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Abstract
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labor hiring, tying together the equity premium, equity volatility, and labor volatility
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1 Introduction

One of the oldest and most prominent economic narratives holds that swings in investor
beliefs drive asset prices and business cycles. Sprague (1910), Fisher (1933), Keynes (1936),
Minsky (1986), Kindleberger (1996), and Shiller (2000), all feature a common theme: fu-
eled by leverage, a wave of excessive optimism drives up share prices, spurring excessive
firm investment and hiring. Eventually, disappointing earnings burst asset prices on Wall
Street with a blast wave felt all the way onto Main Street.

Formalizing this narrative, Harrison and Kreps (1978) and Scheinkman and Xiong
(2003) show how asset prices can be propelled by excessive optimism, emphasizing that
belief heterogeneity engenders amplification through leverage. A virtue of these formal-
izations is their subtle departure from strict rational expectations: agents fully understand
the workings of the economy but differ in their optimism. Yet, it remains unclear how—
and by how much—waves of optimism percolate into the real economy.

This paper studies a benchmark economy where beliefs are a direct source of business
cycles. Prices are flexible, there are no financial frictions, and markets are complete. The
only link between beliefs and output is that hiring labor is risky. Because hiring is a
business risk, hours fluctuations are driven exclusively by investor beliefs about earnings
growth and their risk appetite.

Also motivated by these narratives, a growing body of literature studies how be-
liefs spill over to the real economy by aggravating demand externalities or financial con-
straints. However, to our knowledge, we do not have a frictionless benchmark economy
where beliefs induce fluctuations in an otherwise frictionless setting. Developing such a
benchmark is important: First, by abstracting away market imperfections, we can provide
a qualitative and quantitative assessment of the direct effects of beliefs on the business
cycle. Second, we can derive general principles that carry over to environments where
market imperfections amplify these direct effects. Finally, a frictionless benchmark serves
as an ideal target that policy interventions to mitigate market imperfections should strive
to replicate. After all, policy should not care about asset prices per se, but only inasmuch
as these create inefficiencies.

The Model. Households differ in their beliefs about the evolution of TFP. Given their
distinct views, they actively trade firm shares, affecting asset prices. Households supply
labor with preferences that eliminate wealth effects, as in Greenwood, Hercowitz and
Huffman (1988, henceforth GHH).
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The key feature is that heterogeneity in household beliefs shapes the firm’s labor de-
mand because hiring is risky. As in Burnside, Eichenbaum and Rebelo (1993), labor is
chosen before the shock realizations. This timing induces an operational leverage chan-
nel whereby hiring becomes a risky investment, as it can add cost pressure to firms, which
also occurs in labor search models.1 This feature is critical to linking business-cycle fluc-
tuations to asset-price fluctuations. We focus on the firm’s investment in forming a work-
force, as opposed to physical capital formation, because it is understood that, absent ad-
ditional frictions, fluctuations in capital investment cannot be a source of business cycles;
instead, what is needed are movements in the labor wedge (Chari, Kehoe and McGrattan,
2007).2 Moreover, the operational leverage channel leads to testable implications regard-
ing the correlation of returns and the labor share that is consistent with data, (e.g., see
Donangelo, Gourio, Kehrig and Palacios, 2019).

Belief heterogeneity is essential for generating leverage and turnover dynamics, both
recurrent themes in optimism-wave narratives. Because of heterogeneous beliefs, house-
holds take long or short positions in the firm. Optimistic households increase leverage,
amplifying their risk exposure. Leverage creates internal propagation by magnifying
differences in investors’ risk exposures: optimistic investors accumulate relatively more
wealth when positive shocks occur, while pessimists gain during downturns.

These dynamics produce internal propagation as wealth-weighted beliefs jointly affect
asset prices and output through the operational leverage channel. When wealth-weighted
beliefs become more optimistic, increased demand for risky assets pushes stock prices
upward, compresses risk premia, and encourages hiring. Thus, as investors’ risk appetite
increases, discount rates decline, prompting more hiring by a firm attempting to raise its
market value. Through these dynamics, the equity premium, the equity volatility, and labor
volatility puzzles are tied together into a single volatility puzzle.

Theoretical Results. Despite featuring Epstein-Zin preferences and endogenous labor
supply, the model remains highly tractable due to a convenient “as if” property portable
to other settings. Specifically, the equilibrium is characterized as if the economy were an
endowment economy, with a common stochastic discount factor (SDF). Importantly, the
firm makes risky hiring decisions using this common SDF to weigh future states, thereby
linking the SDF directly to a labor-demand factor (LDF) that ultimately determines em-
ployment. Crucially, we impose no assumptions regarding the firm’s direct knowledge

1We reinterpret this form of investment in labor as a simplified version of the investment in hiring that
happens in labor-search models. Recall that in labor-search models, firms incur sunk costs to hire workers.

2Investment is small relative to the capital stock in a business-cycle model. Thus, fluctuations in invest-
ment do not meaningfully impact the production possibility frontier.
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of investor beliefs; the firm only needs to understand how its hiring decisions affect its
market value.

In the special case of log utility, the model admits an analytic solution, enabling us
to articulate a clear taxonomy of belief systems. Specifically, we classify beliefs into
two broad categories, each with two sub-categories. The first category comprises rank-
preserving beliefs, subdivided into optimistic and pessimistic beliefs. The second category
includes rank-alternating beliefs, subdivided into extrapolative and intrapolative beliefs.
This taxonomy allows us to derive general properties regarding how each belief structure
affects business-cycle dynamics.

We identify several principles regarding the amplification properties under different
belief systems. First, we show that only extrapolative beliefs amplify business-cycle fluc-
tuations across all states of the economy relative to rational expectations. Amplification
occurs because extrapolation boosts the firm’s discounting of risk states during booms
but depresses it during busts, a property unique to extrapolative beliefs.

Second, we uncover that only extrapolative beliefs engender risk build-up, i.e., longer
booms lead to deeper busts. This phenomenon, also exclusive to extrapolative belief sys-
tems, occurs because extrapolative households consistently accumulate wealth through-
out boom phases. When the economy transitions into a downturn, extrapolative agents
remain wealthier while simultaneously becoming the most pessimistic investors. The re-
versal in the wealthiest households’ optimism significantly amplifies the economy’s rift.

The taxonomy of beliefs highlights the importance of belief heterogeneity for under-
standing macro-finance dynamics. Empirical evidence from López-Salido, Stein and Za-
krajšek (2017) and Krishnamurthy and Muir (2017) indicates that risk premia are low dur-
ing credit booms preceding severe crashes.3 In contrast, standard macro-finance models
without belief heterogeneity predict precisely the opposite (e.g., Brunnermeier and San-
nikov, 2014; He and Krishnamurthy, 2013). Furthermore, our analysis helps distinguish
models driven by heterogeneous beliefs from those driven by heterogeneous risk aversion
(e.g., Panageas, 2020), a challenge for the literature. Our results clarify that heterogeneity
in risk aversion cannot generate risk build-up germane to extrapolative belief systems.
Beyond these results, we further demonstrate that optimism-driven business cycles are
consistent with observed stock-market turnover fluctuations in the model’s two-state ver-
sion.

Quantitative Results. To complement our theoretical insights, we provide a quantita-
tive evaluation. Given that aside from beliefs, our framework follows canonical assump-

3See also Gennaioli and Shleifer (2018) and Krishnamurthy and Li (2025).
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tions, we adopt a standard calibration approach for preferences and the process for TFP.
To discipline the calibration of beliefs, we utilize survey data on earnings forecasts

(from the I/B/E/S) to estimate a belief process that explicitly captures household het-
erogeneity, thus representing various empirically plausible belief systems. Specifically,
we specify a continuous Markov process for actual productivity growth and subjective
beliefs about it. Actual log productivity growth follows an estimated iid process. In con-
trast, subjective beliefs allow households to over- or under-react to TFP, captured by an
overreaction parameter. We calibrate this overreaction parameter to match the return
extrapolation observed in survey data. We further introduce a non-fundamental “sen-
timent shock.” This shock allows for rank-preserving beliefs and generates additional
fluctuations in expectations. The volatility of this sentiment shock is calibrated to match
the empirically observed ratio between the volatility of survey-based dividend growth
expectations relative to its objective counterpart.

Our quantitative analysis underscores the importance of belief heterogeneity by fol-
lowing a progression. We begin with a stripped-down model featuring a representative
rational investor without hiring risk. As is known, this baseline economy fails to generate
realistic equity premiums or stock market volatility. Introducing operational leverage—
where hiring occurs before TFP realizations—successfully matches the observed volatility
of dividend growth. However, labor demand remains essentially constant under rational
expectations, resulting in no employment volatility.

We then incorporate subjective beliefs calibrated to match our empirical targets. While
subjective beliefs alone generate realistic labor fluctuations due to extrapolation, they still
fail to produce an adequate equity premium or sufficient asset-price volatility. Crucially,
when belief heterogeneity is introduced—allowing rational and extrapolative investors
to interact—the additional fluctuation in wealth allows the model to successfully match
the magnitude and volatility of equity returns and substantial volatility in employment.
These results emphasize the pivotal role of heterogeneous beliefs in jointly explaining key
unconditional asset pricing and labor-market moments.

Beyond matching unconditional moments, we also explain how the model can rec-
oncile the Campbell-Shiller decomposition, the lack of predictability in subjective beliefs,
and the conditional correlation between labor income and returns. The section demon-
strates the model’s ability to rationalize business cycle and asset price moments by incor-
porating beliefs disciplined by survey data.

Literature Review. This paper connects to the literature initiated by Kydland and
Prescott (1982) and Mehra and Prescott (1985), who used complete-market benchmarks
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to analyze business cycle fluctuations and asset prices in settings where these two di-
mensions do not feed into each other. A recent strand emphasizes the role of fluctuating
risk premia in driving real cycles, particularly highlighting the riskiness of labor hiring
(e.g., Hall, 2017; Borovička and Borovičková, 2019; Di Tella and Hall, 2019; Kehoe, Lopez,
Midrigan and Pastorino, 2019). We bridge this channel with the literature on heteroge-
neous beliefs and asset pricing.

The literature on heterogeneous beliefs is extensive. Early seminal contributions link
belief heterogeneity to speculative behavior and bubbles (Harrison and Kreps, 1978;
Scheinkman and Xiong, 2003), a connection further developed by studies examining its
interaction with financial constraints (e.g., Geanakoplos, 2003; Fostel and Geanakoplos,
2008; Geanakoplos, 2010; Simsek, 2013a; Iachan, Nenov and Simsek, 2019; Barlevy, 2014,
2022). Closely related papers explore how wealth redistribution driven by heterogeneous
beliefs affects asset-price dynamics (Detemple and Murthy, 1994; Xiong and Yan, 2009;
Kubler and Schmedders, 2012; Martin and Papadimitriou, 2022). Our paper contributes
by explicitly linking these channels to the real economy through the labor market.

Our emphasis on extrapolative beliefs connects us closely to models featuring di-
agnostic expectations (Gennaioli and Shleifer, 2010; Bianchi, Ilut and Saijo, 2024), and
more generally, to the literature on subjective beliefs and macroeconomic dynamics (e.g.,
Eusepi and Preston, 2011; Angeletos, Collard and Dellas, 2018; Bordalo, Gennaioli and
Shleifer, 2018a; Bhandari, Borovička and Ho, 2019). Relatedly, Adam and Merkel (2019)
shows how homogeneous extrapolative beliefs simultaneously explain stock market and
business cycle fluctuations, though abstracting from heterogeneity. Other models exam-
ine different mechanisms connecting speculative bubbles to real activity, typically em-
phasizing capital rather than labor investment.4

Recent work further explores how heterogeneous beliefs interact with aggregate
demand externalities, highlighting how changes in wealth distribution can amplify
demand-driven recessions (Caballero and Simsek, 2020a,b; Guerreiro, 2022; Caramp and
Silva, 2024). Simsek (2021) provides a comprehensive review of the belief heterogeneity
and business cycle literature. Relative to this rich literature, our analysis focuses on the
labor demand channel instead of an aggregate demand channel.

Roadmap. The next section presents three empirical facts about investor beliefs docu-
mented in the literature to motivate our analysis. Subsequently, we present the theoretical
model followed by the quantitative evaluation. Finally, we conclude.

4See also, Gilchrist, Himmelberg and Huberman (2005), Bolton, Scheinkman and Xiong (2006),
Panageas (2005), and Buss, Dumas, Uppal and Vilkov (2016).
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2 Three motivating facts

This section discusses three facts about subjective expectations that motivate our model.

Fact 1. Expectations are volatile. As Shiller (1981) famously observed, stock dividends
and earnings are too stable to explain the large swings in asset prices. In contrast, recent
survey evidence shows that subjective expectations of future cash flows are highly volatile,
offering a potential explanation for the stock market’s excess volatility (Bordalo, Gen-
naioli, La Porta and Shleifer, 2020a; De La O and Myers, 2021).

We illustrate the magnitude of the difference in the volatility of subjective and objec-
tive expectations by constructing an “objective" forecast—based on the statistical proper-
ties of dividends—against a survey-based “subjective" forecast. Specifically, we estimate
an AR(1) process for quarterly aggregate dividend and earnings growth. The predicted
one-year-ahead dividend growth from this AR(1) serves as our measure of objective ex-
pectations, Eobj[∆dt,t+4]. We then compute the fraction of the total variance in realized
dividend growth expectations relative to the variance of realized dividend growth. We
construct an analogous measure for subjective expectations, Esub[∆dt,t+4], by using the
survey of analyst expectations from I/B/E/S. The differences in volatility are significant:

Var
[
Eobj[∆dt,t+4]

]
Var[∆dt,t+4]

= 0.05,
Var
[
Esub[∆dt,t+4]

]
Var[∆dt,t+4]

= 0.70.

Whereas objective expectations represent a negligible fraction of the total variation in
dividend growth, subjective expectations are an order of magnitude more volatile.5

Fact 2. Expectations are heterogeneous. Fact 1 provides evidence of deviations from
full-information rational expectations (FIRE). Our business cycle model emphasizes how
heterogeneity in these expectations leads to business cycle amplification through asset
markets. Critical to our theory is the presence of heterogeneity in beliefs. Concrete evi-
dence is surveyed in Nagel and Xu (2023) reporting subjective return expectations across
individual investors, CFOs, and professional forecasters. Table 1 summarizes their find-
ings: The first column shows that realized future returns are positively predicted by the
dividend-price ratio (a standard return predictor). In contrast, past returns do not appear
significantly. In contrast, regressions for subjective expected returns reveal heterogeneous
beliefs: individual investors place a positive and significant weight on past returns (con-

5The small fraction of variation explained by objective expectations is consistent with the estimated
autocorrelation of cash flows in, for example, Bansal and Yaron (2004).
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Dependent var.: Objective Individual CFO Professional

Predictors
D/P 5.83 -0.00 -0.41 0.42

(p-value) (0.00) (1.00) (0.31) (0.73)
Re

past 0.36 0.87 0.30 -2.78
(p-value) (0.71) (0.02) (0.29) (0.01)

Table 1: Subjective return expectations regressions by type of investor.

sistent with extrapolation), professional forecasters behave in a contrarian way (a nega-
tive coefficient on past returns indicates interpolation), and CFOs lie somewhere in be-
tween. These results underscore the importance of heterogeneity in expectations among
different agents.6

For our paper, a key question is whether expectations correlate with actual trading
behavior. Existing evidence suggests that yes: Greenwood and Shleifer (2014) shows that
subjective expectations correlate with mutual fund flows, and Giglio, Maggiori, Stroebel
and Utkus (2021) documents a relationship between beliefs and portfolio choices.7

Fact 3. Expectations correlate with hiring decisions. The previous two facts focus on
subjective expectations among groups of investors. Toward a business cycle theory, a nat-
ural follow-up question is whether these expectations are reflected in real economic out-
comes. Indeed, Gennaioli, Ma and Shleifer (2016) shows that CFO expectations predict
corporate capital investment, and Armona, Fuster and Zafar (2019) finds that expecta-
tions about home price appreciations influence construction. In this spirit, we present
related evidence: investor expectations also predict firm-level employment decisions. To
demonstrate this, we use two labor-related measures from Compustat Annual: the re-
alized growth in staff expenses (payroll) and the employee count (workers). These two
measures are standardized using the same procedure we apply to our earnings data.

We follow the approach of Gennaioli et al. (2016): we regress realized employment
growth on the firm-level earnings growth expectations drawn from I/B/E/S. We control
for past 12-month stock returns (constructed using individual stock prices from CRSP)
and contemporaneous returns, clustering standard errors at the firm level. By including

6See also Atmaz, Gulen, Cassella and Ruan (2023) for evidence of both extrapolative and contrarian
behavior. Greenwood and Shleifer (2014) provides further evidence of extrapolative expectations from past
stock return, also associated with the cyclicality of credit and leverage (López-Salido et al., 2017).

7In Appendix C.1, we construct a measure of heterogeneity among professional forecasters and show
that this measure of disagreement correlates with stock market turnover, particularly during recessions.
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Table 2: I/B/E/S Expectations and Labor

Dependent Variable: Payroll Number of workers
Model: (1) (2) (3) (4) (5) (6)

(Intercept) 0.388 0.274 0.364 0.392 0.143 0.170
(0.247) (0.223) (0.241) (0.097) (0.195) (0.052)

lag earning growth expectation 0.133*** 0.135*** 0.136*** 0.061*** 0.062*** 0.067***
(0.043) (0.043) (0.043) (0.014) (0.014) (0.014)

12-month lag return 0.474*** 0.535***
(0.119) (0.054)

12-month return 0.234* 0.326***
(0.125) (0.043)

Fit statistics
Observations 1797 1797 1797 1797 1797 1797
R2 0.081 0.090 0.083 0.081 0.090 0.083
Adjusted R2 0.038 0.046 0.039 0.038 0.046 0.039

Newey-West standard-errors in parentheses (4 lags)
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

past returns, we aim to capture systematic shocks that might otherwise confound the
relationship between expectations and subsequent employment growth.

