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Abstract

Forecasting second moments of asset returns is essential in portfolio selection. In a multi-
variate setting, the dimensionality of the problem and the precision of predictions are the main
concerns. We propose a new methodology for forecasting covariance matrices joining two extant
approaches in the literature: intraday data to enhance predictive ability and factors to reduce
the dimensionality. We assume a multivariate realized GARCH model for the factors and a set of
multivariate realized GARCH between each stock and the factors. We compare our methodology
empirically with the standard literature by optimizing a portfolio on the S&P500 stocks universe.
Keywords: Financial Volatility, Realized GARCH, High Frequency Data, Multivariate Model-
ing, Correlation Matrix, Factors
JEL Classification: G11, G17, C32, C53, C58

1 Introduction

Predicting asset returns volatility is crucial in asset allocation. For many years researchers have
been dedicating themselves to create models that enable better predictive ability. In a multivariate
setting, the dimensionality of the problem and the precision of forecasts are the main concerns since
the univariate GARCH structure cannot be generalized in a straightforward manner.

In this paper we propose a new methodology for forecasting covariance matrices joining two extant
approaches in the literature: intraday data as timely information about the underlying volatility to
enhance predictive ability and factors to reduce the dimensionality and make estimation feasible. Our
main contribution is to construct a model using factors models with realized multivariate GARCH,
and to compare different estimation approaches of the covariance matrix of asset returns to find the
best performance in terms of portfolio allocation.

Usually, the literature solves these problems assuming partially constant conditional covariance
matrices, minimizing the number of parameters and guaranteeing semi-positivity. The first multi-
variate GARCH implementations had important simplifications. Bollerslev (1990)’s CCC-GARCH
assumes that the conditional correlation matrix is time-invariant. This approach reduces the number
of parameters significantly, only one matrix has to be estimated and guarantees semi-posivitity by
construction. The ECCC-GARCH proposed by Jeantheau (1998) expands the previous model by
allowing the autocorrelation structure to change over time. The number of parameters is a bit larger
since there is a need to estimate the autocorrelation parameters for each asset. Positivity, again,
comes from the construction of the conditional correlation matrix.

Engle (2002) introduced the DCC-GARCH using as assumption that the conditional correlation
matrix has a dynamic process over time. The parameters are for the initial level of the covariance
matrix and for the dynamic relation of each entry. The semi-positivity is guaranteed because to
estimate the conditional correlation matrix the inputs are the previous matrix and the standard
squared residual estimator. Some authors began to use shrinkage methods to the sample covariance
matrix in order to correct in-sample bias, resulting, most importantly, on the DCC-NL model in
Engle et al. (2019). The DCC-NL is the state-of-the-art on multivariate GARCH modeling without
the use of realized measures.

A complementary branch of the literature moved towards enhancing the predictive ability of the
models. The most used advancement on this front is based on leveraging high frequency data; the
literature started to rely on realized measures, using the observed volatility of returns as a timely
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information about the underlying volatility. The Realized GARCH combines realized measures with
GARCH models to predict conditional volatilities and covariances in a simple and efficient manner.
See Hansen et al. (2012) for univariate modeling and Archakov et al. (2020) for a multivariate version.
The Multivariate Realized GARCH model works well with a small number of assets. When trying to
estimate it with high dimension data, the curse of dimensionality comes in full force, the number of
parameters grows restrictively fast.

In this paper we will solve the dimensionality problem with factors as in Engle et al. (1990). The
idea is to project the volatility of a multitude of assets in a few dimensions, making the estimation
feasible even on high dimensional multivariate GARCH models. To enhance the predictive ability
we will also use realized measures as in Archakov et al. (2020). In particular, since we need high-
frequency data to estimate the realized measures of the factors, we will use the five Fama-French
factors plus momentum that Aı̈t-Sahalia et al. (2020) compute.1 Factor structures are a natural
solution in the finance literature. This approach has a long pedigree (Barigozzi and Hallin (2016),
Barigozzi and Hallin (2017) and Herskovic et al. (2016)).

