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Abstract

What are the macroeconomic implications of informational frictions in a quantitative business
cycle model? We develop a general solution method that allows enriching a standard medium-
scale DSGE model with dispersed information. We estimate the model using Bayesian tech-
niques, using comprehensive macroeconomic and expectation data, and revisit crucial ques-
tions about business cycles. Expectation data identifies strong informational frictions, which
dampen general equilibrium effects and alter the relative importance of various shocks in
driving business cycles. We find that informational frictions complement standard frictions
instead of being alternatives. The former is crucial for generating sluggishness in inflation,
whereas the latter is important for inertia in real macroeconomic aggregates.
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1 Introduction

Expectations play a central role in macroeconomics. Household’s and firm’s decisions in macroe-
conomic models are heavily influenced by expectations about future economic developments and
economic policy.
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A recent literature has made important efforts to understand how expectations are formed.
Coibion and Gorodnichenko (2015) (henceforth, CG) document deviations from full-information
rational expectations using empirical measures of information frictions from survey data. They
show forecasts errors and revisions co-move consistently with standard imperfect information the-
ories such as sticky-information (Mankiw and Reis; 2002) and noisy-information (Woodford; 2002;
Sims; 2003).

Despite that, current state-of-the-art DSGE models following the tradition Christiano et al.
(2005) and Smets and Wouters (2003, 2007) still rest on the full-information paradigm. These
models are essential for understanding macroeconomic dynamics and economic policy, as they
successfully fit the empirical properties of key macroeconomic aggregates. However, they typically
do not incorporate expectations data to discipline the model, despite the prominent role that
expectations play in these models.

This paper seeks to fill this gap by estimating a medium-scale DSGE model with heterogeneous
and imperfect information using a broad set of macroeconomic aggregates and expectation data.

We have two main contributions, one methodological and the other applied. We develop a novel
method to solve DSGE models with dispersed and exogenous information. The challenge lies in
the complexity of solving DSGE models when we relax the assumption of full information: agents
must form an infinite regress of expectations, as first pointed out by Townsend (1983). Then, state
representations of DSGE models with such informational structure become infinite-dimensional.

The method bridges Uhlig’s (2001) undermined coefficient method for full-information models
with the solution methods from Nimark (2008) and Melosi (2017) for dispersed information models
that truncate the hierarchy of beliefs to a finite order.

Our method improves upon existing ones by allowing for the inclusion of endogenous state
variables into the system of log-linearized equilibrium conditions, which allows using medium and
large-scale quantitative models. It also uses a representation of the system of equations that
depends only on the average expectation, instead of requiring writing equilibrium equations in
terms of higher-order expectations. On the other hand, we simplify the information structure by
limiting to exogenous signals about shocks. This restriction allows a sufficiently fast solution to
perform Bayesian estimation with standard techniques.

In our application, we use a standard medium-scale DSGE along the lines of Smets and Wouters
(2007) in which both firms and households cannot observe the underlying aggregate shocks hitting
the economy. They form expectations based on exogenous and idiosyncratic signals about each of
the seven shocks in the model. This form of informational friction is standard in the literature1

The model is estimated using U.S. standard macroeconomic data and current forecast revisions
output, consumption and investment growth rates, nominal interest rate and GDP deflator.

1See for instance Woodford (2002), Nimark (2008), Angeletos and La’O (2013), Melosi (2017), among others.
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Our application revisits crucial questions in business cycle literature: i) which frictions are
more relevant to understanding business cycle and expectation dynamics? ii) what are the driving
forces of output and inflation fluctuations?

To answer these questions, we estimate both the full information (FI) and the dispersed infor-
mation (DI) models using two different datasets: one including only U.S. macroeconomic data –
as common practice in the literature –, and another augmented with forecast revisions data. This
helps to understand the role of adding expectation data and information frictions on parameter
estimates separately.

Several interesting results arise from our estimation exercises. The DI model has a substantially
better fit of expectation data than the FI model in terms of the marginal likelihood. Moreover, we
compute empirical measures of informational frictions using a similar approach to CG in simulated
data from the model and compare them to the same estimates using actual data. The model can
match reasonably well those untargeted moments for output, consumption, investment, inflation,
and interest rate.

When using macroeconomic data only, standard frictions remain remarkably stable when com-
paring estimates from the DI and FI models. The degree of informational frictions varies substan-
tially among shocks, with some quite close to the FI benchmark and others with some important
information frictions.

By including expectations data in the estimation, we document two key findings. First, revision
data is very informative about informational frictions. For instance, preference, investment-specific
technological, and price mark-up shocks had negligible information frictions when estimating the
model with macroeconomic data only. The estimates change dramatically towards very strong
frictions when including expectation data. The opposite happens for the monetary shocks: it
changed from the most to the least stronger information frictions.

Second, most standard parameters remain stable, with two noteworthy exceptions: the poste-
rior estimates of consumption habits parameter increases slightly (from a high estimate of 0.87 to
0.97), and the investment adjustment costs parameter almost doubles (from 5.47 to 9.73).

Moreover, the inclusion of expectation data implies less persistent shocks in the DI model.
Shocks volatility are much higher in the DI model than in the FI model for both datasets. Both
results are compensated by stronger information frictions: agents react less to shocks and expec-
tations have their own persistence. In other words, shocks are volatile and slightly less persistent,
but agents do not pay much attention to them. This varies sensibly across shocks.

Performing a forecast error variance decomposition (FEVD) exercise, we find that investment-
specific technological shocks and government expenditure shocks are the key drivers for output
growth and labor hours. The former has a bigger bite in the short run and decreases in importance
over time, whereas the latter does the opposite. Consumption is mainly explained by preference
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shocks and investment by investment-specific technological shocks. Price mark-up shocks explain
most of inflation’s fluctuations and have an important and increasing over time share of explaining
nominal rates and real wages dynamics. Wage mark-up shocks play a major role for real wages
only. TFP shocks play a minor role for all observables.

Comparing the FEVD using macroeconomic data only and the complete datasets reveals that
adding expectation increases the relative importance of shocks with a direct impact on each variable
(e.g., preference shocks for consumption). This is driven by the fact that expectation data requires
stronger informational frictions. Those frictions generate anchoring as discussed by Angeletos and
Huo (2021). They weaken the general equilibrium forces of the model, increasing the relative
importance of partial equilibrium (direct effects) in the model.

Our application provides a quantitative assessment of the role of information frictions as an
alternative source of persistence in macroeconomic aggregates. Seminal papers of Mankiw and Reis
(2002) propose sticky information and Woodford (2002) noisy information as alternatives to sticky
prices. Even closer connected, Angeletos and Huo (2021) develop a sharp equivalence between the
equilibrium effects of incomplete information and standard frictions that induce inertia such as
habits or investment adjustment costs. Our model embeds both types of frictions with reasonably
flat priors, leaving the data to pin down their relative importance in a fully-fledged quantitative
model.

Surprisingly, when disciplining the model with expectations data and allowing both frictions a
chance, parameter estimates of habits and investment adjustment costs increases. It does not mean
that informational frictions are not important. Overall, they are quite strong. Instead, standard
and information frictions complement each other. To explore this point further, we reestimate
the DI model with the complete dataset, shutting down four key standard frictions that generate
inertia: habits, investment adjustment costs, and price and wage indexation. We find that habit
and investment adjustment costs are essential whereas price and indexation are not very important
to explain the data when comparing marginal likelihoods. This suggests a more complementary
view of information and standard frictions.

While both types of frictions are important, we document that informational frictions are
crucial for generating sluggishness in inflation response to a cost-push shock (its main driver). This
corroborates the view that higher-order expectations are important for inflation despite relevant
price rigidity (Angeletos and La’O; 2009).

Outline. The remainder of this paper is organized as follows. Section 1.1 reviews the related
literature. Section 2 presents the details of the model and its equilibrium relations. Section 3
explains the new solution method we developed. Section 4 details the dataset used, the estimation
procedure, and its results. Section 5 performs different quantitative exercises to evaluate the ability
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of the DI model to explain the macroeconomic and expectation data. Section 6 concludes.

1.1 Related literature

Our paper also integrates the growing but still small quantitative literature estimating macroeco-
nomic models with incomplete information. Melosi (2014) estimates a New Keynesian model in
which firms have DI about the money growth and technological shocks. The author shows that
the model with DI fits the data better than a model with sticky prices and indexation to past
inflation. Melosi (2017) also uses a standard NK model with dispersed information about produc-
tivity, demand and monetary shocks. He finds that there is a signaling channel of monetary policy
in the US and that the model fits the data better than a New Keynesian model with habits in
consumption and indexation.

Our paper also relates to alternative methods for solving general DSGE models with dispersed
information. Our setting extends methods from Nimark (2008) and Melosi (2017) that truncate
the hierarchy of beliefs to a finite order to avoid the infinite regress of higher-order expectations.
There are other alternatives using frequency domain techniques. The most notable alternative is
presented by Huo and Takayama (2023), who use a combination of the Wiener-Hopf prediction
formula and the Kalman filter to achieve a tractable finite-state representation for the equilibrium.
They apply this methodology to a small-scale dynamic beauty contest model and a HANK-type
model with incomplete information.

Huo and Takayama (2022) apply the same method to solve an RBC model with TFP and
confidence shocks as in Angeletos and La’O (2013). Their model does not include standard nom-
inal and standard frictions that from DSGE literature that we are considering. They show that
the model does a good job of matching main business cycle moments and conditional responses
identified in empirical VAR. Our application seek to evaluate the role of each type of friction in a
fully-fledged DSGE model.

We also relate to a quantitative literature signal extraction into DSGE models with common in-
formation. Lippi and Neri (2007) estimate a small-scale DSGE model with imperfect information,
discretionary monetary policy and indicator variables with potential information role for stabiliza-
tion policy. Collard et al. (2009) estimate a standard New Keynesian (NK) model under three
alternative forms of imperfect information: confusion between temporary and persistent shocks,
unobserved variation in the inflation target of the central bank, and persistent mis-perceptions
about the state of the economy. The authors argue that the inclusion of imperfect information im-
proves the fit of the traditional NK model according to the marginal likelihood criterion. Neri and
Ropele (2011) contribute to this literature by estimating a NK model with imperfect information
for the euro area using real-time data. Thus, they depart from the prior works mentioned above
that use only ex-post revised macroeconomic data.

5



2 Model

The model is a standard medium-scale DSGE model along the lines of Christiano et al. (2005) and
Smets and Wouters (2007) (henceforth, SW). It features sticky prices and wages, variable capital
utilization, fixed cost in intermediate production, and five frictions that generate endogenous per-
sistence in the model: (i) habit formation in consumption, (ii) adjustment cost in investment, (iii,
iv) partial indexation of prices and wages to past inflation, and (v) smoothing in the monetary
policy rule. In the baseline specification of the DI model, we shut off three frictions that induce
inertia in the model, namely: habit persistence in consumption and indexation of prices and wages
to lagged inflation. We discuss this choice in the results section. That said, in the following de-
scription of the model, we derive it with all the frictions, including the informational imperfection,
and later we detail the frictions that will be turned off.

The stochastic dynamics is driven by seven orthogonal exogenous shocks. The model includes
total factor and investment-specific productivity shocks, a preference shock, wage and price mark-
up shocks, and government expenditure and monetary policy shocks.

The innovation of our work is the introduction of dispersed information (DI) to this environ-
ment. Specifically, households and firms do not observe perfectly the shocks hitting the economy.
Instead, they receive noisy idiosyncratic signals about them.

Timing

Time is discrete and each period contains two stages. In the first stage, shocks and signals are
realized, intermediate goods firms choose optimal prices, and households choose consumption, in-
vestment, installed capital, and its utilization level, and set optimal wages, based on information
from their signals. In the second stage, rental rates and wages of differentiated labor are uncovered.
Competitive final good firms buy intermediate goods to sell the final good to households. Compet-
itive labor packers use the supply of differentiated labor from households and sell a homogeneous
labor bundle to intermediate firms. Intermediate firms rent capital and hire labor to produce the
intermediate goods.

This timing protocol is standard in the literature2 and ensures two features. First, all markets
clear. Competitive final good firms ensure that the supply of final good matches consumption and
investment demands. Given prices of intermediate goods, differentiated wages, and rental rate
chosen at stage 1, firms allocate capital and labor to accommodate the demand from final good
firms. Finally, given the wages set at the first stage, labor packers aggregate the differentiated
labor services from households and supply homogeneous labor to intermediate firms such that the
labor market clears.

2See for instance Nimark (2008), Angeletos and La’O (2011).
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Second, intermediate good firms do not use information from the production process to extract
information from aggregate variables. This implies that both intermediate firms and households
use only information from their signals to form expectations.