Table 2 shows that earnings growth expectations predict realized employment growth
in both total payroll and the number of workers. In light of Facts 1 and 2—namely,
that earnings growth expectations exhibit greater volatility than actual outcomes and that
CFOs behave differently from individual investors—these results provide reassuring ev-
idence that firm employment decisions correlate with investor expectations.

Naturally, this correlation alone does not establish causality: it may simply reflect that
the surveyed analysts’ information overlaps with managers’ private signals, even if in-
vestors do not directly influence managers. However, Gennaioli et al. (2016) finds that
investor expectations continue to affect capital investment even after controlling for man-
agers’ survey responses, suggesting a meaningful role for such external perceptions. Un-
like Gennaioli et al. (2016), we cannot control for CFO expectations, as we lack sufficient
data matches for the employment variables. Motivated by the three facts, we proceed to
the model.
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3 Model

3.1 Environment

We consider a two-state complete-markets economy with time indexed by t ∈ {0, 1, ..., }.
The economy is populated by heterogeneous households that differ in their beliefs re-
garding TFP growth. Households hold (or issue) risk-free bonds and hold (or short-sell)
shares of a single representative firm. Differences in beliefs induce a desire to lever up.
The firm hires labor one period in advance before TFP is realized. Hiring in advance links
labor demand with asset pricing.

The exogenous state. Total factor productivity At grows according to a two-state
Markov process:

At+1

At
= xt+1, (1)

where xt+1 ∈ {xL, xH}, 0 < xL < xH. Transition probabilities from state s to s′ are denoted
by {pss′}.

The firm. The representative firm produces a final good according to At+1hα
t+1, where

labor ht+1 is hired in period t, prior to the realization of xt+1. While firms hire and contract
the wage Wt+1 one period ahead, the wage bill is paid when production is finished.

The firm takes hours at the initial date h0 as given and hires labor in subsequent peri-
ods to maximize its value using a stochastic discount factor (SDF), Λt,t+1:

Qt = max
ht+1

Et [Λt,t+1 (πt+1 + Qt+1)] . (2)

Qt denotes the firm value and πt+1 ≡ At+1hα
t+1 −Wt+1ht+1 denotes the profit (dividend).

Expectations are taken with respect to the transition probabilities {pss′} and weighted by
Λt,t+1. Because markets are complete, state prices are unique. This pins down a unique
SDF for any fixed set of beliefs. Hence, there is unanimity regarding the firm’s objec-
tive among shareholders, as discussed in Section 4. Beliefs affect employment decisions
through their impact on the SDF.

Households. There is a finite number of infinite-lived households, indexed by i ∈ I =

{1, . . . , I} with masses {µi}, ∑i µi = 1. Household i derives utility from consumption
Ci,t and disutility from working hi,t. They have Epstein-Zin preferences over a GHH
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consumption-labor composite:

Vi,t = (1 − β)U

(
Ci,t − ξt

h1+ν
i,t

1 + ν

)
+ βU (Vi,t) , (3)

where Vi,t denotes the utility level, β the discount factor, and ξt controls the labor disutil-
ity. Vi,t is the certainty-equivalent of future utility, Vi,t = Ψ−1 (Ei,t

[
Ψ
(
U−1(Vi,t+1

)])
.

The labor disutility coefficient is indexed by lagged productivity, ξt = ξAt−1 and acts
as a long-run wealth effect—as in Jaimovich and Rebelo (2009), this ensures that hours are
stationary. We adopt the functional forms: U(C) = C1−1/ψ−1

1−1/ψ and Ψ(Z) = Z1−γ−1
1−γ , where γ

controls risk aversion and ψ the elasticity of intertemporal substitution (EIS).8 As U(·) is

defined over positive values, net consumption, Ci,t − ξt
h1+ν

i,t
1+ν , must be positive.

Household i has beliefs {pi
ss′} regarding TFP growth xt+1 from state s to s′ and forms

an expectation Ei,t accordingly. Households are dogmatic, as in Chen, Joslin and Tran
(2012) and Simsek (2013b): they agree to disagree and do not learn from the views of others.
Beliefs about productivity translate into beliefs about earnings and asset prices. Their
differences are settled through financial trades.

Household i chooses consumption Ci,t, hours hi,t, firm shares Si,t, and risk-free bonds
Bi,t to maximize (3) subject to a flow budget constraint

Ci,t + QtSi,t + Bi,t = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t. (4)

We denote human wealth by:

Hi,t = Et

[
∞

∑
k=1

Λt,t+k

(
Wt+khi,t+k − ξt+k

h1+ν
i,t+k

1 + ν

)]
. (5)

Human wealth is the present discounted value of future net labor income. Net labor income
equals the labor earnings minus labor disutility. The present value is discounted using the
SDF Λt,t+k = ∏k

j=1 Λt+j−1,t+j. The SDF is the same as the one used to value firms.
Households face a natural borrowing limit: Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t −

ξt
h1+ν

i,t
1+ν ≥ −Hi,t, given Si,−1 and Bi,−1, where Rb,t denotes the return on the risk-free bond

and Re,t =
Qt+πt
Qt−1

the return on equity.9

8CRRA preferences correspond to ψ = γ−1. Given the endogenous labor supply, γ controls but does
not coincide with the risk aversion for lotteries on financial wealth (see, e.g., Swanson 2018).

9This borrowing limit corresponds to the maximum households can borrow without violating the non-
negativity of net consumption and is therefore never binding.
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Example I: Diagnostic expectations. We do not impose restrictions on beliefs. In par-
ticular, our formulation is flexible enough to capture different belief dynamics, including
extrapolation or underreaction. For example, consider the case of heterogeneous diagnostic
expectations. Diagnostic expectations correspond to the following belief structure:

pi
sH = psH︸︷︷︸

rational beliefs

×
(

psH

p−sH

)θi

︸ ︷︷ ︸
belief distortion

×C,

where C is a normalizing constant, psH and p−sH denote the probability of being in the
high state next period if the current state is s and not s, respectively, and θi is a parameter
controlling the degree of diagnosticity. If productivity growth is persistent under rational
beliefs, i.e., pHH > pLH, then under diagnostic expectations, households overreact to
news: households believe it is more likely they would remain in the high (low) state after
switching to the high (low) state. If pss = 1+ρ

2 , as in Mehra and Prescott (1985), then
pi

ss = 1+ρi
2 , where ρi > ρ, and the (endogenous) subjective persistence parameter ρi is a

function of θi.

Example II: Optimism and pessimism. Diagnostic expectations capture a form of ex-
trapolation: households are optimistic in the boom and pessimistic in the bust. Alterna-
tively, we could have a persistent degree of optimism/pessimism: pi

sH = psH + ∆i where
households with ∆i > 0 would be optimistic at all states.

Both the diagnostic expectations and persistent optimism formulations are one-
parameter belief specifications. In general, beliefs can depend on two parameters, captur-
ing a combination of these two cases: pi

HH = (1+ ρi)/2+∆i and pi
LL = (1+ ρi)/2)−∆i.10

SDF and Equilibrium. The SDF can be inferred from the process of asset returns
through no-arbitrage conditions:

1 = Et

[
Λt,t+1

πt+1 + Qt+1

Qt

]
, 1 = Et [Λt,t+1Rb,t+1] . (6)

A competitive equilibrium is defined next.

Definition 1 (Competitive equilibrium). Given initial bond holdings and shares
{Bi,−1, Si,−1}I

i=1 and hours h0, a competitive equilibrium is a set of stochastic process for quanti-
ties {{Ci,t, hi,t, Bi,t, Si,t}I

i=1, ht} and prices {Wt, Rb,t, Qt} such that

10Notice that diagnostic beliefs coincide with rational beliefs in the case productivity growth is iid, psH =
p−sH . Our formulation allows for an arbitrary persistence under subjective beliefs, even in this case.
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(i) {ht+1} maximizes (2) given wages Wt and the SDF Λt,t+1.

(ii) {Ci,t, hi,t, Bi,t, Si,t} maximizes (3) subject to (4) given prices, for i ∈ I .

(iii) Markets for goods, labor, bonds, and shares clear

I

∑
i=1

µiCi,t = Athα
t ,

I

∑
i=1

µihi,t = ht,
I

∑
i=1

µiBi,t = 0,
I

∑
i=1

µiSi,t = 1.

We proceed to a characterization.

4 Characterization

We now present a recursive representation of the Markov equilibrium in the exogenous
state s and an aggregate endogenous state variable X, to be revealed below. The law of
motion of X is given by a function χ to be solved for, i.e., X′ = χ(X, s, s′). All aggregate
variables are functions of X and s, e.g. Re,t+1 = Re(Xt, st, st+1).

The household problem features portfolio and labor-supply choices. In general, this
combination complicates obtaining closed-form expressions.11 Under complete markets
and GHH preferences, there is an as-if result: the household problem can be recast into the
portfolio problem of an endowment economy without reference to labor decisions.

We proceed as follows: First, we reduce the investor’s problem into a consumption-
savings problem without labor. We then obtain explicit expressions for consumption and
portfolio choices under the alternative representation. Finally, we recover the original
economy’s labor, consumption, and asset prices. All the proofs are in the Appendix.

An equivalent household problem Toward obtaining our as-if result, we observe that
under GHH preferences, there are no wealth effects. As a result, all households have the
labor supply (derived from the first-order condition for their problems):

hi,t = ht ≡ (Wt/ξt)
1
ν . (7)

We define human wealth, Ht, as an asset whose dividend is labor income minus the
consumption value of labor disutility, Wt+1ht+1 − ξt+1h1+ν

t+1 (1 + ν)−1. Since labor is com-
mon across agents, so is human wealth, so there is no need for an agent-specific index.

11With homothetic preferences and no labor supply, the coefficient of relative risk aversion is indepen-
dent of wealth. The model with labor supply is analogous to settings with background risk.
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The return to human wealth is:

Rh,t+1 ≡ Wt+1ht+1 − ξt+1
h1+ν

t+1
1+ν +Ht+1

Ht
.

With these objects, we recast the households’ flow budget constraint:

C̃i,t + QtSi,t + Bi,t +Ht = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Rh,tHt−1 ≡ Ni,t (8)

where C̃i,t ≡ Ci,t − ξt
h1+ν

t
1+ν defines net consumption and Ni,t defines the individual’s total

wealth. The investor’s total wealth, Ni,t, is the sum of financial and human wealth. Total
wealth funds the terms on the left-hand side: current net consumption and the future
holdings of stocks, bonds, and human wealth.

The household’s objective is to maximize net consumption. From the modified bud-
get constraint, (8), it is as if households hold portfolios of bonds and two risky assets:
stocks and human wealth. However, because the returns to stocks and human wealth are
correlated, only the exposure to risk in total wealth matters, regardless of the portfolio
composition. We can then work with the sum of stocks and human wealth as a single
risky asset, which we call the surplus claim. The price of the surplus claim, is At−1Pt,
where Pt is given by

Pt = Et

[
∞

∑
k=0

Λt,t+k

At−1

(
At+khα

t+k − ξt+k
h1+ν

t+k
1 + ν

)]
.

The dividend of the surplus claim is the social surplus: the sum of output minus labor
disutility—both measured in terms of goods. We denote the return on the surplus claim
by Rr(X, s, s′). The household’s problem can be written in terms of net consumption and
the surplus claim:

Problem 1. The modified household’s problem is:

Vi(N, X, s) = max
C̃i,ωi

(1 − β)U
(
C̃i,t
)
+ βU (Vi(N, X, s)) , (9)

subject to:

N′ = Ri,n(X, s, s′)(N − C̃i), Ri,n(X, s, s′) = (1 − ωi)Rb(X, s) + ωiRr(X, s, s′) (10)

where Vi(N, X, s) = Ψ−1 (Ei
[
Ψ
(
U−1(Vi(N′, X′, s′)

)
|N, X, s

])
, N′ ≥ 0.

In this problem, the household only chooses net consumption C̃i and his holdings (risk
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exposure) of the surplus claim ωi. We recover {Ci,t, hi,t, Si,t, Bi,t} in the original problem
through:

Wt = ξthν
t , Ci,t = C̃i,t +

ξth1+ν
t

1 + ν
,

QtSi,t =
ωi,t

ωe,t
(Ni,t − C̃i,t)−

ωh,t

ωe,t
Ht, Bi,t = Ni,t −Ht − QtSi,t − C̃i,t,

where ωk,t satisfies Rk,t = ωk,tRr,t + (1 − ωk,t)Rb,t, for k ∈ {hi, e}.
Complete markets and GHH preferences are key to this as-if result. With complete

markets, a combination of bonds and the surplus claim yields the same payoffs as human
wealth. Thus, the investor’s problem is akin to a problem where human wealth is traded
and could be sold at time zero, as any other financial asset.

Euler equations and portfolio share. As any model with homothetic preferences and
linear budget sets, the solution to the modified household problem admits aggregation
and portfolio separation. The characterization of the modified problem is standard, and
it is provided in Appendix A.2.

The Euler equations for investor i ∈ I are given by:

1 = Ei
[

Λi(X, s, s′)Rj(X, s, s′)
]

, (11)

for j ∈ {r, b}, where Λi(X, s, s′) denotes the investor’s SDF.
These Euler equations yield the portfolio weights ωi. Since (11) holds for every house-

hold, there are an equal number of equations as states for each. Hence, all agents discount
payoffs in different states by the same amount, regardless of their beliefs.

The no-arbitrage conditions (6) coincide with the Euler equations if we replace in-
dividual beliefs and discount factors with objective probabilities and an endogenous
economy-wide SDF. Any individual SDF can be recovered from:

Λi(X, s, s′) =
pss′

pi
ss′

Λ(X, s, s′).

Thus, i’s SDF is the economy-wide SDF, scaled by the ratio of objective to subjective prob-
abilities. In turn, given the objective probabilities, Λ(X, s, s′) can be recovered from ob-
served asset prices, by inverting the no-arbitrage conditions (6),

Λ(X, s, s′) =
1

pss′

|Re
r(X, s,−s′)|
∆Rr(X, s)

.

The SDF depends on the excess return of the risky asset, Re
r(X, s, s′) ≡

14



Rr(X, s, s′)/Rb(X, s) − 1, relative to the difference in realized returns ∆Rr(X, s) ≡
Rr(X, s, H)− Rr(X, s, L), which is proportional to the volatility of returns.12

So far we have observed that investors agree on the value of one unit of consump-
tion state by state, despite disagreeing on their likelihood. For this, investors must be
differently exposed to risk. For instance, for a log-utility investor, the portfolio share is
approximately given by Merton (1969) formula derived in a continuous-time setting:13

ωi(X, s) ≈ Ei[Re
r(X, s, s′)]

Vari[Rr(X, s, s′)]
. (12)

Since the expected excess return Ei[Re
r(X, s, s′)] increases with pi

sH, more optimistic in-
vestors hold larger risky surplus-claim positions. Heterogeneity in beliefs, thus, trans-
lates into heterogeneity in portfolio shares. As a result, agents are differently exposed to
risk, and their wealth shares fluctuate, opening a feedback into the economy-wide SDF.
Next, we link this SDF to the firm’s hiring decisions.

Firm’s problem. The firm’s first-order condition is:

Et

[
Λt,t+1

(
αAt+1hα−1

t+1 − Wt+1

)]
= 0.

Given the timing of hires, the marginal product of labor will typically deviate from the
wage, i.e., there is ex-post a non-zero labor wedge. The firm’s labor demand satisfies the
condition:

αLthα−1
t+1 = wt+1, (13)

where wt+1 ≡ Wt+1/At denotes a TFP-detrended wage. The term Lt acts as a shifter
of the labor demand curve. Hence, we dub the risk-neutral expectation of productivity
growth, Lt, the labor demand factor (LDF):

Lt = Et

[
Λt,t+1

Et[Λt,t+1]
xt+1

]
.

Note that pss′Λt,t+1
Et[Λt,t+1]

is the risk-neutral probability at time t. Hence, the LDF is consistent
with a zero expected labor wedge under the risk-adjusted expectations.

Recall that at t, the firm chooses future labor, ht+1. Thus, current labor ht depends on
the lagged LDF. Therefore, Lt−1 is an endogenous aggregate state variable with law of

12Notice that [Rr(X, s, s′) − Rb(X, s)]/∆Rr(X, s) = [Re(X, s, s′) − Rb(X, s)]/∆Re(X, s), so we can use
stocks or the surplus claim interchangeably.

13In Appendix A.3 we solve for ωi(X, s) in the general case and derive this approximation.
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motion:

L′(X, s) =
psLΛ(X, s, L)

psLΛ(X, s, L) + psHΛ(X, s, H)
xL +

psHΛ(X, s, H)

psLΛ(X, s, L) + psHΛ(X, s, H)
xH.