To empirically assess our approach, we compute the Global Minimum Variance (GMV) portfolio
using US stocks from 2002 to 2017. We focus on the GMV portfolio because it does not require
the estimation of the expected stock returns. The latter are very hard to estimate and hence could
undermine our empirical evaluation (Black (1993) and Fabozzi et al. (2002)). We use five-minute
returns on S&P500 stock constituents from the PiTrading database, apart from the high-frequency
factors of Aı̈t-Sahalia et al. (2020). The five-minute sampling interval provides a sufficient number of
intraday returns to ensure precise weekly realized measures, though low enough to alleviate market
microstructure noise. Since we will not rebalance the portfolio every day, we will implement our em-
pirical application using weekly returns (instead of daily returns) and forecast the weekly conditional
correlation matrix.

The results are mixed. Our proposed approaches performed well compared to the naive 1/N
allocation, but failed to produce portfolios with smaller variance than the extant models in the
literature. The Model Confidence Set procedure (Hansen et al. (2011)) indicates that the DCC-NL
outperforms the others when looking at the realized volatility of the GMV portfolios. Computational
challenges on the estimation of the more complex models might partially explain the difference. The
estimated turnover of the portfolios suggest, as one would expect, that there exist a sweet spot for
the trade off between reducing the volatility and incurring in transaction costs. The approach with
the lowest mean turnover ratio is the Realized Multivariate GARCH with Factors restricting the
idiosyncratic matrix. The one with the highest Sharpe ratio also is the DCC-NL, but Ledoit and
Wolf’s (2008) test does not reject the null of equal ratios.

The next section provides the theoretical framework of the model and the estimation procedure,
section 3 describes the data used in the paper. Section 4 details the empirical application, section 5
has the empirical results and finally in section 6 we have the conclusion.

2 Model

2.1 Notation

The subscript i indexes assets that vary from 1 to N , where N is the dimension of investable assets.
The subscript j indexes factors, varying from 1 to J , where J is the number of utilized factors. The
subscript t indexes weeks from 1 to T .

We are also using the following notation: xi,t denotes the observed asset returns for asset i at date
t; fj,t the observed factor returns for factor j at date t and can be stacked into Ft ≡ (f1,t, . . . , fJ,t)

′;

β
(ij)
t+1|t the exposure of asset i to factor j at date t + 1 conditional on date t. ZFF

t ≡ Covt(Ft) is

the realized covariance matrix of the factors at date t and HFF
t+1|t ≡ Covt(Ft+1) is the covariance

matrix of the factors at date t+1 conditional on date t. Similarly, ZiF
t ≡ Covt(xi,t, Ft) is the realized

covariance matrix of factors and asset i at date t and HiF
t+1|t ≡ Covt(xi,t+1, Ft+1) is the covariance

matrix of factors and asset i at date t+ 1 conditional on date t.

1Available to download on https://dachxiu.chicagobooth.edu/download/Factors 96 17 V2.0.zip
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2.2 General Model

The objective is to estimate the conditional covariance matrix of asset returns. Our model is based
on Archakov et al. (2020) with some important modifications. They use a block relation to estimate
the covariance matrix of returns, and their approach works well for a small number of assets. Our
model utilizes factors to reduce dimensionality and estimate in a feasible manner the covariance of
asset returns.

Let the return for each asset be:

xit+1 = µi +

q∑
j=1

β
(ij)
t+1|tfjt+1 + εit+1 (1)

From the factor structure of xit:

V art(xit+1) = B′
t+1|tH

FF
t+1|tBt+1|t + V art(εit+1) (2)

where Bt+1|t is the matrix stacking all factor betas:

Bt+1|t =
[
β
(i1)
t+1|t β

(i2)
t+1|t . . . β

(iJ)
t+1|t

]′
and

β
(ij)
t+1|t =

Covt(xit+1, fjt+1)

V art(fjt+1)
(3)

Let’s start with the common factors fjt that we will model as a realized GARCH:

HFF
t+1|t = ω + δHFF

t|t−1 + γZFF
t

ZFF
t = ζ +ΦHFF

t|t−1 + vFF
t

where ZFF
t is the realized covariance matrix of the factors at date t.

