

An Integrated Data Platform Intelligent Elderly Health Monitoring Using Wearable Technologies

Lucas de Freitas Gomes^{1*}, Raimar Barbosa Santos¹, Arlindo Bastos de Miranda Neto¹, João Vitor Silva Mendes², Herman Augusto Lepikson^{1,2}

¹ SENAI CIMATEC University, GETEC dept., Salvador, Brazil
² Federal University of Bahia, Mechatronics dept., Salvador, Brazil.
*Corresponding author: SENAI CIMATEC; Av. Orlando Gomes, Piatã; lucas.gomes@fieb.org.br

Abstract: The aging of the global population has intensified the demand for innovative and sustainable healthcare strategies. Wearable technologies stand out as a promising alternative to enable real-time monitoring, early detection of clinical changes, and the promotion of autonomy and well-being among the elderly. This study presents a proposal for an integrated data platform aimed at elderly health monitoring through wearable devices. The proposed architecture comprises biometric sensors, secure wireless connectivity, intelligent data processing using machine learning algorithms, and interactive dashboards for decision-making. Through a comprehensive literature review and analysis of current applications, the platform was designed to ensure interoperability with healthcare systems, compliance with data protection laws, and usability for older adults. The results point to the potential of wearable technologies to support preventive, personalized, and population-based care models. Future challenges include issues of data integration, user acceptance, cost-effectiveness, and regulatory frameworks. The implementation of such platforms may contribute significantly to transforming the current healthcare model into a more inclusive, proactive, and data-driven system.

Keywords: wearable devices; elderly health; health monitoring; digital health; integrated platform; preventive care.

1. Introduction

The accelerated growth of the elderly population represents one of the greatest challenges in contemporary public health. According to data from the World Health Organization (WHO), the global population aged 60 and over will reach approximately 2 billion by 2050, more than double the total recorded in 2020 [1]. This highlights the urgent need for strategies focused on healthy aging.

Current healthcare systems face problems such as overburdened services, high hospital costs, and a shortage of professionals for long-term care. In response, digital technologies, such as wearable devices, are being increasingly utilized. These devices allow for the continuous and non-invasive collection of physiological data. Devices like smartwatches, wristbands with biometric sensors,

and clothing with sensory fabrics have been used to measure heart rate, blood pressure, body temperature, blood oxygenation, and patterns of sleep and physical activity. The integration of this data with systems based on the Internet of Things (IoT), Artificial Intelligence (AI), and clinical decision support platforms is consolidating a new paradigm of care – proactive, remote, and patient-centered [2].

The use of these technologies is especially promising in providing healthcare for the elderly population, as it enables the early detection of critical events, the monitoring of chronic diseases, and the promotion of autonomy and well-being. However, despite these advancements, there are still

gaps concerning system interoperability, the reliability of the data collected, and the privacy of users' sensitive information.

Considering this, this article aims to present a proposal for an integrated data platform to monitor the health of the elderly based on wearable technologies. The proposal stems from a technical and scientific review of the state-of-the-art of existing devices, sensors, and systems, and moves forward to build an architecture that supports continuous care, with a focus on quality of life, safety, and healthcare efficiency based on intelligent analysis.

2. Theoretical Framework

The evolution of wearable technologies over the past few decades has driven profound transformations in how individuals interact with their own health. Initially designed as devices for sports performance or personal automation, wearables have become integrated into the digital health ecosystem, assuming a central role in data-driven care models, prevention, and remote care [3].

In general, wearable devices are equipped with sensors, wireless connectivity, and embedded processing systems, enabling the broad collection of data such as heart rate, temperature, blood oxygenation, body posture, physical activity, and sleep patterns, among others [4].

The scientific literature presents several taxonomies for these devices. Wearables applied to health can be classified into three categories: (i) sensors for continuous monitoring, (ii) devices for detecting critical events (such as falls and seizures), and (iii) systems to support clinical diagnosis [5]. In addition, [2] highlights the emergence of integrated platforms based on artificial intelligence algorithms, capable of interpreting large volumes of data and providing personalized and predictive responses.