Labor Market Equilibrium. We combine the labor supply and demand schedules,
equations (7) and (13), to obtain the labor market equilibrium:

h(L) =
(

αL
ξ

) 1
1+ν−α

, w(L) = ξ

(
αL
ξ

) ν
1+ν−α

. (14)

Given that hours and wages are determined solely by the LDF, realized profits also de-
pend on the LDF and realized productivity growth:14

π(L, s) = xs

(
αL
ξ

) α
1+ν−α

[
1 − α

L
xs

]
,

where π(L, s) denotes the firm’s profits in state s detrended by lagged TFP. Because labor
is chosen in advance, profits may be negative unless xL > αxH.15

Relating the LDF to the SDF. Let Es[zs′ ] and σs[zs′ ] respectively denote the mean and
the standard deviation of a variable zs′ conditional on s under the objective probabilities
pss′ . The next proposition presents a convenient representation of the LDF:

Proposition 1. The risk-neutral expectation of next period productivity growth is given by

L′(X, s) = Es[xs′ ]−
Es[Re

r(X, s, s′)]
σs[Re

r(X, s, s′)]︸ ︷︷ ︸
price of risk

σs[xs′ ]︸ ︷︷ ︸
quantity of risk

. (15)

where the Sharpe ratio is
Es[Re

r(X, s, s′)]
σs[Re

r(X, s, s′)]
=

σs[Λ(X, s, s′)]
Es[Λ(X, s, s′)]

.

Proposition 1 shows that the LDF depends on two components: First, a quantity of risk,
the underlying risk in productivity growth, σs[xs′ ]. Second, a price of risk, the required
market compensation per quantity of risk. This price of risk is proportional to the volatil-
ity of the SDF. Thus, the LDF and the SDF are intimately connected.

14As hours and wages depend only on L, we simplify notation and write h(L) and w(L) instead of the
more general notation h(X, s) and w(X, s). Similarly, we write profits as π(L, s) instead of π(X, s).

15Given that the highest possible value for L, the last period expected TFP growth under the risk-neutral
measure is xH , profits are positive as long as xs > αL. The condition xL > αxH guarantees this is the case.
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The labor market equilibrium showcases that variation in the SDF, which provokes
variations in the LDF, also provokes fluctuations in labor. This feature connects the equity
premium, equity volatility, and labor volatility puzzles. Intuitively, as investors become
more willing to bear risk, expected excess returns are low, and risk-adjusted probabili-
ties put more weight on higher TFP growth. As a result, the firm takes greater risks by
hiring more. As we know from asset-pricing—e.g. Hansen and Jagannathan (1991) and
Cochrane and Hansen (1992)—not only is the volatility of the SDF relatively large, but it
is associated with substantial movements in expected returns—see e.g. Cochrane (2011).
Therefore, success in generating large employment fluctuations is tied to obtaining a large
and volatile equity premium because the labor volatility and equity volatility puzzles are
the same puzzle here.

The Operating Leverage Channel. If labor could be contracted after productivity is re-
alized, the labor share would be constant as in a standard neoclassical setting. Thus, firms
would reduce their labor demand in response to a negative productivity shock such that
revenues, wages, and profits would all fall proportionally. In contrast, the timing of hir-
ing plays an essential role in shaping the dividend process and the connection between
asset prices and labor volatility in our setting. Here, dividend (or profit) growth is:

xsπ(L′, s′)
π(L, s)

= xs
xs′ − αL′

xs − αL

(L′

L

) α
1+ν−α

.

We can observe, by setting α = 0, i.e., in the endowment limit, dividend growth follows
the productivity growth. Hence, dividend volatility coincides with aggregate consump-
tion volatility. By contrast, dividends are endogenously riskier than aggregate consump-
tion.

The fact that quasi-fixed factors amplify the volatility of profits is known as the op-
erating leverage channel.16 Formally, the conditional volatility of dividend growth can be
written as

σs

[
xsπ(L′, s′)

π(L, s)

]
︸ ︷︷ ︸

dividend growth
volatility

=
xs

xs − αL︸ ︷︷ ︸
operating
leverage

× σs

[
xs′h(L′)α

h(L)α

]
︸ ︷︷ ︸

consumption growth
volatility

. (16)

The literature defines operating leverage as the ratio of revenues minus current variable
costs—zero here—to profits. This corresponds to the term xsh(L)α

xsh(L)α−w(L)h(L) = xs
xs−αL >

1. Equation (16) shows how operating leverage endogenously makes dividends more

16The relationship between risk and operating leverage initially appears in Lev (1974).
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volatile than consumption, something that does not occur in the endowment limit but is
consistent with the evidence (see, e.g., Campbell 2003).

Operational leverage not only increases the volatility of dividend growth, but also
induces mean reversion in dividends. Notice that even if TFP growth is iid, and the LDF
is constant, expected dividend growth is time varying:

E

[
xsπ(L′, s′)

π(L, s)

]
= xs

E [xs]− αL
xs − αL .

Thus, upon a bad realization of TFP, and therefore dividends, we expect dividends to
recover.

Given that operating leverage is increasing in L, this channel links the volatility of
dividends to the LDF, which ultimately responds to fluctuations in beliefs. This feature is
important to generate an endogenous risk buildup from waves of optimism.

The timing of hires here is a simple way of capturing this operating leverage channel.
It delivers labor costs that are smoother than productivity and a countercyclical firm-
level labor share, which are necessary conditions for the operating leverage channel.17

Donangelo et al. (2019) provides direct evidence that these two conditions are observed
in cross-sectional and time-series data. Moreover, they show that the sensitivity of profits
to productivity shocks is increasing in the labor share, consistent with the mechanism
embedded in Equation (16).

Discussion: the firm’s objective. In any model where labor is chosen in advance, hiring
is risky. Hence, we must specify the SDF used by firms. This raises the question of what
an appropriate SDF should be. Under complete markets, any pair of beliefs/SDF that
correctly price stocks and bonds leads to the same firm value. In turn, the firm value is
maximized using the firm’s first-order condition under the corresponding economy-wide
SDF. Regardless of beliefs, every shareholder agrees on the hiring decision that maximizes
the firm’s value.

While we adopted the convention that firms compute expectations using objective
probabilities, any managerial belief would deliver the same labor choice if its objective is
to maximize shareholder value.18

17Labor being a (quasi)-fixed factor, as in our setting, is unnecessary for the operating leverage channel
to be active. A similar mechanism is operative in models with implicit contracts (Danthine and Donaldson,
2002), labor adjustment costs (Belo, Lin and Bazdresch, 2014), and wage rigidities (Favilukis and Lin, 2016).

18How to determine the firms’ objectives away from complete markets is still a matter of discussion, e.g.,
see Geanakoplos, Magill, Quinzii and Dreze (1990).
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Markov equilibrium In addition to L, the wealth distribution is also an endogenous state
variable. We define the share of the wealth of investor i ∈ I as:

ηi,t ≡
µiNi,t

∑I
j=1 µjNj,t

,

which evolves according to

η′
i(X, s, s′) =

ηiRi,n(X, s, s′)(1 − ci(X, s))

∑I
j=1 ηjRj,n(X, s, s′)(1 − cj(X, s))

. (17)

Given L and {ηi}I−1
i=1 , and the realization of TFP growth, we can characterize all aggregate

variables. We stack the endogenous state variables in X ≡
(
L, {ηi}I−1

i=1

)
and define a

Markov equilibrium in (X, s).

Definition 2 (Markov Equilibrium). A Markov equilibrium in (X, s), with a law of motion
for X given by (15) and (17), is the set of functions: price of surplus claim P(X, s), interest
rate Rb(X, s), labor hours h(L), wages w(L), wealth multiplier vi(X, s) and policy functions
(ci(X, s), ωi(X, s)), for i ∈ {1, . . . , I}, such that: (I) The value function satisfies (9). The
consumption-wealth ratio is given by (A.10) in Appendix A.2, and the portfolio share is given
by (A.24) in Appendix A.3. (II) Hours and wages satisfy (14). (III) The goods and the risky asset
markets clear:

I

∑
i=1

ηici(X, s) =
xsh(L)α − ξ

h(L)1+ν

1+ν

P(X, s)
,

I

∑
i=1

η̃i(X, s)ωi(X, s) = 1, (18)

where η̃i(X, s) ≡ ηi(1−ci(X,s))
∑I

j=1 ηj(1−cj(X,s))
.

For the rest of the paper, we work directly with this Markovian representation.

5 Analytic Solution: Log Utility Case (ψ = γ = 1)

Here, we consider log utility. This case is special because, as we show next, the LDF is
only a function of market beliefs.

For this case, we derive a law of motion for market beliefs, which renders sharp pre-
dictions about how belief heterogeneity amplifies business cycles. We return to a general
class of preferences in the quantitative evaluation.

19



A Demand-Supply Representation. Under log utility, the consumption-wealth ratio
and portfolio shares are given by:

ci(X) = 1 − β, ωi(X, s) =
1

∆Rr(X, s)

[
pi

sH
psHΛ(X, s, H)

− pi
sL

psLΛ(X, s, L)

]
.

A constant consumption-wealth ratio implies that the price-dividend ratio of the surplus
claim is constant, as commonly found in settings with log utility. Notice that this will not
be the case for the equity claim, given dividends are more volatile than the surplus.19

Combined with the market clearing conditions, (18), they yield the risk-free rate and
the risk premium:

Proposition 2 (Risk-free rate and risk premium). Given L′(X, s)

(i) The risk-free rate is

Rb(X, s) =
(

1 − α

1 + ν

)
xs

β

L′(X, s)
1+ν

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

. (19)

(ii) The conditional risk premium is given by

Es[Re
r(X, s, s′)] =

1
1 − α

1+ν

Es[xs′ ]−L′(X, s)
L′(X, s)

. (20)

That is, Es[Re
r(X, s, s′)] is decreasing in L′(X, s).

Unlike when hiring occurs after productivity is realized, here, labor demand and asset
prices are determined jointly. Proposition 2 shows that the risk-free rate and the risk
premium can be deduced from the current productivity growth, xs, and the lagged and
current period’s LDF, L and L′(X, s). The risk free rate, Rb(X, s), is increasing in L′(X, s)
and decreasing in xs whereas the risk premium Es[Re

r(X, s, s′)] moves in the opposite
direction of L′(X, s). The formula reveals that ceteris paribus, periods of low-risk premia
are associated with high labor demand. Of course, the LDF is endogenous; it is a function
of market beliefs.

Next, we solve for the equilibrium LDF by translating the market clearing condi-
tions into a demand and supply system, where the quantity variable is the risk in the

19The surplus and the dividend are differentially exposed to aggregate risk. Similar to models with
multiple sectors, movements in interest rate cannot simultaneously offset changes in growth rates for all
assets. Likewise, the price-earnings ratio will not be constant in models where the interest rate does not
track the natural rate.
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economy’s aggregate surplus claim, and the price variable is the LDF. The equilibrium
of this demand and supply system yields the equilibrium LDF and, thus, pins down
all asset prices and labor demand. This demand and supply of risk representation is
a convenient transformation of the asset-market clearing conditions (18): multiply both
sides of the condition for risky assets by σs[Rr(X, s, s′)], and use that σs[Ri,n(X, s, s′)] =
ωi(X, s)σs[Rr(X, s, s′)], to obtain:

I

∑
i=1

ηiσs[Ri,n(X, s, s′)]︸ ︷︷ ︸
demand for risk

= σs[Rr(X, s, s′)]︸ ︷︷ ︸
supply of risk

.

The left of the expression is the demand for risk. The demand for risk corresponds to the
volatility of the households’ total wealth needed to guarantee asset market clearing at
given asset prices. The right-hand side represents the supply of risk. The supply of risk
is the volatility of the economy’s surplus claim induced by the firm’s labor demand at
given asset prices. The following proposition expresses the demand and supply of risk as
a function of the LDF.

Proposition 3 (The demand and supply of risk). Suppose xL > αxH. Then,

(i) The supply of risk is

σs[Rr(X, s, s′)] =
1
β

xs

xs − α
1+νL

× σs[xs′ ]L′(X, s)
α

1+ν−α

L α
1+ν−α

. (21)

(ii) The demand for risk is

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] = σs[xs′ ]Rb(X, s)
[

pm
sH(X)

L′(X, s)− xL
− pm

sL(X)

xH −L′(X, s)

]
, (22)

where pm
ss′(X) ≡ ∑I

i=1 ηi pi
ss′ .

Proposition 3 implies that the supply of risk increases while the demand for risk de-
creases with the LDF, as shown in Figure 1. As with any demand system, the equilibrium
falls at the intersection of both curves. The supply of risk increases with the LDF. Recall
that with log utility, the price-dividend ratio of the surplus claim is constant. Therefore,
its return volatility is proportional to the volatility of the surplus growth. Notice that the
volatility of the surplus increases with the LDF due to the operating leverage channel. As
firms hire more labor, the surplus, like profits, is more exposed to productivity shocks,
leading to higher volatility.
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Figure 2: Beliefs and risk premia

Whereas the supply of risk increases with the LDF, the demand for risk is decreasing
in the LDF. As shown in Proposition 2, the risk premium is inversely related to L′(X, S),
so investors are more willing to hold risky assets when the risk premium is high. The de-
mand for risk is itself a function of market beliefs, a weighted average of investors’ beliefs,
pm

ss′(X). As market beliefs become more optimistic, investors are willing to hold more
risky assets for a given risk premium.

Figure 1 also illustrates how we can exploit this demand system representation to
explain the effects of changes in market beliefs: When market beliefs are pessimistic, there
is a decline in the demand for risk, which leads to a decrease in the equilibrium LDF
and, ultimately, a drop in hours. The following corollary formally demonstrates this by
presenting the solution to the equilibrium LDF as a function of market beliefs:

Corollary 1 (Labor demand factor). The risk-neutral expectation of productivity growth
L′(X, s) corresponds to the smallest real root of the quadratic equation:

L′(X, s) = Γ(X)−
√

Γ(X)2 − 1 + ν

α
xLxH.

where Γ(X) is a function of market beliefs:

Γ(X) ≡ pm
sH(X)

2

(
xL

1 + ν

α
+ xH

)
+

pm
sL(X)

2

(
xL + xH

1 + ν

α

)
.

The corollary shows that equilibrium LDF is a function of market beliefs, which are
solely a function of the wealth distribution. Thus, wealth distribution affects asset prices
and hiring only to the extent it affects market beliefs.

Beliefs and Risk Premia. We concluded that fluctuations in market beliefs generate
movements in risk premia and labor demand. But why does optimism lead to changes in
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risk premia? Consider first the response of the subjective risk premium. With a representa-
tive investor, the subjective risk premium depends solely on risk perceptions:

Ei,s[Re
r(X, s, s′)] ≈ Vari,s[Re

r(X, s, s′)].

Hence, only changes in second moments affect the subjective risk premium. In contrast,
the objective risk premium also responds to differences in first moments:

Es[Re
r(X, s, s′)] = Ei,s[Re

r(X, s, s′)]− Ei,s[xs′ ]− Es[xs′ ]

(1 − α
1+ν )L′ .

In particular, when investors become optimistic, they expect higher future dividends,
driving up prices. From the point of view of a rational investor, higher prices imply
lower returns going forward. Figure 2 shows how objective and subjective risk premia
respond to market beliefs, pm

sH(X). While an increase in optimism compresses the objec-
tive risk premium, it has a muted effect on the subjective risk premium, consistent with
the evidence in, e.g., De La O and Myers (2021) and Nagel and Xu (2023).

From the LDF to the Evolution of Market Beliefs. Corollary 1 shows that given market
beliefs, we can compute the LDF and asset prices. Another convenient property of log
preferences is that the law of motion of market beliefs and wealth also has an analytic
representation:

Proposition 4 (Dynamics of wealth and market beliefs). Let ψ = γ = 1. Then,

(i) the wealth share of investor i ∈ I evolves as:

η′
i(X, s, s′) = ηi

pi
ss′

pm
ss′(X)

, (23)

(ii) market beliefs are:

pm
s′H(X′) =

I

∑
i=1

ηi
pi

ss′

pm
ss′(X)

pi
s′H. (24)

Proposition 4 shows that the wealth of household i increases when it assigns a greater
likelihood to the realized state than market beliefs.

Next, we present a taxonomy of belief types. We exploit the demand-supply repre-
sentation to uncover how different belief structures classified according to our taxonomy
impact business cycles.
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5.1 Belief Taxonomy and Business Cycle Properties

Although an ample literature documents departures from full-information rational ex-
pectations models (Greenwood and Shleifer, 2014; Coibion and Gorodnichenko, 2015),
there is no consensus on how belief dynamics deviate from rational expectations.20 This
section aims to classify belief structures and show how each has different business cycle
implications. We provide the following taxonomy:

Definition 3 (Taxonomy of beliefs). Household i is optimistic (pessimistic) relative to a bench-
mark belief o at state s if pi

sH > po
sH (pi

sH > po
sH). We further classify belief structures:

(i) Beliefs are rank preserving if i is optimistic or pessimistic relative to o, ∀s.

(ii) Beliefs are rank alternating if i is optimistic relative to o in one state, but i is pessimistic
relative to o in the other state.

Under this definition, the index o represents a belief benchmark: it can be another
household’s belief or rational beliefs. We exploit this taxonomy to show that different
belief structures induce different business cycle amplification properties, both in terms of
the amplitude and the phase of the business cycle.

Homogeneous Beliefs. With homogeneous beliefs, we have a representative investor.
Hence, the model lacks internal propagation: the LDF only depends on the current state,
xs. Furthermore, if investors believe that productivity growth is iid, pLH(X) = pHH(X),
then the LDF and, thus, hours are constant.

