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Abstract

We study the complex interdependencies between global newspaper-based economic policy uncertainty

(EPU) and geopolitical risk (GPR) indices. We investigate monthly EPU and GPR series for 20 countries

between January 1997 and December 2024. We employ the Complex Hilbert Principal Component Analysis

(CHPCA) to understand the importance of lead-lag relationships and the mutual influences of global EPU

and GPR indices. We investigate the weighted and directed networks using complex correlation matrices

to extract the magnitude and phase of the indices, indicating significance and leading role. Our findings

suggest that, among others, the terrorist attack of September 11, 2001, and the Russia - Ukraine conflict

in 2022 are the most notable EPU or GPR events during the sample period. The results show that, based

on the Helmholtz-Hodge (HH) potential, most notably, China’s EPU affects the GPRs of Egypt and Israel,

and Russia’s EPU influences the GPRs of Taiwan, Japan, and China.
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1 Introduction

This paper investigates the complex interdependencies between newspaper-based economic policy uncertainty

(EPU) and geopolitical risk (GPR) indices worldwide to identify their leading and lagging relationships and

their effects on each other. As uncertainty is related to risk, it can affect the economy by reducing economic

activity or increasing unemployment (Bernanke, 1983; Bloom, 2009).

In this study, we propose a comprehensive analysis of the relationships between EPU and GPR indices at a

global level since economic and financial systems are connected beyond countries’ borders, as evidenced by events

such as the 2008 Global Financial Crisis (GFC) or the 2022 Russian invasion of Ukraine. We analyze the complex

interconnectedness or leading and lagging relationships between EPU and GPR indices using a novel Complex

Hilbert Principal Component Analysis (CHPCA) methodology, operating in the complex realm and well suited

to capture the leading and lagging relationships of the EPUs and GPRs. The rotational random shuffling (RRS)

method (see Vodenska et al. (2016)) enables us to separate the data relationships into the signal (principal)

and noise components. We construct the pseudo-correlation matrix using only the principal components and

call this matrix the principal correlation matrix. Since the components of the principal correlation matrix

are complex numbers, we can represent them in terms of amplitude and phase. Hence, we can understand

the complex correlation matrix as a composite of amplitude and phase correlation matrices. The amplitude

correlation matrix yields a weighted and undirected network. We obtain a directed network by applying the

Helmholtz-Hodge (HH) decomposition to the phase correlation matrix to identify leading and lagging relations

of the EPU and GPR indices. We consider the leading index a source and the lagging index a sink.

We build our study on policy-related economic uncertainty research, including Baker et al. (2016), who pro-

posed the EPU measure based on media coverage of specific events related to economic uncertainty. The EPU is

constructed by counting articles containing the terms “uncertain” or “uncertainty”, “economic,” or “economy,”

and one or more policy-relevant newspaper terms. Using the Vector Autoregressive (VAR) framework, the au-

thors show that increases in EPU have non-negligible repercussions on the global economy. Moreover, Caggiano

et al. (2020) point out that economic policy uncertainty is relevant and can be one of the key drivers of changes

in actual economic activity in the United States (US), confirming previous findings (Bloom, 2017; Casteln-

uovo et al., 2017). King and Wadhwani (1990) have used contagion root analysis to study global information

transmission, where rational agents seek to infer information from price behavior in other stock markets.

Using a similar automated text-search procedure, Caldara and Iacoviello (2022) propose the geopolitical risk

(GPR) index, which represents the “threat, realization, and escalation of adverse events associated with wars,

terrorism, and any tensions among states and political actors that affect the peaceful course of international

relations” (Caldara and Iacoviello, 2022, p. 1195). The study states that GPRs are regarded by entrepreneurs,

market participants, and central bankers as key variables that affect investment decisions and stock market

behavior. Additionally, they report that the GPR measures a different source of risk compared to the EPU
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and the VIX indices, displaying a sizable amount of non-common variability. The GPR is based on the share

of articles referring to adverse geopolitical events, such as wars and terror attacks. A common underlying

characteristic of the EPU and the GPR indices is that these measures are constructed from newspaper-based

articles. Both indices are available monthly, allowing for a higher resolution of economic uncertainty indicators

than quarterly or annual macroeconomic measures.

To increase the valuable contributions of these two indices, given their importance to market participants,

one natural extension is to study their interdependencies across countries and regions using a novel methodology.

Researchers have used the CHPCA method to study biennial variations in surface temperatures (Rasmusson

et al., 1981), complex principal component analysis (Horel, 1984), dynamic correlations in financial markets

(Arai et al., 2013), interdependencies in coupled financial networks of equity and foreign exchange markets

(Vodenska et al., 2016), economic network synchronizations (Aoyama et al., 2017), and relationships between

macroeconomic indicators and business cycles (Iyetomi et al., 2020).

