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Abstract

This work provides an extension of the conic finance framework, through a new

spread function that allows each side of the trade to be calculated using a distinct

distortion. In this way, we return to the original conic finance framework when the

distortions are equal. Based on this new framework, we prove useful results when

the liquidity parameter takes on extreme values. We prove that in a special case,

positive γ and equal distortions, the spread function will be a deviation measure.

Additionally, closed forms are provided for the Greeks of the Black-Scholes model

and an additional partial derivative with respect to the parameter γ is presented, for

the case where the bid and ask prices are computed using the Wang distortion.

Keywords: Conic Finance, Risk Measures, Option Pricing, Distorted probabilities.
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1 Introduction

Since the first pricing model presented by Bachelier in his doctoral thesis in 1900,

interest in option pricing models has been growing. Over time, the models have become

more and more sophisticated, seeking to incorporate the latest stylized facts.

Most pricing models, e.g., Black and Scholes (1973) and Merton (1973), assume

that the financial market is complete. From this assumption, we have what is known as the

law of one price, where the price of a given option is independent of whether the agent

wants to buy or sell.

Although the classical approach says that the market is complete, there will be the

possibility of perfect hedging, this is not what is observed in actual markets. As long as the

market presents the bid and ask spread, perfect replication is not possible and the law of

one price is not consistent and is replaced by the law of two prices. Several authors have

tried to explain this spread presented in two-price economies. Davis et al. (1993), Soner

et al. (1995) and Barles and Soner (1998) have tried to explain this spread by including

transaction or inventory costs. However, the authors did not fully explain the magnitude of

the spread.

A new approach was presented by Madan and Cherny (2010) seeking to address

this empirical evidence. The authors present an approach, referred to as the conic finance

theory, where agents are still modeled as a passive counterparty. However, there is a

difference in the price according to the direction of the trade. That is, there is a price

where the market is interested in selling, the ask price, and the price where the market is

interested in buying, the bid price.

In this new approach, the model for the market is defined as a convex cone, A,

containing the financial positions that agents are willing to trade in the market. Building on

the results of the seminal work of Artzner et al. (1999), the authors describe the relationship

between the financial positions in the convex cone and their respective expected values.

However, this convex cone of financial positions is not constant over time. To capture

the dynamics of this set of financial positions traded in the market, the authors use an

acceptability index α, which are introduced in Cherny and Madan (2009), which is directly

related to the parameter γ, liquidity level. The authors show that in this framework, the two
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prices in this economy are represented as the supremum and infimum of the expectations

with respect to a set of probability measures, Dγ .

A new hedging methodology was presented by Madan et al. (2016) within this fra-

mework, this new methodology allows systematic hedging choices with wide applications.

Van Bakel et al. (2020) studied the impact of this framework on CVA and DVA of option

positions. A study to measure the liquidity of exotic options, also within this framework,

was conducted by Guillaume and Schoutens (2015). Chen et al. (2019) and Luo and Chen

(2021) present explicit formulas for exotic options using the Wang distortion

Our objective in this work is to extend the conic finance framework, enabling the

use of two acceptability indexes, α1 and α2, in such a way that the agent is free to represent

the different directions of trade with certain distortions, ψ1 and ψ2. In our main context,

α1 and α2 are acceptability indexes in the sense of Cherny and Madan (2009), whereas

ψ1 and ψ2 are distortion functions related to these acceptability indexes. In this way, ψ1

is used to distort the bid price and, consequently, ψ2 distorts the ask price. In this new

framework, when ψ1 and ψ2 are equal we get the configuration proposed by Madan and

Cherny (2010).

Within this framework, we present the main object of this work, the spread function,

Rγ
ψ1,ψ2

, which is now defined as the difference between the bid and ask prices with,

possibly, distinct distortions. We prove useful results; for the extreme cases γ = 0 and

γ → ∞, we obtain that R0
ψ1,ψ2

(X) = 0, the bid and ask prices are equivalent, and

Rγ→∞
ψ1,ψ2

(X) = range(X). We also demonstrate the properties that the spread function

satisfies and we point out that the spread function will be a deviation measure, when

γ > 0 and the distortions are equal. Moreover, within the conic finance framework, we

demonstrate the main Greeks for a European call option using the Wang distortion and we

present the partial derivative with respect to the parameter γ

To the best of our knowledge, there is no literature research that expands the conic

finance approach in this way or that demonstrates the properties of the spread function for

a financial position X ∈ L∞. Chen et al. (2019) and Luo and Chen (2021), have presented,

through numerical examples, results that are in line with ours. However, these studies are

centered on a specific derivative, rather than a random financial position X .
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The remainder of this paper is structured in this format: Section 2 presents the

notation, definitions, and preliminaries from the literature; Section 3 presents an extension

of the conic finance framework and exposes our main results related to the spread function

and presents the Greeks for a European call option using the Wang distortion; Section

4 presents the concluding remarks; and finally, we present an appendix containing a

definition of concepts that will be used throughout the text and some important results

related to option pricing.
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2 Background

The content of this work is based on the following notation. Consider the financial

position X that is defined in a probability space (Ω,F ,P). In addition, two random

variables X and Y have the same distribution under P is denoted by X d
= Y . All equalities

and inequalities are considered to be almost surely in P. Let L∞ := L∞(Ω,F ,P) be the

space of essentially bounded random variables in (Ω,F ,P) equipped with L∞-norm || · ||∞,

where ||X||∞ = ess supX = inf{k ∈ R : P(X > k) = 0} and the essential infimum

is defined as ess infX = sup{k ∈ R : P(X < k) = 0}. E[X] is the expected value of

X under P. We define X+ = max(X, 0) and X− = max(−X, 0). FX is the probability

function of X and its inverse is F−1
X , defined as F−1

X (p) = inf {x : FX(x) ≥ p}, where

the following equivalence holds

p ≤ FX(x) ⇐⇒ F−1
X (p) ≤ x, x ∈ R, p ∈ [0, 1]. (1)

This section is divided into three subsections. In the first subsection, we present

the main theorems that form the basis of continuous time arbitrage theory. In the second

subsection, we present an overview of some option pricing models. Starting with the

Bachelier model, through the Black-Scholes model, and ending with the jumps and

stochastic volatility models. In the last subsection we introduce the main concepts related

to risk measures and conic finance.

2.1 Arbitrage

In this section, concepts related to arbitration theory will be introduced. With the

concepts presented in this section, we will be able to say when a given portfolio is self

financing and when we have an arbitrage opportunity. We will also define a risk neutral

measure and its relation to the price of a given derivative security. All these definitions

and some others will be presented in a model with d + 1 assets, whose price processes

S = {(S0
t , S

1
t . . . , S

d
t )}t∈[0,T ] follows an adapted, continuous and strictly positive semi-

martingale on (Ω,F ,P). Moreover, the price process S0 is interpreted as a risk-free bond,

i.e. S0
t = ert, and Sit ≥ 0, i ∈ {0, . . . , d}, t ∈ [0, T ].
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Definition 2.1. 1. A trading strategy is a stochastic process

ϕ = (ϕ0, ϕ1, . . . , ϕd) : Ω× [0, T ] → Rd+1, (2)

where ϕit corresponds to the amount of each asset held by the investor, such that∫ T
0
E[ϕ0

s]ds <∞ and
∑d

i=0

∫ T
0
E[(ϕis)2]ds <∞.

2. The value of the portfolio ϕ at time t is given by

V ϕ
t := ϕt.St =

d∑
i=0

ϕitS
i
t , t ∈ [0, T ]. (3)

3. The gains from a trade of this strategy are given by

Gϕ
t :=

∫ t

0

ϕsdSs =
n∑
i=1

∫ t

0

ϕisdS
i
s.. (4)

4. A portfolio strategy ϕ is called self financing, if

V ϕ
t = V ϕ

0 +Gϕ
t , t ∈ [0, T ], (5)

i.e. dV ϕ
t = ϕtdSt.

Item 4. of the definition (2.1) presents a portfolio strategy where the value of the

portfolio is preserved over time. This type of portfolio is extremely important for the

replication of a claim, as will be shown later. However, before we continue, we are often

interested in the relative price of an asset. If we normalize the asset prices in our model

by the risk-free asset, S0, we obtain what is known as a discounted pricing process. This

particular pricing process is most useful when we want to find the present value of a future

payoff.

Definition 2.2. A numeraire is a price process X on [0, T ], if

P
(
{ω : Xt(ω) > 0, ∀t ≤ T}

)
= 1. (6)

Our numeraire will be S0, this way we will be able to obtain a discounted pricing

process. Our goal now is to relax the results presented in the definition (2.1) to a normalized

model.
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Theorem 2.1. (Bingham and Kiesel (2013), Proposition 6.1.1) A self financing portfolio

remain self financing after a numeraire change.

Therefore, we can present another version of the definition (2.1) as follows.

Definition 2.3. 1. The discounted price process Ŝ is defined as

Ŝ = (Ŝ0, Ŝ1, . . . , Ŝd) =

(
1,
S1

S0
, . . . ,

Sd

S0

)
(7)

where S0 is our numeraire.

2. he discounted value process of the portfolio ϕ is given by

V̂ ϕ
t :=

V ϕ
t

S0
t

= ϕ0
t +

d∑
i=1

ϕitŜ
i
t , t ∈ [0, T ]. (8)

3. The discounted gains process of the portfolio ϕ is given by

Ĝϕ
t :=

d∑
i=1

∫ t

0

ϕisdŜ
i
s, (9)

4. A portfolio strategy ϕ is self financing if and only if

V̂ ϕ
t = V̂ ϕ

0 + Ĝϕ
t (10)

i.e. dV̂ ϕ
t = ϕtdŜt.

A fundamental requirement for pricing a claim is that there are no arbitrage

possibilities. If arbitrage exists in a market model, we are saying that there are opportunities

to make gains with certainty at zero cost.

Definition 2.4. A self financing portfolio ϕ is an arbitrage possibility if the value process

V ϕ satisfies,

V ϕ
0 = 0, P(V ϕ

T ≥ 0) = 1 and P(V ϕ
T > 0) > 0.

Now that we know when a certain portfolio is an arbitrage opportunity, we can

investigate when we do not have an arbitrage opportunity since these opportunities can be
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interpreted as a case of mispricing. More specifically, we can consider the following questi-

ons: 1) when will we have an arbitrage-free market model? and 2) what is the arbitrage-free

price for a given derivative? Before answering the question, we must introduce the concept

of Risk Neutral measures

Definition 2.5. A probability measure Q on FT is called a equivalent martingale measure

with respect to S0, if

1. Q and P are equivalent,

2. The process of relative prices Ŝi, ∀ i ∈ {0, . . . , d}, are martingales under the

measure Q.

The set of all equivalent martingales measures is denoted by P .

Basically, a martingale measure is one that makes the discounted price process of all d+ 1

market assets to be martingale processes. Moreover, EMM measures are also known as

risk-neutral measures. And so, we can answer the first question with the next theorem.

Theorem 2.2. (Bingham and Kiesel (2013), Theorem 6.1.1) The model is arbitrage-free if

and only if the set P is nom-empty.

That is, the model is arbitrage-free when the price process of all assets is a martingale

under a certain measure equivalent to P.

Returning to the second question, we want to know what is the arbitrage-free price

of a derivative with a maturity T . In the literature, a derivative security is also called a

contingent claim, or just claim. A claim is an asset whose payoff depends on the behavior

of other assets, S0, S1, . . . , Sd. For a given claim C we have the following result.