Final good firms

The homogeneous final good Yt is a bundle of intermediate goods, Yi,t, where the index i ∈ [0, 1]
denotes the continuum of intermediate firms. The production function is given by

Yt =
(� 1

0
(Yi,t)

1
1+µ

p
t di

)1+µp
t

, (1)

where µp
t is the time-varying price mark-up of intermediate goods following the process log(1+µp

t ) =
log(1 + µ̄p) + xp

t , and µ̄p is the steady-state value of the price mark-up. The price mark-up shock
xp

t follows
xp

t = ρpx
p
t−1 + εp

t , εp
t ∼ N (0, σ2

p). (2)

Final goods firms operate in a perfectly competitive market and sell the final goods to house-
holds for a price Pt. They solve a usual profit maximization problem

PtYt −
� 1

0
Pi,tYi,tdi (3)

subject to (1). From the first-order conditions and the zero-profit condition, we derive the demand
for intermediate production

Yi,t =
(
Pi,t

Pt

)−
1+µ

p
t

µ
p
t Yt, (4)

where Pt =
(� 1

0 (Pi,t)
− 1

µ
p
t di

)−µp
t

is the price level.

Intermediate good firms

Each intermediate producer is a monopolistic competitive firm i ∈ [0, 1] that uses labor and capital
to produce their goods. Good i is produce using technology

Yi,t = exa
t (Ki,t)α(γtLi,t)1−α − γtΦp, (5)

where γ represents the labor-augmenting deterministic growth rate of productivity and xa
t is a

total factor productivity shock. Ki,t and Li,t denote the amount of capital and labor demanded
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by firm i at period t respectively, and Φp is a fixed cost included in the production function.3 The
productivity shock follows

xa
t = ρax

a
t−1 + εa

t , εa
t ∼ N (0, σ2

a). (6)

Intermediate firms are subject to a Calvo (1983)-like pricing friction: in every period, only a
fraction 1 − ξp of firms can adjust prices. Firms not allowed to reset prices apply the following
indexation rule

Pi,t = (Πt−1)ιp
(
Π̄
)1−ιp

Pi,t−1, (7)

where Πt ≡ Pt/Pt−1 is gross inflation and Π̄ is its steady-state value. Firms that are able to
reoptimize prices choose the level P ∗

i,t that maximizes their expected discounted flow of profits
given by

Eit

∞∑
s=0

(βξp)sΛt,t+s

[(
Xt,t+sP

∗
i,t −MCi,t+s

)
Yi,t+s

]
, (8)

subject to Yi,t+s =
(

Xt,t+sP ∗
i,t

Pt+s

)−
1+µ

p
t+s

µ
p
t+s Yt+s. MCi,t is the marginal cost of firm i at period t. Λt,t+s is

the household’s stochastic discount factor between periods t and t+ s and Xt,t+s is the indexation
between the same periods. Consistently with the indexation rule (7), Xt,t+s is given by

Xt,t+s =

Π̄(1−ιp)s∏s
j=1

(
Πιp

t+j−1

)
if s ≥ 1

1 if s = 0.
(9)

Given the optimal prices and the indexation rule, the price level has the following law of motion

Pt =
ξp

(
Πιp

t−1Π̄1−ιpPt−1
)− 1

µ
p
t + (1 − ξp)

(� 1

0
P ∗

i,tdi

)− 1
µ

p
t

−µp
t

. (10)

Labor packers

There is a continuum of households indexed by h ∈ [0, 1], each supplying differentiated labor
services. Following Erceg et al. (2000), there are labor packers that hire labor from the households
and aggregate them according to

Lt =
(� 1

0
L

1
1+µw

t
h,t dh

)1+µw
t

, (11)

3The fixed cost must be scaled by γt. Otherwise, it cost would become increasingly smaller in terms of production
over time.
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where µw
t denote the agency’s wage mark-up such that log(1 + µw

t ) = log(1 + µ̄w) + xw
t , and µ̄w is

the steady-state value of the wage mark-up. The shock follows the process

xw
t = ρwx

w
t−1 + εw

t , εw
t ∼ N (0, σ2

w). (12)

Labor packers pay the wage Wh,t for each household h, and sell a homogeneous labor service
to intermediate firms at a cost Wt. Agents maximize profits

WtLt −
� 1

0
Wh,tLh,tdh (13)

subject to (11). Thus, the labor demand for each household h’s labor service is given by

Lh,t =
(
Wh,t

Wt

)− 1+µw
t

µw
t
Lt, (14)

where Wt =
(� 1

0 (Wh,t)
− 1

µw
t dh

)−µw
t

is the nominal wage index.

Households

Households h ∈ [0, 1] derive utility from consumption and leisure. In order to maximize their
expected utility, they choose consumption (Ch,t), holdings of government bonds (Bh,t), installed
capital level (Kh,t) and its utilization rate (Uh,t). The capital rented to firms, Ku

t , is determined
by the installed capital and the utilization rate. The objective function that each household h

optimizes is given by

U = Eht

 ∞∑
s=0

βsexc
t+s

ln (Ch,t+s − φCh,t+s−1) −
L1+χ

h,t+s

1 + χ

 , (15)

where Ch,t is consumption and Lh,t denotes the supply of differentiated labor services of household h
at period t. Households‘ preferences display external habit persistence, captured by the parameter
φ, while χ is the inverse of the Frisch elasticity of labor supply. Eht[·] is the expectation operator
conditional on households h’s information set, and xc

t is a preference shock that follows

xc
t = ρcx

c
t−1 + εc

t , εc
t ∼ N (0, σ2

c ). (16)

The capital stock Kh,t owned by household h evolves according to

Kh,t = (1 − δ)Kh,t−1 + exi
t (1 − S(Ih,t/Ih,t−1)) Ih,t, (17)

9



where S(It/It−1) is the adjustment investment cost function that denotes the share of investment
which does not become new capital. As in Christiano et al. (2005), the cost function S(·) has the
following properties: S(γ) = S ′(γ) = 0, and S ′′(γ) = s′′ > 0.

The investment-specific technological shock xi
t follows

xi
t = ρix

i
t−1 + εi

t, εi
t ∼ N (0, σ2

i ) (18)

Households rent to firms an effective amount of capital Ku
h,t given by

Ku
h,t = Uh,tKh,t−1, (19)

where Uh,t is the level of capital utilization. They receive RkKu
h,t for renting capital but pay a cost

a(Uh,t)Kh,t−1 in terms of the consumption good. Following Christiano et al. (2005), this function
has the properties a(Ū) = 0 and a′′(Ū) = a′′, where Ū is the value of the capital utilization rate in
the steady-state.

The households’ budget constraint is given by

PtCh,t + PtIh,t +Bh,t + Pta(Uh,t)Kh,t−1 +Qt+1,tAh,t ≤

Rt−1Bh,t−1 +Wh,tLh,t +Rk
tUh,tKh,t−1 + PtAh,t−1 + Th,t,

(20)

in each period. Th,t denote net transfers from the government, Ah,t is a vector of one-period
state-contingent securities and Qt+1,t is the price of such asset.4

Households supply labor in a market with monopolistic competition subject to a wage-setting
friction. Following Erceg et al. (2000), in every period only a fraction 1 − ξw of households are
able to optimize their wages. Those households choose their optimal wage by setting a mark-up
over the marginal rate of substitution between consumption and labor. Households who are not
able to optimize update their wage using a indexation rule given by

Wh,t = (Πt−1)ιw
(
Π̄
)1−ιw

γWh,t−1, (21)

which is a geometrically weighted average of steady-state wage growth (γΠ̄) and last period wage
growth (γΠt−1).

4The assumption of a complete set of state-contingent securities guarantees that all households h will make the
same consumption and saving choices. This is true despite the fact that they have differentiated wages and form
expectations based on idiosyncratic signals. This assumption is for tractability. In that way, it is not required to
keep track of the stationary distribution of capital as in heterogeneous-agent models. Thus, standard techniques of
log-linearization to solve DSGE models can be applied even with informational frictions in the households’ decisions.
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Each household minimizes their expected discounted labor disutility

Eht

[ ∞∑
s=0

(βξw)s

(
−
L1+χ

j,t+s

1 + χ

)]
(22)

subject to the budget constraint (20) at all periods s ∈ [0,∞) and to the period t + s nominal
wage Wh,t+s = Xw

t,t+sW
∗
h,t and

Xw
t,t+s =

(γΠ̄1−ιw)s∏s
j=1

(
Πιw

t+j−1

)
if s ≥ 1

1 if s = 0.
(23)

Given optimal prices and the indexation rule, the aggregate wage level has the following law of
motion

Wt =
ξw

(
γΠιw

t−1Π̄1−ιwWt−1
)− 1

µw
t + (1 − ξw)

(� 1

0
W ∗

h,tdh

)− 1
µw

t

−µw
t

. (24)

Government Policies

The central bank sets the nominal interest rate according to a standard Taylor rule with smoothing
according to

Rt

R̄
=
(
Rt−1

R̄

)ϕR

(Πt

Π̄

)ϕπ (Yt

Ȳ

)ϕy

(1−ϕR)

exr
t , (25)

where variables with a bar denote the steady-state values and xr
t is the monetary policy shock,

which follows
xr

t = ρrx
r
t−1 + εr

t , εr
t ∼ N (0, σ2

r). (26)

For simplicity, I assume that the monetary authority responds to deviations of output to its steady-
state value instead of the natural output.

The government budget constraint is the following

PtGt +Rt−1Bt−1 = Bt + Tt (27)

where Tt and Bt are total lump-sum taxes and bonds, respectively. Government expenditure
follows a simple stochastic process given by G/Y = gy + xg

t , where gy ≡ Ḡ/Ȳ is the steady-state
ratio of government expenditure to output and xg

t is a government expenditure shock with process

xg
t = ρgx

g
t−1 + εg

t , εg
t ∼ N (0, σ2

g). (28)

11



Resource constraint and market clearing

The aggregate resource constraint

Ct + It +Gt + a(Ut)Kt = Yt, (29)

is derived by integrating households’ budget constraint over h, and combining it with the zero
profit condition of final goods firms and labor packers and the government budget constraint.

Market clearing in labor and capital markets holds

Ku
t =

� 1

0
Ki,tdi, Lt =

� 1

0
Li,tdi.

The bond supply and the transfers

Bt =
� 1

0
Bh,tdh, Tt =

� 1

0
Th,tdh,

are consistent with the government spending rule and the public budget constraint (27).

Information and signal extraction

Intermediate good firms and households do not observe perfectly the structural shocks driving the
economy, but instead receive noisy idiosyncratic signals about them. Formally, the signal follows
the process

sl
j,t = xl

t + vl
j,t, vl

j,t ∼ N (0, τ 2
l ), (30)

where l ∈ {a, c, i, g, p, w, r} denote each type of shock and j ∈ [0, 1] is a index that pools both
intermediate good firms i and households h. This assumption implies that firms and household
receive signals with the same properties and are subject to the same degree of informational
frictions. Hence, an agent j’s information set is described as

Ij
t = {sa

j,τ , s
c
j,τ , s

i
j,τ , s

g
j,τ , s

p
j,τ , s

w
j,τ , s

r
j,τ : τ ≤ t}. (31)

Given that households and firms have the same unit mass, their average expectation is the same
and denoted by Ēt[·] ≡

� 1
0 Ej,t[·]dj, where Ej,t[·] ≡ E[·|Ij

t ] denotes the j’s individual expectation.
Given the AR(1) structure of the shocks and signal structure (30), j’s rational expectation about
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the shock xl
t is computed by using the Kalman filter such that

Ej,t[xl
t] = Ej,t−1[xl

t] + k̄l

[
sl

j,t − Ej,t−1[sl
j,t]
]

(32)

where denotes k̄l the steady-state Kalman gain of shock l given by

k̄l = p̃l

p̃l + r2
l

(33)

where rl ≡ τl

σl
denotes the noise-to-signal ratio of signal l and p̄l can be computed by the Riccati

equation

p̃2
l −

[
1 − (1 − ρ2

l )rl

]
p̃l − r2

l = 0.

Note that p̃l is defined as the ratio of the individual expectation steady-state variance and the
shock variance, p̃l = p̄l

σ2
l
.Thus, the Kalman gain is a function of the shock’s parameters, (ρl, σl),

and the signal’s noise (τl), k̄l = k(ρl, σl, τl).
The Kalman gain is the key parameter that measures the degree of informational friction,

conditional on the shock’s parameters. In other words, conditional on (ρl, σl) there is a one-to-one
relationship between k̄l and the signal’s noise ratio τl. We get back on this when discussing priors
choices.

Moreover, the average expectation is given by

Ē[xl
t] = (1 − k̄l)Ēt−1[xl

t] + k̄lx
l
t = (1 − k̄lρl)Ēt−1[xl

t−1] + k̄lx
l
t. (34)

Thus, the current expectation is a weighted average between the past expectation and the
actual shock, whose weight is given by the Kalman gain.