To close the model we need a structure to the covariance matrix between xit and Ft. This will
also be done through a Realized GARCH:

HiF
t+1|t = ωi + δiH

iF
t|t−1 + γiZ

iF
t

ZiF
t = ζi +ΦiH

iF
t|t−1 + viFt

Next, we will present implementations to estimate the conditional covariance matrix imposing
different restrictions. In the first approach we estimate a Multivariate Realized GARCH for the
covariances between asset returns and factor returns to find the beta implied in the GARCH structure.
Here the betas are derived from the conditional variances and covariances, the realized measures
are used to forecast the conditional covariance matrix through the Realized Multivariate GARCH.
The second approach imposes more structure by estimating a diagonal covariance matrix for the
idiosyncratic innovations. This makes the GARCH of residuals easier to estimate but can imply a
loss in predictive ability.

As for the third approach, we now have time-varying betas (through realized measures) and
estimate the residuals using (1). Here we do not impose any restrictions on the covariance matrix of
the residuals. In the final approach we use static betas and an exact factor structure, losing precision
if the populational parameters vary much over time. We estimate a univariate GARCH model for
each residual in the static-beta regressions. If the populational betas have enough variance over time,
this approach should perform worse than the previous, but if they do not vary much over time the
performance can be better as we will add noise estimating with intraday data.

3



2.3 GARCH-implied beta with unconstrained residual estimation

We will estimate each beta using the forecast of two different Realized Multivariate GARCH models.
The first one is for the factors from where we will estimate V art(fjt+1) and the second one is for the
relation between asset i and the factors and we will use to estimate Covt(xit+1, fjt+1). From these
two models we use equation (3) to get one set of betas for each time period as implied in (1) and (3).

To finish the covariance matrix forecast of the idiosyncratic part we get the residuals from these
estimated betas and run a multivariate GARCH model for asset returns using non linear and linear
shrinkage methods. Then we use (2) to get the final covariance matrix forecast.

2.4 GARCH-implied beta with constrained residual estimation

Here we impose more structure on the estimation. To estimate the betas we use the same method
as the previous approach, the difference being on the estimation of the covariance matrix of the
idiosyncratic part. Now we impose a diagonal covariance matrix, i.e., the correlation of asset returns
must come only through the factors, the idiosyncratic part is assumed to be truly idiosyncratic.

The rest of the estimation is exactly the same: we use the betas, the forecast of the covariance
matrix of factor returns and the covariance matrix (diagonal now) of the idiosyncratic part to estimate
the covariance matrix of asset returns through equation (2).

Since we are imposing more structure we might lose accuracy on the estimation, but if the factors
can fully explain the covariance, estimating a full matrix for the idiosyncratic part (as we do in the
first approach, even with shrinkage) might imply in a larger variance of the estimator.

2.5 Realized Betas

In this approach we estimate weekly betas using intraday data for each asset and each factor:

xit+1 = µi +

q∑
j=1

β
(ij)
t+1|tfjt+1 + εit+1

When we estimate the realized beta we are only seeing one realization of the conditional beta,
and not the conditional beta itself. Assuming that the conditional beta has a mean reversion to the
unconditional beta over time, a not too strong assumption, a better estimator is a convex combination
between the realized beta and the OLS beta. So, the final beta will be 2/3 static beta (estimated
without look-ahead bias) and 1/3 realized beta. With this we are trying to use recent information to
improve the estimation of each beta.

Then we extract the residuals generated from this approach and estimate a univariate GARCH
to forecast the idiosyncratic volatility for each asset. Then again we use a Realized Multivariate
GARCH to estimate the covariance matrix of the factors and use (2) with the combined betas to
find the covariance matrix of the assets. Compared to the previous approaches, we expect a worse
performance since we are not using the Realized Multivariate GARCH for the assets and thus leaving
behind potentially relevant information.

2.6 Static Betas

In this final approach we will estimate constant betas for each stock:

xit+1 = µi +

q∑
j=1

β(ij)fjt+1 + εit+1

The estimation is simple: we run a regression for each asset on the factors and extract the
residuals. From these residuals we estimate a univariate GARCH and forecast the idiosyncratic
volatility. Then, to forecast the volatility from the factors we use a Realized Multivariate GARCH
only for the factors and the final covariance matrix is estimated as proposed in equation (2). Compared
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to the last approach we expect a worse forecasting performance based on the less accurate weekly
beta estimation, assuming the betas vary sufficiently over time.