Away from iid beliefs about growth, beliefs may amplify or dampen cycles relative to
a rational expectations benchmark. Figure 3 illustrates this point. The figure simulates
four periods of recession within a twenty-period interval for five types of homogeneous
belief classifications: rational expectations (pi

ss′ = pss′ for all s, s′); two rank-preserving
cases: always optimistic (pi

sH > psH for all s) or consistently pessimistic (pi
sH < psH for

all s); and two rank-alternating cases: extrapolative (pi
ss′ > pss′ all s = s′) defined as

optimistic during booms but pessimistic at busts, and intrapolative (pi
ss′ < pss′ all s = s′)

defined as pessimistic at booms but pessimistic at busts.
Optimistic beliefs amplify expansions among rank-preserving beliefs but dampen re-

cessions relative to rational expectations. The converse is true about pessimistic beliefs:

20Some studies emphasize over-extrapolation (Bordalo, Gennaioli, Ma and Shleifer, 2020b; Fuster, Laib-
son and Mendel, 2010), as in models with diagnostic expectations (Bordalo, Gennaioli and Shleifer, 2018b)
or fading memory (Nagel and Xu, 2022), others capture under-reaction, such as sticky information (Mankiw
and Reis, 2010), cognitive discounting (Gabaix, 2019), and level-k thinking (Farhi and Werning, 2019).

24



5 10 15 20
−0.490

−0.485

−0.480

−0.475

−0.470

t

log labor hours

Rational
Optimistic

5 10 15 20
−0.490

−0.485

−0.480

−0.475

−0.470

t

log labor hours

Rational
Pessimistic

5 10 15 20
−0.490

−0.485

−0.480

−0.475

−0.470

t

log labor hours

Rational
Extrapolative

5 10 15 20
−0.490

−0.485

−0.480

−0.475

−0.470

t

log labor hours

Rational
Intrapolative

Figure 3: Homogeneous beliefs

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with homogeneous beliefs: rational, always
optimistic (top-left panel), always pessimistic (top-right panel), extrapolative (bottom-left panel), and intrapolative (bottom-right
panel) beliefs.

recessions are amplified and expansions dampened. Rank-preserving beliefs have state-
dependent amplification properties. Rank-alternating beliefs operate differently. Recall
that extrapolative beliefs are optimistic in good but pessimistic in bad states. Under ex-
trapolative beliefs, the cycle’s amplitude is magnified. Analogously, intrapolative beliefs
produce the opposite: they reduce the cycle’s amplitude. In conclusion, extrapolative
beliefs are the belief structure that amplifies the cycle relative to rational expectations.

Heterogeneous Beliefs. Next, we investigate the internal propagation of the model. As
we explained earlier, internal propagation is induced by belief heterogeneity through its
effect on market beliefs. From Proposition 4, we deduce that η′

i(X, s, H) > ηi if and only if
investor i is optimistic at (X, s) relative to market beliefs. We know that optimists’ wealth
increases after good shocks and decreases after bad shocks. This observation is key to
understanding the internal propagation of the economy:

Corollary 2. If beliefs are heterogeneous, then:

• As the current state persists, the LDF increases (decreases) with time if the current state is
high (low) growth.
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Figure 4: Heterogeneous beliefs: optimistic vs pessimistic

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with heterogeneous beliefs: I = 2 investors,
always optimistic and always pessimistic. The top panel shows the wealth share of the optimistic investor, the middle panel shows
the Sharpe ratio (under objective beliefs), and the bottom panel shows log labor hours.

• Consider an initial state (X, H) and a first switch from s = H to s′ = L at some future
date. Then,

– If beliefs are rank-preserving, the later the date of the switch in the state, the lower the
reduction in output (the longer the boom, the lesser the bust).

– If beliefs are rank-alternating, the later the date of the switch in the state (the longer the
boom), the lower the reduction in output (the longer the boom, the greater the bust).

Proof. See Appendix A.8.

With belief heterogeneity, the economy evolves even without changes in TFP growth.
The reason is the joint evolution of wealth and market beliefs. From Proposition 4, op-
timists’ wealth share increases while the economy is in a boom. Market beliefs become
more optimistic relative to rational expectations as optimists accumulate wealth. This
force leads to increased labor demand throughout the boom. The converse is true during
a low growth phase: pessimists accumulate wealth and market beliefs tilt toward greater
pessimism.
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The connection between the length of cycles and their amplitude (the drop in output
after a change in state) crucially hinges on whether beliefs are rank-preserving or rank-
alternating. Rank-preserving beliefs attenuate the subsequent decline in TFP growth in a
recession that follows a more prolonged boom. The relationship between the high-growth
phase’s duration and the recession’s severity is reversed with rank-alternating beliefs.

Figure 4 aids us in explaining this pattern. The figure shows simulations of business
cycles in the case of rank-preserving beliefs—the figure uses I = 2, where investor 1 is
optimistic, and investor 2 is pessimistic in both states. The figure shows the evolution of
the wealth share of the optimist, the Sharpe ratio, and log hours. The lower panel shows
that the drop in hours is smaller as the economy remains longer in the high state. As
optimists accumulate wealth during the high-growth phase. Their accumulated wealth
implies that when the economy switches states, optimists arrive at the bad state with more
wealth, the longer the boom. Since optimists remain optimistic during downturns when
beliefs are rank-preserving, their greater wealth makes market beliefs more optimistic
during crashes. This rank-preservation attenuates the increase in risk premia and the
decline in hours.

Figure 5 is the analogue figure for rank-alternating beliefs—investor 1 is rational and
investor 2 is extrapolative. The top panel shows that the wealth share of the rational
investor declines during the boom phase. This means that extrapolative investors are
getting wealthier as the boom lasts longer. Consequently, extrapolative households have
a larger wealth share during busts, precisely when they become pessimistic. As a result,
market beliefs become more pessimistic after the economy transitions to a low state when
beliefs are extrapolative. Belief extrapolation amplifies the increase in risk-premia and
the decline in hours.

Belief Taxonomy and Trading Volume. Our taxonomy also has implications for trad-
ing dynamics. As is typical in models of belief heterogeneity, trading volume increases
with the level of belief disagreement. More importantly, Appendix B shows that the rela-
tionship between trading volume and belief disagreement is amplified during economic
downturns under rank-alternating beliefs, not under rank-preserving beliefs. The intuition
is as follows: optimistic investors lose wealth and rebalance their portfolios by selling
shares when the economy enters a recession. If their beliefs are rank-alternating, they also
become pessimistic, which induces additional selling, further increasing trading volume.
Appendix C provides empirical support for this prediction. We find that not only does
stock market turnover rise with belief disagreement, but this relationship also strengthens
during recessions, consistent with the predictions under rank-alternating beliefs.
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Figure 5: Heterogeneous beliefs: rational vs extrapolative

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with heterogeneous beliefs: I = 2 investors,
rational and extrapolative. The top panel shows the wealth share of the optimistic investor, the middle panel shows the Sharpe ratio
(under objective beliefs), and the bottom panel shows log labor hours.

Frothy markets and risk build-ups. An implication of Corollary 2 is that the risk pre-
mium declines with the length of economic expansions. To the extent that risk premia
drive credit spreads, the model is consistent with the discussions in López-Salido et al.
(2017) and Krishnamurthy and Muir (2017) that argue that economic booms are charac-
terized by "froth" market conditions driven by credit-market sentiments. Our framework
shows that with belief extrapolation, an increase in optimism leads to a reduction in risk
premia and an increase in volatility, as shown in Figure 1. Under this interpretation, there
is endogenous risk build-up during booms. As argued by Krishnamurthy and Li (2020),
the combination of risk build-up and low spreads is challenging to generate for standard
macro-finance models, such as He and Krishnamurthy (2013) and Brunnermeier and San-
nikov (2014). This observation suggests that heterogeneous extrapolative beliefs explain
credit and asset-market dynamics during boom-bust cycles.

It is worth clarifying that risk-build-up requires heterogeneity only when beliefs about
the state are themselves Markovian. If beliefs are history-dependent, for example, if
agents become more optimistic as boom states persist but more pessimistic once the econ-
omy switches states as boom states persist, the economy can also feature risk build-up.
This risk build-up would not respond to the model’s internal propagation through lever-
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age, risk-exposure, and wealth accumulation, though.

Discussion: Pareto and Belief-Neutral Welfare. The environment’s inherent risk build-
up leads to subtle normative implications. It is well known that, under complete markets,
the equilibrium is Pareto efficient from a subjective standpoint. The First Welfare Theorem
does not distinguish whether trade is driven by differences in preferences over goods or
by differences in beliefs across future states— treating both as equally valid sources of
heterogeneity.

Classic Pareto efficiency is not the only sensible welfare criterion. Brunnermeier, Sim-
sek and Xiong (2014) considers a paternalistic criterion, albeit one that does not presume
superior knowledge by the planner. Instead, this belief-neutral criterion only requires
the allocation to be efficient for all possible (convex combinations of) the agents’ beliefs.
Our environment is generically inefficient under this belief-neutral criterion: the simplest
way to see this is to assume all agents believe TFP growth is iid but differ in the weights
they assign states. In such a case, under all possible belief combinations, TFP growth is
iid. Hence, labor fluctuations are inefficient under this criterion. This criterion can be
used to justify leaning against the wind policies even though the economy is efficient in a
standard sense.

Discussion: belief heterogeneity vs. risk aversion. As discussed above, rank-
alternating beliefs amplify inherent economic fluctuations. Therefore, not only do dif-
ferences in investors’ risk appetite matter for business cycles, but also differences in their
propensity to take risks. For instance, models of heterogeneous risk aversion can gener-
ate portfolio dispersion and time variation in expected returns. However, the ranking of
agents in terms of risk-taking is always the same. This property is analogous to the case
of rank-preserving beliefs shown in Figure 4. In contrast, there is no counterpart to the
rank-alternating beliefs with heterogeneous risk aversion, as the agent taking less risk in
booms is also taking more risk in the bust.

6 Quantitative analysis

We now consider the quantitative implications. We extend the baseline formulation in
Section 3: First, productivity growth xt now follows a more general process. This is nec-
essary to capture the empirical patterns of dividend growth. Second, we introduce a force
that induces a non-degenerate stationary wealth distribution. A force like this is needed
so that belief heterogeneity survives in the ergodic distribution of the model. We do so
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through Uzawa endogenous discounting for convenience. This specific approach is not
indispensable; we can obtain non-degeneracy through birth-death processes for example.

Belief process with a continuum of states. We start by specifying a continuous Markov
process for xt under both objective and subjective beliefs. Let x̂t ≡ log xt denote log
aggregate productivity growth. Under the objective measure, x̂t follows:

x̂t+1 = µx + σxϵx,t+1. (25)

where ϵx,t+1
iid∼ N(0, 1). Thus, productivity growth is iid under the objective measure.

In turn, subjective beliefs about x̂t for household i ∈ I are given by:

x̂t+1 = µx,i + ρx,i(x̂t − µx,i) + vi,t + σx,iϵx,i,t+1, (26)

where ϵx,i,t+1
iid∼ N(0, 1). Beliefs deviate from the process (25) in two critical ways: First,

the subjective conditional expectation responds to current productivity growth x̂t. This
dimension is important to allow households to over- or under-react to past information,
consistent with Fact 2 in Section 2. Overreaction is controlled by ρx,i. For instance, a
positive ρx,i implies the household overreacts to productivity news, given our assumption
that productivity growth is iid under the objective measure.

Second, beliefs are also exposed to a persistent sentiment shock vt, which evolve accord-
ing to

vi,t+1 = ρv,ivi,t + σv,iϵv,i,t+1 (27)

where ϵv,i,t+1
iid∼ N(0, 1), and ϵv,i,t and ϵx,i,t are uncorrelated.

The sentiment is independent of TFP growth. Thus, this shock leads to fluctuations in
the degree of optimism unrelated to fundamentals. Introducing this shock is necessary
to quantitatively match the volatility of subjective TFP growth expectations relative to
the objective one—Fact 1 in Section 2. While extrapolation, through higher values of ρx,i,
increases the volatility of subjective expectations, it is insufficient, so the sentiment is
needed.

We note that the belief system in this section is a hybrid of the one in our taxonomy. It
encompasses both extrapolation and time-dependent optimism through sentiment shock.
We let the survey data discipline the strength of each force.
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Endogenous discounting. To ensure the wealth distribution is stationary, we assume
that households’ subjective discount rate responds to their consumption share:

βi,t = βe
κ

(
1−Ci,t

Yt

)
. (28)

This assumption, a form of Uzawa (2017) preferences, implies that households’ marginal
propensity to consume increases with their share of consumption, ensuring that no in-
vestor type concentrates all the wealth asymptotically. Following Schmitt-Grohé and
Uribe (2003), we assume that βi,t depends on the average consumption share of type-i
households, so households take the process for βi,t as given.21

Model solution. We describe the model characterization with a continuum of states and
Uzawa preferences in the supplementary appendix. Previous results are essentially un-
changed. As in the binary case, an exact closed-form solution is unavailable away from
log preferences. We compute the solution using a third-order perturbation around the
non-stochastic steady state. A third-order perturbation (or higher) is indispensable to
capture time variation in expected returns.

Calibration. We use the following calibration, where parameters are expressed in quar-
terly terms. Preferences and technology parameters are standard. Preferences: We set
β = 0.978 to match an unconditional annualized risk-free rate of 1%. The risk aversion is
set to γ = 10.0 and the EIS to ψ = 2.0, typical values in the macro-finance literature. We
choose the labor disutility parameter ξ to normalize the average hours to 1 and set the Fr-
ish elasticity to one, ν = 1, a standard value in the literature. Technology: We set α = 0.66
and choose µx and σx to match the average and standard deviation of annual consump-
tion growth of 2% and 3.3%, respectively, consistent with Campbell and Cochrane (1999).

The calibration of the belief processes is novel. Beliefs: We focus on the case J = 2, and
assume that households of type i = 2 have rational beliefs, which allows for some ratio-
nal agents in the environment. We set µx,1 = µx and σx,1 = σx, so households agree on the
mean and conditional volatility of productivity growth. We set µ2 = 0.1, so the fraction
of rational agents in the population is 10%, consistent with the fact that average beliefs
in surveys of households and analysts show substantial deviations from rational expec-
tations. We set ρv,1 and σv,1 to match the persistence of subjective dividend growth and
the share of variance explained by movements in expectations, based on estimations of

21This mechanism is often used in small open-economy models to ensure a stationary distribution of
external debt.
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Rational Beliefs Subjective Beliefs Data
(1) (2) (3) (4) (5) (6)

Variables Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Interest rate 10.0 0.0 9.7 0.7 9.7 1.4 1.0 6.4 0.8 6.5 0.8 5.7

Excess Returns (equity) 0.9 3.0 1.4 7.9 1.5 9.3 5.8 17.3 6.0 17.1 6.2 16.5

Consumption growth 1.8 3.0 1.8 3.0 1.8 3.1 1.8 3.1 1.8 3.3 1.8 3.0

Dividend growth 1.8 3.0 1.8 10.3 1.8 11.2 1.8 11.1 1.8 10.9 - 11.5

Log hours 0.0 0.0 -0.1 0.0 -0.1 1.5 -0.1 1.3 0.0 2.1 - 2.4

Table 3: Unconditional moments

Note: The table reports annualized unconditional moments in percentage points. Column 1 shows results for the endowment economy
limit with rational beliefs. Column 2 introduces the labor friction. Column 3 shows the case of homogeneous subjective beliefs.
Column 4 presents the case of heterogeneous beliefs with our calibration. Column 5 presents results for an alternative calibration with
a higher labor supply elasticity. The last set of columns shows the corresponding values in the data. Mean and standard deviation
of the interest rate and excess equity returns are from Mehra and Prescott (1985). Average consumption growth and the volatility of
consumption and dividend growth are from Bansal and Yaron (2004). The standard deviation of total hours is obtained from Table 5
in Ohanian and Raffo (2012): total hours include changes in employment and hours worked for 1985Q1:2007Q4. Standard deviations
in that paper are reported as deviations from an HP-filter. We convert their quarterly figure to annual rates.

De La O and Myers (2021). In turn, we set ρx,1 to match the correlation between subjective
expectations and current productivity growth observed in the data. This calibration is ag-
nostic about the relevant belief system: the subjective belief moments pin down these pa-
rameters, determining whether non-rational beliefs are extrapolation or rank-preserving.
Finally, we set κ = 0.5%, consistent with the mean-reversion in consumption shares in
Gârleanu and Panageas (2015).

6.1 Unconditional moments

We first study the model’s ability to match unconditional moments. To isolate the role of
each ingredient, we start from a stripped-down version of the model and progressively
add features until we reach the complete model. This progression allows us to discuss the
role of each ingredient in the model. Table 3 presents the results under each formulation.

Column 1 presents the stripped-down version of the model with a single represen-
tative rational investor, for which hiring is done after TFP is known and labor supply
is inelastic. This economy behaves as an Epstein-Zin version of the endowment econ-
omy studied by Mehra and Prescott (1985). The model fails to generate a sizeable equity
premium and excess stock volatility. Moreover, without the hiring friction, the volatility
of consumption and dividends coincide. Given that rational beliefs are iid, the price-
dividend ratio is constant, so return volatility equals dividend volatility.
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Figure 6: Price amplification: homogeneous vs. heterogeneous beliefs

Note: Figure shows a scatterplot of the log price-dividends and realized log returns in a 1,000-period simulation of the model. The
left panel shows the simulation for the model with homogeneous beliefs, and the right panel shows the simulation for the model with
heterogeneous beliefs. We standardized both variables and removed outliers to improve the visualization.

Column 2 introduces the timing of hires assumption and the elastic labor supply. The
operating leverage channel endogenously generates differences in volatility between con-
sumption and dividends in line with the data, even though this is not a target moment.
With iid beliefs, there is no time variation in the price of risk, so the model fails to gen-
erate fluctuations in hours. Moreover, the hiring friction implies that dividend growth
follows a mean-reverting process.22 Without time-varying risk premia, mean-reversion
in dividends causes the price-dividend ratio to negatively correlate with realized returns.
This counterfactual behavior dampens return volatility relative to dividend volatility.