Definition 2.6. Let ϕ be a portfolio strategy and a contingent claim C, then

1. ϕ is called admissible, for a finite u, if

V ϕ
t ≥ −u. (11)
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2. C is called replicable if there is at least one admissible portfolio strategy such that

V ϕ
T = C. (12)

If the claim is replicable, holding the claim or a portfolio strategy whose process

value is V ϕ
T generates the same financial result. Therefore, the price of a claim at a given

period t is given by Πt(C) = V ϕ
t . Thus, we can answer our second question.

Theorem 2.3. (Bingham and Kiesel (2013), Theorem 6.1.4) The arbitrage free price for a

replicable claim is given by

Πt(C) = S0
tEQ

[
C

S0
T

∣∣∣∣Ft

]
. (13)

However, in a general case where all claims are replicable, we will have a market model

known as the complete model.

Theorem 2.4. (Bingham and Kiesel (2013),Theorem 6.1.5) In an arbitrage-free model, if

all claims are replicable, then the model is called complete. Furthermore, this arbitrage-

free model is complete if and only if there is exactly one risk-neutral measure.

The above theorem tells us that the market model is said to be complete if any contingent

claim is replicable, i.e. there is a ϕ such that C
S0
T
= V̂ ϕ

T , and the model will be complete if

and only if the set P is unitary.

2.2 Option pricing models

In this section, we will present the main pricing models considering d = 1, i.e. a

model with 2 assets, where one of the assets is a risk free bond. For the reader interested in

a more comprehensive reference of models, see Smith Jr (1976), Haug (2007a) and Haug

(2007b).

The following terminology is used: St ≥ 0, a random variable, is the stock price in

period t; K is the strike price of the option; r is the risk-free interest rate; T is the time to

expiration in years; σ ≥ 0 is the volatility of the underlying asset return; µ is the expected

rate of return on the underlying asset; and ct = c(St, t) is the price of the European call

option at time t.
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2.2.1 Bachelier model

Bachelier et al. (1964) assumes that the price process of the asset, S, is described

by an Arithmetic Brownian Motion, which is given by

dSt = µStdt+ σdWt,

where µ and σ are constants. Under a risk-neutral measure, Q, the asset price dynamics

are described as follows:

dSt = σdWQ
t , (14)

since it is implicitly assumed that r = 0. In Equation (14), we can see one of the biggest

objections raised by Smith Jr (1976), the asset price can assume negative values.

The call option price for the Bachelier model is given by

ct = E[(St −K)+]

= (St −K)N(d1) + σ
√
T − tN ′(d1), (15)

where N is the cumulative standard normal, N ′ is the standard normal density function

and d1 = St−K
σ
√
T−t . Note in Equation (15) the positive relationship between

√
T − t and ct,

this is another objection to using Bachelier’s model, because "the maximum value which

the call price can assume is not equal to the stock price", Smith Jr (1976)

2.2.2 Sprenkle Model

Sprenkle (1964) assumes that the price dynamics is given by a Geometric Brownian

Motion, GBM,

dSt = µStdt+ σStdWt (16)

where µ is the expected value of the asset return and σ is the volatility of the return. The

consequence of the Equation (16) is that the stock price has a lognormal distribution and

the return has a normal distribution. Since prices follow a log-normal distribution, we

eliminate the objection that the price can take on negative values.
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The formula for the call price for the Sprenkle model is given by:

ct = Ste
ζ(T−t)N(d1)− (1− k)KN(d2)

where

d1 =
ln(St/K) + (ζ + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

k is the degree of risk aversion of the market and ζ is the average rate of growth of the

asset price, eζ(T−t) = E[ST/St]. Note that, in the Sprenkle model, the strike value, K, is

not discounted.

2.2.3 The Boness Model

Boness (1964) assumes that the asset price is log normally distributed, as is

Sprenkle, and the price dynamics is given by (16). The call option formula derived by

Boness is

ct = StN(d1)−Ke−η(T−t)N(d2), (17)

where

d1 =
ln(St/K) + (η + σ2/2)(T − t)

σ
√
T

,

d2 = d1 − σ
√
T − t.

The Equation (17) is the same as the formula obtained by Black and Scholes

(1973), but Boness considers that each asset will have a growth rate η. This suggests that

Boness considers η as a proxy for the call option price growth, E(cT/ct), Smith Jr (1976).

2.2.4 Black Scholes

Black and Scholes (1973) presents a closed formula for pricing European options.

The authors greatest insight is the portfolio replication argument, Haug (2007a).
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Let us start by assuming that the market consists of a risky asset, a stock S, and a

riskless asset, a government bond B, whose dynamics are given by B:

dBt = rBtdt, (18)

dSt = Stµtdt+ StσtdWt, (19)

where the risk-free rate r is constant.

Suppose the European call ct price is a twice differentiable function. Using Itô’s

formula, we have that dct is given by

dct =

{
Stµt

∂ct
∂St

+
∂ct
∂t

+ σ2
tS

2
t

1

2

∂2ct
∂S2

t

}
dt+

∂ct
∂St

σtStdWt. (20)

Note that the dynamics of ct, like the dynamics of St, can be described as an Itô process.

Consider a portfolio consisting of a short position in a call option and a long

position in the stock. We will denote the value of this portfolio by Π, such that

Πt = ∆St − ct, (21)

where Πt is the value of the portfolio at period t. The portfolio dynamics is given by

dΠt = ∆dSt − dct. (22)

Substituting (18) and (19) into (22) we have

dΠt =∆

{
Stµtdt+ StσtdWt

}
−
{
Stµt

∂ct
∂St

+
∂ct
∂t

+ σ2
tS

2
t

1

2

∂2ct
∂S2

t

}
dt

+
∂ct
∂St

σtStdWt.

If we define the long position in stocks as ∆ = ∂ct
∂St

, we will have the following dynamics

dΠt =

{
− ∂ct

∂t
− 1

2

∂c2t
∂S2

t

σ2
tS

2
t

}
dt. (23)

Note that the portfolio dynamics given in (23) is risk-free during the period dt. We still

have that

dΠt = rΠtdt, (24)
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if the growth of Πt is different from r we will have an arbitrage opportunity, which is not

possible. Substituting (21) and (23) into (24) we obtain the famous Black-Scholes PDE

∂ct
∂t

+
1

2

∂c2t
∂S2

t

σ2
tS

2
t = rct. (25)

Note that to obtain the Black-Scholes PDE we need to be in an arbitrage-free

model. Consequently, there will be an exact replication of the payoff through a portfolio

strategy. Using Feynman-Kac to solve this PDE and Girsanov theorem to replace the

physical measure P by the risk neutral measure Q, we have that

ct = e−r(T−t)EQ[(ST −K)+]. (26)

Solving for (26), we get the following formula for the call option

ct = cBSt (St, K, T, σ, r) = StN(d1)− e−r(T−t)KN(d2), (27)

where

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

Where N(d2) can be interpreted as the probability that the underlying asset ends above the

strike price, Q(ST > K). Or simply, the probability of the underlying asset ending up in

the money.

2.2.5 Merton Model

The model proposed by Merton (1973) allows pricing options where the underlying

asset pays dividends. This model is most recommended for options on a stock index where

it is assumed that the index pays out a continuous dividend yield. For the case of options

on a single stock, it is more appropriate to treat the dividends as discrete, see Haug (2007b)

Chapter 9.

According to Merton, the price of an asset that pays dividends continuously at an

annualized rate q follows the following dynamics

dSt = (µ− q)Stdt+ σStdWt. (28)
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The PDE obtained from the SDE presented in (28) is given by

[
∂ct
∂t

+
1

2

∂2ct
∂S2

t

σ2S2
t + (r − q)

∂ct
∂St

St

]
dt = rct, (29)

for a more detailed demonstration see Lyuu (2002), Chapter 15. The solution to the PDE

presented above is given by

ct = e−q(T−t)StN(d1)− e−r(T−t)KN(d2), (30)

where

d1 =
ln(St/K) + (r − q + σ2/2)(T − t)

σ
√
T − t

, (31)

d2 = d1 − σ
√
T − t. (32)

2.2.6 Merton Jump-Diffusion Model

In the model proposed by Merton (1976) the price changes are formed by a

random component, Wiener process, with drift and a jump component that is modeled by

a compound Poisson process. The jumps in prices occur independently and identically

distributed. This jump term that is added in the GBM tends to cause incompleteness, due

to the greater difficulty of exact replication of a payoff, since stock prices are affected by

random size jumps, Staum (2007).

St = S0e
Lt , (33)

where the Lévy process, L, is given by

Lt = (µ− σ2

2
− λk)t+ σWt +

Nt∑
i=1

Yi. (34)

The first two terms on the right represent a Brownian motion with drift process and the

last term is a compound Poisson jump process.

The coumpound Poisson jump process has two sources of randomness. The first

source of randomness comes from the moment in time when the jump will occur. Merton

uses a Poisson process dNt with intensity λ to model this first phenomenon. And the
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second source of randomness is the size of the jump, given that a jump has occurred.

Merton assumes that the size of the jump in the log of the asset price is distributed as a

normal with mean µJ and variance σ2
J .

The probability that the asset price jumps during a small time interval dt is obtained

using the Poisson process dNt,

P{an asset price jumps once in dt} = P{dNt = 1} ≈ λdt, (35)

P{an asset price jumps more than once in dt} = P{dNt ≥ 2} ≈ 0, (36)

P{an asset price does not jump in dt} = P{dNt = 0} ≈ 1− λdt, (37)

where λ ∈ R+ is the mean number of jumps per unit of time which is independent of time

t.

The SDE proposed by the author that incorporates the above mentioned properties

is represented as follows,

dSt
St

= (µ− λk)Stdt+ σStdWt + (yt − 1)dNt, (38)

where σ is the instantaneous volatility of the asset return conditional on that jump does not

occur, Nt is an Poisson process with intensity λ, yt − 1 is the relative price jump size of

St, such that

dSt
St

=
ytSt − St

St
= yt − 1 ∼ LN(k = eµJ+

1
2
σ2
J − 1, e2µJ+σ

2
J (eσ

2
J − 1)). (39)

Furthermore, the processes Wt, Nt and yt given in equation (38) are independent. The

price of a call option for the Merton model is given by

ct =
∑
j≥0

e−λ(T−t)(λ(T − t))j

j!
cBSt (Sj ≡ Ste

jµJ+
jσ2

J
2

−λ(eµJ+σ2
J
2
−1)(T−t), K, T,

√
σ2 +

jσ2
J

T − t
, r).

(40)

where j represents the number of jumps that occur during the T − t time period.

2.2.7 Garman and Kohlhagen Model

The Model proposed by Garman and Kohlhagen (1983) is a model that aims to

price foreign exchange options (FX options). In the case of an FX option, we are buying
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the right to trade a currency pair at a specific price at a specific date. This means that we

are buying the base currency and selling the quote currency. Therefore, St will represent

the price of a given currency (domestic currency) per unit of quote currency at time t,

and K is the option strike price, also in local currency per unit of foreign currency. The

standard Black-Scholes model does not apply well since in this context, we will have two

interest rates, which differs from the assumptions of Black-Sholes.