If k̄l = 1 (τl → ∞) the model boils down to the full information benchmark. If k̄l = 0 (τl → 0),
the average expectation is zero (equals to the unconditional expectation)5.

2.1 Detrending and log-linearized model

Before showing the system of log-linearized equations that characterizes the model, we discuss the
detrending procedure.

All real variables grow along with the productivity trend, so they are detrended as follows:
Ẑt = Zt

γt , for any real variable Zt. Nominal variables grow along with the price level Pt, hence they
are stationarized using the following procedure: Ẑt = Zt

Pt
.6

5Zero is the solution for the equation Ē[xl
t] = (1 − ρl)Ēt−1[xl

t−1]
6One exception is the Lagrange multiplier of the budget constraint, Λt, that must be normalized to Λ̂t = Λtγ

tPt,
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The optimal prices and wages are detrended by dividing them to the price level of last period:
P̂ ∗

i,t = P ∗
i,t/Pt−1, while Ŵ ∗

h,t = Ŵ ∗
h,t/γ

tPt−1.7

Stationary variables are transformed by taking their log-deviation to steady-state value as
follows: zt = log(Zt/Z̄), for any stationary variable Zt. Thus, lower case variables denote log-
deviation from steady-state of the upper case variables.

For brevity, all log-linearized equations are provided in equation (65) in the Appendix A.2.
The derivation of the log-linearized equations above can be found in the Online Appendix.

Here we emphasize two key equations to clarify how dispersed information affects the equilib-
rium conditions.

Consider the Euler equation given by

ct = φ/γ

1 + φ/γ
ct−1 + 1

1 + φ/γ
Ēt[ct+1] − (1 − φ/γ)

1 + φ/γ
Ēt[rt − πt+1 − (xc

t+1 − xc
t)]

This is the same Euler equation of Smets and Wouters (2003) with two key differences due to
the presence of informational frictions.

First, expectations are heterogeneous, and hence average expectation replaces the full infor-
mation expectation operator. Second, current endogenous variables and structural shocks are not
observed. Thus, their expectations arise in optimal choices. In this case, households must form
expectations about the current nominal rate, rt, and the current preference shock, xc

t .
Now consider the New Keynesian Phillips (NKPC) curve given by

πt =ξpιpπt−1 + κpξpĒt [mct + xp
t ] + ψpĒt [πt] + (1 − ξp)βξp

� 1

0
Eit[p∗

i,t+1]di (35)

where ψp ≡ (1 − ξp)(1 − ιpβξp).
An additional difference appears in the NKPC as the average expectation of firms’ future own

optimal prices matters for inflation. Note that
� 1

0 Eit[p∗
i,t+1]di ̸= Ēt

[
p∗

t+1

]
, since the law of iterated

expectations does not hold for average expectations (Morris and Shin; 2005). Thus, we cannot
write the last term in terms of the average expected future aggregate optimal price, which is related
directly to future inflation.

As pointed out by Nimark (2008), as inflation depends on its own average expectation, higher-
order expectations matter for inflation dynamics. By taking the average expectations of this

since it reflects the marginal utility of an additional unit of money, which declines as consumption grows at rate γ
and the price level rises.

7This simplifies the derivation as Eh,t[Ŵ ∗
h,t] = Ŵ ∗

h,t and Ei,t[P̂ ∗
i,t] = P̂ ∗

i,t since observe Pt−1. This would not be
true if we detrended them using Pt.
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equation and substituting it iteratively, we obtain that

πt = ξpιp
1 − ψp

πt−1 + κpξp

∞∑
k=1

ψk−1
p Ē

(k)
t [mct + xp

t ] + (1 − ξp)βξp

∞∑
k=0

ψk
pĒ

(k)
t

[� 1

0
Eit[p∗

i,t+1]di
]
, (36)

where Ē(k)
s [zt] ≡

� 1
0 Eis

[
Ē(k−1)

s [zt]
]
di, for any variable zt, all k ≥ 1 and s ≤ t, with the convention

that Ē(0)
t [zt] ≡ zt and Ē

(1)
t [zt] ≡ Ēt[zt].

Firms must form not only beliefs about marginal cost, price mark-up shock, and future own
price but also higher-order expectations about these variables. ψp ∈ (0, 1) is a key parameter
that determines how strong the dependence of inflation on higher-order expectations is. One key
feature is that inflation dependence on higher-order expectations decreases with the order.

The latter differs from Nimark’s (2008) NKPC in two key aspects. First, our model includes
partial indexation to past prices, which generates a backward term. Interestingly, ψp is decreasing
in the indexation parameter, ιp, i.e., indexation decreases the relevance of higher-order expecta-
tions. The intuition is the following. As non-optimizing firms index their prices to past inflation,
optimal prices are less responsive to expectations about inflation. Thus, inflation is less dependent
on higher-order expectations.

Second, it explicitly considers that
� 1

0 Eit[p∗
i,t+1]di ̸= Ēt

[
p∗

t+1

]
, which prevents representing

inflation as a function of the future inflation as in the full-information benchmark.8

One key feature of the solution method discussed in the next section is that we do not need to
represent equilibrium conditions in terms of higher-order expectations as in equation (36) to solve
the model. We can find a policy function that depends on higher-order expectations even defining
equilibrium conditions in the system of equation in terms of average expectations as in equation
(35).

3 Solution method

In this section, we present a novel solution method for DSGE models featuring imperfect and
dispersed information.

The log-linearized equilibrium equations (65) can be written as the following general system of
linear rational equations

F1Ēt[Yt+1] + F2

� 1

0
Eit[Yi,t+1]di+G1Yt +G2Ēt[Yt] +HYt−1+

LĒt[xt+1] +M1xt +M2Ēt[xt] = 0m×1,

(37)

8As pointed out in Appendix D of Angeletos and Huo (2021), Nimark (2008) and Melosi (2017) abstract in
their derivation that

� 1
0 Eit[p∗

i,t+1]di ̸= Ēt

[
p∗

t+1
]
. While this may not be quantitatively relevant, it is important for

correctly defining the general system of equilibrium conditions (37) and the guessed policy function (40).
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where i ∈ [0, 1] indexes an agent, Yi,t is a m × 1 vector of individual choices, Yt is a m × 1 vector
of aggregate endogenous variables and xt is a n× 1 vector of unobservable exogenous shocks.

Structural shocks xt follow a stationary stochastic process

xt = A1xt−1 + εt, εt ∼ N (0,Σε) (38)

where A1 is a diagonal matrix storing the persistence of each shock, and Σε is a diagonal covariance
matrix. Idiosyncratic signals are given by

si,t = Cxxt +Dvi,t, vi,t ∼ N (0,Σv), (39)

where Σv is a diagonal covariance matrix.9

Define the k-th order average expectation E(k)
t [·] given information of period t about the vector

of unobservable aggregate shocks xt as E(k)
s [xt] ≡

� 1
0 Eis

[
E(k−1)

s [xt]
]
di, for all k ≥ 1 and s, t, with

the convention that E(0)
t [xt] ≡ xt and E

(1)
t [xt] ≡ Ēt[xt].

Following Nimark (2008), it is useful to denote the expectations hierarchy of xt from order l to
s as the vector

x
(l:s)
t ≡

[
E

(l)
t [xt]′ E

(l+1)
t [xt]′ · · · E

(s)
t [xt]′

]′
,

for s > l ≥ 0.
Following the insight of Nimark (2008), the solution method relies on a truncation of the state

space to circumvent the problem of the infinite regression of expectations (see Townsend; 1983).10

Specifically, we guess that the individual and aggregate equilibrium law of motion and expectation
hierarchy are given by

Yi,t = RYi,t−1 + Q0xt + Q1Ei,t

[
x

(0:k̄)
t

]
, (40)

Yt = RYt−1 + Qx(0:k̄)
t (41)

x
(0:k̄)
t = Ax(0:k̄)

t−1 + Bεt, (42)

where (R,Q0,Q1,A,B) are finite dimensional matrices to be determined in equilibrium. Q =
Q0ex + Q1T , ex is the selection matrix such that xt = exx

(0:k̄)
t and T is a order transformation

matrix such that E(1)
t

[
x

(0:k̄)
t

]
= Tx

(0:k̄)
t .11

The system of equations (37) generalizes the existing methods by allowing: i) average expecta-
9The model from Section 2 implies a diagonal structure for A1, Σε and Σv. The solution method does not require

these assumptions.
10Nimark (2017) shows that as long as the impact on equilibrium outcomes of higher-order expectations decreases

with the order, there exists a k̄ such that the approximation error of the solution is less than any ϵ > 0.
11See details in Appendix C
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tion about future own variables (the term post multiplying F2) and ii) endogenous state variables
(the term post multiplying H). The latter allows solving medium-scale DSGE models such as the
one in section 2.

Proposition 1 shows the dynamics for expectation hierarchy and the expressions for the fixed-
point solution for (A,B).

Proposition 1. Suppose that xt is a stationary process, the expectation hierarchy follow equation
(42) and agents use information from signals (39). Assuming common knowledge of rationality,
the individual and average expectations about the hierarchy are given by

Eit

[
x

(0:k̄)
t

]
= (Ik − KC) AEi,t−1

[
x

(0:k̄)
t−1

]
+ KCAx(0:k̄)

t−1 + KCBεt + KDvit

Ēt

[
x

(0:k̄)
t

]
=
(
Ik − K̄C

)
AĒt−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt.

where C = Cxex.
The expectation hierarchy consistent with the expectations above has coefficients (A,B) that

satisfy the matrix equations:
(
Ik − T ′K̄C

)
A = e′

xA1ex + T ′
(
Ik − K̄C

)
AT(

Ik − T ′K̄C
)

B = e′
x

(43)

such that K̄ and P̄ solve the Riccati equation resulting from equations

K̄ = P̄C ′
[
CP̄C ′ +DΣvD

′
]−1

P̄ = A
[
P̄ − K̄CP̄

]
A′ + BΣεB′

(44)

The Ricatti equation resulting from equations (44) solves the steady-state mean square error of
the expectation hierarchy. The equations uses the standard Kalman Filter with hierarchy dynamics
(42) as state equation and measurement equation as signals (39).

The key difference is that (A,B) is a result from agents signal extraction. Thus, the hierarchy
persistence (A) and response to shocks (B) depend on the Kalman gain matrix K̄. As any signal
extraction, the K̄ depends on the unobserved state dynamics (A,B).

Therefore, the equilibrium solution (A,B,K,P) is the fixed point from equations (43-44).
Since the signals (39) are exogenous, they do not depend on equilibrium conditions (37). This

simplifies finding the guessed coefficients for the equilibrium (R,Q0,Q1) and tremendously dimin-
ishes the computational costs.12

12For instance, Melosi (2017) explains in his replication files that: “Be aware that estimating the DIM may take
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Before presenting the equilibrium dynamics in Proposition below, we want to emphasize one
assumption that simplifies substantially this task. We assume that when forming expectations
about Yt using the guessed solutions (40-41), agents know the past value of endogenous variables,
Yt−1.

This assumption contrasts with the expectation formation from Proposition 1 in which expec-
tations depend only on exogenous signals. This avoid learning from (past) endogenous variables,
which generates a feedback between the signal extraction and endogenous variable responses to
the hierarchy.13 Ribeiro (2017) considers the general case with endogenous signals.

This assumption is implicit in standard solution methods for imperfect under common informa-
tion such as Blanchard et al. (2013) and Baxter et al. (2011). This is also a common assumption
when studying the New Keynesian Phillips Curve under dispersed information (e.g., Angeletos and
La’O; 2009; Angeletos and Huo; 2021).

Proposition 2. For a given dynamics expectation hierarchy from equation (42), the system of
equations (37) has a recursive equilibrium law of motion (41) whose matrix coefficients satisfy:

1. (R,Q0,Q1) satisfy the matrix equations:

FR2 +GR +H = 0m×m (45)

[F1R +G1] Q0 +M1 = 0m×n (46)

[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA+

[(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex = 0m×k (47)

where F ≡ F1 + F2, G ≡ G1 +G2 and k = n(k̄ + 1).

2. (Uhlig; 2001) R has a unique stable solution if all eigenvalues of R are smaller than unity
in absolute value.

3. Given the solution of R, denote the matrices (V0, V1) such that:

V0 = F1R +G1 (48)

V1 = Ik ⊗ (F1R +G1) + T ′ ⊗ (F2R +G2) + A′ ⊗ F1 + T ′A′ ⊗ F2 (49)

Provided that there exists a inverse for V0 and V1, the equilibrium solution for (Q0,Q1) is

several weeks or even a few months depending on the computer used for this task.” In our application, which has
a considerable higher scale model, takes 36 hours for 400k posterior draws in a standard notebook.