The integration of these devices with the Internet of Medical Things (IoMT) and telehealth platforms has broadened their applicability, especially in supporting the management of chronic conditions like hypertension, diabetes, arrhythmia, and respiratory diseases. [6] present a conceptual framework where sensors interact with mobile gateways, cloud, and clinical systems, promoting a continuous cycle of data acquisition, processing, storage, and analysis.

In addition to traditional sensors, recent research has demonstrated the growing use of advanced and flexible materials, such as graphene, to create ultra-thin, skin-adherent devices (e-skin) [7].

The concept of AAL (Ambient Assisted Living) also reinforces the importance of wearable technology in the context of population aging. AAL proposes smart environments where sensors, mobile devices, and algorithms cooperate to promote

safety, comfort, and independence for older adults or individuals with reduced mobility [8].

Based on these models and advancements, wearable technologies hold a strategic position for the creation of digital platforms that connect users, caregivers, healthcare professionals, and managers in a data ecosystem geared towards clinical decision-making and personalized care.

3. Wearable Technologies and Health Applications

The application of wearable technologies in the healthcare field has evolved beyond basic monitoring to encompass advanced functionalities, including the prediction of critical events, rehabilitation support, quality of life assessment, and personalized therapeutic management. The most used sensors in wearables include accelerometers, gyroscopes, heart rate sensors, photoplethysmography (PPG), electrocardiography (ECG), temperature sensors, and electrochemical biosensors. These sensors can detect and recording physiological variables with high accuracy, providing essential data for real-time or retrospective analysis [9].

Studies show that wearable devices have great potential in monitoring chronic diseases. Patients with heart failure, for example, can use sensor-equipped wristbands and vests to identify variations in heart rate or respiratory patterns, enabling early interventions [10]. In the case of elderly in-

dividuals with Alzheimer's or Parkinson's, wearables have been used for tracking mobility, episodes of disorientation, and fall detection, allowing caregivers or medical teams to be alerted immediately [11].

Furthermore, wearables are being incorporated into telehealth and remote physiotherapy, with sensors integrated into clothing and accessories that assist in the correct performance of exercises, post-operative recovery, and adherence to personalized therapeutic plans.

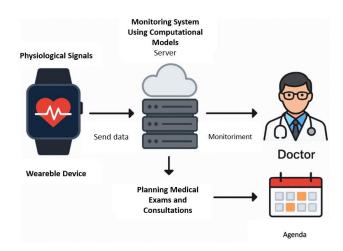
Companies and startups have played a central role in the innovation of this market. Silvertree, for example, develops smart wristbands for the elderly that combine GPS tracking, fall detection, and emergency communication. Hinge Health, in turn, offers digital solutions for musculoskeletal rehabilitation through motion sensors and personalized algorithms [12]. Philips has developed clinical biosensors for hospital and home use, focusing on monitoring patients with acute or chronic conditions, and integrating with electronic health platforms [13].

In the context of the elderly, these applications still face challenges related to acceptance, ergonomics, technological understanding, and connectivity. Nevertheless, studies show that when properly implemented, wearables promote a greater sense of security, a reduction in hospitalizations, and an improvement in quality of life [14].

4. Proposal for an Integrated Platform for Elderly Monitoring

Based on scientific evidence and observed technological advancements, we propose an integrated digital platform for the continuous and intelligent health monitoring of the elderly using wearable technologies. This platform aims to support both self-care and the work of caregivers and healthcare professionals, with a focus on prevention, early detection of adverse events, and personalized care.

The platform's architecture is shown in Figure 1, based on four main layers: (1) wearable sensors, (2) connectivity and data collection, (3) intelligent processing and analysis, and (4) visualization and decision-making.


- Wearable sensors: These include devices such as wristbands, smartwatches, chest straps, and skin patches equipped with sensors for heart rate, blood pressure, oxygen saturation (SpO₂), temperature, and movement. Such sensors must be lightweight, comfortable, energy-efficient, and calibrated for geriatric profiles.
- Connectivity and data collection: The sensors communicate with local gateways (such as smartphones or home hubs) via Bluetooth Low Energy (BLE), ZigBee, or Wi-Fi. These gateways organize the data, apply compression, and transmit it to cloud servers with security and end-to-end encryption.