2.7 Global Minimum Variance Portfolio

The Markovitz optimal solution to the asset allocation problem requires modeling the expected return
of assets. Modeling the expected returns is considerably hard (Black (1993) and Fabozzi et al. (2002))
and it is not useful in our setting since there is no advantage if we are looking at the covariance matrix
forecasting. As such, to assess the predictive ability of our proposed approaches, we use the forecasts
to find the Global Minimum Variance portfolio (GMV).

Let Σm
t be the conditional covariance matrix of asset returns through approach m at time t. To

find the minimum variance portfolio we just need to find weights wm
i such that:

Wm
t = argminW W ′Σm

t W

where
W = [w1 w2 . . . wN ]′

The feasible solution is:

Ŵm
t =

(
Σ̂m

t

)−1

1

1′
(
Σ̂m

t

)−1

1

where Σ̂m
t is the estimate of the conditional covariance matrix of asset returns.

2.8 Portfolio Turnover

In a portfolio selection setting, one of the main issues is the transaction costs surrounding the rebal-
ancing of the assets. The usual measure is the portfolio turnover, defined as:

Turnover Ratioτ =

N∑
i=1

∣∣wBOP
i,τ − wEOP

i,τ−1

∣∣
where τ is any rebalancing date and wBOP

i,τ is the weight of asset i in the portfolio in the beginning of

date τ and wBOP
i,τ is the weight in the end of period τ . This measures what percentage of the portfolio

had to be reallocated in the rebalancing window.

It is important to look at the portfolio turnover to see if the gains in forecasting the covariance
matrix come with a large turnover cost. One relevant question is how to measure the tradeoff between
turnover cost and reducing the volatility of the final portfolio.

2.9 Model Confidence Set

To compare the predictive ability of the different approaches through the GMV we shall use the Model
Confidence Set (MCS), proposed by Hansen et al. (2011). We will use as loss function the realized
variance of the proposed portfolio of each strategy. The portfolios considered will be rebalanced every
five trading days.

The MCS works as follows. Let lm,t be the realized variance of the minimum variance portfolio
of approach m = 1 . . .M at time t. Define:

dmk,t = lm,t − lk,t, 1 ≤ m ̸= k ≤ M, t = 1, . . . , T (4)

as the difference between the loss functions of approaches m and k.
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These are the hypotheses of interest:

H0 : E[d̄mk] = 0 for all 1 ≤ m ̸= k ≤ M

H1 : E[d̄mk] ̸= 0 for some 1 ≤ m ̸= k ≤ M

where d̄mk = n−1
∑T

t=1 dmk,t and n is the sample size.

The test statistic is built using bootstraping methods to generate artificial samples and estimate
the standard deviation, and thus:

tmk =
d̄mk√

V̂ ar(d̄mk)

for 1 ≤ m ̸= k ≤ M

If, by any chance, any of the approaches has a realized portfolio variance statistically significantly
larger than the others the test will recognize that and the re-run the test without this approach. This
is done until there is no statistically significant difference between the realized portfolio variance of
the remaining approaches.

2.10 Ledoit and Wolf test

Another interesting question is whether the portfolios constructed have significant Sharpe ratio dif-
ferences when trying to minimize the variance. If two portfolios have the same variance but one has
a statistically significant larger Shrape ratio, then that method should be selected.

To test this we will consider the Ledoit and Wolf test proposed in Ledoit and Wolf (2008) to
compare Sharpe ratios. Their test is built on the difference between Sharpe ratios of two portfolios.
Let ∆m,k ≡ Shm − Shk. For the null hypothesis H0 : ∆m,k = 0 the test statistic is:

tSm,k = − |∆̂|

s
(
∆̂
)

where s
(
∆̂
)
is estimated using

√
T
(
∆̂−∆

)
d−→ N (0;∇′f(v)Φ∇f(v̂)), i.e., s

(
∆̂
)
=

√
∇′f(v)Φ̂∇f(v̂)

T ,

with

∇′f(a, b, c, d) =

(
c

(c− a2)1.5
,− d

(d− b2)1.5
,−1

2

a

(c− a2)1.5
,
1

2

b

(d− b2)1.5

)
and

Φ = lim
T→∞

1

T

T∑
s=1

T∑
t=1

E[ysy
′
t], where y′t =

(
rtm − E[rtm], rtk − E[rtk], r

2
tm − E[r2tm], r2tk − E[r2tk]

)
rtm and rtk are the returns of portfolios m and k respectively. The estimator of Φ is obtained

using HAC inference and block bootstrap.