Our research also builds on findings by Klößner and Sekkel (2014), who investigate a potential transmission

of economic policy uncertainty among six developed economies: Canada, France, Germany, Italy, the United

Kingdom, and the US. They study fluctuations in policy uncertainty in one country and their effects on policy

uncertainty in other countries to understand which economies are net uncertainty exporters or importers. They

use a sample from January 1997 to September 2013 to employ the spillover index methodology from Diebold and

Yilmaz (2009). Klößner and Sekkel (2014) study finds evidence that over 25% of the countries’ EPU behavior

is due to spillovers across economies in the sample they study. They find that the U.S., followed by the United

Kingdom, is the highest net exporter of uncertainty, and Italy shows the most independent fluctuation. During

the financial crisis, their analyses show that the spillover index increased.

Balli et al. (2017) extend the results of Klößner and Sekkel (2014) by providing evidence on the spillovers

of policy uncertainty across 16 countries and go further by exploring the cross-sectional determinants of these

pairwise effects using Diebold and Yilmaz (2012)’s methodology. The results imply that the U.S., Australia,

and Canada (US, Australia and Italy) contribute the most to the mean (volatility) spillover, and variables

such as bilateral trade and common language are related to the transmission of net policy uncertainty between

countries. Kang and Yoon (2019) apply the Diebold and Yılmaz (2014, 2015) spillover approach to the EPU

indices of 9 countries and document a high level of policy-induced uncertainty interconnection among them.

The total spillover index is above 65% on average, with the EU being the most influential as a net transmitter

of policy uncertainty. In addition, their findings highlight the role played by China during the 2008 GFC and

the European sovereign debt crisis in 2012, becoming one of the largest net exporters of policy uncertainty

spillovers. This finding is also supported by Liow et al. (2018), who show that China was a source of policy

uncertainty spillover to other economies during the GFC. Marfatia et al. (2020) and Yang et al. (2021) use the

network theory approach to provide evidence of interconnection between global EPUs.
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Concerning geopolitical risk transmission shocks, we build on Balli et al. (2022), one of the few research

studies on the subject close to ours. Using the Diebold and Yilmaz (2012) spillover measure and Baruńık and

Křehĺık (2018) methodology, the authors identify short- and long-term GPR transmissions between January 1985

and December 2016. They focus on understanding how different countries’ GPRs are transmitted and employ a

gravity model to explain these features. Balli et al. (2022) point out a non-negligible level of connectedness. The

study reports a total mean spillover of over 39% among the 19 countries in their sample, with larger countries

associated with higher GPR transmission. The closer the countries are, the higher the spillover among them.

There is also evidence that variables such as bilateral trade, border sharing, and the distance between countries

are relevant in determining pairwise GPR propagation in the overall analysis. Finally, the total short-term GPR

transmission (up to 3 months) is larger than that for the long-term (3-100 months), 32% and 7%, respectively.

The contribution of our study is three-fold. First, the paper contributes to the study of integrated markets,

uncovering the interconnectedness between countries to capture early warning signals to avoid disseminating

policy uncertainty, geopolitical tensions, or financial crises. Second, it highlights the EPU and GPR transmis-

sion dynamics between larger and smaller economies. Third, it could aid investors in portfolio diversification

decisions through an improved understanding of the dynamics between countries and their mutual EPU and

GPR influence.

The remainder of this paper is organized as follows. Section 2 describes the data, Section 3 explains the

methodology, Section 4 presents our findings, and Section 5 concludes.

2 Data

We obtained the EPU and GPR indices between January 1997 and December 2024 from the Economic Policy

Uncertainty website EPU (2025). In this section, we explain the dataset’s details and the index selection to

study a broad sample of countries.

2.1 Economic Policy Uncertainty (EPU)

The EPU has been measured for the U.S., Canada, Ireland, and Sweden since 1985. However, for the broader

set of countries we study in this paper, the EPU has been available since 1997. The number of newspapers used

to construct the index varies between countries; for instance, in Brazil, only one newspaper is used, while in

the U.S., 10 newspapers are used for calculating the EPU index. All country-level data contains information

on global versions of the EPU and 23 country-level EPUs, i.e., GEPU current, GEPU ppp, Australia, Brazil,

Canada, Chile, China (Mainland China, Hybrid China, and SCMP China), France, Germany, Greece, India,

Ireland, Italy, Japan, Korea, Pakistan, Russia, Spain, Singapore, the UK, the U.S., Sweden, and Mexico.

Since we are interested in the leading and lagging relationships of the EPU indices between countries, we
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exclude the GEPU current and the GEPU ppp indices. According to EPU (2025), “the GEPU Index is a GDP-

weighted average of national EPU indices for 21 countries: Australia, Brazil, Canada, Chile, China, Colombia,

France, Germany, Greece, India, Ireland, Italy, Japan, Mexico, the Netherlands, Russia, South Korea, Spain,

Sweden, the United Kingdom, and the United States.” There are “two versions of the GEPU Index - one based

on current-price GDP measures, and one based on PPP-adjusted GDP. ”

As explained in EPU (2025), “a hybrid index is an average of two indices, one based on the South China

Morning Post and another based on Mainland China newspapers.” Both indices follow the newspaper approach

of Baker et al. (2016); the former relies on the South China Morning Post (SCMP), Hong Kong’s leading

English-language newspaper, while the latter uses two mainland Chinese newspapers: the Renmin Daily and

the Guangming Daily. The SCMP China is unavailable after December 2023, therefore we use the EPU of

mainland China as the EPU-CHN.