13One can think this assumption as a deviation from rationality as agents do not incorporate that their knowledge
about Yt−1 can be used to learn about x

(0,k̄)
t−1 , which would also change their beliefs about x

(0,k̄)
t .
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given by

Q0 = −V −1
0 M1 (50)

vec(Q1) = −V −1
1 vec ([(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex) (51)

where vec(·) denotes columnwise vectorization.

Given the individual response to shocks (Q0) and to the individual expectation about the hierarchy
(Q1), the aggregate response to the hierarchy is given by: Q = Q0ex + Q1T

Proposition 2 connects the solution of imperfect common knowledge models with the standard
undetermined coefficients solution for full information DSGE models.

Condition (45) is exactly the same as the usual “brute force” approach of Uhlig (2001). In
other words, he equilibrium R is the same that would happen if agents had full information, as
shown in Appendix C.14

This has two key implications. First, R can be computed with standard techniques. Second,
informational frictions does not affect how endogenous variables respond to state variables. This
does not imply that information frictions are not important their persistence. Endogenous variables
persistence also reflects the hierarchy persistence.

Our solution method is a natural extension of Uhlig’s (2001) full information and Blanchard
et al.’s (2013) imperfect information methods. It is also related to the dispersed information
method from Melosi (2017). The key difference is that his method abstracts from state endogenous
variables but allows for endogenous signals.

Appendix C further explore the relation with those methods and show the details of the algo-
rithm to find the fixed point solution from Proposition 1.

4 Estimation

In this section, we discuss the data, the prior choices, and the posterior results of the Bayesian
estimation. We estimate the model featuring dispersed information (‘DI model’) using two different
datasets: one containing macroeconomic data only and other including both macroeconomic and
expectation data. For comparison, we also estimate the same model under full-information (‘FI
model’) where we abstract from information frictions in the same datasets.

14The key assumption for this result is that agents observe past endogenous variables at period t.
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4.1 Data

We collect U.S. quarterly macroeconomic and expectation data from 4Q:1981 to 4Q:2007. The data
on macroeconomic aggregates include the series of real GDP, real consumption, real investment,
GDP deflator index, annualized Fed funds rate, hours worked index and nominal wages index, and
come from the Federal Reserve Database (FRED).

We also gather the average expectation about one-quarter ahead real GDP, real consumption
and real investment, inflation and three-month Treasure bill rate from the US Survey of Professional
Forecasters (SPF). A detailed description of the datasets can be found in Appendix B.

When estimating medium scale DSGE models, the use of macroeconomic data is quite standard
in the literature. However, the inclusion of expectation data is notably less common. In recent
years, several papers have tried to incorporate expectation data to discipline macroeconomic models
with complete and incomplete information. Del Negro and Eusepi (2011) adds one-year ahead
inflation expectations to estimate a conventional New Keynesian model. Melosi (2017) estimates a
small scale dispersed information model using data on inflation forecasts one-quarter and one-year
ahead. Del Negro et al. (2015) uses ten-year inflation expectations from the Blue Chip and SPF.

In this paper, we divert from previous literature in two ways. First, we use expectation data on
a broader set of variables. Second, we use data on current forecast revisions (the nowcast minus
last period forecast). The reasoning for the latter is as follows.

By aggregating equation (32), one can see that

R̄evt|t−1[xl
t] ≡ Ēt[xl

t] − Ēt−1[xl
t] = k̄l

[
sl

t − Ēt−1[sl
t]
]

= k̄lF̄ et−1[xl
t] (52)

where sl
t =

� 1
0 s

l
itdi = xl

t is the aggregate signal, which due to the simply signal structure (30) is
equal to the shock l. R̄evt|s[·] denotes the average expectation revision from period t in comparison
with forecast from period s and F̄ es[xl

t] = xl
t − Ēs[xl

t] denotes the forecast error of a forecast made
in period s.

Note that the current forecast revision of shock l depends on the information frictions and
signals only.

By iterating equation (34), one can see that forecast Ēt[xl
t] depends on the whole history

of previous signals, the information frictions and shock’s persistence. Longer forecast horizons
(Ēt[xl

t+h]) and revisions (R̄evt|t−1[xl
t+h]) are likely to include more confounding variability as it

depends more heavily on the shocks persistence.15

The discussion above is true if we had data on the expectations about shocks. In practice, we
have data on endogenous variables, which creates another layer of complication.

15The h-step ahead forecast is given by Ēt[xl
t+h] = ρh

l Ēt|[xl
t] and analogous revision is R̄evt|t−1[xl

t+h] =
ρh

l R̄evt|t−1[xl
t]. They also depend on shocks’ persistence, ρl and the horizon h.
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Considering this issues, in our view, short horizon forecast revisions provide the best represen-
tation of expectation data for the purpose of identifying the degree of informational friction.

4.2 Measurement equations

The measurement equations that link data with the variables for both models are the following

dyobs
t = γ̄ + yt − yt−1

dcobs
t = γ̄ + ct − ct−1

diobs
t = γ̄ + it − it−1

dwobs
t = γ̄ + wt − wt−1

lobs
t = lt

πobs
t = π̄ + 4πt

robs
t = r̄ + 4rt

revobs
dy,t|t−1 = Ēt[∆yt] − Ēt−1[∆yt] + εme

dy,t

revobs
dc,t|t−1 = Ēt[∆ct] − Ēt−1[∆ct] + εme

dc,t

revobs
di,t|t−1 = Ēt[∆it] − Ēt−1[∆it] + εme

di,t

revobs
π,t|t−1 = 4

(
Ēt[πt] − Ēt−1[πt]

)
+ εme

π,t

revobs
r,t|t−1 = 4

(
Ēt[rt] − Ēt−1[rt]

)
+ εme

r,t ,

(53)

where γ̄ ≡ 100(γ − 1) is the quarterly trend growth rate of productivity. The variables with
superscript “obs” correspond to the variables in the database. The notation dxobs

t denotes the
quarterly growth rate of the variables x ∈ {y, c, i, w} at period t. The data on hours worked (lobs

t )
is demeaned, while inflation (πobs

t ) and nominal interest rate (robs
t ) are computed in annual terms.

π̄ ≡ 400(Π̄ − 1) and r̄ ≡ 400(R̄ − 1) stand for the steady-state annualized inflation and nominal
interest rates, respectively. The variables revobs

π,t|t−1, for x ∈ {dy, dc, di, π, r}, are the current forecast
revision.

Measurement errors εme
x in the observational equations associated with forecast errors are in-

troduced to avoid stochastic singularity.16 They also capture the fact that the expectation data
from SPF are not completely consistent with the average expectations of the agents populating
our model. Measurement errors follow an i.i.d. Gaussian distribution with standard deviations
denoted by σme

x , with x ∈ {dy, dc, di, π, r}.
16This is required since the complete dataset includes 12 time series, while the model has only 7 shocks.
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4.3 Prior distributions

As standard in the literature, we fix the value of some parameters that are not easily identified.
The quarterly depreciation rate δ is set to 2.5%, the value widely used in the literature.17 The ratio
of government expenditures to output gy is calibrated to its historical mean value of 18%. The
steady-state wage markup µ̄w is fixed at 1.5 as in SW. Finally, the capital share of the production
function α is fixed 0.3 to be consistent with the historical capital-output ratio.

The introduction of informational frictions is likely to affect the estimation of real and nominal
frictions, so we do not rely completely on estimates from previous papers to choose priors. Instead,
most of the priors are relatively loose. Table 1 shows the choices for priors on the left side. The
priors are the same for the FI and DI models. Obviously, the full information model does not
include the informational friction parameters and estimates with macroeconomic data only do not
include measurement errors for revision data.

The prior for parameters that have support between 0 and 1, such as the persistence of shocks,
partial adjustment of the Taylor rule, indexation of prices and wages to past inflation and habit
persistence in consumption, follow a beta distribution (B) with a mean of 0.5 and standard de-
viation of 0.2. One important exception is the Calvo frictions on prices and wages. For those to
parameters we use very tight prices around micro data estimates for prices from Nakamura and
Steinsson (2008) and for wages from Grigsby et al. (2021). Those imply average duration of three
quarters for prices and one year for wages.

The trend growth, inflation rate, and nominal interest rate steady-state parameters have priors
with gamma distribution (G) whose mean equals to their sample average. The standard deviations
are 0.10 for the first prior and 0.50 for the others.

The priors on the adjustment cost of investment, capital utilization, and the inverse of Frisch
elasticity are taken from Del Negro et al. (2007). The parameters specifying the Taylor rule have
priors with gamma distribution whose mean values are ϕπ = 1.5 and ϕy = 0.2 and the standard
deviations are 0.5 and 0.1, respectively.

Priors for the standard deviation of the structural shocks are distributed as an inverse gamma
(IG) with means chosen to match standard deviations of observables in the pre-sample 1957Q1-
1981Q1 as in Del Negro and Eusepi (2011). Standard deviations are set to 1.00, which implies
fairly loose priors.

Priors for Kalman gains of each shock are set to follow a beta distribution with a mean of
0.5 and a standard deviation of 0.2. The value of 0.5 is similar to estimates from Coibion and
Gorodnichenko (2015) using one-year inflation expectations and Bordalo et al. (2020) for one-year
data on output, consumption and investment growth rates, inflation, and nominal rates. Note that
their estimates of frictions are using macroeconomic aggregates and not actual shocks. We discuss

17See for instance Christiano et al. (2005), Smets and Wouters (2007) and Del Negro et al. (2007).
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more on this in section 5.1.
There is almost no evidence of the degree of informational friction for each shock. One exception

is Melosi (2017) which finds that informational frictions on government expenditure shocks are
substantial in comparison with productivity shocks. Since his model has a small scale and few
shocks, we pursue an agnostic view about which shocks are more prone to informational frictions.

We use the Kalman gain (k̄l) directly as a parameter instead of the noise-to-signal ratio (rl =
τl/σl) as Del Negro and Eusepi (2011) or the private signal variances (τl) as Melosi (2017). As
discussed by Del Negro and Eusepi (2011), forming priors on rl of a shock implicitly forms a prior
for the private signal’s variance dependent on the shock’s variance, σl. Analogously, when placing
priors on the Kalman gains of each shock, it implicitly generates a prior for the NRS dependent
on the shock’s persistence, ρl (see equation 33).18

Therefore, despite the shock processes (ρl, σl) having different priors for each shock l, when
assuming the same prior for the Kalman gains of all shocks, there is an implicit prior for τl|ρl, σl

that allows the same information friction for all shocks a priori.
Finally, priors for the standard deviation of measurement errors on the time series of forecast

errors are distributed as inverse gamma with a mean that matches roughly 10% of the total variance
of each revision data. The standard deviations are small to ensure very tight priors, which avoids
measurement errors to explain more than 25% of the variance in the revision data.

4.4 Posterior distributions

Bayesian techniques are applied to estimate the models, by combining the prior densities described
before with the likelihood function computed using the Kalman filter. We use solve the model
truncating the average higher-orders at the sixth order, i.e., k̄ = 6.19 We use the Random Block
Random-Walk Metropolis-Hastings (RB-RWMH) algorithm with five blocks to draw from the
posterior distribution.20 Table 1 reports the posterior estimates for both models (FI and DI
models) for both datasets. For each model and dataset, the table shows the mode and the 5%-95%
percentiles of the posterior density.

Several interesting results arise from our estimation exercise. First, we compare estimates with
macroeconomic data only and the complete dataset including expectation data. The parameters

18Del Negro and Eusepi (2011) has also a robustness check that they estimate the Kalman gain directly without
taking into account its relationship with other parameters.

19Nimark (2017) shows that k̄ = 6 is a accurate approximation in a simple model. Which order is sufficiently
high to provide good approximation to the policy function is model dependent. We find similar results k̄ = 10 and
k̄ = 15 for complete dataset. Using lower orders speedy-up substantially the estimation.