3 Data

The data come from two sources. The first is the high-frequency factors constructed by Aı̈t-Sahalia
et al. (2020) available at Dacheng Xiu’s website. They use data from NYSE, AMEX, and NASDAQ
stock markets for 1996–2017 to build six high-frequency factors. In particular, they contemplate a
momentum factor (MOM) plus the five Fama-French factors based on size (SMB), book-to-market
ratio (HML), profitability (RMW), investment strategy (CMA), and market return (MKT).

The remaining data come directly from high-frequency stocks data from PiTrading, we will use
five minute data of the stocks in the S&P500 index. The stocks change over time as some firms might
disappear or lose importance in the market. Both samples range from the December thirtieth 2002
to February seventeenth 2017 amounting to 711 weeks.
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Figure 1: The correlation matrx of Aı̈t-Sahalia et. al factors

The use of empirically chosen high-frequency factors could pose some problem as they are not
necessarily orthogonal. As we can see in Figure 1 Aı̈t-Sahalia et al. factors don’t have such a
high correlation. Another option would be to use sectorial and economic ETFs as factors, but their
correlation is significantly higher than the Aı̈t-Sahalia et al. factors.2

Figure 2 reveals that market and momentum factors have the widest distribution with the largest
range of returns. Our five factors have average returns close to zero, an important feature required
for the Realized GARCH model: we can justify the use of squared daily returns without worrying
about the drift. The only factor that has a negative average weekly return is momentum (-0.02%).
The others have slightly positive returns, the larger being the market factor (0.15%). Looking at the
median returns, momentum, market and SMB portfolios have positive median returns, whereas the
other three factors have negative.

In Figure 3 we see that the histogram of returns of the stocks is considerably more disperse,
because of idiosyncratic shocks. Table 1 shows the annualized volatility for the stocks and for thew
factors in the whole sample. While the volatility of the factors range from 5% to 16% per year, the
average of the volatilities of the stocks is 31%, with one stock having 71% over the whole period.

To construct our realized measures we use five-minute asset and factor returns. We split the data
into sets of five consecutive nonoverlapping trading days and find the covariance matrices of each
time frame. With this we have 711 time frames, and for each stock in every window we have one
realized covariance matrix between the stock and the factors.

For an asset to be eligible it must have less than 5% of the estimation period with missing data.
As we can see from Figure 4 the sample starts with less than 430 eligible stocks and comes to almost
490 in the in the beginning of 2017.

2This comparison was done looking at the financial, energy, utilities, industrial, health care and technology sector
ETFs and growth, value, small cap and momentum ETFs for the S&P500.
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Figure 2: Aı̈t-Sahalia et. al high frequency factors return distribution

Figure 3: Distribution of returns of six S&P500 stocks

8



Annualized Volatility
Momentum 14.74%
Conservative minus
aggressive

4.73%

High minus low 7.99%
Market 16.27%
Robust minus weak 6.26%
Small minus big 8.59%
Stocks’ min 14.15%
Stocks’ median 30.01%
Stocks’ mean 31.45%
Stocks’ max 71.13%

Table 1: Annualized Volatilities of Factors and Stocks

Figure 4: Number of eligible stocks over time
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4 Empirical Application

In our empirical application we will compute the Global Minimum Variance portfolio for each con-
ditional covariance forecast. To construct a portfolio we will use the forecast of each approach to
calculate the optimal weights and keep the weights fixed for five trading days. After the fifth day we
will use the newly estimated conditional covariance matrix to compute new weights and use them for
the next five days. This will be done throughout the whole sample.

For the estimation we will use a rolling window of 150 weeks. Using all 711 weeks in our sample
we remain with 561 weeks to forecast the conditional covariance matrix and build GMV portfolios to
compare the predictive ability of the approaches.