- Intelligent processing and analysis: The received data is stored in a secure database and processed by machine learning algorithms. These algorithms identify patterns, detect anomalies, generate automatic alerts, and make predictions based on individual history and risk profiles.
- Visualization and decision-making:

 The analysis results are presented on dashboards accessible via an application (for the user and caregiver) and a web platform (for healthcare professionals).

 The visualizations include trends, health alerts, emergency notifications, care plans, and comparisons with population standards.

Figure 1. Proposed Architecture of the Health Monitoring Platform for the Elderly Based on Wearable Technologies

Source: Prepared by the authors.

This proposal stands out by integrating continuous and heterogeneous data into a system that learns from the user's individual behavior, enabling the automatic sending of alert messages in

situations such as a sudden increase in blood pressure, risk of falling, prolonged absence of movement, or variation in heart rate. Furthermore, the platform can send monthly health reports to family members, government, or institutions, promoting greater engagement and transparency in care, clearly aligned with data protection regulations.

The platform also incorporates interoperability features with public health systems, such as electronic health records based on HL7 and FHIR standards, expanding its potential for integration with clinics, primary care units, and hospitals. This creates an ecosystem where clinical intelligence is fed back with real-world daily data, optimizing medical decisions and reducing preventable hospitalizations.

As a use case, consider an elderly person living alone who uses a smartwatch connected to a dermal biosensor. Every minute, the device monitors blood pressure, heart rate, and mobility. If the system detects a fall followed by immobility, an alert is sent to the monitoring center and the registered caregiver. If the patient is at risk, the system can automatically trigger emergency services and share relevant clinical data.

The proposal's distinct advantage also lies in its capacity for population analysis. By aggregating and anonymizing data, public administrators can identify epidemiological patterns in specific regions (e.g., blood pressure spikes, syncope episodes), guiding public policies and health surveillance actions.

The project also provides for the use of best practices in information security, with compliance with the General Data Protection Law (LGPD), multi-factor authentication, profile-based access control, and auditing of access logs.

5. Challenges and Future Prospects

Despite significant advances in integrating wearable technologies into healthcare, especially for the elderly, several challenges still limit their widespread, sustainable, and safe adoption. These challenges are related not only to the technological infrastructure but also to social, economic, regulatory, and cultural barriers.

5.1 Interoperability and integration with healthcare systems

One of the main challenges with wearable device solutions is the lack of communication between them and healthcare systems. Many of these solutions use proprietary, non-open data formats, which hinders integration with electronic health records and other systems. To address this, the adoption of standards such as HL7 FHIR is essential to ensure that healthcare professionals [15] can efficiently utilize sensor data.

5.2 Privacy, security, and legal compliance

The constant collection of sensitive data by wearable devices raises legitimate concerns about privacy and security. Information such as location, heart rate, sleep, movement patterns, and biometric data must be protected from unauthorized access. The General Data Protection Law (LGPD) in Brazil, as well as international regulations like Europe's General Data Protection Regulation (GDPR) and the U.S. Health Insurance Portability and Accountability Act (HIPAA), require robust mechanisms for access control, explicit consent, encryption, and auditing [16].

Studies show that digital literacy and user-centered design focused on the elderly are determining factors for the acceptance of technology in sensitive contexts such as healthcare [17].

5.3 Usability and acceptance barriers

Another critical factor relates to device usability. For wearables to be effective in elderly populations, factors such as ergonomics, interface legibility, ease of charging, comfort during prolonged use, and simplicity of handling must be considered.

In a systematic review, it was observed that the acceptance of wearables among the elderly strongly depends on factors like perceived usefulness, trust in the technology, and available technical support [17].

5.4 Financial sustainability and scalability

The cost of wearable devices, as well as the infrastructure for connectivity, cloud storage, and technical support, still represents a barrier to their large-scale implementation. Although prices are gradually decreasing, public and private healthcare programs still hesitate to invest in medium and long-term solutions without robust evidence of cost-benefit [18].

Cost-effectiveness studies, such as those conducted by [19], show that the use of wearables can reduce preventable hospitalizations and improve the management of chronic diseases, but their effectiveness depends on the quality of the data collected, user adherence, and integration with structured clinical workflows.

5.5 Future perspectives

The outlook for the coming years is promising. Devices are expected to become even more miniaturized, autonomous, and multifunctional, incorporating new sensors, sustainable energy sources (such as flexible solar cells), 5G connectivity, and integration with virtual assistants.