20Estimates from RB-RWMH have substantially better chain convergence diagnostics than standard RWMH as
they generate chains with lower autocorrelation. We use 400k draws and a 50% burn-in. The candidate distribution
is a multivariate normal with covariance matrix based on the estimate of the Hessian matrix at posterior mode as
in An and Schorfheide (2007).
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Table 1: Prior and Posterior distributions

Parameters

Dataset: Macroeconomic data only Dataset: Macroeconomic and expectations data
Prior Posterior: FI model Posterior: DI model Posterior: FI model Posterior: DI model

Dist. Mean Std. Dev. Mode 5% 95% Mode 5% 95% Mode 5% 95% Mode 5% 95%
Endogenous propagation parameters
χ G 2.00 0.75 1.50 1.15 2.49 1.21 1.01 1.83 1.99 1.50 2.80 1.48 1.15 2.02
φ B 0.50 0.20 0.96 0.83 0.98 0.87 0.55 0.92 0.98 0.95 0.99 0.97 0.95 0.98
a′′ G 0.20 0.10 0.40 0.28 0.66 0.37 0.25 0.63 0.42 0.29 0.69 0.41 0.28 0.68
s′′ G 4.00 1.50 4.35 2.58 8.30 5.47 3.27 9.21 14.76 11.67 20.00 9.73 7.22 13.72
ϕy G 0.20 0.10 0.06 0.03 0.13 0.06 0.03 0.13 0.06 0.04 0.11 0.07 0.04 0.14
ϕπ G 1.50 0.50 3.05 2.39 4.05 2.84 2.24 3.77 2.85 2.35 3.53 3.32 2.71 4.21
ϕr B 0.50 0.20 0.87 0.81 0.90 0.87 0.82 0.91 0.89 0.86 0.91 0.90 0.87 0.92
ιp B 0.50 0.20 0.11 0.04 0.28 0.08 0.03 0.23 0.03 0.01 0.09 0.03 0.01 0.10
ιw B 0.50 0.20 0.56 0.24 0.85 0.52 0.20 0.83 0.47 0.17 0.80 0.59 0.23 0.86
ξp B 0.67 0.05 0.83 0.80 0.80 0.80 0.75 0.83 0.85 0.83 0.87 0.85 0.82 0.88
ξw B 0.75 0.05 0.75 0.68 0.80 0.70 0.63 0.77 0.79 0.73 0.83 0.75 0.68 0.81
Steady-state parameters
πss G 2.62 0.50 2.29 1.70 2.82 2.22 1.52 2.85 2.76 2.34 3.21 3.06 2.46 3.59
rss G 5.15 0.50 6.10 5.40 6.97 6.47 5.69 7.61 6.04 5.46 6.86 6.88 6.03 7.98
γss G 0.50 0.10 0.33 0.28 0.37 0.33 0.27 0.36 0.35 0.32 0.37 0.32 0.29 0.36
Structural shocks parameters
ρc B 0.50 0.20 0.33 0.18 0.70 0.77 0.19 0.83 0.24 0.16 0.34 0.13 0.07 0.21
ρi B 0.50 0.20 0.62 0.48 0.91 0.46 0.31 0.65 0.25 0.19 0.32 0.24 0.18 0.29
ρg B 0.50 0.20 0.98 0.96 0.99 0.99 0.98 1.00 0.97 0.96 0.98 0.99 0.98 1.00
ρp B 0.50 0.20 0.96 0.92 0.98 0.95 0.92 0.98 0.90 0.87 0.93 0.82 0.77 0.87
ρw B 0.50 0.20 0.22 0.11 0.39 0.22 0.13 0.34 0.24 0.12 0.38 0.32 0.22 0.42
ρr B 0.50 0.20 0.57 0.41 0.70 0.65 0.48 0.82 0.31 0.22 0.41 0.45 0.33 0.57
ρa B 0.50 0.20 0.92 0.86 0.97 0.93 0.86 0.97 0.88 0.84 0.92 0.91 0.86 0.96
σc IG 0.30 1.00 0.17 0.10 0.22 0.11 0.09 0.36 0.20 0.17 0.23 1.70 1.25 2.28
σi IG 1.50 1.00 0.90 0.74 1.13 1.18 0.98 1.92 1.27 1.11 1.44 4.70 3.93 5.57
σg IG 0.30 1.00 0.56 0.49 0.65 0.53 0.45 0.62 0.60 0.53 0.68 0.56 0.48 0.63
σp IG 0.10 1.00 0.05 0.04 0.06 0.06 0.05 0.09 0.04 0.04 0.05 0.17 0.12 0.23
σw IG 0.75 1.00 0.57 0.47 0.67 1.07 0.77 2.71 0.60 0.50 0.71 1.56 0.99 2.48
σr IG 0.10 1.00 0.13 0.11 0.14 0.12 0.11 0.14 0.13 0.11 0.14 0.13 0.11 0.15
σa IG 0.30 1.00 0.40 0.37 0.46 0.39 0.36 0.45 0.41 0.37 0.46 0.41 0.37 0.46
Information friction parametersa

kc B 0.50 0.20 0.92 0.73 0.97 0.26 0.20 0.32
ki B 0.50 0.20 0.93 0.78 0.98 0.45 0.41 0.50
kg B 0.50 0.20 0.58 0.44 0.75 0.57 0.53 0.61
kp B 0.50 0.20 0.94 0.81 0.98 0.37 0.29 0.46
kw B 0.50 0.20 0.44 0.23 0.72 0.41 0.25 0.57
kr B 0.50 0.20 0.22 0.07 0.56 0.72 0.62 0.81
ka B 0.50 0.20 0.64 0.32 0.88 0.33 0.08 0.57
Measurement errors standard deviationb

σme
dy IG 0.10 0.02 0.46 0.41 0.53 0.28 0.25 0.32
σme

dc IG 0.10 0.02 0.42 0.38 0.47 0.21 0.19 0.23
σme

di IG 0.50 0.20 2.23 2.01 2.52 1.26 1.12 1.41
σme

π IG 0.15 0.05 0.74 0.67 0.84 0.54 0.48 0.61
σme

r IG 0.15 0.05 0.29 0.26 0.33 0.28 0.24 0.33
Marginal Likelihood -925.46 -942.25 -1544.50 -1333.20

Note: G, IG and B stand for: Gamma, Inverse Gamma and Beta distributions, respectively.
aApplies to the dispersed information model.
bApplies to the dataset including macroeconomic and expectations data.

estimates related to endogenous propagation are remarkably stable with two key exceptions. In-
vestment adjustment costs has a three fold increase for the FI model and almost two fold under
DI. Consumption habits slightly increases in the DI model from 0.87 to 0.97. The latter estimate
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is relatively higher than standard values around 0.7-0.8. The standard pratice is to impose a very
tight prior around 0.7 whereas we use a loose prior centered on 0.5. Moreover, the response to
inflation in the Taylor rule also increases reaching a quite strong response of 3.32.

Expectation data also has important implications for parameter of exogenous processes for the
DI model.21 It changes substantially estimates for most shocks except government expenditure
and TFP shocks. The estimated persistence of some shocks declines moderately for investment-
specific technological, price mark-up, and monetary shocks. The decrease is more pronounced in
preference shocks (from 0.77 to 0.13). Moreover, standard deviations also increases sharply for
investment, price and wage mark-up, and preference shocks.

Importantly, including data on forecast revisions changes substantially the estimated levels of
information frictions. Investment, price mark-up, TFP and preference shocks have sharp increases
in their Kalman gain estimates while monetary shocks decreases substantially. In next section we
discuss the drivers of those changes.

Overall, the estimates from the complete dataset exhibit stronger standard frictions, including
habits, adjustment costs, price and wage indexation, and robust informational frictions across all
shocks.

Comparing parameter estimates for the FI and DI models under both datasets reveals a consid-
erable decrease in the variance of measurement errors, a first indication that the DI model provides
a better explanation for expectation data, which we confirm further when comparing the marginal
likelihoods of the FI and DI models.

Table 1 shows the logarithm of the marginal likelihood for each model and dataset. For the
complete dataset, the difference in favor of the DI model increases considerably to 211 log points.

5 Frictions, shocks and business cycles when accounting
for informational frictions

This section is divided into two key parts.
The first explores whether the model can explain expectations data using empirical measures of

informational frictions. In this part, we also explore the relative importance of standard frictions
in explaining expectation data.

In the second part, we leverage our dispersed information model, disciplined with expectations
data, to reassess the relative importance of various shocks in driving business cycles.

21Interestingly, it does not have much impact on estimates of the FI model because they cannot be compensated
by informational frictions as we discuss below.
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5.1 Does the model match empirical measures of informational fric-
tions?

Coibion and Gorodnichenko (2015) explore a general feature of models with information frictions
that relate forecast errors and revisions to provide simple measures of informational frictions from
the SPF.

In this section, we follow a similar empirical strategy. For each variable z, consider the following
regression

Revt|t−1[zt] = βFEt−1[zt] + errort, (54)

where R̄evt|t−1[zt] = Ēt[zt] − Ēt−1[zt] is the average current forecast revision and F̄Et−1[zt] =
zt − Ēt−1[zt] is the current one-step ahead forecast error.

Following the same steps as equation (52), one can see that if z follows an AR(1), then β is a
estimate to the Kalman gain, k̄z.

Figure 1 shows the scatter plot with the fitted line in solid black for each variable in the SPF
used in the estimation of the model. Hereafter, we refer to those estimates as empirical Kalman
gains (eKGs), i.e., Kalman gains directly estimated in the data.

Figure 1: Empirical Kalman gains from SPF expectation data (1981Q4-2007Q4)
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Note: Output, consumption and investment refers to their growth rates. Inflation and interest rates are in levels.

If agents had full information, all data points should be in the red dashed line (the 45º line).
Thus, Figure 1 suggests a clear departure from the full-information benchmark in the SPF data,
in line with previous studies such as CG and BGMS.

It is also clear that variables differ in their information friction measure. For instance, the Fed
funds rate has forecast revisions that are much more aligned with the forecast errors than any
other series.
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The AR(1) assumption holds for the dynamics of the exogenous shocks in our model. Thus, the
regression (54) strictly applies only if we had data on shocks instead of endogenous variables. The
equilibrium dynamics for endogenous variables (41) depends on their lags and the full hierarchy
of expectations about all shocks. Therefore, the relationship between forecast errors and forecast
revisions from endogenous variables does not generate a closed-form prediction as in equation (54).

In a dynamic beauty context model with one action and AR(1) fundamental, Angeletos and
Huo (2021) show analytically that eKGs are determined by the interaction of informational frictions
with other frictions in the model. Therefore, in our general model, estimates from those regressions
capture a combination of: i) informational frictions of each shock; ii) standard frictions associated
with endogenous persistence.22

The eKG of each variable is likely to be associated with different frictions. They may capture
information frictions but also many other frictions. Our estimated model can shed light on the
relative importance of those frictions.

In the following, we will assess whether the data generated by the DI model produces estimates
for Kalman gains that align with those found in the SPF data. This exercise verifies the model’s
ability to match an important unmatched moment of the expectations data.

Let Θ be a vector that collects all parameters of the model and zt one selected endogenous
variables of the model. For a given Θ, we simulate nsim samples of this variable and the respective
average expectation {zt, Ēt[zt], Ēt−1[zt]} and measurement errors {εme

z,t } for t = 1, · · · , Tsim and
z ∈ {dy, dc, di, π, r}. Then, we construct nsim time-series for average forecast revisions and forecast
errors such that

R̄ev
sim

z,t|t−1 = Ēt[zt] − Ēt−1[zt] + εme
z,t

F̄ e
sim

z,t−1 = zt − Ēt−1[zt]

for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}. Note that the constructed series for revision is
consistent with the measurement equations (53) as we also draw the measurement errors.

Then, we compute the implied eKGs for nsim regressions (54) and get the average Kalman gain
and standard deviations.

Figure 2 shows the results for Tsim = 105, nsim = 100 and simulations based on the the prior
mean (Θ = Θ) and the posterior mean (Θ = Θ̄).23 The black error bars (with ◦) represent the
estimates from the SPF presented in Figure 1.

22CG extends their empirical specification to more general data generating processes such as AR(p) for inflation
or a V AR(1) for some selected macroeconomic models. In our model the persistence of endogenous variables, R,
from the solution (41) is a function of structural parameters.

23We use Tsim = 105 to match the sample size from SPF data. nsim = 100 is sufficiently large to avoid sampling
variability affecting the Kalman gain estimates meaningfully.
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Figure 2: Empirical Kalman gains from simulated data from DI model
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Note: Output, consumption and investment refers to their growth rates. Inflation and interest rates are in levels.

The eKGs from simulated data using the priors mean (red error bar with □) are similar for
all variables and close to the structural Kalman gains (sKG, henceforth), k̄x, x ∈ {c, i, g, p, w, r, a},
whose mean is 0.5.

When comparing the same estimates from the posterior mean (blue error bar with ⋄), those
are much more aligned with the direct estimates from the data.

Recall that we use data from forecast revisions at the same horizon in the estimation. Still, the
Bayesian estimates do not attempt to match the empirical dependence between forecast revisions
and forecast errors.

5.2 What are the main drivers of business cycle fluctuations?

We explore the drivers of business cycles in the DI and FI models by performing a forecast error
variance decomposition (FEVD) exercise. Figure 3 shows the results of this exercise.

We find that investment-specific technological shocks and government expenditure shocks are
the key drivers of fluctuations in output growth and hours worked. Roughly 50-60% of short-run
fluctuations in those variables are explained by the investment shock, whereas the government
spending shock explains about 25-30%. In the long run, the relevance of these shocks inverts.