We choose 16 countries for the EPU indexes. Their ISO 3166-1 alpha-3 codes are: AUS, BRA, CAN, CHL,

FRA, DEU, GRE, IND, ITA, JPN, KOR, RUS, ESP, GBR, USA, CHN. The heat map of the annual average

of EPU normalized by the highest value of each index is shown in the top 16 rows in Figure. 1. The appendix

shows the original countries’ monthly time series of the EPU indices.

2.2 Geopolitical Risk (GPR) index

We obtained the GPR indices between January 1997 and August 2024 from the Economic Policy Uncertainty

website EPU (2025). The country-specific GPR refers to the share of articles mentioning geopolitical terms.

The GPR index is based on leading English-language newspapers, and there are two versions of the index:

historical GPR since 1900 and country GPR (GPRC), which is available for 44 countries since 1985. In our

study, we use the GPRC from January 1997 to December 2024. From the 44 available GPR indices, we select

19 countries to inlcude in our study. Their ISO 3166-1 alpha-3 codes are AUS, BRA, CAN, CHL, CHN, FRA,

DEU, IND, ITA, JPN, KOR, RUS, ESP, GBR, USA, EGY, ISR, TWN, and UKR. The heat map of the annual

average of the GPRs normalized by the highest value of each index is shown as the 19 bottom rows in Figure. 1.

The appendix shows the original monthly time series of the GPR indices.

2.3 Time evolution of EPUs and GPRs

The EPU and GPR indices have shown different dynamics between 1997 and 2024, generally exhibiting higher

values toward the end of the study period. Figure. 1 represents the heat map of the annual averages of the EPU

and the GPR indices, normalized by the largest value of each index. We observe that the more recent years,

characterized by higher EPUs and GPRs, are dominated by the U.S.-China economic frictions, the COVID-19

pandemic, the energy crisis-driven inflation due to the Russian invasion of Ukraine, and the Israeli-Hamas war.

Earlier in the late 1990s and early 2000s, we observe the Japanese financial crisis, the September 11 attacks,
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Figure 1: Heat map of the yearly average of EPU and GPR indices, normalized by the largest value of each
index. The horizontal direction shows the years from 1997 to 2024, and the vertical direction depicts the order
of the countries. The upper part from Australia (EPU-AUS) to mainland China (EPU-CHN) (16 countries)
corresponds to the EPUs. The lower part from Australia (GPR-AUS) to Ukraine (GPR-UKR) (19 countries)
corresponds to the GPRs. This figure also includes some of the major historical EPU and GPR events.

and the Iraq War, followed by the Global Financial Crisis (GFC) of 2008 and the European Sovereign Debt

crisis in 2012. Collectively, these events dominate the world’s EPU and GPR landscape.

3 Methods and Materials

This section explains the complex Hilbert PCA (CHPCA) to explore the correlation structure of global EPU

and GPR indices. The study investigates the global leading and lagging relationships among the EPUs of 16

and the GPRs of 19 countries from January 1997 to December 2024, i.e., 35 time series, each with 336 monthly

observations.
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3.1 Complex correlation matrix

We denote time series data of n-th component at time t as xn,t. Here, n corresponds to the EPU and GPR

combined with ISO 3166-1 alpha-3 codes, i.e., {EPU-AUS, . . . , EPU-CHN, GPR-AUS, . . . , GPR-UKR}, as

shown in Figure. 1. Some of the original time series of EPU and GPR are non-stationary processes and contain

a value of 0. Therefore, to convert non-stationary processes containing a value of 0 to stationary processes, we

adopt the first-order difference of the time series defined as follows:

rn,t = xn,t − xn,t−1 , (1)

where n = 1, . . . , N and t = 1, . . . , T . In this paper, N = 35 and T = 336. The mean value of the first-order

difference is defined as follows:

⟨rn⟩ =
1

T

T∑
t=1

rn,t , (2)

and its variance is defined as follows:

σ2
n =

1

T − 1

T∑
t=0

(rn,t − ⟨rn⟩)2 . (3)

We standardize the first-order difference defined by Equation (1) to have a mean value equal to zero and a

variance equal to one:

wn,t =
rn,t − ⟨rn⟩

σn
. (4)

After the standardization, all-time series wn passed the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test for stationarity.

We then perform the Fourier transform of Equation (4) as follows:

wn,t =

T∑
k=0

[an (ωk) cos (ωkt) + bn (ωk) sin (ωkt)] , (5)

where ωk = 2πk/T ≥ 0. The Hilbert transform of Equation (5) is given by:

ŵn,t =

T∑
k=0

[bn (ωk) cos (ωkt)− an (ωk) sin (ωkt)] . (6)

Equation (6) corresponds to Equation (5) phase-shifted by π/2. Therefore, Equations (5) and (6) are orthogonal.