Column 3 considers the role of non-rational beliefs calibrated to match the survey data,
while abstracting from differences in beliefs. In this case, the model does generate move-
ments in hours, given that subjective beliefs are volatile, consistent with the discussion in
Section 4. However, deviations from rational expectations are insufficient to generate an
equity premium and stock return volatility in line with the data. Movements in subjective
beliefs only attenuate the negative correlation between returns and the price-dividend ra-
tio, so return volatility is still dampened relative to dividend volatility.

Column 4 introduces heterogeneity in beliefs. It brings along rational investors and
investors with distorted beliefs. The model now generates the level and volatility of asset
prices consistent with the evidence, with significant volatility in hours (more than half
of that of the data). To obtain a high equity premium, it is crucial to generate excess
volatility of returns. This requires the price-dividend ratio to have the right comovement

22For models with mean-reverting dividend process, see e.g. Menzly, Santos and Veronesi (2004) and
Santos and Veronesi (2006).
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with returns. Figure 6 shows that this is the case for the model with heterogeneous beliefs,
but not for the model with homogeneous beliefs. This success is explained by the time-
varying movements in the relative wealth of investors.

Column 5 considers an alternative calibration with a higher labor supply elasticity,
increasing it from 1.0 to 2.0, the upper limit of the estimates of the macro labor supply
elasticity in Keane and Rogerson (2012). Increasing the labor supply elasticity is moti-
vated by the presence of unmodeled frictions: it is akin to increasing the real wage rigidi-
ties. While asset-price figures do not change substantially, the volatility of hours almost
doubles, aligning the volatility of hours with that of the data.

6.2 Excess volatility and return predictability

The model’s version with heterogeneous beliefs successfully generates empirically rele-
vant levels of excess volatility, i.e., returns that are more volatile than cash flows. Fol-
lowing Cochrane (1992), we can use a Campbell-Shiller approximation to decompose the
variance of the price-dividend ratio into a cash-flow and a discount-rate component:

Var[pdt] = Cov

[
∞

∑
k=1

ρk∆dt+k, pdt

]
− Cov

[
∞

∑
k=1

ρkrt+k, pdt

]
, (29)

where pdt is the log price-dividend ratio, ∆dt+1 denotes log dividend growth, and rt+1 de-
notes realized log returns. Expression (29) connects volatility and predictability. It shows
that movements in the price-dividend ratio either predict changes in dividend growth
or future returns. To quantify the relative importance of movements in discount rates,
consider the share of variance explained by movements in expected returns, defined as

βr ≡ −Cov[∑∞
k=1 ρkrt+k,pdt]
Var[pdt]

. As shown, e.g., in Cochrane (2011), empirical evidence suggests
that βr ≈ 1, so discount rates explain most of the price-dividend ratio variance.

Given that βr corresponds to the slope of a regression of cumulative returns on the
price-dividend ratio, the importance of discount rates to explain return volatility is tightly
connected to the ability of the price-dividend ratio in predicting future long-run returns.
Figure 7 shows that the model with heterogeneous beliefs can capture the predictability
patterns observed in the data. The figure shows a strong negative association between
the price-dividend ratio and cumulative returns in model-simulated data. Moreover, the
coefficient βr in models (4) and (5), as defined in Table 3, is given by βr = 0.93 and
βr = 0.97, respectively. In contrast, we have βr = −0.16 for model (2), so the price-
dividend ratio predict returns with the wrong sign, and βr = 0.40 for model (3), which
has the correct sign but movements in cash flows drive the majority of the fluctuations
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Figure 7: Return predictability

Dependent Variable: cum_ex_returns
Model: (1) (2) (3) (4)

Variables
labor_income -2.89 0.87

(0.53) (0.68)
p/d -0.20 -0.02

(0.10) (0.12)

Observations 4,000 4,000 4,000 4,000

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Labor and p/d ratio regressions

Note: The left panel shows a scatter plot based on model simulations of the price-dividend ratio and a measure of future cumulative
returns, ∑T

k=1 ρk−1rt+k , for T = 60 quarters. The right panel shows the regression coefficients of future cumulative excess returns for
T = 60 on the price-dividend ratio and labor income. The data for the first two columns was simulated under the objective measure,
while the data for the last two columns was simulated under subjective beliefs. Standard errors are in parentheses.

in the price-dividend ratio. Hence, only versions of the model with belief heterogeneity
generate a degree of return predictability that aligns with the data.

Labor income and return predictability. Time variation in risk premia generates fluctu-
ations in hours worked in our setting. As a result, in addition to the price-dividend ratio,
movements in labor income should also predict excess returns. Table 4 reports the results
of a regression of cumulative excess returns on the price-dividend ratio and labor income
in our simulated data. Column 1 shows that periods of high labor income are associated
with lower future returns. This finding is consistent with the evidence from Santos and
Veronesi (2006), who show that a high labor income share predicts lower aggregate stock
returns. Similarly, Belo, Donangelo, Lin and Luo (2023) documents that the aggregate hir-
ing rate of publicly traded firms negatively predicts stock market excess returns.23 Our
model links this evidence to fluctuations in subjective beliefs. As discussed in Section 4,
waves of optimism lead to both an increase in labor income and a compression of risk
premia, jointly generating predictability from labor income and the price-dividend ratio.

Subjective vs. objective predictability. The predictability results above are from the
perspective of an econometrician. Recent work by Nagel and Xu (2023) shows that re-
turn predictability looks very different under subjective beliefs: the standard predictors
of returns are only weakly associated with survey-based measures of subjective risk pre-
mia. While expected excess returns are countercyclical under the objective measure, they

23Belo et al. (2014) and Favilukis and Lin (2016) show similar patterns for the cross-section of stock
returns and U.S. states. For recent evidence using administrative data, see Meeuwis, Papanikolaou, Roth-
baum and Schmidt (2024).
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appear acyclical under subjective beliefs.
Table 4 shows that the model replicates these empirical patterns. Columns 1 and 2

report predictability regressions using labor income and the price-dividend ratio as pre-
dictors under the objective measure. In contrast, Columns 3 and 4 present the same re-
gressions when the model is simulated under subjective beliefs. Consistent with Nagel
and Xu (2023), standard predictors are only weakly associated with future returns under
subjective beliefs. The coefficient on labor income has the wrong sign and is statistically
insignificant, while the coefficient on the price-dividend ratio is near zero. Thus, our
model generates subjective risk premia that are essentially acyclical, which aligns with
survey evidence. As discussed in Section 4, this acyclicity arises because subjective expec-
tations of future cash flows closely track asset price movements, dampening fluctuations
in perceived risk premia.

7 Conclusion

When asked about the nature of business cycles, Thomas Sargent24, a rational expecta-
tions pioneer, answered:25

“[...] economists have been working hard to refine rational expectations the-
ory. [...] An influential example of such work is the 1978 QJE paper by Har-
rison and Kreps. [...], for policymakers to know whether and how they can
moderate bubbles, we need to have well-confirmed quantitative versions of
such models up and running."

This response embraces the idea that “belief heterogeneity" matters but also calls for
quantitative models that link beliefs with the real economy.

This paper responds to that call and adapts a standard real business cycle and as-
set pricing model to fit the narrative that waves of optimism and pessimism drive the
business cycle. We argue that a combination of heterogeneity in beliefs, with substantial
extrapolation, coupled with an operational leverage channel, can succesfully reproduce
business cycle, asset pricing and survey data patterns. Extrapolative beliefs and hetero-
geneity deliver the amplification that is key for this success. Extrapolation adds to risk
build up.

24Hyman Minsky was Thomas Sargent’s undergraduate advisor. Whereas Sargent departs methodolog-
ically and calls for a quantitative approach to economic research, there is an agreement in their views re-
garding nature of business cycles.

25Interview with Thomas Sargent, The Region, August 26, 2010. Available at
https://www.minneapolisfed.org/article/2010/interview-with-thomas-sargent.
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We foresee that our framework can be extended to study the interaction with other
forms of amplification. Namely, nominal rigidities open the door to amplification through
aggregate demand externalities. Additional financial frictions, such as margin calls or
short-selleing constraints, can amplify asset prices thourhg fire-sale and pecuniary exter-
nalities that impact wealth and risk-taking capacity. We expect our conclusions to remain
relevant in contexts with these additional frictions.
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Online Appendix

A Proofs

A.1 Derivation of the investor’s modified problem

We start by providing a derivation of the investor’s modified problem.

Proof. First, we adopt a change of variables and write the investor’s problem as follows

Vi,t = max
{C̃i,t,hi,t,Bi,t,Si,t}

(1 − β)U
(
C̃i,t
)
+ βU

(
Ψ−1

(
Ei,t

[
Ψ
(

U−1(Vi,t+1

)]))
, (A.1)

subject to

C̃i,t + QtSi,t + Bi,t = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t − ξt
h1+ν

i,t

1 + ν
, (A.2)

and the natural borrowing

(Qt + πt)Si,t−1 + Rb,tBi,t−1 + Wthi,t − ξt
h1+ν

i,t

1 + ν
≥ −Hi,t (A.3)

It is immediate that the optimal value of hi,t satisfies

Wt = ξthν
i,t. (A.4)

We show next that, given hi,t satisfying (A.4), if the sequence (C̃i,t, Bi,t, Si,t) satisfies
(A.2) and (A.3), then there exists (Ni,t, ωi,t) such that (C̃i,t, Ni,t, ωi,t) satisfies (10) and Ni,t ≥
0. Conversely, if (C̃i,t, Ni,t, ωi,t) satisfies (10) and Ni,t ≥ 0, there exists (Bi,t, Si,t) such that
(C̃i,t, Bi,t, Si,t) satisfies (A.2) and (A.3).

From the definition of the return on human wealth, we have that Wthi,t − ξt
h1+ν

i,t
1+ν =

Rh,t−1Hi,t−1 −Hi,t, which allow us to write (A.2) and (A.3) as follows:

C̃i,t + QtSi,t + Bi,t +Hi,t = Ni,t, Ni,t ≥ 0. (A.5)

We consider next the law of motion of total wealth:

Ni,t+1 =

[
Re,t+1

QtSi,t

QtSi,t + Bi,t +Hi,t
+ Rb,t+1

Bi,t

QtSi,t + Bi,t +Hi,t
+ Rhi ,t+1

Hi,t

QtSi,t + Bi,t +Hi,t

] (
Ni,t − C̃i,t

)
.

(A.6)
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As markets are dynamically complete, there exists replicating portfolios (ωhi,t, ωe,t)

such that
Rk,t+1 = ωk,tRr,t+1 + (1 − ωk,t)Rb,t+1, (A.7)

for k ∈ {hi, e}.
Combining the previous two conditions, we obtain

Ni,t+1 =

[
Rr,t+1

ωe,tQtSi,t + ωhi ,tHi,t

Ni,t − C̃i,t
+ Rb,t+1

Bi,t + (1 − ωe,t)QtSi,t + (1 − ωhi ,t)Hi,t

Ni,t − C̃i,t

] (
Ni,t − C̃i,t

)
.

(A.8)

Using the first condition in (A.5) to solve for Bi,t, we obtain

Ni,t+1 = [(Rr,t+1 − Rb,t+1)ωi,t + Rb,t+1]
(

Ni,t − C̃i,t
)

, (A.9)

where ωi,t ≡
ωe,tQtSi,t+ωhi ,t

Hi,t

Ni,t−C̃i,t
.

A.2 Proof of Lemma 1

The next lemma characterizes the value function, the consumption function, and the Euler
equations of each investor.

Lemma 1 (Consumption and Euler equations). The household’s value function takes the form:
Vi(N, X, s) = U (vi(X, s)N) , where vi(X, s) denotes the wealth multiplier. The consumption-
wealth ratio ci(X, s) = C̃i(N,X,s)

N and Euler equations for investor i ∈ I are given by

(i) Consumption-wealth ratio:

ci(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
, (A.10)

where Ri(X, s) ≡ Ψ−1 (Ei [Ψ (v(X′, s′)Ri,n(X, s, s′)) |X]).

(ii) Euler equation for an asset j ∈ {r, b}:

1 = Ei
[

Λi(X, s, s′)Rj(X, s, s′)
]

, (A.11)

where, for θ ≡ 1−γ
1−ψ−1 , the investor’s SDF is given by

Λi(X, s, s′) = βθ

(
ci(χ(X, s, s′), s′)N′

ci(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ). (A.12)
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(iii) The wealth multipliers satisfy:

vi(X, s) = U−1 [U (ci(X, s)) + βU (Ri(X, s) (1 − ci(X, s)))] . (A.13)

Proof. First, we verify that the value function takes the form (??). Given the conjecture
about the value function, the Bellman equation for investor i can be written as

(vi(X, s)N)1−ψ−1 − 1
1 − ψ−1 = max

c̃i,ωi
(1 − β)

(c̃iN)1−ψ−1 − 1
1 − ψ−1 + β

Ei
[
(vi(X′, s′)N′)1−γ

] 1−ψ−1
1−γ − 1

1 − ψ−1 ,

(A.14)
subject to N′ = Ri,n(X, s, s′)(1 − c̃i)N and N′ ≥ 0.

The first-order conditions for the consumption-wealth ratio and the portfolio share are
given by

(1 − β)c̃−ψ−1

i = βRi(X, s)1−ψ−1
(1 − c̃i)

−ψ−1
(A.15)

0 = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))−γvi(X′)(Rr(X, s, s′)− Rb(X, s))

]
(A.16)

where Ri(X, s) = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))1−γ|X, s

] 1
1−γ .

Given Ri(X, s), we can solve for the consumption-wealth ratio:

c̃i(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
. (A.17)

The envelope condition with respect to N is given by

vi(X)1−1/ψ = βRi(X)1−1/ψ(1 − c̃i(X))−1/ψ ⇒ c̃i(X) = (1 − β)ψvi(X)1−ψ. (A.18)

From the optimality condition for the risky asset, we obtain

Ei

[
(vi(X′, s′)Ri,n(X, s, s′))1−γ

]
= Ei

[
vi(X′, s′)1−γRi,n(X, s, s′)−γRj(X, s, s′)

]
, (A.19)

for j ∈ {r, b}.
Raising the envelope condition (A.18) to the power θ ≡ 1−γ

1−ψ−1 , using the definition of
Ri(X) and condition (A.19), we obtain

1 = Ei

[
βθ

(
vi(X′, s′)
vi(X, s′)

)1−γ

Ri,n(X, s, s′)−γRj(X, s, s′)(1 − c̃i(X, s))−θ/ψ

]
. (A.20)
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Using the condition vi(X) = (1 − β)
1

1−ψ−1 c̃i(X)
− ψ−1

1−ψ−1 , we obtain the Euler equations

1 = Ei

[
βθ

(
c̃i(X′, s′)N′

c̃i(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ)Rj(X, s, s′)

]
. (A.21)

This concludes the derivation of the consumption-wealth ratio and the Euler equa-
tions for the two assets. It remains to check that the value function takes the form (??),
which amounts to show that vi(X) indeed does not depend on N. Notice that c̃i(X, s) and
ωi(X, s) do not depend on N. We can then write the Bellman equation as follows:

vi(X, s)1−ψ−1
= (1 − β)c̃i(X, s)1−ψ−1

+ βEi

[
(vi(X′, s′)Ri,n(X, s, s′)(1 − c̃i(X)))1−γ

] 1−ψ−1
1−γ ,

(A.22)
for ψ ̸= 1 and

log vi(X, s) = (1 − β) log c̃i(X, s) + β log Ei

[
(vi(X′, s′)Ri,n(X, s, s′)(1 − c̃i(X, s)))1−γ

] 1
1−γ .

(A.23)
which is independent of N, which confirms our conjecture for the value function (??).

A.3 Proof of Lemma 2

The following lemma characterizes households’ portfolio weight in the surplus claim in
terms of the economy-wide SDF, the market prices, and their beliefs.

Lemma 2 (Portfolio share). The shares of total wealth invested in the risky asset are

ωi(X, s) =
1

∆Rr(X, s)

[
p̃i(X, s, H)

ps,HΛ(X, s, H)
− p̃i(X, s, L)

ps,LΛ(X, s, L)

]
, (A.24)

where p̃i(X, s, s′) is

p̃i(X, s, s′) =
(pi

ss′)
1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|]
1
γ−1

∑s̃′∈{L,H}(pi
ss̃′)

1
γ [vi(χ(X, s, s̃′), s̃′)|Re

r(X, s, s̃′)|] 1
γ−1

.

