 2 10

1 1 1 1

1

1

t t t t t t t t

t t t t t

t t

t t t

t t t t t t t t t

x x E x E x E x

x x x x x

x x

x x

x x x x x

  

  

    

         

+ + + + + + +

+ + + +

+

+

+ + + +

+ + + + + =

= + + + + + =

= + + + + + =

= + + + + + + =

= + + + + + + + + + + =

 

( ) ( )2 11 2 10

11 1t tx       += + + + + + + + + +    (A.21) 

Forecast for the next year: 
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( )

( )( )

1 12 1 13 1 23

11 12 22

1 1 1

11 12 22

1

11 12 22

1

t t t t t t

t t t

t

t t

E x E x E x

x x x

x

x

  

  

    

+ + + + + +

+ + +

+

+

+ + + =

= + + + =

= + + + =

= + + + + =

 ( ) ( )12 13 23 11 12 22

1t tx       += + + + + + + +    (A.22) 

The changes in the consensus forecasts made for the current and next years are: 

 

Revision in the forecast for the current year: (A.21)-(A.19) 

( ) ( ) ( )2 11 2 10 2 11

11 1 1t t tx x         ++ + + + + + + + + − + + + + =  

( ) ( )2 10

1 11 t tF     + += + + + + =       (A.23) 

Revision in the forecast for the next year: (A.22)-(A.20) 

( ) ( ) ( )12 13 23 11 12 22 12 13 23

1t t tx x         ++ + + + + + + − + + + =  

( ) ( )11 12 22

1 1t tG     + += + + + =      (A.24) 

Both ( )F  and ( )G   depend on  . Because results (A.23) and (A.24) rely on 

constants multiplied by the same shock ( 1t + ), they are perfectly correlated. Hence, if the 

model AR(1) could represent well the inflation process, then the correlation between forecast 

revisions made for the current and the next years would equal 1. 

But this assumption is not very realistic. In practice, inflation is affected at the same 

time by several structural shocks of different natures (productivity, preferences, taxes) and 

persistence (see, for example, Woodford (2003)). This situation would be better represented 

by a model in which 
1, 2,t t tx x x= + , where 

1,tx  and 
2,tx  are AR(1) processes with different 

autoregressive coefficients ( 1 2,  ; 
( )1 2

0 1  ) and error variances  (𝜀   ∼ 𝑁(0 𝜎 
 ), 𝜀   ∼

𝑁(0 𝜎 
 )). Under these circumstances we know that the expectation of 

t jx +
 made at t is given 
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by 
1, 2, 1 1, 2 2,

j j

t t j t t j t t j t tE x E x E x x x + + += + = + . The rational forecasts of the accumulated 

inflation over years a  and 1a+  are: 

( ) ( )2 11 2 11

1 1 1 1, 2 2 2 2,1 1t tx x     + + + + + + + + +    (A.25) 

( ) ( )12 13 23 12 13 23

1 1 1 1, 2 2 2 2,t tx x     + + + + + + +     (A.26) 

A shock occurring in February of year a would affect the expectations for years a  and 

1a+ in the following way: 

Forecast for the current year: 

( ) ( )

( ) ( )

2 11 2 10

1 1 1 1, 1 1 1 1, 1

2 11 2 10

2 2 2 2, 2 2 2 2, 1

1 1

1 1

t t

t t

x

x

      

      

+

+

+ + + + + + + + + +

+ + + + + + + + + +
    (A.27) 

Forecast for the next year: 

( ) ( )

( ) ( )

12 13 23 11 12 22

1 1 1 1, 1 1 1 1, 1

12 13 23 11 12 22

2 2 2 2, 2 2 2 2, 1

t t

t t

x

x

      

      

+

+

+ + + + + + + +

+ + + + + + + +
   (A.28) 

The changes in the forecasts made for the current and next years are: 

Revision in the forecast for the current year: (A.27)-(A.25) 

( ) ( )2 10 2 10

1 1 1 1, 1 2 2 2 2, 11 1t t       + ++ + + + + + + + + =  

( ) ( )1 1 1, 1 2 2 2, 1t tF F   + += +        (A.29) 

Revision in the forecast for the next year: (A.28)-(A.26) 

( ) ( )11 12 22 11 12 22

1 1 1 1, 1 2 2 2 2, 1t t       + ++ + + + + + + =  

( ) ( )1 1 1, 1 2 2 2, 1t tG G   + += +        (A.30) 

The covariance coefficient between (A.29) and (A.30) is: 
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( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1, 1 2 2 2, 1 1 1 1, 1 2 2 2, 1

2

1 1 1 1 1, 1 2 2 1 1 2, 1 1, 1

2

1 1 2 2 1, 1 2, 1 2 2 2 2 2, 1

2

1 1 1 1 1, 1 2 2 1 1 2, 1 1, 1

1 1 2 2 1, 1 2, 1

t t t t

t t t

t t t

t t t

t t

E F F G G

F G F G
E

F G F G

F G E F G E

F G E

       

      

      

      

   

+ + + +

+ + +

+ + +

+ + +

+ +

+ + =

 + +
= = 

 + + 

= + +

+ + ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 2 2 2, 1

2 2

1 1 1 1 1 2 2 2 2 2

tF G E

F G F G
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  (A.31) 

 

Result (A.31) comes from the hypothesis that structural shocks are independent (that 

is, 
1, 2,t t ⊥ ), therefore ( ) ( ) ( )1, 1 2, 1 1, 1 2, 1 0 0 0t t t tE E E   + + + += =  = . 

The variance of (A.29) is: 
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1 1 1 2 2 2F F   = +       (A.32) 

Following the same lines one can show that: 

( ) ( )( )( ) ( )( ) ( )( )
2 2 22 2

1 1 1, 1 2 2 2, 1 1 1 1 2 2 2t tE G G G G       + ++ = +   (A.33) 

Combining (A.31), (A.32) and (A.33) yields the correlation between (A.29) and (A.30): 
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In general result (A.34) is always below 1. This means that, under a more realistic 

framework, the correlation between forecast revisions made for the current and the next years 

is not perfect. 

 

We reinforce result (A.34) empirically by running the following regression: 

1; 11, 12 ; 1,t j j t j j tr r + + + −= +     (A.35) 

where 
; 1,t j jr −

 and 
1; 11, 12t j jr+ + +

 denote the revisions of the consensus forecasts pertaining to the 

target years t  and 1t +  that occur between j  and 1j −  periods before the end of year t  or, 

equivalently, between 12j +  and 11j +  periods before the end of year 1t +  (that is, both 

revisions occur during the same month but focus on different years). The table below shows 

that the   coefficients and the coefficients of determination 
2R  are smaller than 1 regardless 

the country and the macroeconomic variable. This means that news shocks are not only 

attenuated from one year to the next, but also that they impact differently the forecasts made 

for the current and the next years. 

 

Table A.1: Results of estimating regression (A.35) by variable and country 

 
Notes: the superscripts ‘***’, ‘**’ and ‘*’ indicate rejection of the 

null 
0

: 0H  =  at the 1% (5%, 10%) significance level.   

 

Brazil 0.018 0.067 * 0.503 0.552 ***

Chile 0.005 -0.060 0.163 0.151 ***

Mexico 0.005 -0.036 0.199 0.167 ***

InflationOutput Growth
2R

2R 