Now, using Equations (5) and (6), we define the complex first difference:

Wn,t = wn,t + i ŵn,t =

T∑
k=0

cn(ωk)e
−iωkt , (7)
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where i is an imaginary unit defined by i2 = −1, and cn(ωk) = an(ωk) + i bn(ωk). The right hand side of

Equation (7) shows that Wn,t rotates in a clockwise direction as time progresses.

The matrix with the components given in Equation (7) is specified as follows:

W = [Wn,t] . (8)

The complex correlation matrix is defined as follows:

C =
1

T
WW† , (9)

where W† is an adjoint matrix (i.e., transformation and complex conjugate) of W. Then, C is an Hermitian

matrix.

The components of the complex correlation matrix are represented by

Cmn = Re (Cmn) + i Im (Cmn) (10)

= |Cmn| ei θmn , (11)

where |Cmn| describes the strength of the linear relationship between the magnitude of the vectors, and θmn

represents the correlation in the phase space. In Section 3.5, we will explain how the leading or lagging of the

index is derived from θmn.

3.2 Random shuffling (RS) and rotational random shuffling (RSS)

We can create a completely random complex correlation matrix by constructing the following randomly shuffle:

wn,t → wn,rand[1,T ] , (12)

where rand[1, T ] means a random integer from 1 to T without duplication. We call this manipulation random

shuffling (RS). The utterly random complex correlation matrix breaks both the autocorrelation and the cross-

correlation.

Many financial and economic time series feature autocorrelation. Therefore, developing a method that

preserves the autocorrelation but randomizes cross-correlation is helpful. Iyetomi et al. (2011a,b) developed the

RRS method to construct such a complex correlation matrix (Souma, 2021). In RRS, we shuffle the empirical

time-series data rotationally in the time direction and impose the following periodic boundary condition:

wn,t → wn,mod[t+τ,T ] , (13)
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where τ ∈ [0, T − 1] is a pseudo-random integer that is different for each n. Therefore, we can construct an

RRS complex correlation matrix. However, we must note that we break the autocorrelation at the place where

we impose a periodic boundary condition.

3.3 Decomposition of the complex correlation matrix

The PCA for the complex correlation matrix C derives eigenvalue λj and corresponding eigenvector vj , where j

represents the ranking of the eigenvalues and corresponding eigenvectors. Thus, if we can obtain the number of

principal components np by applying PCA, we can decompose the complex correlation matrix into its meaningful

and noisy parts as follows:

C =

N∑
j=1

λjvjv
†
j =

np∑
j=1

λjvjv
†
j +

N∑
j=np+1

λjvjv
†
j = P+R , (14)

where v†
j is the adjoint vector (i.e., transformation and complex conjugate) of vj . In Equation (14), P and R

are the principal and noisy parts of the complex correlation matrix, respectively. Therefore, it is reasonable to

investigate P for revealing the properties of the correlation between the indices.

3.4 Mode signal

A mode signal Ij is a vector with the number of components equal to the length of time series T and defined

by the product of vj and W as follows:

Ij = v†
jW , (15)

where v†
j is the adjoint vector (i.e., transformation and complex conjugate) of vj . The mode signal is a valuable

tool for detecting the sympathetic structure of the time series.

3.5 Correlation network and Helmholtz-Hodge (HH) decomposition

As previously stated, it is reasonable to investigate P to reveal the characteristics of the correlation between

the indices. The elements of P are written as follows:

Pmn = |Pmn| ei θmn , (16)

where arg(Pmn) := θmn ∈ [−π, π). Generally, Pmn ̸= 0. Therefore, the network constructed from P is a fully

connected complete graph in which complex numbers give the weights of the links. However, it is natural to

expect the characteristics of the correlation to be found in the large |Pmn|. Therefore, we set a lower bound

(i.e., |Pmn| > Pmin.). If the value of Pmin is too large, the obtained network becomes disconnected. Thus, we
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must keep the value of Pmin. in an appropriate range. We define the constrained principal correlation matrix as

follows:

P̃ := P with |Pmn| > Pmin. . (17)

We expect that the network constructed from Equation (17) will be the backbone of the correlation network.

The Helmholtz-Hodge (HH) decomposition aims to clarify the leading and lagging relationships between

indices. In the HH decomposition, θmn represents the flow from index m to index n and decomposes θmn into

two parts as follows:

θmn = θ(c)mn + θ(g)mn , (18)

where θ
(c)
mn corresponds to the circular flow defined as follows:

N∑
n=1

θ(c)mn = 0 . (19)

Meanwhile, θ
(g)
mn corresponds to the gradient flow defined as follows:

θ(g)mn = γmn (ϕm − ϕn) , (20)

where ϕn is the HH potential and assigns the leading and lagging relationships to the indices. Here, γmn is an

adjacency matrix given by:

γmn =


1 If θmn ̸= 0

0 Otherwise

. (21)

Using Equation (20), we can rewrite Equation (19) as follows:

N∑
n=1

[θmn − γmn (ϕm − ϕn)] = 0 . (22)

Thus, we obtain ϕn by solving Equation (22).