To compare our method to standard methods in the literature we will use the 1/N naive portfolio
and the GMV built with the DCC-NL forecast of the conditional covariance matrix. We expect every
model to have a better forecasting performance than the 1/N diversification, as it assumes covariance
zero between returns.

As for the other benchmark, the DCC-NL was proposed by Engle et al. (2019) and the idea is
to use nonlinear shrinkage on the sample covariance matrix to correct the in-sample bias. The use
of DCC-NL has been widespread in recent literature as a powerful forecasting tool without the use
of intraday data (see De Nard et al. (2019) and Ding et al. (2021)). We expect some benefit on
predictive ability when using more information to forecast the conditional covariance matrix as we
do in the last two approaches.

4.1 Computational Challenges

When implementing this model we were faced with a multitude of computational issues. The treat-
ment of the database and the Static and Realized models were straight forward, but the Realized
Multivariate GARCH posed some issues: the model requires minimization of a function with 126
parameters for the factors and 168 parameters for the relation between each stock and the factors.

The factor structure made the estimation feasible, but the number of parameters is still very large.
For n assets the number of required parameters is 3n(n + 1). Computationally this optimization is
extremely costly as there is no closed form for the hessian matrix. We utilized an adaptive differential
evolution with radius limited sampling to arrive to estimate the parameters.3

The estimation of many of the models, most likely, did not reach a global optimum. In many cases
the optimizer ran for a couple of times and did not arrive in a feasible estimation for the parameters,
the resulting betas were orders of magnitude above what any would expect for a factor loading. Facing
this problem, we restricted the optimizer to look for solutions with betas with a magnitude bellow
five.

5 Does any model beat DCC-NL?

While the proposed estimation approaches managed to forecast the conditional covariance matrices
better than the 1/N strategy, the DCC-NL proved to be a better alternative when looking at the
portfolio returns’ standard deviations. As we can see by Table 2, the GARCH-implied beta with
unconstrained residual estimation and non linear shrinkage for the idiosyncratic conditional covariance
matrix has the best performance among the proposed approaches. This probably happens due to
imprecise estimation of the Realized Multivariate GARCH parameters for the relation between each
stock and factors (as discussed in the computational challenges section). The nonlinear shrinkage can
correct part of this estimation error and provide a better result.

The result of the Realized model implies that the betas do not vary enough over time to justify
the use of realized measures. This approach has a slightly higher standard deviation compared to the
Static one.

3In the end, the estimation took many days to run and was based on a combination of R and Julia programming
languages. The optimizer was implemented in Julia and the method utilized was an adaptive differential evolution with
radius limited sampling. We tried a multitude of optimizing techniques and this one proved to be the most reliable.
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Another interesting result is for the GARCH-implied beta with constrained residual estimation.
This approach performed worse than the Static betas, the residual correlation seems to be more
important than the variation of betas over time. When assuming that the idiosyncratic conditional
correlation matrices are diagonal, we are leaving behind important information about the correlation
of the shocks, that is, we are not using all the information that we could to enhance portfolio di-
versification. Clearly, shocks on the volatility can happen simultaneously in different assets through
dimensions beyond the ones encapsulated by the factors, specially when we are using weekly data.

Static Realized Implied Linear Implied Non Linear Implied Restricted 1/N DCC-NL
15.20% 15.21% 13.08% 12.72% 16.82% 21.87% 11.66%

Table 2: Portfolios Returns’ Standard Deviations

In Figure 5 we can see how the standard deviations of the portfolios changed over time. We can
clearly see that the 1/N is the worst performing portfolio. Using the MCS test the set of superior
models contains only the DCC-NL, i.e., the DCC-NL conditional covariance matrix forecast creates
portfolios with variance statistically significantly smaller than any of the other estimators.