This pattern is holds for both models and datasets. This contrasts with the findings of SW
that attributes a large role for wage mark-up and TFP shocks. Our results is consistent with
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Figure 3: Forecast error variance decomposition for macroeconomic aggregates by model and
dataset
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(a) DI model - Forecast revision dataset
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(b) FI model - Forecast revision dataset
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(c) DI model - Macroeconomic only dataset
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(d) FI model - Macroeconomic only dataset

the findings of Justiniano et al. (2011). They show that this difference can be attributed to the
inclusion of inventories in total investment, which SW abstracts from. Auclert et al. (2020) also
find that investment-specific technological shocks are key to output fluctuations using a HANK
model with imperfect information matching the IRF of a monetary shock.

Consumption fluctuations are mainly driven by preference shocks and investment by investment-
specific technological shocks. Price mark-up shocks explain most of the fluctuations of inflation
and have an important share in explaining nominal rates and real wage dynamics with increasing
relevance over time. Wage mark-up shocks play a major role for real wages only. TFP shocks play
a minor role for all observables.

The FEVD from Panel (a) reveals that the baseline DI model implies strong relative importance
of shocks with a direct impact on each variable (e.g., preference shocks for consumption).

When comparing FEVDs from FI models with both datasets this results already one can see
that including revision data generates this pattern at some degree (panels b and d). This is
reinforced when on introducing informational frictions (compare panels a and c). Interestingly, DI
and FI models have very similar FEVDs when using macroeconomic data only (panels c and d),
which highlights the importance of disciplining the model with expectation data.

Information frictions can explain the pattern discussed above. The mechanism is anchoring
implied by dispersed information (see Angeletos and Huo; 2021): it weakens the general equilibrium
forces of the model, increasing the relative importance of partial equilibrium (direct effects) in the
model. We we are going to see in the following, this happens because the attenuated responses of
average expectation (and higher-orders) in comparison with the shocks.
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Impulse response functions

In this subsection, we compare the Bayesian impulse response functions (IRFs) of the DI and FI
models estimated using the complete dataset.

Exogenous shocks. Figure 4 shows the IRFs of each shock and the average expectations about
them up to the third order. The figure reflect different estimates of exogenous processes for FI and
DI models.

Figure 4: Posterior mean of impulse responses of each shock
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Both models suggest that preference, investment-specific technological and wage mark-up
shocks have less persistence compared to other shocks. The key difference is that shocks have
a much larger variance under DI, but agents display a high degree of inattention to them. In the
short run, agents underestimate the magnitude of shocks and only fully understand them after
they have dissipated. The propagation of monetary policy shocks is very similar for both models,
with agents taking about three quarters to fully learn about them in the DI model.

TFP and government expenditure shocks have high persistence and similar variance in both
models. Due to the high estimates of informational frictions, this generates rich dynamics of
higher-order expectations in the DI model.

This combination of high persistence and relevant departures from full information generates
the strong inertia observed in the data. Usual quantitative explorations with small models typically
calibrate models consistently with this. In contrast, the combination of small persistence and high
informational frictions cannot generate meaningful inertia, but can mitigate the impact of shocks.
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Interestingly, price mark-up shocks differ in terms of variance, but have high persistence for
both models. This generates slow-moving higher-order expectations that are similar to the path
of the actual shock under the FI model.

Endogenous variables. We now study the propagation of key structural shocks in different
models. The following figures compare the IRFs from the FI model (blue solid line) and the DI
model (black solid line) with 90% Bayesian confidence bands. To highlight the effect of infor-
mational frictions on the model’s dynamic properties, we also compute the IRFs of the FI model
with the mean of posterior estimates of the DI model (red dot dashed lines).24 This comparison
helps to determine whether the dynamics of the DI model differ from those of the FI model due
to informational frictions or differences in estimates from the remaining parameters. Indeed, the
gap between the black line and the red line is entirely explained by informational friction.

An investment-specific technological shock leads to an increase in output, hours, and invest-
ment, with the latter showing the largest percentage increase (Figure 5). Consumption has a weak
negative response in the first year and increases in the following years. Inflation increases in the
first year, which is partially reverted by a lower inflation than the steady-state afterwards. Interest
rate interest in response to higher inflation and output.

The dynamics of the DI and FI models are quite similar with slightly stronger responses in the
DI model. The key difference is the response of real wages, which is much more pronounced in the
DI model.

By comparing red with black lines, one can see that the differences (although small) between
the DI and FI model comes from the informational frictions and not by the change in common
parameter estimates.

Agents acknowledge the boom in output, hours and investment by revising their forecasts by
roughly half of the actual responses of those variables. After about a year agents have incorporate
the impact of the shock into macroeconomic variables. This is consistent with weak persistence
and high informational frictions implied in the model estimation for this shock. In contrast, the
FI model generates a spike in the forecast revision on impact and goes immediately to zero in next
period. This pattern is present for all shocks by design and is one of the key reason why the FI
cannot provide a good fit of the expectation data.

There are more pronounced differences in DI and FI dynamic responses to a cost-push (price
markup) shock, which are mostly explained by the informational frictions (Figure 6). The DI model
generates a more pronounced and hump-shaped response of inflation with a slightly stronger fall in
real aggregates (output, consumption, investment and hours) It also implies a much stronger fall

24The impulse from the FI model with the mean of posterior estimates of the DI model is computed using the
standard deviation from the FI model for generating comparable IRFs. Since the model is log-linearized, this
normalization do not affect that shape of the IRF.
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Figure 5: Impulse responses to an investment-specific technological shock
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in real wages. The DI model implies a stronger response of nominal rates with the peak response
after 6 quarters roughly two times higher than the FI model.

Overall, the DI model imply that a typical cost-push shock has stronger impact on inflation
and real variable with a stronger response of the central bank than the FI model.

Interestingly, the combination of persistent shocks and strong informational frictions as dis-
cussed in Figure 4 implies a hump-shaped response to forecast revisions for real aggregates and
stronger revision on impact for real wages and inflation. After the shock, agents correctly antic-
ipate the fall in real activity and the increase in inflation which are gradually revised quarter by
quarter for more than two years.

Finally, the monetary policy shock leads to a decline in output, consumption, and investment,
with investment showing the largest percentage drop. Inflation also decreases slightly before re-
turning to the steady state (Figure 7).

The impulse responses of forecast revisions indicate that agents adjust their expectations down-
ward for real variables and inflation, while revising their expectations for the nominal rate upward.

Monetary shocks have stronger effects on macroeconomic aggregates and inflation in the DI
model. The difference is mainly driven by changes in parameter estimates and not from informa-
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Figure 6: Impulse responses to price markup shock
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tional frictions as the red dashed and black lines are very similar. This is consistent with the fact
that the monetary shock has the weakest informational frictions among all shocks.

IRFs for other shocks are available in Appendix D.

5.3 Information frictions: substitute or complement for standard fric-
tions?

We find that both standard and informational frictions are essential to fit the macroeconomic and
expectation data. When considering macroeconomic data only and include both standard and in-
formational frictions, standard frictions are still present in their standard levels while informational
frictions are relatively weaker. The comparison of marginal likelihoods suggest that informational
frictions do not get a important bite in explaining macroeconomic data when standard frictions
are present.

However, the inclusion of revision data reveals that they are essential for identifying the infor-
mational frictions. Interestingly, this do not dampens the relevance of standard frictions despite
the potential ability to generate inertia with informational frictions as discussed before. Indeed,
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Figure 7: Impulse responses to a monetary shock
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estimates of habits, adjustment investment costs increases substantially when including expecta-
tion data in the model. Wage indexation increases slightly and price indexation has a marginal
decrease.We find that both standard and informational frictions are essential to fit the macroe-
conomic and expectation data. When considering macroeconomic data only and including both
standard and informational frictions, the former are still present in their standard levels while
the latter are relatively weaker. Marginal likelihoods comparison suggests that informational fric-
tions do not get an important bite in explaining macroeconomic data when standard frictions are
present.

However, the inclusion of revision data reveals that they are essential for identifying the infor-
mational frictions, pointing out quite strong deviations from full information. Interestingly, these
additional frictions do not dampen the relevance of the standard ones. Indeed, estimates of habits
and investment adjustment costs increase substantially when including expectation data in the
model. Wage indexation increases slightly and price indexation has a marginal decrease.

Given this result, we investigate which frictions are most important to explain the data, by
shutting down each friction one at a time and reestimating the model. Table 2 shows the marginal
likelihood of several nested models that shut down the following forms of sluggish adjustment: i)

34



habit persistence, ii) investment adjustment costs25, iii) price indexation, iv) wage indexation, and
v) all of them together.

Table 2: Marginal Likelihoods shutting down key frictions

Model Marginal Likelihood
Baseline -1333.20
All standard frictions -1448.70
No habits -1436.90
No investment adjustment costs -1377.70
No price indexation -1327.60
No wage indexation -1322.90

When all frictions are removed, the log marginal likelihood is roughly 115 points lower. Elim-
inating only habits leads to a drop of similar magnitude. While adjustment costs in investment
are important, they only contribute to half of the drop in log marginal likelihood compared to
the former. Shutting down price or wage indexation leads to better marginal likelihoods than the
baseline model.

This results revisit SW findings regarding the relevance of habits and investment adjustment
costs for fitting the data (now including expectation data) and the irrelevance of price and wage
indexation.

This suggests a more complementary view of information and standard frictions. Most shocks
have weak persistence and strong informational frictions, which cannot generate strong persistence
in endogenous variables. In that case, we need intrinsic persistence on endogenous variables, which
traditionally come from standard friction such as habits and investment costs.

There is one crucial exception is inflation. The FEVD from the DI model shows that mark-up
shocks play a major role in explaining inflation fluctuations. Figure 6 shows that informational
frictions generate a hump shape in inflation response to a cost-push shock that the FI model
cannot.

This is consistent with strong informational frictions and high persistence for this particular
shock as well as a weak price indexation. Angeletos and La’O (2009) shows in a Calvo model with
incomplete information that higher-order expectations play an important role in inflation dynamics
even in the presence of nominal rigidity and learning about shocks. Our results corroborate this
view. The key difference is that they study a nominal demand shock whereas we identify price
mark-up shocks as the main driver of inflation.

25When shutting down investment adjustment costs, we substitute them with standard capital adjustment costs.
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6 Conclusion

We develop a general solution method that allows enriching a standard medium-scale DSGE model
with dispersed information and estimate using Bayesian techniques with comprehensive macroe-
conomic and expectation data.

We draw important conclusions regarding the role information frictions play in business cycles.
The degree of informational friction varies significantly across shocks and indicates important
departures from perfect information. Relatedly, simulated data from the model can match stan-
dard empirical measures of informational frictions when using data on forecast revisions in the
estimation.

We contribute to the business cycle literature by showing that the inclusion of informational
frictions and expectational data changes the relative importance of shocks as the general equilib-
rium effects are anchored due to a weaker response to expectations about future conditions. In
general, shocks that directly affect the variables get higher relevance in explaining the fluctuations
of those variables in the DI model. For instance, price mark-up shocks play an even stronger role
in the DI model than under FI.

We also contribute to the literature by evaluating a long-standing view that information fric-
tions could be an alternative source of sluggishness in macroeconomic data. Our results suggest
a more complementary view of the standard and informational frictions. When disciplining our
model with expectational data, standard frictions such as habits and investment costs increase
substantially despite the pervasive informational frictions. Both types of friction are important to
explain the data.

In our estimated model, shocks with stronger informational frictions also have weak persistence.
This combination helps to mitigate the impact of shocks and expectations on endogenous variables
but does not generate much persistence. The latter is provided by strong standard frictions. One
crucial exception is the price-mark-up shock, which generates additional sluggishness in inflation
and nominal rate that standard frictions alone cannot generate.