4 Results

We apply the CHPCA and the HH methodologies described in Section 3 to the 16 EPU and 19 GPR indices from

January 1997 to December 2024 to understand the policy effects and geopolitical influences globally. The results

show that the Russian-Ukrainian conflict, which started in February 2022, created significant geopolitical risks

and economic policy uncertainties for the rest of the world. The economic impact included increased energy

prices, food shortages, inflation, and supply chain disruptions. The Russian invasion of Ukraine was one of

the most significant events in the sample period, contributing to increased geopolitical crisis and economic
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Figure 2: Scree graph of the Complex Correlation Matrix (filled black circles), Randomly Shuffled Complex
Correlation Matrix (black crosses), and Rotationally Randomly Shuffled Complex Correlation Matrix (red open
circles) for all eigenvalues. This figure shows that the first to fourth eigenvalues are principal components;
therefore, np = 4.

uncertainty. Other notable destabilizing events include the September 11, 2001, terrorist attacks on New York

City and the U.S.-led invasion of Afghanistan right after the attacks, the Brexit referendum in June 2016, the

Covid-19 pandemic and lockdowns starting in March 2020, and the Israeli-Palestinian conflict starting with the

Hamas attack on Israel in October 2023.

4.1 Complex Correlation Matrix and Significant Eigenvalues

Figure 2 shows the scree graph for all eigenvalues, and the inset of this figure depicts the zoom-up of the

distribution of eigenvalues in the range 1 ≤ j ≤ 10. In this figure, on the x-axis is the rank of the eigenvalue

j, and on the y-axis is the magnitude of the eigenvalue λj . The filled black circles connected by the black line

correspond to the distribution of the eigenvalues derived from the complex correlation matrix constructed from

the data. The black crosses with absolute error bars connected by the black line represent the distribution

of the eigenvalues derived from the randomly shuffled (RS) complex correlation matrix. The red open circles

with absolute error bars connected by the red line represent the distribution of the eigenvalues derived from

the Rotationally Randomly Shuffled (RRS) complex correlation matrix. By comparing these curves, we confirm

that the first four eigenvalues are significant and explain most of the variability in the data; therefore, np = 4.

Figure. 3 shows four principal eigenvectors corresponding to the largest and most significant eigenvalues

that describe the different lead-lag relationship characteristics of the EPUs and the GPRs. In these figures, the

direction of time progression is clockwise, with the positive real axis as the starting point. Panel v1 shows that
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components are co-moving, with EPUs leading but with smaller magnitudes compared to the GPRs. Panel v2

shows that the EPU and the GPU create two distinct groups. The eigenvectors are derived to have the norm

equal to one, so there is a degree of freedom in sign. Therefore, it is impossible to say whether the EPU or

the GPR is ahead of the other since reversals of this figure’s left and right sides are also allowed. The panel v3

shows a mixture of EPU and GPR components, distributed mainly along the real axis, with the EPUs showing,

on average, a smaller radius than the GPRs. The panel v4 shows a broader distribution of the EPUs and GPRs

along both the real and the imaginary axes.

To observe the granularity of the lead-lag relationships among the global EPUs and GPRs, the zoom-up

of Figure. 3 is shown in Figure. 4. The radius (absolute value) represents the strength of the eigenvector

component, and the phase (argument) determines the lead-lag relationships. As noted in equation (7), each

index rotates clockwise over time.

Figure. 4, panel v1, corresponding to the largest eigenvalue, shows that the EPU indices lead the GPR indices,

which can be interpreted as a global contagion starting with economic policy uncertainty (EPU) and spilling

into geopolitical risk (GPR) or political instability. Additionally, since the EPUs exhibit smaller radii than

the GPRs, we can infer that even smaller economic policy uncertainties could provoke significant geopolitical

instabilities. Among the globally leading indices, we observe the EPUs of China and Russia and the GPRs of

Ukraine and Israel.

Figure. 4, panel v2, corresponding to the second largest eigenvalue, shows the EPUs and the GPRs distributed

in almost opposite directions, with a phase difference of close to π, meaning that the two groups have equal-time

negative correlation, which supports the hypothesis that one group follows the other in the phase, revealing the

lead-lag relationships able to be detected by the CHPCA methodology. The EPUs’ radii are larger than the

GPRs, meaning that EPUs show higher significance in magnitude. Figure. 4, panel v3, corresponding to the

third largest eigenvalue, shows mixed distributions of the EPUs and the GPRs, mainly along the real axis, with

the EPUs being closer to the origin. The GPRs show larger radii, dominating in significance compared to the

EPUs. Figure. 4, panel v4, corresponding to the fourth largest eigenvalue, shows EPU and GPR distributions

spread out along both the real and imaginary axes, forming approximately two directions, GPR direction with

a positive slope, and an EPU direction with a negative slope, with a leading GPR group consisting of Russia

and Germany, among others, and a leading EPU group containing India and Japan. The lagging GPR group

consists of Israel and Egypt, exhibiting a negative equal-time correlation with the leading GPR group. The

lagging EPU group, consisting of China and Russia, shows a negative equal-time correlation with the leading