Lemma 2, describes how portfolio shares depend on distorted probabilities,
p̃i(X, s, s′), and pss′ × Λ(X, s, s′). The portfolio share ωi(X, s) in (A.24) is increasing in
pi

sH. This means that relatively optimistic investors hold more of the risky surplus claim.
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Proof. The optimal portfolio share satisfies the condition

pi
sL

pi
sH

vi(χ(X, s, L), L)1−γ

vi(χ(X, s, H), H)1−γ

(
ωi(X, s)Re

r(X, s, L) + 1
ωi(X, s)Re

r(X, s, H) + 1

)−γ |Re
r(X, s, L)|

Re
r(X, s, H)

= 1 (A.25)

Raising both sides to − 1
γ , we obtain

(
pi

sL

pi
sH

)− 1
γ vi(χ(X, s, L), L)1− 1

γ

vi(χ(X, s, H), H)1− 1
γ

ωi(X, s)Re
r(X, s, L) + 1

ωi(X, s)Re
r(X, s, H) + 1

|Re
r(X, s, L)|− 1

γ

Re
r(X, s, H)−

1
γ

= 1 (A.26)

Rearranging the expression above, we obtain

ωi(X, s) =
p̃i(X, s, H)

|Re
r(X, s, L)| −

p̃i(X, s, L)
Re

r(X, s, H)
, (A.27)

where

p̃i(X, s, s′) =
(pi

ss′)
1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|]
1
γ−1

∑s′∈{L,H}(pi
ss′)

1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|] 1
γ−1

. (A.28)

The SDF in this economy is given by

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|Rr(X, s,−s′)− Rb(X, s)|
∆Rr(X, s)

, (A.29)

where ∆Rr(X, s) = Rr(X, s, H)− Rr(X, s, L).
We can then write ωi(X, s) as follows

ωi(X, s) =
1

∆Rr(X, s)

[
p̃i(X, s, H)

ps,HΛ(X, s, H)
− p̃i(X, s, L)

ps,LΛ(X, s, L)

]
. (A.30)

Diffusion-like approximation. To better interpret the expression for the portfolio share,
it is useful to consider an approximation analogous to the continuous-time limit for diffu-
sion processes. Given Rr(X, s, s′), probabilities pi

ss′ for household i, and a small parameter
ϵ > 0, we can find µi,r(X, s) and σi,r(X, s) that satisfies the conditions

Re
r(X, s, H) = µi,r(X, s)ϵ +

√
psL

psH
σi,r(X, s)

√
ϵ, Re

r(X, s, L) = µi,r(X, s)ϵ −
√

psH

psL
σi,r(X, s)

√
ϵ,

(A.31)

which gives us the expected value and variance for household i:

Ei[Re
r(X, s, s′)|X, s] = µi,r(X, s)ϵ, Vari[Re

r(X, s, s′)|X, s] = σ2
i,r(X, s)ϵ. (A.32)
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Similarly, we can write Rb(X, s) = 1 + rb(X, s)ϵ.
From Equation (B.6), and assuming γ = 1, we obtain

ωi(X, s) = Rb(X, s)
pi

s,HRe
r(X, s, H) + pi

s,LRe
r(X, s, L)

|Re
r(X, s, L)|Re

r(X, s, H)

= (1 + rb(X, s)ϵ)
µi,r(X, s)ϵ(√

psH
psL

σi,r(X, s)
√

ϵ − µi,r(X, s)ϵ
) (

µi,r(X, s)ϵ +
√

psL
psH

σi,r(X, s)
√

ϵ
) ,

(A.33)

where we used the fact that Re
r(X, s, L) < 0 by no-arbitrage.

In general, (µi,r(X, s), σi,r(X, s)) and pi
ss′ are functions of ϵ. Assuming that µi,r(X, s) =

O(1), σi,r(X, s)) = O(1), and pi
ss′ = O(1), we can write the expression ωi(X, s) as fol-

lows:26

ωi(X, s) =
µi,r(X, s)
σ2

i,r(X, s)
+O(ϵ). (A.34)

A.4 Proof of Proposition 1

Proof. First, we compute the Sharpe ratio on the risky asset. We will compute expectations
using the objective measure, but a similar calculation gives the Sharpe ratio using the
investors’ subjective beliefs. The expected excess return is given by

E
[
Re

r(X, s, s′)
]
= psLRe

r(X, s, L) + psHRe
r(X, s, H). (A.35)

The variance of excess returns is given by

Var[Re
r(X, s, s′)] = psL psH∆Re

r(X, s)2. (A.36)

The Sharpe ratio in the risky asset is then given by

E[Re
r(X, s, s′)]√

Var[Re
r(X, s, s′)]

=

√
psL

psH

Re
r(X, s, L)

∆Re
r(X, s)

+

√
psH

psL

Re
r(X, s, H)

∆Re
r(X, s)

. (A.37)

We can write the expression above in terms of the economy’s SDF. The SDF under the

26These assumptions are analogous to the ones used by e.g. Merton (1992) to derive the continuous-
time limit with diffusion processes. Allowing for rare events, pi

ss′ = O(ϵ) for some s′, would lead to a
jump-diffusion process.

6



objective measure can be written as

Λ(X, s, L) =
E[Λ(X, s, s′)]

psL

Re
r(X, s, H)

∆Re
r(X, s)

, Λ(X, s, H) = −E[Λ(X, s, s′)]
psH

Re
r(X, s, L)

∆Re
r(X, s)

.

(A.38)

Combining the expressions above, we obtain

E[Re
r(X, s, s′)]√

Var[Re
r(X, s, s′)]

=
√

psL psH
Λ(X, s, L)− Λ(X, s, H)

E[Λ(X, s, s′)]
. (A.39)

We consider next how the Sharpe ratio affects the risk-neutral expectation of future
productivity growth. The risk-neutral expectation of productivity is given by

EQ [xt+1] = psL
Λ(X, s, L)

E[Λ(X, s, s′)]
xL + psH

Λ(X, s, H)

E[Λ(X, s, s′)]
xH. (A.40)

The difference between the expected value of productivity under the physical measure
and the risk-neutral measure is given by

E[xt+1]−EQ[xt+1] = psL
E[Λ(X, s, s′)]− Λ(X, s, L)

E[Λ(X, s, s′)]
xL + psH

E[Λ(X, s, s′)]− Λ(X, s, H)

E[Λ(X, s, s′)]
xH.

(A.41)
Rearranging the expression above, we obtain

E[xt+1]− EQ[xt+1] = psL psH
Λ(X, s, L)− Λ(X, s, H)

E[Λ(X, s, s′)]
∆x, (A.42)

where ∆x = xH − xL.
Using the expression for the Sharpe ratio, we obtain

EQ[xt+1] = E[xt+1]−
√

psL psH
E[Re

r(X, s, s′)]√
Var[Re

r(X, s, s′)]
∆x. (A.43)

A.5 Proof of Proposition 2

Proof. We start by deriving the process for returns. From the market clearing condition
for goods, we obtain

xsh(L)α − ξ
h(L)1+ν

1+ν

P(X, s)
= 1 − β (A.44)
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The return on the surplus claim is given by

Rp(X, s, s′) =
xsP(χ(X, s, s′), s′)

P(X, s)−
(

xsh(L)α − ξ
h(L)1+ν

1+ν

) =
xs

β

xs′h(L′(X, s))α − ξ
h(L′(X,s))1+ν

1+ν

xsh(L)α − ξ
h(L)1+ν

1+ν

.

(A.45)
Using the conditions in (14), we can rewrite the expression as follows

Rp(X, s, s′) =
xs

β

xs′L′(X, s)
α

1+ν−α − α
1+νL′(X, s)

1+ν
1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

. (A.46)

Note that the denominator in the expression above is positive if and only if L < 1+ν
α xs.

A sufficient condition is given by αxH < xL, as shown below

L ≤ xH <
xL

α
<

1 + ν

α
xs, (A.47)

and, similarly, this condition guarantees that the numerator is also positive.

Interest rate. The interest rate satisfies the condition Rb(X, s) =

E
[

Λ(X,s,s′)
E[Λ(X,s,s′)]Rp(X, s, s′)

]
, so Rb(X, s) is given by

Rb(X, s) =
(

1 − α

1 + ν

)
xs

β

L′(X, s)
1+ν

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

, (A.48)

using the fact that E
[

Λ(X,s,s′)
E[Λ(X,s,s′)]xs′

]
= L′(X, s).

The expression above is increasing in L′(X, s), decreasing in xs, and it is increasing in
L for s = L.

Risk premium. The risk asset’s excess return is given by

Rp(X, s, s′)
Rb(X, s)

=
1

1 − α
1+ν

xs′ − α
1+νL′(X, s)
L′(X, s)

. (A.49)

The conditional risk premium is then given by

Es[Re
p(X, s, s′)] =

1
1 − α

1+ν

Es[xs′ ]−L′(X, s)
L′(X, s)

, (A.50)

given the definition Re
p(X, s, s′) ≡ Rp(X,s,s′)−Rb(X,s)

Rb(X,s) .
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A.6 Proof of Proposition 3 and Corollary 1

Proof. We start by deriving the expression for the SDF. Note that we can express the SDF
in terms of Re(X, s, s′) and Rb(X, s) instead of Rr(X, s, s′) and Rb(X, s), as we can always
obtain the SDF in terms of any two (linearly independent) assets. The SDF is then given
by

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|Re
p(X, s,−s′)|
∆Re

p(X, s)
. (A.51)

The excess return on the surplus claim is given by

Re
p(X, s, s′) =

1
1 − α

1+ν

xs′ −L′(X, s)
L′(X, s)

. (A.52)

Combining the previous two expressions, we obtain

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|x−s′ −L′(X, s)|
∆x

(A.53)

using the fact that
Re

p(X,s,s′)
∆Re

p(X,s) = 1
Rb(X,s)

xs′−L′(X,s)
∆x .

Demand for risk. The demand for risk in this economy is given by

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] =
√

psL psH

[
psH(X, s)

psHΛ(X, s, H)
− psL(X, s)

psLΛ(X, s, L)

]
, (A.54)

where pss′(X, s) = ∑I
i=1 ηi,t pi

ss′ , using the fact that σs[Rr(X, s, s′)] =
√

psH psL∆Rr(X, s)
and the results in Lemma 2.

Using the expression for the SDF, the demand for risk can be written as

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] = σs[xs′ ]

1+ν−α
1+ν

xs
β

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

[
psH(X, s)L′(X, s)

1+ν
1+ν−α

L′(X, s)− xL
− psL(X, s)L′(X, s)

1+ν
1+ν−α

xH −L′(X, s)

]
,

(A.55)

given σs[xs′ ] =
√

psL psH∆x.
The first term inside brackets in the expression above is decreasing in L′(X, s) if and

only if the following condition holds

1 + ν

1 + ν − α
L′(X, s)

1+ν
1+ν−α−1(L′(X, s)− xL)−L′(X, s)

1+ν
1+ν−α < 0 ⇐⇒ L′(X, s) <

xL

α
, (A.56)
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which holds, given that L′(X, s) ≤ xH < xL
α .

Therefore, the demand for risk is decreasing in L′(X, s). As L′(X, s) is decreasing in
the Sharpe ratio of the risky asset, then the demand for risk is increasing in the Sharpe
ratio.

Supply of risk. The volatility of returns is given by

σs[Rp(X, s, s′)] =
xs

β

σs[xs′ ]L′(X, s)
α

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

, (A.57)

which is increasing in L′(X, s) and decreasing in xs.

Equilibrium. Combining supply and demand for risk, we obtain

xs

β

σs[xs′ ]L′(X, s)
α

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

=
1 + ν − α

1 + ν

xs

β

σs[xs′ ]L′(X, s)
1+ν

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

[
psH(X, s)

L′(X, s)− xL
− psL(X, s)

xH −L′(X, s)

]
.

(A.58)

The left-hand side is strictly increasing in L′(X, s), while the right-hand side is strictly
decreasing in L′(X, s) in the interval xL < L′(X, s) < xH. The right-hand side con-
verges to +∞ as L′(X′, s) approaches xL from above, and it converges to −∞ as L′(X, s)
approaches xH from below. Therefore, there exists a unique value of L′(X, s) solv-
ing the equation above in this interval. Note that the two curves intersect again for
L′(X, s) > xH, which can be seen by noticing that the right-hand is decreasing in L′(X, s)
for L′(X, s) > xH and converges to +∞ as L′(X, s) approaches xH from above. There-
fore, the economically relevant solution corresponds to the smallest of the two points of
intersection.

Rearranging the expression above, we obtain

1 =
1 + ν − α

1 + ν
L′(X, s)

psH(X, s)(xH −L′(X, s))− psL(X, s)(L′(X, s)− xL)

(L′(X, s)− xL)(xH −L′(X, s))
. (A.59)

We then obtain a quadratic equation for L′(X, s):

α

1 + ν
L′(X, s)2 −

[(
1 − 1 + ν − α

1 + v
psH(X, s)

)
xH +

(
1 − 1 + ν − α

1 + v
psL(X, s)

)
xL

]
L′(X, s)+ xLxH = 0

(A.60)

The equilibrium value is given by the smallest root of the equation above.
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A.7 Proof of Proposition 4

Proof. We start by deriving the return on the investor’s portfolio. Given that markets are
complete, there exists a replicating portfolio ωr(X, s) such that

Rr(X, s, s′) = ωr(X, s)Rp(X, s, s′) + (1 − ωr(X, s))Rb(X, s) ⇒ Re
r(X, s, s′) = ωr(X, s)Re

p(X, s, s′),
(A.61)

where ωr(X, s) = σs[Rr(X,s,s′)]
σs[Rp(X,s,s′)] =

∆Rr(X,s)
∆Rp(X,s) We can then write the return on the portfolio of

investor i as follows:

Ri,n(X, s, s′) = ωi(X, s)Re
r,t(X, s, s′)+Rb(X, s) = ωi(X, s)

∆Rr(X, s)
∆Rp(X, s)

Re
p,t(X, s, s′)+Rb(X, s).

(A.62)
Using condition (A.24) and the expression for the SDF, we obtain

Re
i,n(X, s, s′) = Rb(X, s)

[
pi

sH
L′(X, s)− xL

− pi
sL

xH −L′(X, s)

]
∆xRe

p(X, s, s′)
∆Rp(X, s)

(A.63)

= Rb(X, s)

[
pi

sH
L′(X, s)− xL

− pi
sL

xH −L′(X, s)

]
(xs′ −L′(X, s)). (A.64)

The return on the portfolio is then given by

Ri,n(X, s, L) =
∆xRb(X, s)

xH −L′(X, s)
pi

sL, Ri,n(X, s, H) =
∆xRb(X, s)
L′(X, s)− xL

pi
sH. (A.65)

Wealth share dynamics. The share of wealth of investor i is given by

η′
i(X, s, s′) =

ηiRi,n(X, s, s′)

∑I
j=1 ηjRj,n(X, s, s′)

=
ηi pi

ss′

∑I
j=1 ηj p

j
ss′

= ηi
pi

ss′

pss′(X)
. (A.66)

Long-run wealth dynamics. Note that the wealth share is a (bounded) martingale under
market beliefs:

psH(X)η′
i(X, s, H) + psL(X)η′

i(X, s, L) = ηi(pi
sH + pi

sL) = ηi. (A.67)

Therefore, from the martingale convergence theorem, the wealth share of investor i
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converges. This implies that, for every ϵ, there exits T such that

|ηi,T+1 − ηi,T| < ϵ ⇐⇒ ηi

∣∣∣∣∣ pi
ss′ − pss′(X)

pss′(X)

∣∣∣∣∣ < ϵ, (A.68)

almost surely, where the economy is at the state (X, s) at period T.
This implies that either ηi converges to zero or pi

ss′ converges to pss(X). If pi
ss′ ̸= pj

ss′

for any i, j ∈ I , i ̸= j, then the wealth share of a single investor converges to one.
By definition, pi

sH > psH(X) for an optimistic investor in state (X, s), then the wealth
share of optimists increase in the good state and decline in the bad state. This implies that
market beliefs evolve according to

ps′H(X′) =
I

∑
i=1

η′
i pi

s′H =
I

∑
i=1

ηi
pi

ss′

pss′(X)
pi

s′H, (A.69)

where

pHH(X′) =
I

∑
i=1

ηi
pi

sH
psH(X)

pi
HH ≥ psH(X), pLH(X′) =

I

∑
i=1

ηi
pi

sL
psL(X)

pi
LH ≤ psH(X).

(A.70)
This implies that the relative wealth share for investors i and j is given by

η′
i(X, s, s′)

η′
j(X, s, s′)

=
ηi

ηj

pi
ss′

pj
ss′

. (A.71)

Suppose investor j beliefs coincides with the objective measure. Then, the ratio above
is a martingale:

Es

[
η′

i
η′

j

]
= psL

ηi

ηj

pi
sL

psL
+ psH

ηi

ηj

pi
sH

psH
=

ηi

ηj
. (A.72)

If the wealth of investor j is bounded away from zero, then the above martingale is
bounded and, from the martingale convergence theorem, it converges almost surely.

A.8 Proof of Corollary 2

Proof. Consider an economy that starts at s = H with wealth distribution {ηi}I
i=1 which

switches to the low state after either one period (early transition) or two periods (late
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transition). Market beliefs on the low state in the case of an early transition are given by

pLH(X′) =
I

∑
i=1

ηi
pi

HL
pHL(X)

pi
LH, (A.73)

and market beliefs on the low state in the case of a late transition are given by

pLH(X′′) =
I

∑
i=1

η′
i

pi
HL

pHL(X′)
pi

LH, (A.74)

where η′
i = ηi

pi
HH

pHH(X)
.

Note that if investor i is optimistic, pi
HH > pHH(X), then η′

i > ηi and p−i
HL(X′) ≤

p−i
HL(X), where p−i

HL(X) ≡ 1
1−ηi

∑j ̸=i ηj p
j
HL. This implies that the following inequality

holds:

η′
i

pi
HL

pHL(X′)
=

η′
i pi

HL

η′
i pi

HL + (1 − η′
i)p−i

HL(X′)
>

ηi pi
HL

ηi pi
HL + (1 − ηi)p−i

HL(X)
= ηi

pi
HL

pHL(X)
. (A.75)

Therefore, there is more weight on the beliefs of investors who were optimistic in the
original state in the case of a late transition. In the case of rank-preserving beliefs, these
agents are also optimistic in the low state, so the market is more optimistic under a late
transition:

pLH(X′′) > pLH(X′). (A.76)

Alternatively, the market is now more pessimistic after a late transition in the case of
rank-alternating beliefs:

pLH(X′′) < pLH(X′). (A.77)

A similar argument shows that, under rank-preserving beliefs, the market is more
pessimistic after a late transition when the economy starts at state s = L:

pHH(X′′) =
I

∑
i=1

η′
i

pi
LH

pLH(X′)
pi

HH <
I

∑
i=1

ηi
pi

LH
pLH(X)

pi
HH = pHH(X), (A.78)

where η′
i = ηi

pi
LL

pLL(X)
. Alternatively, the market is more optimistic under a late transition

in the case of rank-alternating beliefs.
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B Trading volume

B.1 Belief Taxanomy and Trading Volume

We consider next the implications of heterogeneous beliefs regarding stock turnover, a
measure of trading volume. To compute the stock turnover, we first map the portfolio
holdings of the surplus claim, ωi, into the effective number of shares on firm equity in the
primitive economy. This mapping is straightforward in the case of linear labor disutility,
ν = 0 because human wealth is zero in this case.27 To simplify the exhibition, we adopt
this assumption for the rest of the section. The traded volume in this case is:

τt =
1
2

I

∑
i=1

|ωi,tηi,t − ωi,t−1ηi,t−1|.