A natural extension for our work is embedding a richer informational structure (with public
endogenous and exogenous signals, for instance) in our model may improve its performance in
explaining business cycle patterns by exploring additional shocks such as noise and confidence
shocks as explored by Lorenzoni (2010) and Angeletos and La’O (2013); Angeletos et al. (2018).
In conclusion, we see an open venue for exploring the quantitative potential of DSGE models with
informational frictions.
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Appendix

A Log-linear model and full derivation

A.1 Optimality conditions

Households

From the households’ utility maximization problem, we get the following first-order conditions for
consumption and bonds, respectively

Eht[Λh,tPt] =
Eht

[
eηc

t

]
Ch,t − φCh,t−1

(55)

Eht[Λh,t] = βEht [Λh,t+1Rt] (56)

where Λh,t is the Lagrange multiplier of households’ budget constraint (20). The optimal conditions
for capital and investment are given by, respectively:

Φh,t = βEht

[
Λh,t+1

(
Rk

t+1Uh,t+1 − Pt+1a(Uh,t+1)
)
Pt+1

]
+ (1 − δ)βEht [Φh,t+1] (57)

Eht[Λh,tPt] = Φh,tEht

[
eηi

t

] (
1 − S

(
Ih,t

Ih,t−1

)
− S ′

(
Ih,t

Ih,t−1

)
Ih,t

Ih,t−1

)

+βEht

Φh,t+1e
ηi

t+1S ′
(
Ih,t+1

Ih,t

)(
Ih,t+1

Ih,t

)2
 (58)

where Φh,t is the Lagrange multiplier associated with the law of motion of capital. The optimal
value of the capital utilization rate solves

Eht[Rk
t ] = a′(Uh,t)Eht[Pt]. (59)

Recall that households can buy state-contingent assets in terms of consumption (but not for
leisure). Therefore, it must hold that for all households h ∈ [0, 1] that Ch,t = Ct, Ih,t = It,
Uh,t = Ut, Λh,t = Λt and Φh,t = Φt. However, households still have heterogeneous expectations,
Eht[·], wages wh,t and labor supply Lh,t.

The optimal condition of the wage setting problem is

Eht

[ ∞∑
s=0

(βξw)s

(
Λt,t+s

Xw
t,t+s

µw
t+s

−
1 + µw

t+s

µw
t+s

Lχ
h,t+s

W ∗
h,t

)
Lh,t+s

]
= 0 (60)
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where Λt,t+s ≡ Λt+s

Λt
is the stochastic discount factor from period t to period t + s. The marginal

rate of substitution of labor and consumption is defined as

MRSh,t ≡ −
ULh,t

UCh,t

= Lχ
h,t (Ch,t − φCh,t−1) . (61)

Intermediate good firms

At stage 1, firms choose their optimal price based on the information from signals. The optimal
price P ∗

i,t that maximize intermediate firm i’s profit solve the following first-order condition

Eit

[ ∞∑
s=0

(βξp)sΛt,t+s

(
Xt,t+s

µp
t+s

− 1 + µp
t+s

µp
t+s

MCi,t+s

P ∗
i,t

)
Yi,t+s

]
= 0. (62)

At stage 2, they hire labor at the nominal wage Wt and rent capital at the rental rate Rk
t . Cost

minimization subject to production function (5) implies that the capital-labor ratio is given by26

Ki,t

Li,t

= α

1 − α

Wt

Rk
t

. (63)

We obtain that the marginal cost is given by

MCi,t = 1
αα(1 − α)1−α

(Rk
t )α (Wt)1−α

at

. (64)

Since the production function displays constant return of scale, capital-labor ratios and marginal
costs are the same across firms in equilibrium.

26Since factor prices are revealed at stage 2, firms does not need to form expectations for Wt and Rk
t .
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A.2 Log-linearized model

The log-linearization of optimal conditions leads to the following system of equations

ct = φ/γ

1 + φ/γ
ct−1 + 1

1 + φ/γ
Ēt[ct+1] − 1 − φ/γ

1 + φ/γ
Ēt[rt − πt+1 − (xc

t+1 − xc
t)] (65.1)

it =
(

1
1 + β

)
it−1 +

(
β

1 + β

)
Ēt[it+1] +

(
1

s′′(1 + β)γ2

)(
qt + Ēt

[
xi

t

])
(65.2)

qt =
(
β(1 − δ)

γ

)
Ēt[qt+1] +

(
1 − β(1 − δ)

γ

)
Ēt

[
rk

t+1

]
− Ēt[rt − πt+1] (65.3)

kt =
(

1 − δ

γ

)
kt−1 +

(
1 − 1 − δ

γ

)(
it + xi

t

)
(65.4)

ut =
(
R̄k/a′′

)
Ēt[rk

t ] (65.5)

ku
t =kt−1 + ut (65.6)

mrst =
(

1
1 − φ/γ

)
(ct − φ/γct−1) + χlt (65.7)

yt =
(

1 + Φp

Ȳ

)
(αku

t + (1 − α)lt + xa
t ) (65.8)

ku
t − lt =wt − rk

t (65.9)

mct =(1 − α)wt + αrk
t − xa

t (65.10)

yt = 1
1 − gy

(
C̄

Ȳ
ct + Ī

Ȳ
it + R̄kK̄

Ȳ
ut + xg

t

)
(65.11)

rt =ϕrrt−1 + (1 − ϕr) (ϕππt + ϕyyt) + xr
t (65.12)

πt =ξpιpπt−1 + κpξpĒt [mct + xp
t ] + (1 − ξp)(1 − ιpβξp)Ēt [πt]

+ (1 − ξp)βξp

� 1

0
Eit[p∗

i,t+1]di (65.13)

wt + πt =ξw(ιwπt−1 + wt−1) + (1 − ξw)w∗
t (65.14)

w∗
t =(1 − βξw)

1 + χθw

Ēt [mrst + wt + xw
t ] + (1 − ιwβξw)Ēt [πt] + βξp

� 1

0
Eht

[
w∗

h,t+1

]
dh (65.15)

where κp = (1−ξp)(1−βξp)
ξp

, κw = (1−ξw)(1−βξw)
ξw(1+χθw) and θw = 1+µ̄w

µ̄w . Ēt[·] ≡
� 1

0 Eit[·]di denotes average
expectation, where Eit[·] ≡ E[· | Iit] is agent i’s expectation based on her information set at period
t, Iit.

All equations are standard in macroeconomic models. The first equation is the Euler equation
for consumption, which is derived by combining the log-linearized versions of equations (55) and
(56). The second equation is the equilibrium condition for investment from (58) and the third
determines the marginal real value of a unit of capital qt that come from condition (57). The forth
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is log-linearized version of the usual law of motion of capital (17). The fifth is the log-linearized
version of the optimal condition for capital utilization (59) and the sixth comes from the definition
of utilized capital (19). The seventh and eighth are log-linearized versions of the aggregation
of the marginal rate of substitution between consumption and labor from equation (61) and the
production function (5), respectively. The ninth and tenth comes from aggregating firms’ cost
minimization condition (63) and marginal cost (63), respectively. The eleventh derives from the
aggregate resource constraint (29), while twelfth is the log-linearized version of the Taylor rule (25).
Finally, the thirteenth is the New Keynesian Phillips curve for prices that combines log-linearized
versions of equations (62) and (10). The last equation is the New Keynesian Phillips curve for
wages that combines log-linearized versions of equations (60) and (24).

The derivation of the model can be found in the Online Appendix.

B Data

Data on macroeconomic aggregates are collected from the Federal Reserve Database (FRED) and
expectation data come from the Survey of Professional Forecasters (SPF). The time series collected
to construct the database are displayed in Table 3. It starts in 4Q81, the first quarters with data
for all time series on expectations that I use in this work, and ends in 4Q07, before the Great
Recession.

Table 3: Database

Series Description Measure Source

GDPC1 Real Gross Domestic Product Billions of Chained 2012 Dollars BEA
PCECC96 Real Personal Consumption Expenditures Billions of Chained 2012 Dollars BEA
GPDIC1 Real Gross Private Domestic Investment Billions of Chained 2012 Dollars BEA
GDPDEF Gross Domestic Product: Implicit Price Deflator Index 2012=100 BEA
FF Effective Federal Funds Rate Percentage points FED Board
PRS85006063 Nonfarm Business Sector: Compensation Index 2012=100 BEA
HOANBS Nonfarm Business Sector: Hours of All Persons Index 2012=100 BLS
CNP16OV Civilian Noninstitutional Population Thousands of People BLS
RGDP Forecast for the real GDP Chained Dollars (base year varies) SPF
RCONSUM Forecast for the real PCE Chained Dollars (base year varies) SPF
RNRESINV Forecast for the nonresidential fixed investment Chained Dollars (base year varies) SPF
PGDP Forecast for the GDP price index Index (base year varies) SPF
TBILL Forecast for the annual three-month Treasury bill rate Percentage points SPF

Note: BEA, BLS, Fed Board and SPF stand for, respectively: U.S. Bureau of Economic Analysis, U.S. Bureau of Labor Statistics,

Board of Governors of the Federal Reserve and Survey of Professional Forecasters.

Real output (GDPC1), consumption (PCE) and investment (GDPIC1) are computed as per
capita aggregates by dividing them to the Hodrick-Prescott filtered population index (CNP16OV).
Real wage is constructed by dividing the compensation in the nonfarm business sector (PRS85006063)
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by the GDP deflator (GDPDEF). Per capita total hours is computed by dividing the hours of all
persons out nonfarm business sector (HOANBS) from the smoothed population index. Inflation
is defined as the annualized quarterly growth rate of GDP deflator (GDPDEF). The nominal in-
terest rate is computed by the log of the gross federal funds rate (FF) to be consistent with the
log-linearization procedure.

Y obs
t = GDPC1t/HP (CNP16OVt)

Cobs
t = PCEt/HP (CNP16OVt)

Iobs
t = GPDIC1t/HP (CNP16OVt)

W obs
t = PRS85006063t/GDPDEFt

dyobs
t = 100 log(Y obs

t /Y obs
t−1)

dcobs
t = 100 log(Cobs

t /Cobs
t−1)

diobs
t = 100 log(Iobs

t /Iobs
t−1)

dwobs
t = 100 log(W obs

t /W obs
t−1)

Lobs
t = HOANBSt/HP (CNP16OVt)

Πobs
t = 400 log(GDPDEFt/GDPDEFt−1)

Robs
t = 100 log(1 + FFt/100)

Expectation data are constructed as follows
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Ēt[Y obs
t+1] = RGDP3t/HP (CNP16OVt+1)

Ēt[Y obs
t ] = RGDP2t/HP (CNP16OVt)

Ēt[Cobs
t+1] = RCONSUM3t/HP (CNP16OVt+1)

Ēt[Cobs
t ] = RCONSUM2t/HP (CNP16OVt)

Ēt[Iobs
t+1] = RINV EST3t/HP (CNP16OVt+1)

Ēt[Iobs
t ] = RINV EST32t/HP (CNP16OVt)

Ēt[dyobs
t ] = 100 log

(
Ēt[Y obs

t+1]/Ēt[Y obs
t ]

)
Ēt[dyobs

t ] = 100 log
(
Ēt[Y obs

t ]/Ēt[Y obs
t−1]

)
Ēt[dcobs

t ] = 100 log
(
Ēt[Cobs

t ]/Ēt[Cobs
t−1]

)
Ēt[diobs

t ] = 100 log
(
Ēt[Iobs

t ]/Ēt[Iobs
t−1]

)
Ēt[πobs

t ] = 400 log(PGDP3t/PGDP2t)

Ēt[Robs
t ] = log(1 + TBILL2t/100)

F̄ [dyt] = dyobs
t − Ēt−1[dyobs

t ]

F̄ [dct] = dcobs
t − Ēt−1[dcobs

t ]

F̄ [dit] = diobs
t − Ēt−1[diobs

t ]

F̄ [πt] = πobs
t − Ēt−1[πobs

t ]

F̄ [Rt] = Robs
t − Ēt−1[Robs

t ]

C Solution method and Algorithm

We first start with two Lemmas. The first writes the first-order expectation of the hierarchy as a
linear transformation of the hierarchy.

Lemma 1. The first-order expectation of the hierarchy of expectations satisfy

E
(1)
t

[
x

(0:k̄)
t

]
= Tx

(0:k̄)
t (66)

where T =
 0nk̄×n Ink̄

0n×n 0n×nk̄

 is the order transformation matrix.

Proof. By the definition of x(0:k̄)
t one can see that E(1)

t

[
x

(0:k̄)
t

]
= x

(1:k̄+1)
t . By definition for k̄, any

order s such that s > k̄ does not affect the equilibrium. Then, without loss of generality, one can

46



set E(s)
t [xt] = 0 if s > k̄. Therefore, one can rewrite E(1)

t

[
x

(0:k̄)
t

]
as

E
(1)
t

[
x

(0:k̄)
t

]
=
 x

(1:k̄)
t

E
(k̄+1)
t [xt]

 =
 x

(1:k̄)
t

0n×1

 =
 0nk̄×n Ink̄

0n×n 0n×nk̄

 xt

x
(1:k̄)
t

 = Tx
(0:k̄)
t , (67)

where the first equality uses the definition of x(1:k̄+1)
t and the second equality uses that E(k̄+1)

t [xt] =
0. In the last equality, T is defined accordingly.

This is Lemma builds on Proposition 1 from Online Appendix of Melosi (2017). It explores the
truncation of the hierarchy.

The second Lemma does the opposite: writes the hierarchy as a linear transformation of the
first-order expectation of the hierarchy.