EPU group.
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Figure 3: Four principal eigenvectors, i.e., v1,v2,v3,v4. The blue dots correspond to the EPU indices, and the
red dots correspond to the GPR indices. These figures have the same range for the real and the imaginary axes.
Panel v1 shows that the first eigenvector component distribution is along the positive real axis. This means that
the phase difference between each component is small, i.e., components are co-moving, with EPUs leading but
with smaller magnitudes compared to GPRs. Panel v2 shows that the EPU and the GPU create two distinct
groups. In addition, the phase difference between these two groups is close to π, which means that the two
groups exhibit equal-time negative correlation. Panel v3 shows a mixture of EPU and GPR components, mostly
distributed along the real axis, with the EPUs showing, on average, a smaller radius than the GPRs. Panel v4

shows a broader distribution of the EPUs and GPRs along both the real and the imaginary axes, with similar
magnitudes, and leading and lagging GPR and EPU groups, moving in the following fashion: The leading GPR
group is followed by the leading EPU group, then followed by the lagging GPR group, and finally followed by
the EPU lagging group.
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Figure 4: The zoom-up of four principal eigenvectors, i.e., v1,v2,v3,v4. The dotted lines indicate the declination
in 10-degree increments. Panel v1 shows that the EPU indexes have large negative arguments compared to the
GPR indexes. This means that the EPU leads the GPR overall. On the other hand, the GPR indexes have
larger absolute values (radii) than the EPU indexes. This means that the GPR’s impact is stronger than the
EPU’s. Panel v2 shows an equal-time negative correlation between the GPRs and the EPUs, with the EPUs
dominating in significance, shown by the larger radii than the GPRs. The panel of v3 shows a mixed distribution
of the GPRs and the EPUs mostly along the real axis, with GPRs exhibiting larger radii, and hence higher
significance, while the panel of v4 shows a mixed distribution of the GPRs and the EPUs along both the real
and the imaginary axes.
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Figure 5: The square value of the total mode signal and the individual mode signals corresponding to the four
largest eigenvalues. We identify significant events that dominated between 1997 and 2024 as measured by the
EPU and GPR indices for the total mode signal and the individual four mode signals.
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4.2 Mode signals

We study the mode signals to extract the main events contributing to the EPU and GPR global index dynamics.

In addition to the total mode signal, defined by

|Itotal,t|2 =

N∑
j=1

|Ij,t|2 , (23)

we also investigate the mode signals related to the first four eigenvalues. Eigenmodes related to the largest

eigenvalues are key to uncovering important lead-lag relationships among the EPUs and GPRs. This is the

case because when the time series is expanded in terms of the eigenvectors, the mode signals’ mean strength is

proportional to the square root of the corresponding eigenvalues. In Figure 5, we show the squared values of

the total mode signal followed by the decomposition of the mode signal to 1st, 2nd, 3rd, and 4th mode signals

corresponding to the largest four eigenvalues. We show time on the x-axis and the squared mode signal values

on the y-axis.

In the total mode signal, we observe the events that dominate overall during the 28-year period of 1997-2024,

including the September 11th terrorist attacks on the U.S., the Iraq war, the Brexit aftermath, the COVID-19

pandemic, the Russian invasion of Ukraine, and the Israeli-Hamas war. In the first mode signal, we additionally

identify events such as the intensifying Korean Peninsula tensions and the European Sovereign Debt Crisis

in 2010. In the second mode signal, events that dominate the EPU and GPR landscape include the U.S.

Presidential election in 2016 and the escalation of the U.S.-China trade war. In the third eigenmode, a newly

identified event not observed before is the U.S. Presidential election of 2024, while the other peaks have already

been identified in the earlier mode signals. Finally, in the fourth mode signal, we see the effects of earlier

detected events such as the 9/11 terrorist attacks, COVID-19, and the Russian invasion of Ukraine.

The top 10 peaks in the total mode signal are summarized in Table 1.

4.3 Helmholtz-Hodge Potential Network

Using the four largest eigenvalues, np = 4, we obtain P or the principal part of the complex correlation matrix,

from Equation (14). The green dots represent the GPR-EPU relationships, the blue dots represent the EPU-

EPU relationships, and the red dots represent the GPR-GPR relationships. By using Pmin. = 0.20, calculated

from the simulation of the random matrix, we represent the most influential elements of the principal part of

the complex correlation matrix P̃ as

P̃mn = |P̃mn|eiθ̃mn . (24)

We obtain two types of correlation matrices from P̃. One is the matrix constructed from the absolute value

of the components, |P̃mn|, and the other is constructed from the arguments θ̃mn. The network shown in Figure 7
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Table 1: Top 10 event in the sum of square value of total mode signals |Itotal|2.