This formula shows that the volume traded depends on the level of disagreement.
We consider a small deviation from homogeneous beliefs to study the effect of belief

dispersion on volume. We express investor i’s beliefs as follows

pi
ss′ = p∗ss′ + δi

ss′ϵ,

where δi
sH + δi

sL = 0 and ϵ captures belief heterogeneity as discussed earlier. Also, for
parsimony, set p∗ss′ = 1

2 , such that, in the absence of heterogeneity, beliefs are iid and
symmetric—the proofs hold for general common belief case.

The portfolio share of investor i is:

ωi(X, s; ϵ) = 1 + κω

[
pi

sH − pm
sH(X)

]
+O(ϵ2),

where κω is a positive constant. This expression showcases how optimistic investors, for
whom pi

sH > pm
sH(X), are levered up in stocks.

The following lemma characterizes the trading behavior of a given investor.

Lemma 3. Consider current and future states s and s′. The effect of a perturbation in ϵ on the
trades of investor i is:

∆Si(X, s, s′; ϵ) = ∆ηi(X, s, s′)︸ ︷︷ ︸
rebalancing effect

+ ∆ωi(X, s, s′)ηi︸ ︷︷ ︸
change-in-beliefs effect

+O(ϵ2), (B.1)

27The share of wealth invested in stocks is ωi, given that human wealth is equal to zero, Hi = 0, and
Re(X, s, s′) = Rr(X, s, s′) under this assumption.
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as the economy switches from state (X, s) to (X′, s′), where

∆ηi(X, s, s′) ≡ ηi
pi

ss′ − pm
ss′(X)

p∗ss′
, ∆ωi(X, s, s′) ≡ κω

[
pi

s′H − pm
s′H(X)− (pi

sH − pm
sH(X))

]
.

Expression (B.1) reveals two effects. The rebalancing effect captures the extent to which
investors trade after a change in the state to keep portfolio shares constant: investors
who put more likelihood on the realized state relative to the market belief, increased
(decreased) their wealth share. Thus, they must buy (sell) the risky asset when that state
is realized, to keep the portfolio share constant. Of course, as the economy evolves from
s to s′, portfolio shares themselves change as beliefs are modified. The change-in-beliefs
effect captures the trade that follows the change in portfolio shares as the state changes.
The change-in-beliefs effect equals zero if s = s′, as individual beliefs are constant.

In tandem, the effects of rebalancing and change-in-beliefs determine equilibrium
turnover.

Proposition 5 (Turnover). The economy’s turnover, as it switches from state (X, s) to state
(X′, s′), is given by

τ(X, s, s′; ϵ) =
1
2

I

∑
i=1

ηi

∣∣∣∣∣ pi
ss′ − pm

ss′(X)

p∗ss′
+ κω

[
pi

s′H − pm
s′H(X)− (pi

sH − pm
sH(X))

]∣∣∣∣∣+O(ϵ2). (B.2)

Proposition 5 provides a characterization of turnover. When s = s′, the change-in-
beliefs effect vanishes; turnover is driven solely by the rebalancing effect:

τ(X, s, s′; ϵ) =
1
2

I

∑
i=1

ηi
|pi

ss′ − pm
ss′(X)|

p∗ss′
+O(ϵ2).

Thus, when there is no change in the state of the economy, turnover is proportional to the
average absolute deviation of beliefs. The formula is consistent with the evidence in Sec-
tion C.4, which shows that dispersion on subjective beliefs about cash flows is correlated
with stock market turnover.

The change-in-beliefs effect emerges when the economy switches states, that is, when
s ̸= s′. This effect may either amplify or dampen the rebalancing effect, depending on
the type of belief and the direction of change in the economy. For instance, suppose that
s = H and s′ = L and beliefs are rank-alternating. Optimistic investors lose wealth as the
economy switches to a bad state. The rebalancing effect implies that they must sell some
risky assets to maintain their portfolio shares once stocks lose value. These investors
also become pessimists in downturns, leading them to sell even more stocks. Thus, the

15



two effects go in the same direction, amplifying the impact on the turnover when the
economy switches from high to low states. The two effects are opposite when s = L and
s′ = H. Pessimists become optimistic as the economy switches to the high state, which
induces them to increase their stock portfolio share. At the same time, the rebalancing
effect dictates that they sell stocks once stocks appreciate to keep the portfolio balanced.

Connecting with the Turnover Evidence. It is convenient to express heterogeneity in
beliefs, pi

ss, in terms of heterogeneity in the perceived persistence of fundamentals. As-
suming investors agree on the unconditional mean of xt, x, we can write Ei,t[xt+1]− x =

θi(xt − x), where θi is a function of pi
ss′ . The following corollary shows heterogeneous

beliefs lead to larger turnover rates as the economy switches from booms to recessions.

Corollary 3. Suppose investors agree on the unconditional mean of xt, i.e. pi
LH/pi

HL = pH/pL

and that the following condition is satisfied: p∗ss′ = pH = 1
2 . Turnover as the economy switches

from s to s′ is given by

τ(X, H, L; ϵ) =
ζ(s, s′)

2

I

∑
i=1

ηi|θi − θ(X)|+O(ϵ2), (B.3)

where

ζ(s, s′) ≡


κω + 1, if s = H and s’ = L
|κω − 1|, if s = L and s’ = H

1, if s = s’

The key message from Corollary 3 is that turnover increases in belief dispersion and,
furthermore, that the effect is more pronounced during busts. Both predictions are in
line with the evidence discussed in Section C.4. The assumption of rank-alternating be-
liefs is important to obtain this asymmetric effect. If investors have rank-preserving be-
liefs, where they are equally optimistic or pessimistic in both states, so δ̃i

s′H = δ̃i
sH even

for s′ ̸= s, then the change-in-beliefs effect will be equal to zero and we would not ob-
tain a stronger response of turnover to disagreement during bad times. Therefore, rank-
alternating beliefs are key to capturing the dynamics of stock market turnover.

B.2 Proof of Lemma 3

Proof. The portfolio share of stocks for a type-i investor is defined as ωi,t ≡ QtSi,t
Ni,t(1−ci,t)

,

so Si,t =
ωi,t Ni,t(1−ci,t)

Qt
. Given that 1 − ci,t = β and Qt = βPt, we obtain µi,tSi,t =

ωi,tµi Ni,t
Pt

= ωi,tηi,t. Shares traded by type-i investors are given by µi,t|Si,t − Si,t−1| =
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|ωi,tηi,t − ωi,t−1ηi,t−1|. Trading volume is then given by

τt =
1
2

I

∑
i=1

|ωi,tηi,t − ωi,t−1ηi,t−1|. (B.4)

In recursive notation, we can write

τ(X, s, s′) =
1
2

I

∑
i=1

|ωi(X′, s′)η′
i(X, s, s′)− ωi(X, s)ηi|, (B.5)

where X′ = χ(X, s, s′) and η′
i(X, s, s′) = ηi

pi
ss′

pss′ (X)
.

Solving for the portfolio share. Using the expression for the economy-wide SDF and
Equation (A.24), we can write the portfolio share as follows

ωi(X, s) = pi
sH

Rb(X, s)
|Re

r(X, s, L)| − pi
sL

Rb(X, s)
Re

r(X, s, H)
. (B.6)

The return on the risky and riskless assets can be written as follows:

Re
r(X, s, s′) =

xs

β

(xs′ −L′(X, s))L′(X, s)
α

1−α

xsL
α

1−α − αL 1
1−α

, Rb(X, s) = (1 − α)
xs

β

L′(X, s)
1

1−α

xsL
α

1−α − αL 1
1−α

, (B.7)

Combining the previous expressions, we obtain

ωi(X, s) = (1 − α)

[
pi

sH
L′(X, s)

L′(X, s)− xL
− pi

sL
L′(X, s)

xH −L′(X, s)

]
, (B.8)

which is strictly decreasing in L′(X, s) and ωi(X, s) > 1 if and only if pi
sH > psH(X).

Turnover is then given by

τ(X, s, s′) = (1− α)
I

∑
i=1

ηi

∣∣∣∣∣
(

pi
s′HL′(X′, s′)

L′(X′, s′)− xL
− pi

s′LL′(X′, s′)
xH −L′(X′, s′)

)
pi

ss′

pss′(X)
−
(

pi
sHL′(X, s)

L′(X, s)− xL
− pi

sLL′(X, s)
xH −L′(X, s)

)∣∣∣∣∣
(B.9)

Perturbation. It is useful to parameterize the dispersion in beliefs as follows:

pi
ss′ = p∗ss′ + ϵδi

ss′ , (B.10)

where δi
sH + δi

sL = 0. If ϵ = 0, then there is no belief heterogeneity and τ(X, s, s′) = 0. We
consider next how turnover depends on belief heterogeneity for small deviations of this
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benchmark, that is, for ϵ close to zero.
Notice that all equilibrium variables now depend on ϵ. For instance, the average prob-

ability of the high state can be written as

psH(X; ϵ) = p∗sH + δsH(X)ϵ +O(ϵ2), (B.11)

where δsH(X) ≡ ∑i=1 ηiδ
i
sH. Risk-neutral expectation of productivity growth is a function

of L′(X, s; ϵ) = fs(psH(X)), where fs(p) satisfies the condition

1 = (1 − α)

[
p

fs(p)
fs(p)− xL

− (1 − p)
fs(p)

xH − fs(p)

]
⇒ f ′s(p) =

fs(p)
fs(p)−xL

+ fs(p)
xH− fs(p)

p xL
( f (p)−xL)2 + (1 − p) xH

(xH− fs(p))2

.

(B.12)

Let L∗(X, s) ≡ L′(X, s; 0) denote the value of L′(X, s) when ϵ = 0. In this case, we can
drop the dependence on X and simply write L∗(s), as L′(X, s) would only depend on the
state s. We can then expand L′(X, s; ϵ) in ϵ to obtain:

L′(X, s; ϵ) = L∗(s) + L̃(X, s)ϵ +O(ϵ2), (B.13)

where L̃(X, s) = f ′(p∗sH)∑I
i=1 ηiδ

i
sH, where f ′(·) > 0.

We can then write the portfolio share of investor i as follows

ωi(X, s; ϵ) = 1 +
[
θω,1(s)δi

sH − θω,2(s)δsH(X)
]

ϵ +O(ϵ2), (B.14)

where θω,1(s) > 0 and θω,2(s) > 0

θω,1(s) ≡ (1 − α)

( L∗(s)
L∗(s)− xL

+
L∗(s)

xH −L∗(s)

)
(B.15)

θω,2(s) ≡ (1 − α)

[
p∗sHxL

(L∗(s)− xL)2 +
p∗sLxH

(xH −L∗(s))2

]
f ′(p∗sH). (B.16)

Using the expression for f ′(·), we obtain that θω,1 = θω,2. We can then write ωi(X, s; ϵ)

as follows:
ωi(X, s; ϵ) = 1 + θω,1(s)

[
δi

sH − δsH(X)
]

ϵ +O(ϵ2), (B.17)

The evolution of wealth is given by

η′
i(X, s, s′; ϵ) = ηi + ηi

δi
ss′ − δss′(X)

p∗ss′
ϵ +O(ϵ2) (B.18)

Let pH(X, s, s′; ϵ) = ∑I
i=1 η′

i(x, s, s′; ϵ)pi
s′H denote the market-implied probability of the
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high state after a transition to state s′, then

pH(X, s, s′; ϵ) = p∗s′H + δs′H(X)ϵ +O(ϵ2), (B.19)

where δs′H(X) ≡ ∑I
i=1 ηi

δi
ss′−δss′ (X)

p∗
ss′

p∗s′H + ∑I
i=1 ηiδ

i
s′H = ∑I

i=1 ηiδ
i
s′H.

The portfolio share next period is given by

ω′
i(X, s, s′; ϵ) = 1 + θω,1(s′)

[
δi

s′H − δs′H(X)
]

ϵ +O(ϵ2). (B.20)

Investor i’s net purchases of shares is given by

∆Si(X, s, s′; ϵ) = ηi

[
δi

ss′ − δss′(X)

p∗ss′
+ θω,1(s′)

(
δi

s′H − δs′H(X)
)]

ϵ

− θω,1(s)ηi

[
δi

sH − δsH(X)
]

ϵ +O(ϵ2) (B.21)

For simplicity, suppose that investors believe productivity growth to be iid in the ref-
erence economy, that is, p∗Ls′ = p∗Hs′ . We can then write the

∆Si(X, s, s′; ϵ) =

 ∆ω̃i(X, s, s′)ηi︸ ︷︷ ︸
change-in-beliefs effect

+ ∆η̃i(X, s, s′)︸ ︷︷ ︸
rebalancing effect

 ϵ +O(ϵ2), (B.22)

where

∆ω̃i(X, s, s′) ≡ θω,1

[(
δi

s′H − δs′H(X, s)
)
−
(

δi
sH − δsH(X)

)]
(B.23)

∆η̃i(X, s, s′) ≡ ηi
δi

ss′ − δss′(X)

p∗ss′
. (B.24)

B.3 Proof of Proposition 5 and Corollary 3

Proof. Turnover is given by

τ(X, s, s′; ϵ) =
1
2

I

∑
i=1

ηi

∣∣∣∣∣ δ̃i
ss′

p∗ss′
+ κω

(
δ̃i

s′H − δ̃i
sH

)∣∣∣∣∣ ϵ +O(ϵ2), (B.25)

where δ̃i
ss′ = δi

ss′ − δss′(X).
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Suppose s = s′, then

τ(X, s, s′; ϵ) =
1
2

I

∑
i=1

ηi

∣∣δ̃i
ss′(X)

∣∣
p∗ss′

ϵ +O(ϵ2) (B.26)

=
1
2

[
I

∑
i=1

ηi
δ̃i

ss′(X)

p∗ss′
1δ̃i

ss′ (X)≥0 −
I

∑
i=1

ηi
δ̃i

ss′(X)

p∗ss′
1δ̃i

ss′<0

]
ϵ +O(ϵ2) (B.27)

=
1
2

[
ηB

δ̃B
ss′(X)

p∗ss′
+ ηS

|δ̃S
ss′(X)|
p∗ss′

]
ϵ +O(ϵ2). (B.28)

where

ηB ≡
I

∑
i=1

ηi1δ̃i
ss′ (X)≥0, δ̃B

ss′(X) ≡ 1
ηB

I

∑
i=1

ηi δ̃
i
ss′(X)1δ̃i

ss′ (X)≥0, (B.29)

ηS ≡
I

∑
i=1

ηi1δ̃i
ss′ (X)<0, δ̃S

ss′(X) ≡ 1
ηS

I

∑
i=1

ηi δ̃
i
ss′(X)1δ̃i

ss′ (X)<0. (B.30)

We can write turnover in this case as follows

τ(X, s, s′; ϵ) = ηBηS
δB

ss′(X) + |δS
ss′(X)|

p∗ss′
ϵ +O(ϵ2), (B.31)

using the fact that δss′(X) = ηBδB
ss′(X) + ηSδS

ss′(X).

Heterogeneous persistence. We consider next the special case where investors agree
about the unconditional mean of x, but they disagree about the persistence of the aggre-
gate productivity growth.

The stationary distribution of beliefs for investor i is given by

pi
L =

pi
HL

pi
LH + pi

HL
. (B.32)

We assume that pi
L is equalized across investors, so all investors agree about the un-

conditional mean of xt. Note this implies that the likelihood ratio pi
LH/pi

HL is equalized
across investors. The unconditional mean is given by

x =
pi

HL

pi
LH + pi

HL
xL +

pi
LH

pi
LH + pi

HL
xH. (B.33)
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The expected value of xt+1 relative to the mean x conditional on xt = xL is given by

Ei[xt+1 − x|xt = xL] = pi
LL(xL − x) + pi

LH(xH − x) (B.34)

=

[
1 + pi

LH
xH − xL

xL − x

]
(xL − x) (B.35)

=
[
1 − (pi

LH + pi
HL)
]
(xL − x), (B.36)

using the fact that x − xL =
pi

LH
pi

LH+pi
HL
(xH − xL)

We obtain a similar expression conditioning on xt = xH instead:

Ei[xt+1 − x|xt = xH] = pi
HL(xL − x) + pi

HH(xH − x) (B.37)

=

[
1 − pi

HL
xH − xL

xH − x

]
(xH − x) (B.38)

=
[
1 − (pi

LH + pi
HL)
]
(xH − x), (B.39)

using the fact that xH − x =
pi

HL
pi

LH+pi
HL
(xH − xL).