The authors assume that the S dynamics is governed by a GBM, as in the Black

Scholes model, and thus the following PDE is obtained,

[
∂ct
∂t

+
1

2

∂2ct
∂S2

t

σ2S2
t + (r − rf )

∂ct
∂St

St

]
dt = rct, (41)

where rf is the foreign interest rate. Note that the PDE above is very similar to the PDE

presented by Merton (1973), equation (29), the main difference is that in the model for

dividend paying stocks we will replace rf by q. The solution to the PDE in the equation

(41) is given by

ct = e−rf (T−t)StN(d1)− e−r(T−t)KN(d2), (42)

where

d1 =
ln(St/K) + (r − rF + σ2/2)(T − t)

σ
√
T − t

, (43)

d2 = d1 − σ
√
T − t. (44)

2.2.8 Hull-White Model

The Hull-White model, Hull and White (1987), offers a closed-form solution to

the European option price problem when we have another equation that describes the

behavior of volatility over time. The dynamics of the asset price and the volatility obey the

following system of equations

dSt = µStdt+ σtStdW
1
t (45)

dvt = βvtdt+ εvtdW
2
t (46)

where vt = σ2
t , and ε > 0. In the equations above, W 1

t and W 2
t denote independent Wiener

process. Note that, in this model we have two sources of risk, W 1 and W 2. Consequently,
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the market will be incomplete, since it is not possible to hedge the risk factor associated

with stochastic volatility, W 2, as commented by Staum (2007).

The so-called average future variance is defined as

σ̃2 =
1

T − t

∫ T

t

σ2
sds (47)

where σ̃2
t is a random variable. The option price for the Hull-White model is obtained

taking the expected value, under a risk neutral measure Q, of the Black-Scholes formula

and replacing the constant volatility by the average future variance, equation (47), i.e.

ct = ct(St, K, T, σ̃
2
t , r) = e−r(T−t)EQ[c

BS
t (St, K, T,

√
σ̃2
t , r)]. (48)

For ϱ ̸= 0, there is correlation between W 1 and W 2, is possible to obtain the option prices

using Monte Carlo simulation.

2.2.9 Heston Model

The model presented by Heston (1993) stands out from other stochastic volatility

models because it allows a correlation, ϱ, between the shocks that drive the asset price and

its volatility and also presents an analytical solution for European options. Heston assumes

that the dynamics of the asset is given by a Geometric Brownian Motion, while volatility

evolves according to the process proposed by Cox et al. (1985). The underlying processes

of asset price and its volatility are presented below:

dSt = µStdt+
√
vtStdW

1
t (49)

dvt = κ[θ − vt]dt+ ξ
√
vtdW

2
t (50)

where κ > 0 is the mean reversion speed, i.e. the rate at which the variance converges to

its unconditional mean, θ > 0 is the long-term mean of the variance, ξ ≥ 0 represents the

volatility of the variance and vt is the level of variance at time t.

Note that while the Black-Scholes model presents only one source of risk, the

Heston model admits the change in volatility as another source of risk, where W1 and W2

are Wiener process with covariance dW1dW2 = ϱdt, ϱ ∈ (−1, 1). As with the Hull-White

model, Heston model will also be incomplete.
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The price ct of an European call option is defined as

ct = extP1(xt, vt, T )− e−r(T−t)KP2(xt, vt, T ) (51)

where xt = ln(St). The right side of the equation above is similar to the Black Scholes

formula, where P1 and P2 are the conditional probability of call option expiring in the

money, given the current value of the stock price and the current volatility.

2.3 Risk measures and Conic finance.

Let L∞ be the space of essentially bounded financial positions X , where X ≥ 0

is a gain and X < 0 is a loss. We define a risk measure ρ as ρ : L∞ → R. Our goal is to

model the risk measure in such a way that we can understand it as the bid and ask prices

of an asset, as presented in Madan and Cherny (2010).

2.3.1 Risk Measures

Definition 2.7. A measure ρ is called a monetary measure of risk if it satisfies the following

conditions, ∀ X, Y ∈ L∞

• (Monotonicity) If X ≤ Y , then ρ(X) ≥ ρ(Y ),

• (Cash Invariance) If m ∈ R, then ρ(X +m) = ρ(X)−m.

In general, by monotonicity we can say that if the payoff of X is less than the payoff of Y,

in all states of nature, then of course more capital is required to make the financial position

X acceptable. By cash invariance, we can say that the required capital of the position

X +m will be ρ(X)−m, since m is invested in a risk-free manner.

Definition 2.8. A convex risk measure ρ is a monetary risk measure that satisfies:

• (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for λ ∈ [0, 1].

The convexity property captures the idea of diversification. The required amount of

capital of a financial position formed by the convex combination of two other positions,
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λX + (1 − λ)Y , must be less than or equal to the convex combination of the required

capital of positions X and Y .

Definition 2.9. A coherent risk measure ρ is a convex measure that satisfies:

• (Positive homogeneity) If λ ≥ 0, then ρ(λX) = λρ(X).

The required capital of the financial position λX is equal to the required capital of the

financial position X multiplied by λ.

A coherent risk measure can also be defined using another property

• (Sub Additivity) ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

The convexity property is equivalent to the sub additivity property, under the assumption

of positive homogeneity.

A very important object in conic finance theory is the acceptance set, A. The set A

will represent the financial positions traded in the market, i.e. if X ∈ A, then the market

is willing to pay a certain amount to buy X and a certain amount to sell X . The results

below show the relationship between a risk measure and an acceptance set.

Definition 2.10. A monetary risk measure ρ induces the following acceptance set

Aρ := {X ∈ L∞ : ρ(X) ≤ 0}.

If X is acceptable, X ∈ Aρ, then X do not require surplus capital.

Theorem 2.5. (Föllmer and Schied (2016), Proposition 4.6.) Let ρ be a monetary risk

measure with acceptance set A := Aρ then:

1. A is non-empty.

2. inf{m ∈ R : m ∈ A} > −∞.

3. X ∈ A, Y ∈ L∞, Y ≥ X =⇒ Y ∈ A.

4. {λ ∈ [0, 1] : λX + (1− λ)Y ∈ A} is closed in [0, 1], for X ∈ A and Y ∈ L∞.
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5. ρ can be recovered from A

ρ(X) = inf{m ∈ R : m+X ∈ A}.

6. ρ is a convex risk measure if and only if A is a convex set.

7. ρ is positively homogeneous if and only if A is a cone. In particular, ρ is coherent if

and only if A is a convex cone.

A very important relation that was explored by Madan and Cherny (2010) is the

following equivalence relation presented in the seminal work of Artzner et al. (1999). The

authors show that any convex cone of acceptable financial positions A is defined by a

non-empty closed convex set of probability measures,

X ∈ A ⇐⇒ EQ[X] ≥ 0, ∀ Q ∈ D, (52)

where D, called supporting set or set of test measures, is a set of probability measures that

are absolutely continuous with respect to P. The Equation (52) tells us that the financial

position X will be in the cone of acceptable positions A if, and only if, all probability

measures that are in the set of test measures, D, approve the acceptability of the random

variable X .

The supporting set in Equation (52) formed by probability measures absolutely

continuous with respect to P is not unique. We can present the largest D set as

D = {Q ∈ P : EQ[X] ≥ −ρ(X),∀X ∈ L∞}, (53)

where P is the set of probability measures absolutely continuous with respect to P.

In the conic finance framework, the set A is modeled as a convex cone. Thus, the

equation (52) tells us that: if a financial position is traded in the market, i.e., X ∈ A, then

the infimum of the financial position expectations will be non-negative for a given set of

probability measures, i.e., infQ∈D EQ[X] ≥ 0. The equation (53) tells us what is the largest

set D in which the expectation, under each measure Q ∈ D, is non-negative.

Another object that is of fundamental importance and will be used to represent

each of the prices in this economy is the expected value. The expected value as detailed by
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Lo (2018), can be written as

E[X] =

∫ ∞

−∞
dFX(x) = −

∫ 0

−∞
FX(x)dx+

∫ ∞

0

(1− FX(x))dx. (54)

where all probabilities are treated uniformly. However, in some cases we are not inte-

rested in uniform treatment of the probabilities. In our case, a non-uniform treatment of

probabilities can help us interpret the bid and ask price.

One area that commonly does not treat probabilities uniformly is the area of

insurance. In this area, the insurance company will assume an individual’s risk and in

return the insured will pay an amount to the insurance company, this amount is called the

premium. To ensure that the insurance company does not go bankrupt, the premium has to

be larger than the expected loss.

In this case the expected loss is defined as the equation (54), but for a non-negative

random variable X . The premium is obtained through a distortion made in the survival

function, ψ(1− FX(x)), such that the following property hold

ψ(q) ≥ q, q ∈ [0, 1]. (55)

Consequently, the difference between the premium charged by the insurance company,

Eψ[X], and the expected loss is∫ ∞

0

xdψ(FX(x))−
∫ ∞

0

xdFX(x) ≥ 0, (56)

Eψ[X]− E[X] ≥ 0, (57)

and its called risk premium. Note that the condition established in (55) guarantees that the

risk premium is non-negative.

The concepts presented from the insurance area are useful for describing the

behavior of prices, in a two-price economy. Since it is possible to interpret the ask price

as the result of an underweighting of losses and an overweighting of gains, while the bid

price is the result of an overweighting of losses and an underweighting of gains, Leippold

and Schärer (2017). A formal definition for the distortion and for the distorted expectation

will be given below.
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Definition 2.11. Let ψγ : [0, 1] → [0, 1], ψγ is called a concave distortion function if and

only if ψγ is monotone, ψγ(0) = 0 and ψγ(1) = 1. The set {ψγ}γ≥0 is called a family of

concave distortions. Moreover,

1. ψγ1(u) ≤ ψγ2(u) for γ1 ≤ γ2, u ∈ [0, 1],

2. the map u 7→ ψγ(u) is continuous on (0, 1],

3. the map γ 7→ ψγ(u) is continuous for all u ∈ [0, 1],

4. For γ = 0, ψ0(u) = u, for u ∈ [0, 1],

5. limγ→∞ ψγ(u) = 1, for u ∈ (0, 1].

Using the concave distortion function it is possible to compute the distorted probability

ψγ(P(U)) with respect to some distortion function ψγ , for U ∈ F . Clearly, the distorted

probability measure ψγ ◦ P is not a probability measure in general, since the additivity

property is not satisfied. However, since ψγ is a concave function, ψγ ◦ P will be 2-

alternating or submodular.

The premium that an insurance company charges, presented in the equation (56),

can be called a Choquet expectation. This type of expectation will be very important to

describe the prices of a financial position. The concept of a Choquet expectation is directly

related to the Choquet integral and both concepts are defined below.

Definition 2.12. Let ψγ be a concave distortion function and X be a financial position.

The Choquet integral is defined as∫
Ω

Xd(ψγ ◦ P) =
∫ 0

−∞
[(ψγ(P(X > x))− 1]dx+

∫ ∞

0

(ψγ(P(X > x))dx, (58)

and the function Eψ[.] : L∞ → R given by

Eψ[X] := −
∫ 0

−∞
ψγ(FX(x))dx+

∫ ∞

0

[1− ψγ(FX(x))]dx (59)

is called a distorted expectation or Choquet expectation.

Note that, the Choquet expectation can be written as Eψ[X] = −
∫
Ω
(−X)d(ψγ ◦

P). Representing the Choquet expectation by it is integral, it is possible to verify that
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the expectation without distortion and the Choquet expectation share the properties of

monotonicity, translation invariance and positivite homogeneity. For a list of properties

satisfied by Choquet integral, see Ridaoui and Grabisch (2016).

The Table 1 presents the seven most commonly used distortions in the literature.

Among the functions presented, only the function ψV aRγ is not a concave distortion, all the

others are concave and, consequently, are adequate to distort the expectation and represent

the premium charged by an insurance company or represent the bid and ask prices of a

given financial position.