Peak ranking Month Event
1 2001-09 September 11th, 2001 terrorist attacks on New York City and the Pentagon
2 2022-03 Russian airstrike on the Mariupol Theater, intensifying the Russian-Ukraine

conflict
3 2001-10 U.S. invasion of Afghanistan as a response to the 9/11 terrorist attacks
4 2022-04 The International Monetary Fund issues a warning of growing economic risks

due to the Russia-Ukraine war
5 2003-04 U.S. forces captured Baghdad on April 9, 2003, effectively ending Saddam

Hussein’s 24-year rule
6 2023-10 Hamas launched a large-scale attack on Israel, firing over 3,500 rockets and

infiltrating southern regions
8 2003-03 The United States, along with coalition forces, initiated military operations

against Iraq
9 2022-02 Russian invasion of Ukraine on February 24th, 2022
10 2016-07 Aftermath, following the UK’s June 23, 2016, referendum to leave the European

Union

Figure 6: Left Panel: Distribution of the elements of P defined by equation (14) and P̃ defined by equation (17)
with Pmin. = 0.20. Since P and P̃ are Hermitian matrices, the distribution of the elements is symmetrical on the
horizontal axis. The green dots represent the GPR-EPU relationships, the blue dots represent the EPU-EPU
relationships, and the red dots represent the GPR-GPR relationships. The points in the circle are random or
insignificant, while the points outside are significant. Right Panel: Zoom in on the EPU-GPR relationships
corresponding to the negative correlations dominated by the EPU index of Russia’s negative correlation with
the GPRs of Taiwan, Japan, and China, as well as by the negative correlations of the EPU index of China’s
negative correlation with the GPRs of Egypt and Israel.
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Figure 7: The Correlation network of the EPUs and GPRs from February 1997 to December 2024, obtained
by using the argument θ̃mn. The directed links represent the HH potential, and the link weights represent the
absolute value, |P̃mn|.

is constructed using θ̃mn, with the direction of the links representing the HH potential as obtained by solving

Equation (22), while the weight of links is obtained by |P̃mn|.

Table. 2 gives the summary of the incoming degree kin and the outgoing degree kout for each country derived

from the network shown in Figure. 7. In this table, win represent wout the sum of the weights defined by

win,m =
∑

n∈in(m)

|P̃mn| , wout,m =
∑

n∈out(m)

|P̃mn| . (25)

Table 2 reveals that the countries with the highest incoming EPU degrees as well as the highest incoming link

total weights are Great Britain, Australia, and Canada, meaning that these countries’ EPUs have been the most

influenced by other countries’ EPUs and GPRs. The United States and South Korea have the highest outgoing

degrees and outgoing link weights, meaning that these countries have influenced most other countries’ EPUs

and GPRs. Countries with the highest incoming GPR degrees are Italy and Ukraine. At the same time, we

observe the highest GPR incoming link weights for the United States and Russia, meaning that these countries

have been influenced the most by other countries’ GPR and EPU indices. Finally, the leaders in the number

of outgoing GPR links and the highest outgoing GPR link weights are Germany and China, meaning that they

have influenced the EPUs and GPRs of other countries to a great extent between 1997 and 2024.

Figure 8 shows the HH potential for EPUs and GPRs. The x-axis corresponds to the HH potential ϕn of

index n, and the y-axis corresponds to the index names. The blue bars represent the EPU indices, and the red

bars represent the GPR indices. A high ϕn value indicates a leading index n. Therefore, a rightward direction

represents a leading property of the index. On the other hand, if the index n is lagging, the corresponding ϕn
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Table 2: Degrees and sum of the weights for the incoming and outgoing links of
the GPR and EPU indices.

Country EPU GPR
Code kin win kout wout kin win kout wout

AUS 11 3.768 3 0.869 11 3.361 9 3.264
BRA 1 0.225 6 1.446 0 0 11 3.185
CAN 13 3.66 3 0.976 7 3.022 11 5.354
CHL 2 0.632 9 2.317 0 0 8 2.276
CHN 4 0.865 4 1.006 1 0.291 14 6.481
FRA 9 2.782 5 1.524 5 1.977 11 5.17
DEU 6 1.938 9 2.928 4 1.476 13 6.374
GRE 4 0.995 10 2.322 0 0 NA NA
IND 5 1.291 3 0.78 10 3.639 3 0.694
ITA 3 0.752 6 1.392 13 5.196 3 0.967
JPN 9 2.443 6 1.953 8 3.803 9 3.214
KOR 0 0 19 5.545 2 0.804 9 2.902
RUS 1 0.236 3 0.655 11 5.244 4 1.646
ESP 10 2.862 1 0.262 1 0.284 9 3.075
GBR 13 3.808 0 0 9 4.464 9 4.371
USA 4 1.196 13 4.643 11 5.91 7 3.031
EGY 1 0.235 NA NA 9 3.155 1 0.514
ISR 1 0.214 NA NA 11 3.584 0 0
TWN 1 0.22 NA NA 6 1.781 0 0
UKR 2 0.497 NA NA 13 4.735 1 0.208

is low. Hence, the leftward direction represents a lagging index. Thus, in this figure, we observe that the most

significant leading index is the EPU for Russia, and the most lagging index is the GPR for Taiwan.

5 Discussion

This study investigates the complex global correlations between the 16 EPU and 19 GPR indices. We explore

these 35 monthly time series for the 28 years from January 1997 to December 2024. We apply a novel CHPCA

methodology to extract significant lead-lag relationships between the EPUs and GPRs and to understand the

significant influences of specific countries’ geopolitical risk or economic policy uncertainties on others.