The order of elimination of the models was: GARCH-implied beta with constrained residuals,
1/N , Static Betas, Realized Betas, GARCH-implied beta with unconstrained residual estimation and
linear shrinkage and finally GARCH-implied beta with unconstrained residual estimation and non
linear shrinkage. We used a 5% confidence level and 5000 bootstraps

Looking at the standard deviations in high volatility regimes and low volatility regimes we arrive
in similar conclusions. For high volatility the order of elimination in the MCS algorithm is the
same, with DCC-NL the only one in the superior set. For the low volatility regime the order was:
1/N , GARCH-implied beta with constrained residuals, Static Betas, GARCH-implied beta with
unconstrained residual estimation and linear shrinkage, Realized Betas and GARCH-implied beta
with unconstrained residual estimation and non linear shrinkage. Again the DCC-NL remains in the
superior set. We can see that the performance of the models are similar in both regimes, the best
of our approaches being the GARCH-implied beta with unconstrained residual estimation and non
linear shrinkage in both.4

We can see in Table 3 the results from Ledoit and Wolf’s 2008 Sharpe Ratio test. Interestingly,
we were not able to reject the null in any of the pairwise tests, i.e., we cannot say that the difference
of the Sharpe ratios of the portfolios are statistically different from zero. From this we gather that
the return of each portfolio is apparently compensating enough the extra risk, albeit likely because
the portfolios were buying market risk.

Static Realized Implied Linear Implied Non Linear Implied Restricted 1/N DCC NL
Static 0.69 0.96 0.83 0.77 0.76 0.44

Realized 0.69 0.89 0.90 0.88 0.83 0.51
Implied Linear 0.96 0.89 0.40 0.81 0.78 0.39

Implied Non Linear 0.83 0.90 0.40 0.98 0.95 0.50
Implied Restricted 0.77 0.88 0.81 0.98 0.82 0.57

1/N 0.76 0.83 0.78 0.95 0.82 0.70
DCC-NL 0.44 0.51 0.39 0.50 0.57 0.70

Table 3: Ledoit and Wolf’s 2008 Sharpe Test p-values

The turnover of the portfolios can be split into two groups. The DCC-NL, GARCH-implied beta
with unconstrained estimation with linear and with non linear shrinkage have turnover ratios larger
than the other estimators. Those three are also the ones with the lowest Standard Deviations. We
can see in Figure 6 that those two groups remain stable over time. In Table 4 we see that on average
the estimator that generates a portfolio with the lowest turnover is the GARCH-implied beta with
constrained residual estimation, probably because we are ignoring the covariance of the idiosyncratic
component. In the other statistics the results remain similar.

4We define high volatility regimes those whose standard deviation are above the median for the 1/N portfolio, and
low volatility for periods when the standard deviation is bellow the median for the 1/N portfolio.
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Figure 5: Portfolios’ Standard Deviations

Figure 6: Portfolios’ Turnover Ratio

12



Static Realized Implied Linear Implied Non Linear Implied Restricted 1/N DCC NL
Min. 0.35 0.35 1.65 1.39 0.36 0.42 1.30
1st Q 0.84 0.82 2.95 2.30 0.73 0.81 2.35
Median 1.16 1.10 3.58 2.77 0.85 0.94 2.76
Mean 1.37 1.33 3.93 3.07 0.95 1.07 3.08
3rd Q 1.71 1.64 4.36 3.42 1.06 1.15 3.53
Max. 6.28 6.00 11.90 10.20 3.45 4.08 13.16

Table 4: Turnover Ratio

Elimination
Order

Standard
Deviation

Standard
Deviation
(high vol)

Standard
Deviation
(low vol)

Turnover
Ratio

1
Implied

Restricted
Implied

Restricted
1/N

Implied
Linear

2 1/N 1/N
Implied

Restricted
DCC NL

3 Static Static Static
Implied

Non Linear

4 Realized Realized
Implied
Linear

Static

5
Implied
Linear

Implied
Linear

Realized Realized

6
Implied

Non Linear
Implied

Non Linear
Implied

Non Linear
1/N

Final Set DCC NL DCC NL DCC NL
Implied

Restricted

Table 5: MCS Elimination Order

We can see in Table 5 the elimination order of the models. If we look only at the Standard
Deviation, it is clear that the DCC-NL is the best model choice, but one should also consider the
turnover of the portfolio as a whole. The conclusion is less obvious since the DCC-NL is the second one
to be eliminated and the one that remains in the superior set of models is the GARCH-implied beta
with constrained residuals, the one that is eliminated first in the MCS for the Standard Deviation.