Table 1 – Distortion Functions

Risk Measures Function
VaR ψV aRγ (u) = 1{u≥ 1

1+γ
}, γ ≥ 0

CVaR ψCV aRγ (u) = min{u(1 + γ), 1}, γ ≥ 0

MINVAR ψMINV AR
γ (u) = 1− (1− u)1+γ, γ ≥ 0

MAXVAR ψMAXV AR
γ (u) = u

1
1+γ , γ ≥ 0

MAXMINVAR ψMAXMINV AR
γ (u) = (1− (1− u)γ+1)

1
1+γ , γ ≥ 0

MINMAXVAR ψMINMAXV AR
γ (u) = 1− (1− u

1
1+γ )γ+1, γ ≥ 0

WANG ψWANG
γ (u) = N(N−1(u) + γ), γ ≥ 0

Source: Elaborated by the author.

The most common distortions in the literature are ψV aRγ and ψCV aRγ . The Wang

distortion, ψWANG
γ , is also used frequently and was presented in Wang (2000). The other

distortions will be discussed briefly below.

The third distortion presented in the Table 1,

ψMINV AR
γ (u) = 1− (1− u)γ+1, γ ≥ 0, u ∈ [0, 1]. (60)

is associated with a risk measure called MINVAR. The MINVAR risk measure is defined

as ρMINV AR
γ (X) = −E[Y ], where

Y
d
= min{X1, . . . , Xγ+1}

and X1, . . . , Xγ+1 are independent draws of X . Then, the risk measure obtained by

computing the distorted expectation using the concave distortion (60) is equal to the

negative of the expected value of the minimum of the γ + 1 draws of X .
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The concave distorted function below

ψMAXV AR
γ (u) = u

1
γ+1 , γ ≥ 0, u ∈ [0, 1]. (61)

is associated with a risk measure ρMAXV AR
γ (X) = E[Y ], called MAXVAR, where Y is a

random variable,

X
d
= max{Y1, . . . , Yγ+1}

and Y1, . . . , Yγ+1 are independent draws of Y . Then, the risk measure obtained by compu-

ting the distorted expectation using the distortion (61) is equal to the expected value of

Y .

The risk measure ρMINMAXV AR
γ (X) = −E[Y ], is called MINMAXVAR risk

measure and is associate with a combination of two concave distortions, MINVAR and

MAXVAR,

ψMINMAXV AR
γ (u) = (1− (1− u

1
1+γ ))1+γ, (62)

where Y is a random variable that satisfy

Y
d
= min{Z1, . . . , Zγ+1} and max{Z1, . . . Zγ+1}

d
= X, (63)

and Z1, . . . , Zγ+1 are independent draws of Z.

The distortion below is the combination of MINVAR and MAXVAR distortions,

ψMAXMINV AR
γ (u) = (1− (1− u)1+γ)

1
1+γ (64)

The risk measure associate to this distortion, ρMAXMINV AR
γ (X) = −E[Y ], is called

MAXMINVAR, where Y is a random variable that satisfy the following property,

max{Y1, . . . , Yγ+1}
d
= min{X1, . . . , Xγ+1}, (65)

i.e., the minimum of γ + 1 independent draws of X has the same distribution as the

maximum γ + 1 independent draws of Y .

The example below makes clear the relationship between the Choquet integral and

the risk measures.
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Example 2.1. Let X be a non-negative random variable, X : Ω → R+, and ψV aRγ a

distortion function as presented in Table 1. The distorted function is given by

ψV aRγ (FX(x)) =

0, 0 ≤ FX(x) ≤ 1− α,

1, 1− α ≤ FX(x) ≤ 1.

Using the Choquet integral,∫ +∞

0

[1− ψV aRγ (FX(x))]dx =

∫ F−1
X (1−α)

0

dx+

∫ ∞

F−1
X (1−α)

[1− 1]dx

=

∫ F−1
X (1−α)

0

dx = F−1
X (1− α)

Then, it is clear that it is possible to represent the VaR risk measure using a Choquet

integral with a distortion function, ψV aRγ .

2.3.2 Conic finance

This subsection contains the main definitions and results for modeling the bid and

ask price according to conic finance theory.

The first function to be introduced is the acceptability index. This function is

chosen by the agent and is responsible for telling us which financial position will be traded

in the market for a given level of liquidity.

Definition 2.13. The function α : L∞ → [0,∞] is an acceptability index. We say that a

financial position X is acceptable at γ ≥ 0 if

α(X) ≥ γ. (66)

The coefficient γ can be interpreted as the market liquidity level, Leippold and Schärer

(2017). In this context, we will have acceptable positions for each liquidity level, where the

higher γ the more illiquid the market is (in a complete market γ = 0). The acceptability

index, α, must satisfy the following properties

• (Quase-concavity): α(X) ≥ γ and α(Y ) ≥ γ, then α(λX + (1 − λ)Y ) ≥ γ for

λ ∈ [0, 1].
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• (Monotonicty): If X ≤ Y . then α(X) ≥ α(Y ).

• (Scale Invariance): If λ ≥ 0, then α(λX) = α(X).

• (Fatou property): If a sequence of financial positions, {Xn}, such that |Xn| ≤ 1,

with Xn converging to X in probability and the position Xn is acceptable at the γ

level, α(Xn) ≥ γ, then α(X) ≥ x.

The Quasi-concavity, monotonicity and scale invariance properties are similar to the

convexity, monotonicity and scale invariance properties presented at the beginning of this

subsection, but here these properties are presented in an index of acceptability context. The

Fatou property will guarantee a certain continuity of the α function. The main theorem

involving these functions will be presented below.

Theorem 2.6. The function α : L∞ → [0,∞] is an index of acceptability if and only if

α(X) = sup

{
γ ∈ R+ : inf

Q∈Dγ

EQ[X] ≥ 0

}
, (67)

where inf ∅ = ∞ and sup ∅ = 0, and there exists a family of subsets {Dγ}γ∈R+ of P such

that Dγ ⊆ Dγ′ for γ ≤ γ′.

It is clear that there is a relationship between acceptability indexes and risk measu-

res. According to Cherny and Madan (2009), if α is an acceptability index, then it can be

written as

α(X) = sup{γ ∈ R+ : ργ(X) ≤ 0}, (68)

where ργ(X) = − infQ∈Dγ EQ[X] is a coherent risk measure and {ργ}γ∈R+ is a family of

coherent risk measures that are increasing in γ with the property that α(X) is the largest

level γ such that the financial position X is acceptable to the level γ,

α(X) ≥ γ ⇐⇒ EQ[X] ≥ 0, for any Q ∈ Dγ (69)

and Dγ ⊆ Dγ′ for any γ′ > γ.

Assuming that the market will trade only financial positions acceptable at a certain

level of liquidity, γ, for a fixed acceptability index α and assuming further that the market
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is not complete, we will have a price range where trades will occur. The two most relevant

prices in this range are the bid and ask prices.

The market will accept to sell the financial position X at the minimum price a,

ask price. However, this residual cash flow a − X must be α-acceptable at the γ level.

For a − X to be acceptable at the γ level the price a must exceed EQ[X], ∀ Q ∈ Dγ .

Consequently, the minimum price will be given by

aγ(X) = inf{a : α(a−X) ≥ γ}

= inf

{
a :

(
inf

Q∈Dγ

EQ[a−X]

)
≥ 0

}
= inf

{
a :

(
a+ inf

Q∈Dγ

EQ[−X]

)
≥ 0

}
= inf

{
a : a ∈

[
− inf

Q∈Dγ

EQ[−X],∞
)}

= − inf
Q∈Dγ

EQ[−X] = ργ(−X)

where ργ(−X) is increasing in γ. On the other hand, the market will be willing to pay a

maximum price b, bid price, for the financial position X . Where the cash flow X − b must

be α-acceptable at the γ level. This maximum price is given by

bγ(X) = sup{b : α(X − b) ≥ γ}

= sup

{
b :

(
inf

Q∈Dγ

EQ[X − b]

)
≥ 0

}
= sup

{
b :

(
inf

Q∈Dγ

EQ[X]− b

)
≥ 0

}
= sup

{
b : b ∈

(
0, inf

Q∈Dγ

EQ[X]

]}
= inf

Q∈Dγ

EQ[X] = −ργ(X)

Therefore, if the price b at the γ level does not exceed EQ[X], ∀ Q ∈ Dγ , then X − b will

be acceptable. Note that, both prices can be represented by a family of coherent increasing

measures in γ.

As suggested in Cherny and Madan (2009) and Madan and Cherny (2010), an

acceptability index can be constructed from a family of concave distortions. Therefore, the

acceptability index, Theorem (2.6), can be represented as

α(X) =

{
γ ≥ 0 :

∫ ∞

−∞
xdψγ(FX(x)) ≥ 0

}
. (70)
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For this new representation of the acceptability index, the following equivalence relation

will hold

α(X) ≥ γ ⇐⇒
∫ ∞

−∞
xdψγ(FX(x)) ≥ 0.

Therefore, the bid and ask price for the framework presented by Madan and Cherny (2010)

can be written as

aγψ(X) = inf{a : α(a−X) ≥ γ}

= inf

{
a :

∫ ∞

−∞
xdψγ(Fa−X(x)) ≥ 0

}
= −

∫ ∞

−∞
xdψγ(F−X(x))

= −EγQ[−X],

bγψ(X) = sup{b : α(X − b) ≥ γ}

= sup

{
b :

∫ ∞

−∞
xdψγ(FX−b(x)) ≥ 0

}
=

∫ ∞

−∞
xdψγ(FX(x))

= EγQ[X].

Note that, the bid and ask prices can be obtained through a Choquet expectation, just as is

done in the insurance field.

A remark about the integral given in equation (70). If the density function of X is

given by fX(x) = F ′
X(x) and if ψγ is differentiable, then∫ ∞

−∞
xdψγ(FX(x)) =

∫ ∞

−∞
xψγ

′
(FX(x))fX(x)dx.

Note that in this case, the distorted expectaion can be interpreted as the expectation under a

probability measure Qγ , whose density with respect to P, obtained by the Radon-Nikodym

Theorem, is given by ψγ′(FX(x)). As such, the density of the financial position X distorts

more and more to the left as γ increases.
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3 Proposed Approach

The main objective of this dissertation is the introduction of a spread function that

allows modeling each of the trading directions in a distinct way. To accomplish this, we

need to introduce a new configuration that will take into account two acceptability indices,

α1 and α2. One index is related to one direction of the trade and the other index will be

related to the other direction, both indices will be represented by a family of concave

distortions. Since each of these two indices are different, the two families of concave

distortions will be different. In this case, the following equivalence relations hold for

X ∈ L∞,

α1(X) ≥ γ ⇐⇒
∫ ∞

−∞
xdψγ1 (FX(x)) ≥ 0, (71)

α2(X) ≥ γ ⇐⇒
∫ ∞

−∞
xdψγ2 (FX(x)) ≥ 0. (72)

In this new framework we will have three sets of financial positions, A1, A2 and A∗.

A1 is the convex cone of traded positions in the bid direction, i. e. α1(X) ≥ γ,X ∈ L∞.

A2 is the convex cone of positions traded in the ask direction, i.e. α2(X) ≥ γ,X ∈ L∞.

We will denote by A∗ the set of financial positions that are traded in both directions, i.e.

A∗ = A1 ∩ A2. We know that the finite intersection of convex sets is again a convex set

and the intersection of cones is again a cone. Therefore, A∗ is a convex cone. Note that

our convex cone contains the same financial positions that are in the convex cone of the

framework presented by Madan and Cherny (2010), i.e. A∗ = A.

Assuming that the market is incomplete and will trade only financial positions

acceptable by the α1 and α2 indices at the γ level, the ask and bid prices will be as follows.