We identified four significant eigenvalues from the complex correlation matrix and studied each related

eigenmode separately to identify significant events dominating the EPU-GPR landscape during the last 28

years. The analysis of the first principal eigenvector components shows that while, in general, the EPUs show

leading characteristics, they exhibit smaller magnitudes compared to the GPRs. Overall, all indices in the first

largest eigenvector are distributed along the real axis with a small phase difference, signifying a co-movement of

the EPU and GPR indices. The second largest principal eigenvector components reveal the presence of an equal-

time negative correlation between the EPUs and GPRs. In contrast, the third and fourth principal eigenvector

components show mixed distributions where the EPUs are closer to the origin or have smaller radii than the

GPRs, which show greater significance. In the leading pack of the first principal eigenvector components, we
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Figure 8: Helmholtz-Hodge potential from January 1997 to December 2024. The rightward direction corresponds
to the leading role of the index, showing that the EPU of Russia is the most significant leading index. On the
other hand, the leftward direction corresponds to the lagging indices, showing that the index that lags the most
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see the EPUs of Russia and China and the GPRs of Israel and Ukraine, followed by larger-in-magnitude GPRs

of the United States, Great Britain, Canada, Germany, Japan, Russia, and China.

The total mode signal reveals the most significant events, such as the 9/11 terrorist attack on New York City

and the Pentagon in 2001 and the Russian invasion of Ukraine in February 2022, which had significant economic

impacts, including increased inflation and high energy prices, as well as supply chain disruptions. Other events

include the Iraq war in 2003, the Brexit aftermath in 2016, the COVID-19 pandemic in 2020, and the Israeli-

Hamas war in 2023. In the analysis of the eigenmodes corresponding to the largest four principal components,

we identify additional significant events, including the Korean Peninsula tensions and the European Sovereign

Debt crisis in 2010, the U.S. Presidential elections of 2016 and 2024, and the escalation of the U.S.-China trade

war.

The principal component of the complex correlation matrix, constructed by using the four largest eigenvalues,

reveals that most of the EPUs and GPRs show co-movement and significant positive correlations with larger

values in the GPR-GPR relations followed by the EPU-EPU relation. We observe an exception of six negative

correlations mostly related to the EPU of Russia’s negative correlation with the GPRs of Taiwan, Japan, and

China, and the EPU of China’s negative correlations with the GPRs of Egypt and Israel. The majority of the

EPU-GPR relations, however, fall in the non-significant or random realm. The HH potential shows that the

most influential, leading index is the EPU of Russia, followed by the GPR indices of Chile and Brazil. The

most lagging index is the GPR of Taiwan.

We have used the HH potential to construct the directed complex correlation network and have found that

by investigating the incoming and outgoing network links and the link weights, we can identify the indices

that show the highest effect by other countries as well as indices that affect most of the others. Great Britain,

Canada, and Australia’s EPU indices have been the most influenced by other countries, and the EPUs of the

United States and South Korea have been the biggest influencers of others. The GPRs of Italy and Ukraine

have been the most influenced by other countries, and the biggest GPR influencers are Germany and China.

The limitations of this study include differences in the number of data sources for the EPU and GPR indices

for different countries, and a low (monthly) resolution of the EPU and GPR indices.

The contribution of this study is three-fold: 1. Once specific economic policy uncertainty measured by

the EPUs and geopolitical tensions measured by the GPRs have been documented to impact other countries

significantly, these relationships can be used as early warning signals of possible future impacts and can aid

governments and policymakers with making informed decisions. 2. Our findings can be the basis for creating

real-time monitoring of EPUs and GPRs by creating a financial, economic, and geopolitical observatory, where

the existing monthly indices can be complemented with real-time Natural Language Processing (NLP) analysis

of real-time news to inform the relevant decision-makers of potential imminent risks timely. 3. The novel

CHPCA methodology can be expanded into different economic, financial, and policy applications, including
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Figure 9: The original time series of EPUs for 16 countries and GPRs for 19 countries. The solid black lines
with dots correspond to the original monthly time series. The solid red lines correspond to the annual average
normalized by the highest value of each index.

designing state-of-the-art monitoring tools for politicians and governments that can contribute to decisions

resulting in improved economic and geopolitical stability.

Appendix

The original time series of EPUs for 16 countries and GPRs for 19 countries are shown in Figure. 9. The top

three rows and the figure on the left in the fourth row show the time series of EPUs. These figures can be

broadly divided into two categories: those that show a rightward trend (EPU-BRA, EPU-CAN, EPU-CHL,

EPU-FRA, EPU-DEU, EPU-KOR, EPU-RUS, EPU-ESP, EPU-CHN) and those that do not (EPU-AUS, EPU-

GRE, EPU-IND, EPU-ITA, EPU-JPN, EPU-GBR, EPU-USA).

The panels after the second panel from the left in row four correspond to GPR. Unlike in the case of the

EPUs, a rightward trend does not exist for the GPRs. Instead, sharp peaks exist in many GPRs. There are

resemble time series, such as the pair of GPR-RUS and GPR-UKR and the pair of GPR-ISR and GPR-EGP.
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