Since we have a tradeoff between portfolio turnover and portfolio volatility, it is interesting to look
at a measure of how much the turnover raises for a one percent reduction in the volatility comparing
to the 1/N portfolio. This measure can be seen in Table 6. So, compared to the 1/N , we see that the
Static Beta, Realized Beta and GARCH-implied beta with constrained residual estimation seems to
be the best ones, the cost of reducing volatility beyond this point results in possibly large transaction
costs. The criterion for the smallest variance is not obvious in this case.

Static Realized Implied Linear Implied Non Linear Implied Restricted DCC NL
0.21 0.20 0.45 0.34 0.19 0.30

Table 6: Turnover Gains

Looking at the maximum weight and maximum leverage on a single stock in Tables 7 and 8 we
can see that, as expected, the portfolios with highest concentration are the ones with highest turnover
ratio. We define maximum weight as the single stock on the portfolio with the largest allocation (long
or short) and maximum leverage as the single stock with the largest short allocation. This is relevant
as in many scenarios there can be restrictions to leverage or concentration. The relation with the
standard deviation is not direct, as we are diversifying considering our forecasts of the conditional
covariance matrices. We can see in Figure 7 that the Static Beta, the Realized Beta and the GARCH-
implied beta with constrained residual estimation generate portfolios considerably more diversified,
with maximum weights under 3% in average, compared to a range between 9% and 10% for the other
models.
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Figure 7: Maximum weight on single stock

Figure 8: Maximum leverage on single stock
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Static Realized Implied Linear Implied Non Linear Implied Restricted DCC NL
Median 2.3% 2.3% 9.0% 7.8% 2.0% 7.1%
Mean 2.5% 2.7% 10.1% 8.9% 2.3% 8.2%
Max 7.9% 13.4% 37.1% 33.2% 9.3% 48.0%

Table 7: Maximum weight on single asset (maximum absolute weight on one stock)

Static Realized Implied Linear Implied Non Linear Implied Restricted DCC NL
Median 0.7% 0.7% 2.8% 2.0% 0.6% 1.8%
Mean 0.9% 0.9% 3.1% 2.1% 0.9% 1.9%
Max 3.8% 6.9% 9.0% 8.3% 6.5% 4.6%

Table 8: Maximum leverage on single asset (maximum short weight on one stock)

6 Conclusion

In this paper we have introduced a new way of modeling a Multivariate Realized GARCH fit for a
large number of assets. The framework is based on two fronts, the first one using realized measures to
enhance the predictive ability of the methods, and the second one to use economic factors to reduce
the dimensionality of the estimation and make it feasible.

We base the modeling approach on Archakov et al. (2020) and use their proposal to estimate the
relations between factor returns and asset returns. The final conditional covariance matrix comes
from the structure imposed by our modified framework.

We applied the Multivariate Realized GARCH with Factors to building Global Minimum Variance
portfolios using the S&P500 stocks and compare its results to standard approaches in the literature,
the naive 1/N portfolio and the DCC-NL. Our proposed methods managed to produce forecasts of
the conditional covariance matrices that generated GMVs with lower variance than the 1/N portfolio,
but the DCC-NL was still the best performing estimator, and the one model selected by MCS. The
DCC-NL was also the best performing model when splitting the sample into high a low volatility
regimes.

Looking at the turnover of the portfolios, there seems to be a sweet spot. If transactions costs
are relevant, one should consider using a different approach as the gains from reducing the standard
deviation are not equal among models. Particularly, the approach that yielded the lowest mean
turnover ratio if the Realized Multivariate GARCH with Factors restricting the idiosyncratic matrix.

It is also important to note that some models generated portfolios that in practice would be
unfeasible, with huge concentration and a large leverage. This happened mostly with the DCC-NL,
the GARCH-implied beta with unconstrained residual estimation and linear shrinkage and GARCH-
implied beta with unconstrained residual estimation and non linear shrinkage, the ones that provided
the lowest Standard Deviation. If the investor has concentration and leverage constraints, as it is
common in many places, than the optimal solution might be to use one of the other models.
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