Definition 3.1. Let ψ1 and ψ2 be two concave distortion functions and γ the liquidity level

for two fixed acceptability indexes, α1 and α2. Then the bid and ask prices of a financial
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position are given by:

bγψ1
(X) : = sup{b ∈ R+ : α1(X − b) ≥ γ}

= sup

{
b ∈ R+ :

∫ ∞

−∞
xdψγ1 (FX−b(x)) ≥ 0

}
=

∫ ∞

−∞
xdψγ1 (FX(x))

= Eψ1,γ
Q [X] (73)

= −
∫ 0

−∞
ψγ1 (FX(x))dx+

∫ ∞

0

[1− ψγ1 (FX(x))]dx (74)

aγψ2
(X) : = inf{a ∈ R+ : α2(a−X) ≥ γ}

= inf

{
a ∈ R+ :

∫ ∞

−∞
xdψγ2 (Fa−X(x)) ≥ 0

}
(75)

= −Eψ2,γ
Q [−X].

=

∫ 0

−∞
[ψγ2 (F−X(x))]dx+

∫ ∞

0

[ψγ2 (F−X(x))− 1]dx (76)

Before we go on and introduce the main object of study of this dissertation, it is

necessary to introduce the properties that bid and ask will satisfy.

Theorem 3.1. Let bγψ1
and aγψ2

be defined in 3.1, a given γ, m ∈ R and λ ≥ 0. Then the

following properties will hold,

1. (Monotonicity ) If X ≥ Y , then bγψ1
(X) ≥ bγψ1

(Y ) and aγψ2
(X) ≥ aγψ2

(Y ),

2. (Translation Invariance) If m ∈ R, then bγψ1
(X +m) = bγψ1

(X) +m and aγψ2
(X +

m) = aγψ2
(X) +m,

3. (Positive homogeneity) If λ ≥ 0, then bγψ1
(λX) = λbγψ1

(X) and aγψ2
(λX) =

λaγψ2
(X),

4. (Comonotonic additivity) IfX and Y are comonotonic, i.e.
(
X(ω0)−X(ω1)

)(
Y (ω0)−

Y (ω1)
)
≥ 0,∀ ω0, ω1 ∈ Ω, then bγψ1

(X+Y ) = bγψ1
(X)+bγψ1

(Y ) and aγψ2
(X+Y ) =

aγψ2
(X) + aγψ2

(Y ),

In addition, the following property will hold only for the bid price
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5. (Superadditivity) bγψ1
(X + Y ) ≥ bγψ1

(X) + bγψ1
(Y ),

and this next property will hild only to the ask price,

6. (Subadditivity) aγψ2
(X + Y ) ≤ aγψ2

(X) + aγψ2
(Y ).

Proof. The properties are easily checked if we rewrite the prices as Choquet integrals, i.e.

bγψ1
(X) = −

∫
Ω

(−X)dψ1 ◦ P and aγψ2
(X) =

∫
Ω

Xdψ2 ◦ P

■

Once this new configuration has been presented, we can now introduce the main

object of this work, the spread function. This function represents the difference between

the ask and bid prices for a given financial position and is commonly presented in the

literature. However, the spread function that will be presented next encompasses all the

cases presented in the literature and allows us to add more cases.

Definition 3.2. Let aγψ2
and bγψ1

be the ask and bid prices under the concave distortions ψ2

and ψ1, respectively. The spread function, Rγ
ψ1,ψ2

: L∞ → R, for a financial position X is

given by

Rγ
ψ1,ψ2

(X) := aγψ2
(X)− bγψ1

(X). (77)

From the above definition it is clear that we can use the function Rγ
ψ1,ψ2

for the case where

we are interested in a single distortion, i.e. ψ1(u) = ψ2(u), ∀ u ∈ [0, 1], but we can also

use the function Rγ
ψ1,ψ2

for the case where we are interested that ψ1 is different from ψ2.

Thus, the papers that compute the spread using a single distortion such as Bannör and

Scherer (2014), Chen et al. (2019) and Luo and Chen (2021), can be considered a particular

case of Rγ
ψ1,ψ2

considering ψ1(u) = ψ2(u),∀ u ∈ [0, 1]. However, we can consider more

cases, where ψ1 and ψ2 functions are different. These cases can be interpreted as a scenario

where an agent is under a certain restriction to buy or sell the payoff, for example.

The Theorem below presents the main properties satisfied by the spread function.

Theorem 3.2. Let ψ1 and ψ2 be concave distortions, a given γ, m ∈ R and λ ≥ 0.

The spread function, Rγ
ψ1,ψ2

, satisfies the following properties, for the financial positions

X, Y ∈ L∞:
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1. (Positive homogeneity) Rγ
ψ1,ψ2

(λX) = λRγ
ψ1,ψ2

(X);

2. (Law invariance) If X and Y have the same distribution function, i.e. X d
= Y , then

Rγ
ψ1,ψ2

(X) = Rγ
ψ1,ψ2

(Y );

3. (Comonotonic additivity) IfX and Y are comonotonic, i.e.
(
X(ω0)−X(ω1)

)(
Y (ω0)−

Y (ω1)
)
≥ 0,∀ ω0, ω1 ∈ Ω, then Rγ

ψ1,ψ2
(X + Y ) = Rγ

ψ1,ψ2
(X) +Rγ

ψ1,ψ2
(Y );

4. (Location invariance) Rγ
ψ1,ψ2

(X +m) = Rγ
ψ1,ψ2

(X);

5. (Subadditivity) Rγ
ψ1,ψ2

[X + Y ] ≤ Rγ
ψ1,ψ2

[X] +Rγ
ψ1,ψ2

[Y ];

6. (Standardization) Rγ
ψ1,ψ2

(m) = 0 .

Proof. 1. As the bid and ask prices satisfy the positive homogeneity property, we have

that

Rγ
ψ1,ψ2

(λX) = aγψ2
(λX)− bγψ1

(λX)

= λaγψ2
(X)− λbγψ1

(X)

= λ

(
aγψ2

(X)− bγψ1
(X)

)
= λRγ

ψ1,ψ2
(X)

2. The Location invariance property is obtained directly from the Cash invariance

property of prices,

Rγ
ψ1,ψ2

(X +m) = aγψ2
(X +m)− bγψ1

(X +m)

= aγψ2
(x) +m− (bγψ1

(X) +m)

= aγψ2
(X)− bγψ1

(X)

= Rγ
ψ1,ψ2

(X)

3. From the Law invariance of prices we obtain the Law invariance of the spread,

aγψ2
(X) = aγψ2

(Y ),

bγψ1
(X) = bγψ1

(Y ),

if X d
= Y . Therefore,

Rγ
ψ1,ψ2

(X) = aγψ2
(X)− bγψ1

(X) = aγψ2
(Y )− bγψ1

(Y ) = Rγ
ψ1,ψ2

(Y ).
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4. By additive comonoticity of the prices, we have the following equalities

aγψ2
(X + Y ) = aγψ2

(X) + aγψ2
(Y ),

bγψ1
(X + Y ) = bγψ1

(X) + bγψ1
(Y ).

Then,

Rγ
ψ1,ψ2

(X + Y ) = aγψ2
(X + Y )− bγψ1

(X + Y )

= aγψ2
(X) + aγψ2

(Y )− bγψ1
(X)− bγψ1

(Y )

= Rγ
ψ1,ψ2

(X) +Rγ
ψ1,ψ2

(Y ).

5. We have seen,

aγψ2
(X + Y ) ≤ aγψ2

(X) + aγψ2
(Y )

−bγψ1
(X + Y ) ≤ −bγψ1

(X)− bγψ1
(Y )

Then,

aγψ2
(X + Y )− bγψ1

(X + Y ) ≤ aγψ2
(X) + aγψ2

(Y )− bγψ1
(X + Y )

≤ aγψ2
(X) + aγψ2

(Y )− bγψ1
(X)− bγψ1

(Y )

Therefore,

Rγ
ψ1,ψ2

(X + Y ) ≤ Rγ
ψ1,ψ2

(X) +Rγ
ψ1,ψ2

(Y ),

the spread function is subadditivity.

6. Note that for the Choquet integral, we have that

aγψ2
(m) = −EQ[−m] =

∫
mdψ2 ◦ P = m

bγψ1
(m) = EQ[m] = −

∫
(−m)dψ1 ◦ P = m.

Therefore,

Rγ
ψ1,ψ2

(m) = aγψ2
(m)− bγψ1

(m) = 0.

■
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Remark 1. The forward implication of items 1. and 5. of Theorem 3.2 is that the spread

function satisfies the convexity property. By induction, we have that the spread of a

portfolio of financial positions will be less than or equal to the sum of the spreads of all the

financial positions in that portfolio. Equality between the spread of a portfolio and the sum

of all spreads will occur when all financial positions have the same distribution function.

Theorem 3.3. Let ψ1 and ψ2 be two concave distortions and a given γ ≥ 0. Then, the bid

and ask prices will satisfy the following properties:

1. bγψ1
and aγψ2

are continuous functions,

2. If ψ1(u) = ψ2(u), ∀u ∈ [0, 1], then bγψ1
(X) ≤ aγψ2

(X) for all X ∈ L∞,

3. The ask price can be represented as

aγψ2
(X) =

∫ 1

0

F−1
X (1− p)dψγ2 (p),

4. The bid price can be represented as

bγψ1
(X) =

∫ 1

0

F−1
X (p)dψγ1 (p).

Proof. 1. Note that, since the bid price is increasing function, we have

bγψ1
(Y ) ≤ bγψ1

(X + ||X − Y ||∞) = bγψ1
(X) + ||X − Y ||∞

bγψ1
(Y )− bγψ1

(X) ≤ ||X − Y ||∞

|bγψ1
(Y )− bγψ1

(X)| ≤ ||X − Y ||∞

Therefore, bγψ1
is Lipschitz continuous with respect L∞-norm. In a similiar way what

was done for the bid price, since

aγψ2
(Y ) ≤ aγψ2

(X + ||X − Y ||∞),

we are able to prove that

|aγψ2
(X)− aγψ2

(Y )| ≤ ||X − Y ||∞.
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2. For this prove, rewrite the bid and ask functions as

aψ2,γ(X) =

∫ ∞

0

ψγ2 (F−X(−x))dx+
∫ 0

−∞
[ψγ2 (F−X(−x))− 1]dx, (78)

bψ1,γ(X) =

∫ 0

−∞
[−ψγ1 (FX(x))]dx+

∫ ∞

0

[1− ψγ1 (FX(x))]dx. (79)

From the concavity of the distortion, we have that ψγ1 (u) + ψγ1 (1− u) ≥ 1. Then,

−ψγ1 (1− u) ≤ ψγ1 (u)− 1, (80)

1− ψγ1 (1− u) ≤ ψγ1 (u). (81)

Using the equations (80) and (81), by Choquet monotonicity, we have that∫ 0

−∞
[−ψγ1 (1− u)]dv ≤

∫ 0

−∞
[ψγ1 (u)− 1]dv,∫ ∞

0

[1− ψγ1 (1− u)]dv ≤
∫ ∞

0

ψγ1 (u)dv.

Let u = F−X(−v), we obtain∫ 0

−∞
[−ψγ1 (1− F−X(−v))]dv ≤

∫ 0

−∞
[ψγ1 (F−X(−v))− 1]dv,∫ ∞

0

[1− ψγ1 (1− F−X(−v))]dv ≤
∫ ∞

0

ψγ1 (F−X(−v))dv.

Therefore∫ 0

−∞
[−ψγ1 (1− F−X(−v))]dv +

∫ ∞

0

[1− ψγ1 (1− F−X(−v))]dv

≤
∫ 0

−∞
[ψγ1 (F−X(−v))− 1]dv +

∫ ∞

0

ψγ1 (F−X(−v))dv,

bγψ1
(X) ≤ aγψ2

(X).

We conclude that, when distortions are equal, the ask function is always greater than

or equal to the bid function, for a given γ and X ∈ L∞.