Lemma 2. x(0:k̄)
t can be rewritten as a linear function of xt and its average expectation such that

x
(0:k̄)
t ≡ e′

xxt + T ′E
(1)
t

[
x

(0:k̄)
t

]
,

Proof. By definition, x(0:k̄)
t can be decomposed as x(0:k̄)

t =
[
x′

t (x(1̄:k̄)
t )′

]′
. Using this decomposition,

the average expectation decomposed as E(1)
t

[
x

(0:k̄)
t

]
=
[
(x(1̄:k̄)

t )′ E
(k̄+1)
t [xt]′

]′
. Therefore, one can

use this two definitions such that

x
(0:k̄)
t ≡

 xt

x
(1̄:k̄)
t

 =
 In

0nk̄×n

xt +
 0n×nk̄ 0n×n

Ink̄ 0nk̄×n

 x
(1:k̄)
t

E
(k̄+1)
t [xt]

 = e′
xxt + T ′E

(1)
t

[
x

(0:k̄)
t

]
,

where last equality uses the definitions of T in Lemma 1 and ex.

Lemmas are taken from Ribeiro (2018, chap. 3).

C.1 Proof of Proposition 1

Individual and average expectations about the hierarchy. The Kalman filter delivers the
individual conditional expectation, Eit [·] ≡ E [·|I i

t ], where I i
t = {si,τ , τ ≤ t} is the information set

of individual i in period t.
The state equation is the hierarchy of expectations that is given by the state equation (42),

restated for convenience:
x

(0:k̄)
t = Ax(0:k̄)

t−1 + Bεt, (68)
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and the agent i with the observational equation (39), also restated:

si,t = Cxxt +Dvi,t.

Note that si,t is a signal about the shocks and not the whole hierarchy of expectations.
Let the selection matrix ex ≡

[
In 0n×nk̄

]
such that xt = exx

(0:k̄)
t . Then, we can rewrite the

signal in terms of the hierarchy as

si,t = Cx
(0:k̄)
t +Dvit. (69)

where C = Cxex.
Each agent i uses the Kalman filter and find the update equation given by

Ei,t

[
x

(0:k̄)
t

]
= Ei,t−1

[
x

(0:k̄)
t

]
+ Kt [si,t − Ei,t−1 [si,t]] , (70)

where Kt is the Kalman gain given by

Kt = Pt/t−1C
′
[
CPt/t−1C

′ +DΣvD
′
]−1

. (71)

As usual, the mean squared error (MSE) of the one-period ahead prediction error is given by

Pt+1/t = A
[
Pt/t−1 − Kt

[
CPt/t−1

]]
A′ + BΣεB′. (72)

For details of this deviation, see for instance Hamilton (1995, chap. 13).
Using the observational equation, (69), taking expectations and inserting in (70) one can find:

Eit

[
x

(0:k̄)
t

]
= Ei,t−1

[
x

(0:k̄)
t

]
+ Kt

[
Cx

(0:k̄)
t +Dvit − CEi,t−1

[
x

(0:k̄)
t

]]
(73)

Therefore, one can rewrite the equation above as

Eit

[
x

(0:k̄)
t

]
= (Ik − KtC)Eit−1

[
x

(0:k̄)
t

]
+ Kt

[
Cx

(0:k̄)
t +Dvit

]
(74)

where k = n(k̄+ 1). Using the fact that Ei,t−1

[
x

(0:k̄)
t

]
= AEi,t−1

[
x

(0:k̄)
t−1

]
and substituting equation

(68), one can find:

Eit

[
x

(0:k̄)
t

]
= (Ik − KtC) AEi,t−1

[
x

(0:k̄)
t−1

]
+ KtCAx(0:k̄)

t−1 + KtCBεt + KtDvit (75)

We follow the literature by focusing in the stationary equilibrium. Therefore, the expectation
of each individual i in the stationary equilibrium is the one which the MSE is in steady-state, i.e.,
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agents update their forecast based on the steady-state Kalman gain. In other words, the dynamics
of expectations depends only in the properties of the process they are forecasting and signals, but
do not depend in the period t.

Combining equations (71-72), one can find the Riccatti equation

Pt+1/t = A
[
Pt/t−1 − Pt/t−1C

′
[
CPt/t−1C

′ +DΣvD
′
]−1

CPt/t−1

]
A′ + BΣεB′ (76)

Therefore, one need to iterate this equation to find the steady-state MSE, P̄, and compute
its counterpart Kalman gain, K̄. Nimark (2017) shows that if is xt stationary process, then the
expectations hierarchy about this process, x(0:k̄)

t , is also stationary. This and the fact that Σε is
positive definite, then there exists a steady-state solution such that P̄ = Pt+1|t = Pt|t−1 which
implies the steady-state Kalman gain K̄ = Kt = Kt−1 (see Hamilton; 1995, chap. 13).

Expressions (44) in the Proposition 1 are equations (71-72) using the steady-state Kalman gain,
K̄, instead of K̄t.

Moreover, the average expectation is easily computed by

Ēt

[
x

(0:k̄)
t

]
≡

� 1

0
Eit

[
x

(0:k̄)
t

]
di =

(
Ik − K̄C

)
AĒt−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt (77)

Analogously, the individual and average expectation of Proposition 1 are equations (75) and
(77) using the steady-state Kalman gain, K̄, instead of K̄t.

Verify guess for x(0:k̄)
t . In the first part of the proof, we found the average expectation (77) for

the guessed the dynamics of the hierarchy of expectations (68).
Now we verify the guessed hierarchy and find the coefficients (A,B) consistent with the average

expectation.
Substituting the average expectation from equation (77) into the expression from Lemma 2 one

can find that:

x
(0:k̄)
t = e′

xxt + T ′
[(
Ik − K̄C

)
AE(1)

t−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt

]

Then, using the shocks definition (38) and the fact that xt = exx
(0:k̄)
t one can rewrite equation

above as

x
(0:k̄)
t = e′

x

(
A1exx

(0:k̄)
t−1 + εt

)
+ T ′

(
Ik − K̄C

)
AE

(1)
t−1

[
x

(0:k̄)
t−1

]
+ T ′K̄CAx

(0:k̄)
t−1 + T ′K̄CBεt

Using Lemma 1 at period t− 1 into equation above and rearranging:

49



x
(0:k̄)
t =

[
e′

xA1ex + T ′
(
Ik − K̄C

)
AT + T ′K̄CA

]
x

(0:k̄)
t−1 +

[
T ′K̄CB + e′

x

]
εt. (78)

This expression shows that the expectations hierarchy is a function of its lag and structural
shocks, as guessed in equation (68). Therefore, the expression above verifies that x(0:k̄)

t follows the
guessed form and the square brackets terms provide identities for A and B in equations (43)

C.2 Proof of Proposition 2

This proof builds on techniques developed by Ribeiro (2018, chap. 3). The key difference is that
we guess a law of motion for individual endogenous variables instead of guessing the aggregate.
This allows recovering expressions for solving for (Q0,Q1) and then get the solution for Q. We
also consider the exogenous information case only.

The guessed law of motion for individual endogenous variables is given (40), restated for con-
venience:

Yi,t = RYi,t−1 + Q0xt + Q1Ei,t

[
x

(0:k̄)
t

]
. (79)

Aggregating the individual law of motion (79):

Yt = RYt−1 + Q0xt + Q1E
(1)
t

[
x

(0:k̄)
t

]
(80)

= RYt−1 + Q0xt + Q1Tx
(0:k̄)
t (81)

where the last equality uses Lemma 1.
By computing the individual expectation of the endogenous aggregate variables, one can find

that
Eit [Yt] = RYt−1 + Q0Eit [xt] + Q1TEit

[
x

(0:k̄)
t

]
= RYt−1 + (Q0ex + Q1T )Eit

[
x

(0:k̄)
t

]
E

(1)
t [Yt] = RYt−1 + (Q0ex + Q1T )E(1)

t

[
x

(0:k̄)
t

] (82)

where the first equality uses that Yt−1 is known, second equality uses the definition of the selection
matrix, ex, and the third equality aggregates.
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Similarly, the individual expectation for endogenous variables in t+ 1:

Eit [Yt+1] = REit [Yt] + Q0Eit [xt+1] + Q1TEit

[
x

(0:k̄)
t+1

]
= REit [Yt] + (Q0A1ex + Q1TA)Eit

[
x

(0:k̄)
t

]
= R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]Eit

[
x

(0:k̄)
t

]
E

(1)
t [Yt+1] = R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]E(1)

t

[
x

(0:k̄)
t

]
(83)

where the second equality uses equations (38) and (42), and the definition of ex. Third equation
uses equation (82) and the fourth aggregates.

Finally, taking the individual expectation of the law of motion (40) in period t+ 1 implies that

Eit[Yi,t+1] = RYi,t + Q0Eit[xt+1] + Q1Eit

[
Ei,t+1

[
x

(0:k̄)
t+1

]]
= RYi,t + (Q0A1ex + Q1A)Eit

[
x

(0:k̄)
t

]

where the second equality uses the law of iterated expectations (which holds for i’s expectation
but not for the average expectation), equations (38) and (42) as before.

Aggregating the expectation above leads to
� 1

0
Eit[Yi,t+1]di = RYt + (Q0A1ex + Q1A)E(1)

t [x(0:k̄)
t ]

= R
[
RYt−1 + Q0xt + Q1E

(1)
t

[
x

(0:k̄)
t

]]
+ (Q0A1ex + Q1A)E(1)

t [x(0:k̄)
t ]

= R2Yt−1 + RQ0xt + [RQ1 + (Q0A1ex + Q1A)]E(1)
t [x(0:k̄)

t ]

(84)

where the second equality uses equation (81). Note that
� 1

0 Eit[Yi,t+1]di ̸= E
(1)
t [Yt+1].

Substituting the guessed solution (81) and the expectations (82-84) into the system of equations
(37) one can find:

F1

[
R2Yt−1 + RQ0xt + [RQ1 + (Q0A1ex + Q1A)]E(1)

t [x(0:k̄)
t ]

]
+

F2

[
R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]E(1)

t

[
x

(0:k̄)
t

]]
+

G1

[
RYt−1 + Q0xt + Q1E

(1)
t

[
x

(0:k̄)
t

]]
+G2

[
RYt−1 + (Q0ex + Q1T )E(1)

t

[
x

(0:k̄)
t

]]
+

HYt−1 + [(L1A1 + L2)] exE
(1)
t

[
x

(0:k̄)
t

]
+M1xt = 0m×1
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which can be rearranged to
[
FR2 +GR +H

]
Yt−1 + [(F1R +G1) Q0 +M1]xt

[F1 [RQ1 + (Q0A1ex + Q1A)] + F2 [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)] +

G1Q1 +G2(Q0ex + Q1T ) + (L1A1 + L2 +M)ex]E(1)
t

[
x

(0:k̄)
t

]
= 0m×1

which can be simplified to
[
FR2 +GR +H

]
Yt−1 + [[F1R +G1] Q0 +M1]xt+

[[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA

[(F2R +G2)Q0 + (F1 + F2)Q0A1 + (L1A1 + L2)] ex]E(1)
t

[
x

(0:k̄)
t

]
= 0m×1

This condition must hold for all realizations of Yt−1, xt and E(1)
t

[
x

(0:k̄)
t

]
. Therefore, all coefficients

between square brackets must be zero, which leads to

FR2 +GR +H = 0m×m

[F1R +G1] Q0 +M1 = 0m×n

[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA

[(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex = 0m×k

which leads to the same equations from Proposition 2. R can be solved using Uhlig (2001) method.
For a given solution of R, Q0 and Q1 can be solved by straightforward vectorization as discussed
in the Proposition.

C.3 Algorithm

Algorithm. Set the initial values (A(0),B(0)), a small tolerance ϵ > 0 and set i = 1. Then,
follow the steps:

1. Given A = A(i−1) and B(i−1), compute K̄ and P̄ using equations (44) using standard solver
for Ricatti equations. Set K̄(i) = K̄ and P̄(i) = P̄.

2. Given A(i−1) and K̄(i), compute the right hand side of equations (43) and solve for B and A
the equations by matrix inversion. Set B(i) = B, A(i) = A.

3. If max
{
||B(i) − B(i−1)||, ||A(i) − A(i−1)||, ||P(i) − P(i−1)||

}
< ϵ, stop iterating. Otherwise, set

i = i+ 1 and go back to step 1.
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Given the solution for A, one can use standard techniques for solving for (R,Q0,Q1,Q) using
Proposition 2.

D Impulse response functions

In this section, the remaining impulse responses for the FI and ICK models estimated with the
dataset including expectation data are displayed.

Figure 8: Impulse responses to preference shock
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Figure 9: Impulse responses to TFP shock
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Figure 10: Impulse responses to wage mark-up shock
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Figure 11: Impulse responses to price mark-up shock
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Figure 12: Impulse responses to government expenditure shock
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