The use of Artificial Intelligence and predictive models based on real-world data will allow systems to anticipate critical conditions even before visible symptoms appear. The consolidation of integrated platforms will also enable health managers to use aggregated data to guide epidemiological decisions and real-time preventive actions.

Furthermore, the advancement of technologies like Blockchain can ensure greater reliability in the traceability and integrity of medical data, facilitating secure sharing among different institutions and professionals [20].

As a result, wearable technologies are expected to take on a prominent role not only as monitoring tools but as central instruments in a new paradigm of care that is predictive, personalized, participatory, and population-based.

6. Final Considerations

Population aging poses a major challenge to healthcare. Therefore, innovative strategies are needed to ensure the quality of life, autonomy, and safety of the elderly. In this scenario, wearable device technology emerges as a promising solution for continuous health monitoring, aiding in clinical decision-making and disease prevention.

This article proposes an integrated platform to monitor the health of the elderly through wearable devices, using physiological sensors, secure connectivity, intelligent data processing, and user-friendly visualization. This ecosystem aims to be useful for both patients and healthcare professionals.

The integration of these devices into public and private health strategies could transform care, making it proactive, data-driven, and focused on prevention and personalized service. However, the success of this implementation requires overcoming challenges related to interoperability, data privacy, usability for the elderly population, and the economic viability of the solutions.

In summary, wearable technologies, combined with integrated and user-centered platforms, offer not only a new model of care but also a strategic opportunity to transform the healthcare system, making it more inclusive, intelligent, and prepared for the challenges of the 21st century.

References

- [1] World Health Organization. Decade of Healthy Ageing: Baseline report. Geneva: WHO; 2021.
- [2] Guk K, Han G, Lim J, et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials. 2019;9(6):813. doi:10.3390/nano9060813
- [3] Bonato P. Wearable sensors and systems: From enabling technology to clinical applications. IEEE Engineering in Medicine and Biology Magazine. 2010;29(3):25–36.
- [4] Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors. 2017;17(1):130.
- [5] Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics. 2010;40(1):1–12.
- [6] Islam SMR et al. The Internet of Things for health care: A comprehensive survey. IEEE Access. 2015;3:678–708.
- [7] Akinwande D, Kim D-H, Lu N, et al. Graphene electronic tattoos for biometric monitoring: opportunities and challenges. ACS Nano. 2017;11(9):8853–8859. doi:10.1021/acsnano.7b03261.
- [8] Rashidi P, Mihailidis A. A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics. 2013;17(3):579– 590
- [9] Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21.
- [10] Reddy RK, et al. Mobile Heart Health: Project Highlighting the Use of Wearable Devices for Early Detection of Cardiac Events. J Med Internet Res. 2020;22(10):e19138.

- [11] Hayes TL, et al. Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimers Dement. 2008;4(6):395–405.
- [12] Howarth J. Wearable Startups to Watch. Exploding Topics, 2024. Available from: https://explodingtopics.com/blog/wearable-startups
- [13] Sharp N. Wearable medical devices transforming patient care. ESCATEC Blog, 2024. Available from: https://www.escatec.com/blog/wearable-medical-devices
- [14] Mercer K, et al. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation. JMIR Mhealth Uhealth. 2016;4(1):e7.
- [15] Mandel JC, et al. SMART on FHIR: A standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016;23(5):899–908.
- [16] Brasil. Lei Geral de Proteção de Dados (Lei nº 13.709/2018). Disponível em: http://www.pla-nalto.gov.br
- [17] Peek STM, Wouters EJM, et al. Factors influencing acceptance of technology for aging in place: A systematic review. Int J Med Inform. 2014;83(4):235–248.
- [18] Giansanti D. Investigating wearable health monitoring systems: State of the art and future challenges. Sensors. 2020;20(20):5717.
- [19] Wang L, et al. A systematic review of cost-effectiveness of digital health interventions in cardiovascular disease. J Med Internet Res. 2021;23(2):e24007.
- [20] Vazirani AA, et al. Implementing blockchain for efficient health care: Systematic review. JMIR Med Inform. 2020;8(2):e13549.