3. We can rewrite the ask price equation as

aγψ2
(X) =

∫ ∞

0

ψγ2 (P(X ≥ x))dx−
∫ 0

−∞
[1− ψγ2 (P(X ≥ x))]dx. (82)
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Note that,ψγ2 (P(X ≥ x) =
∫ P(X≥x)
0

dψγ2 (p) and 1−ψγ2 (P(X ≥ x) =
∫ 1

P(X≥x) dψ
γ
2 (p).

Applying Fubini’s theorem and using the equivalence relation of the equation (1),

the first integral of the ask price is transformed into

∫ ∞

0

∫ P(X≥x)

0

dψγ2 (p)dx =

∫ P(X≥0)

0

∫ F−1
X (1−p)

0

dxdψγ2 (p)

=

∫ P(X≥0)

0

F−1
X (1− p)dψγ2 (p). (83)

Similarly, we can rewrite the second integral of (82) as∫ 0

−∞

∫ 1

P(X≥x)
dψγ2 (p)dx =

∫ 1

P(X≥0)

∫ 0

F−1
X (1−p)

dxdψγ2 (p)

= −
∫ 1

P(X≥0)

F
−1

X

(1− p)dψγ2 (p). (84)

Replacing (83) and (84) in (82), we obtain

aγψ2
(X) =

∫ 1

0

F−1
X (1− p)dψγ2 (p).

4. We can express ψγ1 (P(X ≤ x) and 1 − ψγ1 (P(X ≤ x) as
∫ P(X≤x)
0

dψγ1 (p) and∫ 1

P(X≤x) dψ
γ
1 (p), respectively. So, the first integral of the right-hand side of the

equation (74), the bid price equation, can be rewritten using Fubini’s theorem and

the equivalence relation (1) as

−
∫ 0

−∞

∫ P(X≤x)

0

dψγ1 (p)dx = −
∫ P(X≤0)

0

∫ 0

F−1
X (p)

dxdψγ1 (p)

=

∫ P(X≤0)

0

F−1
X (p)dψγ1 (p). (85)

Similarly, for the second equation on the right-hand side of (74),∫ ∞

0

∫ 1

P(X≤x)
dψγ1 (p)dx =

∫ 1

P(X≤0)

∫ F−1
X (p)

0

dxdψγ1 (p)

=

∫ 1

P(X≤0)

F−1
X (p)dψγ1 (p). (86)

Inserting (85) and (86) in (74), we conclude our demonstration.

■

35



Item 1 of Theorem 3.3 guarantees that both prices are Lipschitz continuous. For the

special case where both distortions are equal, we will have that the bid price of a financial

position will always be greater than or equal to the ask price, which is empirically adequate.

In items 3. and 4. a form of representation for bid and ask prices using quantiles is exposed.

The above representations can be understood as a particular case of the representations

presented in Wang et al. (2020), Lemma 3. In that work, the authors represented using

quantiles a larger class of Choquet Integrals, as signed Choquet Integrals.

Theorem 3.4. Let ψ1 and ψ2 be concave distortions and a given γ. The spread function,

Rγ
ψ1,ψ2

, satisfies the following properties, for the financial positions X, Y ∈ L∞:

1. Rγ
ψ1,ψ2

is a continuous function,

2. Ifψ1(u) = ψ2(u),∀ u ∈ [0, 1], then the spread function is non-negative,Rγ
ψ1,ψ2

(X) ≥

0,

3. If ψ1(u) = ψ2(u),∀ u ∈ [0, 1], then the map γ → Rγ
ψ1,ψ2

is increasing,

4. If γ = 0, Rγ
ψ1,ψ2

(X) = 0, for all X ∈ L∞,

5. If γ → ∞, then Rγ
ψ1,ψ2

(X) = range(X), i.e. limγ→∞Rγ
ψ1,ψ2

(X) = range(X).

Proof. 1. To prove that the spread function will be continuous we will use the inequa-

lities obtained above. First, note that the difference of the spread function for two

financial positions X and Y in the co-domain metric is given by

|Rγ
ψ1,ψ2

(X)−Rγ
ψ1,ψ2

(Y )| = |aγψ2
(X)− bγψ1

(X)− aγψ2
(Y ) + bγψ1

(Y )|.

By the triangular inequality we have that

|Rγ
ψ1,ψ2

(X)−Rγ
ψ1,ψ2

(Y )| ≤ |aγψ2
(X)− aγψ2

(Y )|+ |bγψ1
(X)− bγψ1

(Y )|.

Therefore, from the inequalities above

|Rγ
ψ1,ψ2

(X)−Rγ
ψ1,ψ2

(Y )| ≤ 2||X − Y ||∞,

where the Lipschitz constant is 2.
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2. This property follows directly from item 2 of Theorem 3.3.

3. By definition, we have that

ψγ11 (u) ≤ ψγ21 (u) ≤ ψγ31 (u) ≤ . . . , (87)

for a given u and γ1 ≤ γ2 ≤ γ3 ≤ . . . . Writing the negative of the equation (87), in

terms of 1− u, we will get

−ψγ11 (1− u) ≥ −ψγ21 (1− u) ≥ −ψγ31 (1− u) ≥ . . . . (88)

Using the inequalities presented in (80) and (81), we can easily verify that

· · · ≤ −ψγ31 (1− u) ≤ −ψγ21 (1− u) ≤ −ψγ11 (1− u) (89)

≤ ψγ11 (u)− 1 ≤ ψγ21 (u)− 1 ≤ ψγ31 (u)− 1 ≤ . . . ,

· · · ≤ 1− ψγ31 (1− u) ≤ 1− ψγ21 (1− u) ≤ 1− ψγ11 (1− u) (90)

≤ ψγ11 (u) ≤ ψγ21 (u) ≤ ψγ31 (u) ≤ . . . .

We have seen that

−ψγ11 (1− u) + 1− ψγ11 (1− u) ≤ ψγ11 (u)− 1 + ψγ11 (u), (91)

where if we integrate both sides of the equation (91) and replace u by F
X
(−v), we

obtain the result of item 2. of Theorem 3.3, i.e. bγψ1
(X) ≤ aγψ2

(X). Then, repeating

the procedure presented in equation (91) for all terms of equations (89) and (90), we

have that

· · · ≤ −ψγ21 (1− u) + 1− ψγ21 (1− u) ≤ −ψγ11 (1− u) + 1− ψγ11 (1− u)

ψγ11 (u)− 1 + ψγ11 (u) ≤ ψγ21 (u)− 1 + ψγ21 (u) ≤ ψγ31 (u)− 1 + ψγ31 (u) ≤ . . .

Integrating and using u = F−X(−x), we have that

− bγ1ψ1
≤ −bγ2ψ1

≤ −bγ3ψ1
≤ . . .

aγ1ψ1
≤ aγ2ψ1

≤ aγ3ψ1
≤ . . . .

We know that the sum of two increasing functions is another increasing function.

Therefore, we obtain that Rγ
ψ1,ψ2

is an increasing function
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4. In the case where γ = 0, we know by Definition 2.11, that the function ψ1 will not

distort the probabilities, i.e. ψ0
1(u) = u for u ∈ [0, 1]. So, the bid and ask prices can

be writen as

a0γ2(X) = −
{
−

∫ 0

−∞
F−X(x)dx+

∫ ∞

0

[1− F−X(x)]dx

}
,

b0γ1(X) = −
∫ 0

−∞
FX(x)dx+

∫ ∞

0

[1− FX(x)]dx.

Therefore, rewriting the ask as in equation (78), is easy to verify that

R0
ψ1,ψ2

= a0γ2(X)− b0γ1(X) = 0,

i.e. for the market with perfect liquidity, γ = ∞, we will have that the bid is equal

to the ask.

5. Note that, we have {ψγ}γ≥0, where

ψγ(u) =


1, u = 1

ψγ(u) ∈ (0, 1), u ∈ (0, 1)

0, u = 0

If γ → ∞, by Definition 2.11,

lim
γ→∞

ψγ(u) = f(u) =

1, u ∈ (0, 1]

0, u = 0

i.e., ∀ ε > 0,∀ u ∈ [0, 1], ∃ γ ∈ R, such that,

γ > γ∗ =⇒ |ψγ(u)− f(u)| < ε.

Basically, from the definition, if γ > γ∗, ψγ(u) is inside a open ball with radius ε

and center f(u),

ψγ(u) ∈ (f(u)− ε, f(u) + ε),

So, ψγ converges pointwise to f . It is clear that the sequence {ψγ} is dominated by

k ≥ 1, in the sense that

|ψγ(u)| ≤ k, u ∈ [0, 1].
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Since ψγ converges pointwise to f and ψγ is bounded, then the dominated con-

vergence theorem holds. For the case where ψγ(u) = ψγ(FX(x)), x ∈ R, and

f(u) = 1{FX(x)∈(0,1]}(x), by dominated converge theorem, we have

lim
γ→∞

∫ ∞

−∞
ψγ(FX(x))dx =

∫ ∞

−∞
lim
γ→∞

ψγ(FX(x))dx =

∫ ∞

−∞
1{FX(x)∈(0,1]}(x)dx.

For the bid price, defined in equation (74), the limit of bγψ1
as γ goes to ∞ is given

by

lim
γ→∞

bγψ1
(X) = lim

γ→∞

{
−

∫ 0

−∞
ψγ1 (FX(x))dx+

∫ ∞

0

[1− ψγ1 (FX(x))]dx

}
= lim

γ→∞

{
−

∫ 0

−∞
ψγ1 (FX(x))dx

}
+ lim

γ→∞

{∫ ∞

0

[1− ψγ1 (FX(x))]dx

}
= −

∫ 0

−∞
lim
γ→∞

ψγ1 (FX(x))dx+

∫ ∞

0

lim
γ→∞

[1− ψγ1 (FX(x))]dx

= −
∫ 0

−∞
1{FX(x)∈(0,1]}(x)dx+

∫ ∞

0

[1− 1{FX(x)∈(0,1]}(x)]dx

If 0 < FX(x) = P(X ≤ x) ≤ 1, then 1{FX(x)∈(0,1]}(x) = 1. On the other hand, if

0 = FX(x) = P(X ≤ x), then 1{FX(x)∈(0,1]}(x) = 0. Therefore, using the relation

presented in (1), the bid price when γ goes to infinity is

−
∫ 0

F−1
X (0)

dx+

∫ ∞

0

[1− 1{FX(x)∈(0,1]}(x)]dx = F−1
X (0), (92)

where F−1
X (0) = ess inf(X).

The ask price when γ → ∞ is obtained in an analogous way. From the dominated

convergence theorem, we obtain,

lim
γ→∞

aγψ2
(X) = lim

γ→∞

{∫ 0

−∞
ψγ2 (F−X(x))dx+

∫ ∞

0

[ψγ2 (F−X(x))− 1]dx

}
= lim

γ→∞

{∫ 0

−∞
ψγ2 (F−X(x))dx

}
+ lim

γ→∞

{∫ ∞

0

[ψγ2 (F−X(x))− 1]dx

}
=

∫ 0

−∞
lim
γ→∞

ψγ2 (F−X(x))dx+

∫ ∞

0

lim
γ→∞

[ψγ2 (F−X(x))− 1]dx

=

∫ 0

−∞
1{F−X(x)∈(0,1]}(x)dx+

∫ ∞

0

[1{F−X(x)∈(0,1]}(x)− 1]dx

=

∫ 0

F−1
−X(0)

dx+

∫ ∞

0

[1{F−X(x)∈(0,1]}(x)− 1]dx = −F−1
−X(0)
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where −F−1
−X(0) = − ess inf(−X) = ess sup(X). Consequently, in this scenario of

extreme illiquidity, the spread function can be written as

lim
γ→∞

Rγ
ψ1,ψ2

(X) = lim
γ→∞

aγψ2
(X)− lim

γ→∞
bγψ1

(X)

= ess sup(X)− ess inf(X)

= range(X)

■

Item 1 of Theorem 3.4 guarantees us the spread function will be Lipschitz continu-

ous. In items 2 and 3, we are in a special case, the most common in the literature, and these

items tell us that the spread function will be non-negative for any financial position and

that the higher the γ, the greater will be the difference between the bid and ask prices, i.e.

the more liquid the market, the smaller the spread will be. Items 4. and 5. present the two

extreme cases, when γ = 0 and γ → ∞. For the case where γ = 0, perfectly liquid market,

the bid and ask prices are equal, i.e. we will have one price. For γ → ∞, we have that the

spread function for the financial position X will be equal to range(X), regardless of the

distortion. Basically, in the limit, we have that the bid price is such that the probability of

the financial position receiving values less than F−1
X (0) is zero and the ask price is such

that the probability of the financial position receiving values greater than −F−1
−X(0) is zero.

Thus, the range(X) can be interpreted as the greatest possible difference between these

prices that are tied with a non-zero probability.

Remark 2. The numerical examples presented by Chen et al. (2019) and Luo and Chen

(2021) corroborate the results obtained in items 2, 3 and 4. The authors performed such

examples for exotic derivatives and found that: when γ = 0, we have that the bid and

ask prices are equivalent; γ has an increasing relation with the spread function; and the

spread function is always non-negative, as the authors consider a special case where Wang

distortion distorts the accumulations of both prices.

Remark 3. The direct implication of item 4. is that the spread function Rγ
ψ1,ψ2

: L∞ →

[0,∞] will be a deviation measure, provided γ > 0 and as properties of positive homoge-

neity, location invariance, and subadditivity are satisfied.
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Example 3.1. Madan and Schoutens (2016) present a closed expression for the price

of an option, under the Black-Scholes hypothesis, using the distortion ψWANG
γ of Table

1. In the Black-Scholes model, we have that lnSt is normally distributed with mean

lnS0 + (r − 1
2
σ2)t and variance σ2t, this is equivalent to

St ∼ LN
(
lnS0 + (r − 1

2
σ2)t, σ2t

)
.

The Wang distortion of the cumulative price is given by

ψWANG
γ (FSt(x)) = N

(
lnx− (lnS0 − (r − 1

2
σ2)t+ γσ

√
t)

σ
√
t

)
.

The bid price presented by the authors is given by

bγ
ψWANG(ct) = Ste

−γσ
√
T−tN(d1)−Ke−r(T−t)N(d2), (93)

where

d1 =
ln
(
St/K

)
+
(
r + σ2/2

)
(T − t)− γσ

√
T − t

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

The closed formula for the ask price using Wang distortion is similar to the expression

found for the bid,

aγ
ψWANG(ct) = Ste

γσ
√
T−tN(d1)−Ke−r(T−t)N(d2), (94)

where

d1 =
ln
(
St/K

)
+
(
r + σ2/2

)
(T − t) + γσ

√
T − t

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

However, it is possible to go a little further and find the Greeks for this two-price economy

with the Wang distortion. Below are the main Greeks for the bid price.

1. (Delta)
∂bγ

ψWANG(ct)

∂St
= e−γσ

√
T−tN(d1),
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2. (Gamma)
∂

∂S

(
∂bγ

ψWANG(ct)

∂St

)
=

1

σS
√
T − t

e−γσ
√
T−tN ′(d1),

3. (Vega)

∂bγ
ψWANG(ct)

∂σ
= −γ

√
T − tSte

−γσ
√
T−tN(d1) + Ste

−γσ
√
T−tN ′(d1)

√
T − t,

4. (Theta)

∂bγ
ψWANG(ct)

∂t
=

γσ√
T − t

Ste
−γσ

√
T−tN(d1)−rKe−r(T−t)N(d2)−

1

2

σ√
T − t

Ste
−γσ

√
T−tN ′(d1),

5. (Rho)
∂bγ

ψWANG(ct)

∂r
= (T − t)Ke−r(T−t)N(d2).

The partial derivatives for the ask price are given by

6. (Delta)
∂aγ

ψWANG(ct)

∂St
= eγσ

√
T−tN(d1),

7. (Gamma)
∂

∂S

(
∂aγ

ψWANG(ct)

∂St

)
=

1

σS
√
T − t

eγσ
√
T−tN ′(d1),

8. (Vega)

∂aγ
ψWANG(ct)

∂σ
= γ

√
T − tSte

γσ
√
T−tN(d1) + Ste

γσ
√
T−tN ′(d1)

√
T − t,

9. (Theta)

∂aγ
ψWANG(ct)

∂t
= − γσ√

T − t
Ste

γσ
√
T−tN(d1)−rKe−r(T−t)N(d2)−

1

2

σ√
T − t

Ste
γσ

√
T−tN ′(d1),

10. (Rho)
∂aγ

ψWANG(ct)

∂r
= (T − t)Ke−r(T−t)N(d2).

In addition to the traditional Greeks of the Black-Scholes model, we have a new Greek, the

partial derivative with respect to the liquidity parameter γ. This new partial derivative for

the bid price is given by,
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11.
∂bγ

ψWANG(ct)

∂γ
= −γSte−γσ

√
T−tN(d1).

The partial derivative of the ask price with respect to gamma is given by

12.
∂aγ

ψWANG(ct)

∂γ
= γSte

γσ
√
T−tN(d1).

Remark 4. In Example 3.1, for the special case where γ = 0, we have that the bid and ask

prices are equal, which was already expected by Theorem 3.4, and the Greeks are the same

as in the Black-Scholes model.

Remark 5. In the Black-Scholes model, the price behavior is described by a GBM, equation

(16). However, a change of measure is made, where the price dynamics under the new

meaure, the risk neutral measure, is the following

d lnSt =

(
r − σ2

2

)
dt+ σdWQ

t , (95)

From this dynamic we obtain the cumulative price distribution function and find the option

prices for the Black-Scholes model, equation (27). In the case where the cumulative is

distorted by ψWANG, as in the example above, we can describe the price dynamics as

d lnSt =

(
r − σ2

2
− γσ

2t1/2

)
dt+ σdWQγ

t (96)

where Qγ is interpreted as a probability measure whose dynamics of the Brownian Motion

under this new measure is given by

dWQγ

t =

(
µ− r

σ
+

γ

2t1/2

)
dt+ dWt. (97)

Basically, we are saying that we can interpret the bid and ask prices, presented in (93)

and (94) as a change of measure from P to Qγ . Therefore, if it is possible to find a closed

form for the cumulative price distortion, we can find a relation, similar to equation (97),

between a supposed measure Qγ and the physical measure P.
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4 Final remarks

This work aims to contribute to the evolution of the conic finance framework. Our

goal is too ambitious and has not been fully achieved. However, important contributions

have been made and the remaining research has been identified and described.

The steps necessary to achieve our goal are as follows:

1. To derive a new framework that enables the implementation of the spread function,

2. To derive the properties for bid and ask prices,

3. To derive the properties for spread function,

4. To derive the properties of map γ → Rγ
ψ1,ψ2

(X),

5. To derive the properties of map ψ1, ψ2 → Rγ
ψ1,ψ2

(X),

6. To characterize the acceptability indices,

7. To derive the Greeks for each of the convex distortions shown in Table 1,

8. To derive the Greeks for different dynamics for the assets,

9. To perform a comprehensive numerical example to identify the behavior of the

Greeks.

Through the theorems presented in Section 3, we were able to achieve the first 4

objectives almost completely. By Example 3.1, we were able to demonstrate the Greeks

for one of the distortions presented in Table 1.
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A Appendix

In this appendix, we will introduce the definition of concepts that will be used

throughout the text and some important results related to option pricing.

A.1 Wiener Process

Definition A.1. A stochastic process {Xt}t∈T on the probability space (Ω,F ,P) is a set

of random variables, Xt : Ω → R.

If the set of index T is countable, we say that the stochastic process is discrete and if the

set T is continuous, the process is continuous. In this appendix, T = [0, 1] and we will

use T or [0, 1] interchangeably.

Definition A.2. Let {Xt}t∈T and F be a stochastic process and a sigma-algebra, respecti-

vely. We have the following definitions

1. A function f : Ω → R is said to be F-measurable if, ∀ I ⊆ R we have that

f−1(I) ∈ F .

2. A sigma-algebra generated by X over the interval [0, t] is defined as

FX
t = σ{X(s) : s ∈ [0, t]}.

3. A filtration {Ft}t≥0, is an indexed family of sigma-algebras in Ω such that

Fs ⊆ Ft ⊆ FT , ∀ s, t with s < t < T.

4. {Xt}t∈T is said to be adapted with respect to filtration {Ft}t≥0 if

Xt ∈ Ft, ∀t ≥ 0.

We interpret 1. and 2. in Definition A.2 as: if a function f is F-measurable then, we

can measure the probability that f belongs to some subset I and we can interpret FX
t

as the information generated by observing the process X over the interval [0, t]. The

interpretation of 3 and 4 is as follows: The amount of available information increases,
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Fs ⊆ Ft ⊆ FT with each period of time, s < t < T and if the process is adapted, then we

can say that the value of the variable Xt is determined by the information we have access

to at t, Ft.

Definition A.3. Let (Ω,F ,P) be a probability space, let X be a random variable in

L1(Ω,F ,P), and let G be a sigma-algebra such that G ⊂ F . The conditional expectation

of X given the sigma algebra G, E[X|G], is a random variable that satisfies

1. E[X|G] is G-measurable;

2. For every G ∈ G it holds that∫
G

E[X|G]dP =

∫
G

XdP.

A very important type of process when we talk about asset pricing is the martingale

process.

Definition A.4. A stochastic process X in a filtered probability space is a martingale if

satisfies

1. E[|Xt|] <∞, ∀t ∈ [0, T ],

2. X is an adapted process,

3. Xs = E[Xt|Fs], for 0 ≤ s ≤ t ≤ T .

This process is directly related to the Risk Neutral measures presented in the text. The

most classic example of a martingale process is the Wiener process defined below.

Definition A.5. A stochastic process W is called a Wiener process if it satisfies the

following conditions:

1. W0 = 0;

2. Wt has independent increments, i.e.

Wt1 ,Wt2 −Wt1 , · · · ,Wtk −Wtk−1
(98)
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are independent for all 0 ≤ t1 < t2 < · · · < tk. From this it can be deduced that

Wu −Wt is independent of Ft if u > t.

3. Wt−Ws is normally distributed for s < t and given by Wt−Ws = ε
√
t− s, where

ε ∼ N(0, 1);

4. Wt has continuous trajectories.

Proposition A.1. A Wiener process W is a martingale process.

Proof.

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= E[ε
√
t− s|Fs] +Ws

=
√
t− sE[ε] +Ws

= Ws (99)

■

A.2 Itô integral and process

Definition A.6. A process f ,

f(t, ω) : [0,∞)× Ω → R

belongs to the class V = V(S, T ) if the following conditions are satisfied:

1. The process f is adapted to the FW
t -filtration.

2. E[
∫ T
S
f 2
t dt] <∞.

We will show how to define the following integral∫ T

S

ftdWt,

known as the Itô Integral, where f ∈ V and Wt is a Wiener process.
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The steps presented here to define (100) are the same steps presented in Øksendal

(2003) and Focardi et al. (2004). First we define (100) for a simple process. Then we will

show that if f ∈ V , then it can be approximated by elementary functions.

Definition A.7. A stochastic process ϕ ∈ V is called elementary if it has the following

form

ϕt =
∑
j

ej.1[tj ,tj+1)(t)

where

tj = t
(n)
j =


j.2−n if S ≤ j.2−n ≤ T

S if j.2−n < S

T if j.2−n > T

and {tj}j≥0 is a strictly monotone sequence in [0,∞) and {ej}j≥0 is a Ftj -measurable

sequence of random variables, since ϕ ∈ V .

For an elementary ϕ process, the stochastic integral is defined as follows,∫ T

S

ϕtdWt =
∑
j≥0

ej.[Wtj+1
−Wtj ]. (100)

Note that (100) is a random variable, the case where Itô’s integral is interpreted as a

stochastic process will be presented later in this section. However, before we continue, we

will present a result that will be very useful for the further construction of Itô’s integral.

Proposition A.2. If f is a process that satisfies conditions 1. and 2. given in Definition

A.6, then

E
[(∫ T

S

ϕtdWt

)2]
= E

[ ∫ T

S

ϕ2
tdt

]
.

Proof.

E
[(∫ T

S

ϕtdWt

)2]
= E

[(∑
j≥0

ej.[Wtj+1
−Wtj ]

)2]
= E

[(∑
j≥0

ej.[Wtj+1
−Wtj ]

)(∑
i≥0

ei.[Wti+1
−Wti ]

)]
(101)
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Note that the right-hand side of the equation (101) will be represented by a summation of

expressions of type E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
. We need to compute the result of

this expression for when i ̸= j and i = j.

If i < j, we will have that ei, ej ∈ Ftj , [Wti+1
−Wti ] ∈ Fti ⊆ Ftj and by item 2.

of Definition A.5 we have that [Wti+1
−Wti ] will be independent of Ftj . Therefore,

E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
= E[E(eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]|Ftj)]

= E[eiej[Wti+1
−Wti ]E(Wtj+1

−Wtj |Ftj)].

(102)

Since Wtj+1
−Wtj is independent of Ftj , we have that

E(Wtj+1
−Wtj |Ftj) = E(Wtj+1

−Wtj)

= E(ε
√
tj+1 − tj)

=
√
tj+1 − tjE(ε)

= 0, (103)

where ε ∼ N(0, 1), Definition A.5. Substituting (103) into (102), we have that

E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
= 0,

if i < j. The case where j < i is obtained analogously.

If i = j, we have that

E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
= E

[
e2j
(
ε
√
tj+1 − tj

)2]
= (tj+1 − tj)E

[
e2jε

2
]

= (tj+1 − tj)E
[
e2jE(ε2|Ftj)

]
= (tj+1 − tj)E

[
e2jE(ε2)

]
= (tj+1 − tj)E

[
e2j ].

So, for both cases we will have the following expressions,

E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
=

0 if i ̸= j

(tj+1 − tj)E
[
e2j
]

if i = j

(104)
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Therefore,

E
[(∫ T

S

ϕtdWt

)2]
=

∑
i,j

E
[
eiej[Wti+1

−Wti ][Wtj+1
−Wtj ]

]
=

∑
j

(tj+1 − tj)E
[
e2j
]

= E
[ ∫ T

S

ϕ2
tdt

]
■

The goal now is to denote the stochastic integral for any f ∈ V , to do so we will

use Itô’s isometry and approximation procedures. In the next 3 steps we will present the

procedures to approximate any f using elementary functions. The proof of each of these

steps is given in Øksendal (2003), page 28.

Step 1: Let be a function g ∈ V bounded and g(., ω) is continuous for each state of

nature, ω. Then g can be approximated by

ϕnt =
∑
j

gtj1[tj ,tj+1)(t)

such that

E
[ ∫ T

S

(g − ϕnt )
2dt

]
→ 0, n→ ∞,∀ ω ∈ Ω.

Step 2: Let h ∈ V be a bounded function. Then h can be approximated by functions

gn ∈ V that are bounded and gn(., ω) is continuous for all gnω and n such that

E
[ ∫ T

S

(ht − gnt )
2dt

]
→ 0, n→ ∞.

Step 3: Let f be a function f ∈ V , not necessarily continuous or bounded. Then, f

can be approximated by a sequence of bounded functions {hn} ∈ V such that

E
[ ∫ T

S

(f − hn)2dt

]
→ 0, n→ ∞.

We are now able to define Itô’s integral for any function within the class V . If we

take a f ∈ V , we can choose a sequence of elementary functions ϕn ∈ V such that

E
[ ∫ T

S

(f − ϕn)2dt

]
→ 0.
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Therefore we can define Itô’s integral as∫ T

S

ftdWt := lim
n→∞

∫ T

S

ϕnt dWt.

The limit exists as an element of L2. A formal definition of the Itô’s integral is given below.

Definition A.8. The Itô’s Integral for a function f ∈ V is given by∫ T

S

ftdWt := lim
n→∞

∫ T

S

ϕnt dWt

where the sequence of elementary functions, ϕn, satisfies

E
[ ∫ T

S

(ft − ϕnt )
2dt

]
→ 0, n→ ∞.

The Itô’s integral defined above has the following properties definied below.

Theorem A.1. (Øksendal (2003), Theorem 3.2.1.) Suppose that f, g ∈ V(0, T ), let 0 <

S < U < T and c, d ∈ R. Then the following properties hold:

1.
∫ T
S
ftdWt =

∫ U
S
ftdWt +

∫ T
U
ftdWt for a.e. ω,

2.
∫ T
S
(cft + dgt)dWt = c

∫ T
S
ftdWt +

T
S gtdWt for a.e. ω,

3.
∫ T
S
(cft + gt)dWt is FT measurable.

4. E
[ ∫ T

S
ftdt

]
= 0

So far we have represented the Itô integral only as a random variable, we were

looking at a fixed interval (S, T ). If we let the interval vary (0, t) we have that Itô’s integral

becomes a stochastic process∫ t

0

fsdWs :=

∫ T

0

fs1[0,t](s)dWs.

The properties 1., 2. and 4. of Theorem A.1 still hold for this integral.

One type of stochastic process that has a direct relationship with the Itô integral

and is widely used in asset modeling is the so-called Itô process (or stochastic integral).

The Itô process is a stochastic process, which is obtained by adding an ordinary integral to

an Itô integral.
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Definition A.9. Let W be a Wiener process defined in the probability space (Ω,F ,P). The

stochastic process defined by

Xt = X0 +

∫ t

0

usds+

∫ t

0

vsdWs, (105)

t ∈ [0, T ] is called an Itô process, where v is a stochastic process that belongs to V(0, T )

with

P
(∫ t

0

v2sds <∞,∀ t ≥ 0

)
= 1,

is u a Ft-adpated process with

P
(∫ t

0

|us|ds <∞,∀ t ≥ 0

)
= 1.

If Xt is an Itô process the equation (105) can be written in the shorter differential

form as

dXt = utdt+ vtdWt. (106)

The equation (106) is called a stochastic differential equation (SDE), but this SDE

will have some meaning only in its integral form. For it is not possible to rewrite the

differential equation as
dXt

dt
= ut + vt

dWt

dt

since the Wiener process is not differentiable, for more details see Focardi et al. (2004),

Chapter 10.

The next theorem is the main result in the theory of stochastic calculus. Com esse

teorema seguinte teremos uma ideia do comportamento de uma função de um Itô process.

Theorem A.2. (Øksendal (2003),Theorem 4.1.2.) Seja X um Itô process dado por

dXt = utdt+ vtdWt. (107)

Let g : [0,∞)×R → R a function of classC2([0,∞)×R) (i.e. s twice continuously

differentiable). Then, the process Y defined by Yt := g(t,Xt) is an Itô process with

dY (t,Xt) =

{
∂g

∂t
(t,Xt) + ut

∂g

∂x
(t,Xt) + v2t

1

2

∂2g

∂x2
(t,Xt)

}
dt

+ σ
∂g

∂x
(t,Xt)dWt.
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Example A.1. Let X be an Itô process given by

dXt = µXtdt+ σtXtdWt, (108)

and let g(t,Xt) = lnXt. Compute dYt and the solution of the SDE in (108).

First, note that ∂g
∂t

= 0, ∂g
∂x

= 1
x

e ∂2g
∂x2

= −1
x2

. Applying Itô’s formula and replacing ut and

vt by µXt and σXt in (A.2), we obtain

dYt =

(
µ− σ2

2

)
dt+ σdWt. (109)

The dynamics of Yt is shown in equation (109). Integrating,∫ t

0

dYs =

∫ t

0

(
µ− σ2

2

)
ds+

∫ t

0

σdWs,

Yt = Y0 +

(
µ− σ2

2

)
t+ σWt,

lnXt = lnX0 +

(
µ− σ2

2

)
t+ σWt,

Xt = X0 exp

{(
µ− σ2

2

)
t+ σWt

}
. (110)

The solution of the differential equation (108) is the stochastic process in (110).

A.3 Change of measure

In a probability space (Ω,F ,P) the non-negative random variable, Z, with E[Z] =

1, is defined as follows

Z =
dQ
dP

, (111)

where Z is called the Radon-Nikodym derivative of Q with respect to P. By Equation

(111), we can define the probability measure Q by the following formula

Q(A) =

∫
A

ZdQ, ∀ A ∈ F .

Note that we will now have an expectation under the original probability measure, E, and

an expectation under the new probability measure, EQ.

Definition A.10. In a probability space, (Ω,F ,P), we can define the Radon-Nikodym

derivative process Z, on 0 ≤ t ≤ T , as

Zt = E[ZT |Ft]

53



Proposition A.3. If Y is Ft-mensurable, then

EQ[Y ] = E[Y Zt].

Proof.

E[Y Zt] =
∫
Ω

Y ZtdP

=

∫
Ω

Y dQ

■

Proposition A.4. If the random variable Y is Ft-mensurable, then

EQ[Y |Ft] =
1

Zs
E[Y Zt|Fs],

where 0 ≤ s < t ≤ T .

Proof. By Defintion A.3, we have that∫
G

EQ[Y |Fs]dQ =

∫
G

Y dQ

for every G ∈ G. Therefore, we can rewrite Equation (112) as∫
G

1

Zs
E[Y Zt|Fs]dQ =

∫
G

Y dQ

for every G ∈ G. Then, we need only prove the Equation (112). Note that 1
Zs
E[Y Zt|Fs] is

Fs-mensurable and ∫
G

1

Zs
E[Y Zt|Fs]dQ =EQ[1{ω∈G}

1

Zs
E[Y Zt|Fs]].

By Proposition A.3 and by iterated expectations, we have that

EQ[1{ω∈G}
1

Zs
E[Y Zt|Fs]] =E[1{ω∈G}

1

Zs
E[Y Zt|Fs]Zs]

=E[1{ω∈G}E[Y Zt|Fs]]

=E[1{ω∈G}Y Zt]

=EQ[1{ω∈G}Y ] =

∫
G

Y dQ.

■
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To price an option in a risk neutral scenario, we will need Girsanov’s theorem,

which is presented below.

Theorem A.3. (Shreve (2004), Theorem 5.2.3.) Let W be a Wiener process on (Ω,F ,P),

and let φ be an adapted process. Define the process Z on [0, T ] by

Zt = exp

{
−

∫ t

0

φudWu −
1

2

∫ t

0

φ2
udWu

}
.

Assume that

E[
∫ T

0

φ2
uZ

2
udu <∞],

and a probability measure Q on FT is defined by

ZT =
dQ
dP

.

Then, the dynamics of the Q-Wiener process, WQ, is given by

dWQ
t = φtdt − dWt.
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