Let x̂t = xt − x, we can then write

Ei[x̂t+1|x̂t] = θi x̂t, (B.40)

where θi ≡ 1 − (pi
LH + pi

HL) = pi
HH − pi

LH.
Given that investors agree about the unconditional mean of x, we are able to pin down

beliefs as a function of θi:

pi
LH = pH(1 − θi), pi

HH = pH + pLθi. (B.41)

Corollary. Under the assumption investors agree about the unconditional mean of xt,
we have that

pi
LH − pLH(X) = −pH(θi − θ(X)), pi

HH − pHH(X) = pL(θi − θ(X)), (B.42)

where θ(X) ≡ ∑I
i=1 ηiθi.

Notice that we have that δ̃i
ss′(X)ϵ = pi

ss′ − pss′(X), which gives us

δ̃i
LH(X)ϵ = −pH(θi − θ(X)), δ̃i

HH(X)ϵ = (1 − pH)(θi − θ(X)). (B.43)
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We can then write turnover in the case s = L and s′ = H as follows:

τ(X, L, H; ϵ) =
1
2

∣∣∣∣κω − pH
p∗H

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|+O(ϵ2). (B.44)

Consider now the case s = H and s′ = L:

τ(X, H, L; ϵ) =
1
2

∣∣∣∣κω +
pL
p∗L

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|+O(ϵ2), (B.45)

Suppose now that s = s′ = L, then

τ(X, H, H; ϵ) =
1
2

∣∣∣∣ pL
p∗H

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|ϵ +O(ϵ2) (B.46)

τ(X, L, L; ϵ) =
1
2

∣∣∣∣ pH
p∗L

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|ϵ +O(ϵ2). (B.47)

C Estimating the Heterogeneity in Beliefs

C.1 The process for realized and expected earnings

Let i ∈ I denote a firm-analyst pair. We index both firm-level outcomes and the ex-
pectations of the analyst covering this firm by i. We denote (realized) earnings for firm
i at period t by ei,t and the first-difference of realized earnings by ∆ei,t = ei,t − ei,t−1.28

We denote aggregate earnings by et and the first-difference of aggregate earnings by ∆et.
Realized earnings follows the process:

∆ei,t = βi∆et + ui,t, (C.1)

where ui,t = ρiui,t−1 + ϵi,t and ϵi,t ∼ N (0, σ2
ϵ ). The error term ϵi,t is assumed to be i.i.d.

and independent of ∆et. We assume that ∆ei,t and ∆et have already been de-meaned, so
we can omit the intercept. We also assume that ∆ei,t and ∆et have been normalized to
have unit variance.

28As ei,t can potentially be negative, we work with first differences instead of proportional differences,
∆ei,t
ei,t

, or log-differences, ∆ log(ei,t). By focusing on first differences, we do not have to drop firms which
experience negative earnings, which is a significant fraction of our sample.
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Given the formulation above, individual earnings depend on aggregate shocks, i.e.
shocks that affect aggregate earnings, as well as idiosyncratic shocks, as captured by ui,t.
The parameters ρi controls the persistence of idiosyncratic shocks. Hence, firms are al-
lowed to be heterogeneous on their exposure to the aggregate shock as well as the persis-
tence of idiosyncratic shocks.

We assume that analysts understand that individual earnings follows the process
(C.1), but they potentially disagree on the process followed by aggregated earnings. In
particular, we assume that analyst i believe (in a dogmatic fashion) that ∆et follows the
following process:

∆et = θi∆et−1 + νi,t, (C.2)

where νi,t is an i.i.d. process given by νi,t ∼ N (0, σ2
ν ). We assume that analysts agree on

the unconditional mean for ∆et, which we normalize to zero. This allow us to focus only
on disagreement about the persistence of shocks to aggregate earnings.

The expected change in aggregate earnings using the subjective beliefs of analyst i is
given by

Ei,t[∆et+1] = θi∆et, (C.3)

where Ei,t[·] denote the conditional expectation at t according to the subjective beliefs of
analyst i.

We assume that ∆et is perfectly observed by investors at time t, so differences in beliefs
are controlled by θi. A relatively high value for θi implies that analyst i is more optimistic
about aggregate earnings after a positive shock and more pessimistic after a negative
shock, capturing a form of belief extrapolation.

Notice that expectations of changes in individual earnings depend on the degree of
persistence of shocks to aggregate earnings θi:

Ei,t[∆ei,t+1] = βiθi∆et + ρiui,t. (C.4)

Equation (C.4) shows that we can infer properties of the process for subjective beliefs
on aggregate earnings using information on subjective beliefs about individual earnings.
This is important as beliefs on aggregate earnings are not directly available.

C.2 Estimation procedure

We show next how to estimate (βi, ρi, θi) in two stages. First, we estimate the parameters
in Equation (C.1). In a second stage, we obtain the distribution of θi, using Equation (C.4)
and the parameters estimated in the first stage.
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First stage. Consider first Equation (C.1). We can rewrite the process for ∆ei,t as follows:

∆ei,t = βi∆et + ρi (∆ei,t−1 − βi∆et−1) + ϵi,t, (C.5)

where we used the fact that ui,t = ∆ei,t − βi∆et.
To ensure that −1 < ρi < 1, we consider the following change of variables. As-

sume that ρi is given by the a non-linear transformation of the parameter ρ̃i ∈ R:
ρi = −1 + 2 exp(ρ̃i)

1+exp(ρ̃i)
∈ (−1, 1). The parameters (βi, ρ̃i) can in principle be estimated

using, for instance, non-linear least squares for each company i. We proceed instead by
estimating the parameters simultaneously for all i using Bayesian methods. The Bayesian
approach is useful as it allow us to regularize the individual estimates and avoid overfit-
ting, which can be a concern in settings where the length of the time series is not particu-
larly long.29

Formally, we consider the following multi-level priors:

βi ∼ N (β, σ2
β), ρ̃i ∼ N (ρ, σ2

ρ ), (C.6)

The coefficients (β, ρ) and (σβ, σρ) are referred to as hyperparameters and they have
their own priors, which are given by

β ∼ N (0, 1.502), ρ ∼ N (0, 0.502), (C.7)

and the standard-deviation for each parameter is assumed to follow a Half Student-t dis-
tribution with 3 degrees of freedom, a standard value for this class of models. These priors
are set to be wide enough to capture the range of plausible values for the parameters.

The multi-level structure allow us to obtain a form of adaptive regularization. If (say)
σβ is very large, then the prior on βi is not very informative, and this would be analogous
to estimate βi independently for each i. If σβ ≈ 0, then we have effectively a pooling es-
timator, where βi will be the same for all i. For intermediate values of σβ, the parameters
are allowed to vary across units, but they are partially shrunk towards the population
mean. The shrinkage of the parameters limits the effect of noise or measurement error, as
the model is essentially skeptical of extreme values. Because σβ is also an estimated pa-
rameter, the extent to which estimates are regularized is directly informed by the data.30

29This procedure is analogous to a ridge regression, where the estimates are regularized using a L2
penalty (see e.g. Hastie, Tibshirani, Friedman and Friedman, 2009). For a discussion of how regularized
regressions can be reinterpreted as a Bayesian procedure, see e.g. Nagel (2021).

30For more details on how multi-level models provide a form of adaptive regularization, see e.g. the
discussion in McElreath (2020).
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Second stage. Consider next Equation (C.4), which relates subjective beliefs about in-
dividual earnings to realized aggregate and individual earnings. To capture the fact
that (subjective) expectations are potentially measured with error, we assume that only
a noisy version of the analyst’s expectation is observed, which is given by Êi,t[∆ei,t+1] =

Ei,t[∆ei,t+1] + w̃i,t. The measurement error w̃i,t is assumed to be a mean-zero normally
distributed i.i.d. process with variance given by σ2

w. Combining this measurement equa-
tion with Equation (C.4) and isolating the terms estimated in the first stage, we obtain the
following estimating equation:

zi,t = αi + θixi,t + wi,t, (C.8)

where zi,t ≡ Êi,t[∆ei,t+1]− ρiui,t and xi,t ≡ βi∆et. Notice that zi,t and xi,t are known at this
stage, so it only remains to estimate θi,t.

As before, we use a Bayesian multi-level model to adaptively regularize our estimates.
We also consider the transformation θi = −1 + 2 exp(θ̃i)

1+exp(θ̃i)
, where θ̃i ∈ R, such that we can

ensure that θi ∈ (−1, 1). We assume the following prior for θ̃i,t:

θi,t ∼ N (θ, σ2
θ ), (C.9)

where θ ∼ N (0, 0.52) and σθ follows a half Student-t distribution with 3 degrees of free-
dom.

C.3 Data and estimation results

Data. We use data from I/B/E/S on analysts expectations about firms’ future earnings.
For firms with coverage of more than one analyst, we use the consensus expectation for
that firm. We drop firms with missing values for realized or expected earnings in more
than 20% of the sample. We ended up with 579 firms covering the time period from March
1977 until December 2020, with a total of 44, 267 company-quarter pairs.

Model fitting and results. We sample the model using an extension of Hamiltonian
Monte Carlo, the no-U-turn sampler (NUTS) by Hoffman, Gelman et al. (2014), as imple-
mented in R Stan. Table 5 reports the posterior mean and 95% credible intervals for the
cross-sectional mean and dispersion of parameters (βi, ρi, θi). Because we have standard-
ized all the variables, the parameter βi captures the correlation between individual and
aggregate earnings. The correlation is close to zero reflecting the fact that typically most
of the variation in a company’s earnings reflect idiosyncratic shocks. However, there
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Table 5: Cross-sectional mean and dispersion of parameters

Estimate Est.Error l-95% CI u-95% CI Rhat

E[βi] 0.03 0.01 0.01 0.04 1.00
E[ρi] 0.45 0.02 0.41 0.50 1.00
E[θi] -0.48 0.12 -0.72 -0.24 1.00
σ[βi] 0.09 0.01 0.08 0.10 1.00
σ[ρi] 0.47 0.02 0.43 0.51 1.00
σ[θi] 0.19 0.13 0.01 0.49 1.00

Note: Posterior mean and credible intervals (CI) for the cross-sectional mean, E[xi ], and cross-sectional standard-deviation, σ[xi ], for
parameters x ∈ {β, ρ, θ}. Rhat is an indicator of the convergence of the chains during sampling. Rhat = 1 indicates convergence.

Figure 8: Kernel estimate of cross-sectional distribution of the different parameters
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Note: Posterior mean of the kernel density for the cross-section of θi (left panel), ρi (middle panel), and θi (right panel).

is substantial heterogeneity in this parameter, with the cross-sectional dispersion being
three times the average βi. This can be seen in the left panel of Figure 8, which shows
the posterior mean of the kernel density for βi, where βi ranges from −0.3 to 0.4. The
average autocorrelation coefficient ρi is positive, but it is also very dispersed across firms,
as shown in the middle panel of Figure 8. Finally, we have that θi is on average negative,
which is consistent with the fact that ∆et has a negative autocorrelation. However, the
average subjective coefficient of autocorrelation is more negative than its objective coun-
terpart, as E[θi] = −0.48 and we obtain a coefficient of autocorrelation of −0.28 for ∆et

using aggregate data. As before, we observe substantial heterogeneity in θi, as shown in
the right panel of Figure 8.
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C.4 Belief disagreement

We consider next a measure of belief disagreement. Notice that the expectation of analyst
of aggregate earnings growth is given by Ei[∆et+1] = θi∆et. This motivates our definition
of a disagreement index DIt, which corresponds to the cross-sectional dispersion in beliefs
about aggregate earnings growth:

DIt = σ[θi]× |∆et|︸ ︷︷ ︸
σ[Ei[∆et+1]]

. (C.10)

The disagreement index has two components. First, the cross-sectional dispersion in
the parameter θi. If all analysts agree on the persistence of aggregate earnings growth,
such that σ[θi] = 0, then the disagreement index would be equal to zero. Second, the
absolute value of aggregate earnings growth, |∆et|. Given that ∆et has been already de-
meaned, |∆et| captures the distance of aggregate earnings growth to its mean. If aggre-
gate earnings growth is already at its average value, |∆et| = 0, then disagreement on how
∆et reverts to its plays no role in determining expectations. Therefore, the level of dis-
agreement in the economy depends on the interaction between dispersion in beliefs and
deviations of aggregate earnings growth from its mean.

The left panel of Figure 9 shows the time series of the disagreement index. The dis-
agreement index is typically low during normal times, and it significantly spikes in pe-
riods of crises, where aggregate earnings growth deviates substantially from its average
value.

Turnover. One important implication of theories with heterogeneous beliefs is that the
level of disagreement is related to the amount of trading in the economy. To test this
implication, we consider next a measure of trading activity, the (value-weighted) stock
market turnover.31 We measure the stock turnover—shares traded divided by shares
outstanding—for individual securities on the New York and American Stock Exchanges
from January 1977 to December 2021. We measure turnover at the quarterly frequency
and compute an aggregate turnover measure using a value-weighted average (similar re-
sults are obtained by using an equal-weight measure). The right panel of Figure 9 shows
the time series of turnover. We can observe that the turnover level changed significantly
over time and that turnover has an important cyclical component.

31For a discussion of turnover as a measure of trading volume and its connection with standard portfolio
theory, see Lo and Wang (2010).
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Figure 9: Time series of the disagreement index and stock market turnover
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Note: Left panel shows the time series of the disagreement index and the right panel shows the time-series of stock market turnover.
The smooth line in the right panel is the HP-filter trend of turnover. The vertical bars represent NBER recessions.

Belief disagreement and turnover. We consider next the relationship between belief
disagreement and turnover. Table 6 shows the result of a time-series regression of
turnover on the disagreement index. As shown in Figure 9, the disagreement index se-
ries has a few outliers, in particular, during crisis periods. To ensure that the relation-
ship between turnover and disagreement is not driven only by these extreme periods,
we consider a sample where we exclude observations where the disagreement index is
below the 2.5% percentile or above the 97.5% percentile. Column (1) shows that there
is a strong statistically significant association between DI and turnover, where we com-
pute Newey-West standard-errors with four lags. If the disagreement index goes from
its 25% percentile to its 75% percentile, turnover increases by 8.0 percentage points, an
increase of almost 30%. Column (2) tests whether this relationship is nonlinear by intro-
ducing a quadratic term, again in the example where we exclude outliers. We find that
the quadratic term is not significant, consistent with a linear relationship. This can be ver-
ified visually in Figure 10, which shows the scatterplot of turnover and the disagreement
index for this sample. Column (3) shows the regression of turnover on DI and DI2 for
the full sample. We find that the quadratic term is now statistically significant, indicating
the necessity of considering a nonlinear relationship to capture the effect of the extreme
crisis-level disagreement. The magnitude of the marginal effect of changing DI is similar
to the linear case for large of values for the disagreement index. Therefore, we conclude
that belief disagreement is strongly associated with stock market turnover.
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Table 6: Regression of turnover on disagreement index

Dependent Variable: turnover
Model: (1) (2) (3)

Variables
(Intercept) 0.2580∗∗∗ 0.2420∗∗∗ 0.2549∗∗∗

(0.03373) (0.04375) (0.0369)
DI 1.239∗∗∗ 1.798∗∗ 1.260∗∗∗

(0.2277) (0.6277) (0.2898)
DI2 -2.068 -0.6879∗∗

(1.6920) (0.2094)

Fit statistics
Observations 165 165 175
R2 0.24084 0.24786 0.30386
Adjusted R2 0.23618 0.23857 0.29576

Newey-West standard-errors in parentheses (4 lags)
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Columns (1) and (2) .
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Figure 10: Scatterplot of the disagreement index and stock market turnover
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Note: Scatterplot of disagreement index and turnover for a sample without outliers.
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Online Appendix (not for publication)

O1 The case with an arbitrary number of states

O1.1 Environment

We consider an extension of the model in Section 3 where aggregate productivity growth
xt takes N possible values, i.e. xt ∈ {x1, x2, . . . , xN} ≡ X , where x1 < x2 < . . . < xN.
The objective probability of switching from state s ∈ {1, 2, . . . , N} ≡ S to state s′ ∈
S is denoted by pss′ and the corresponding subjective probability for household i ∈ I
is denoted by pi

ss′ . Households can trade Arrow securities that pay off conditional on
every possible state. We also assume that households die with probability κ and leave
their financial wealth to their child, which will have type j with probability µj. This
assumption ensures that a non-degenerate stationary distribution of wealth exists. The
next proposition provides a characterization of the equilibrium in this N-state economy.
The main conclusion is that the results of Section 3 are essentially unchanged in this more
general setting.

Proposition O.1 (N-state economy). Suppose that xt ∈ X , where xt takes N possible values.

i. The (scaled) household’s problem can be written as follows

vi(X, s)1−ψ−1 − 1
1 − ψ−1 = max

ci,R′
i,n

(1 − β)
c1−ψ−1

i − 1
1 − ψ−1 + β

Ei
[
(vi(X′, s′)n′)1−γ

] 1−ψ−1
1−γ − 1

1 − ψ−1 ,

(O1.1)
subject to the flow budget constraint n′ = R′

i,n(1 − ci), the natural borrowing limit n′ ≥ 0,
and the portfolio-return constraint

Es[Λ′R′
i,n] = 1. (O1.2)

ii. Consumption-wealth ratio and the investor’s SDF are given by

ci(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
, (O1.3)

Λi(X, s, s′) = βθ

(
ci(χ(X, s, s′), s′)N′

ci(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ), (O1.4)
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and the change-of-measure condition is given by

Λi(X, s, s′) =
pss′

pi
ss′

Λ(X, s, s′). (O1.5)

iii. Wages, hours, and profits are given by

h(E) =
(

αE
ξ

) 1
1+ν−α

, w(E) = ξ

(
αE
ξ

) ν
1+ν−α

, π(E, s) =
(

α

ξ

) α
1+ν−α [

xsE
α

1+ν−α − αE
1+ν

1+ν−α

]
.

(O1.6)

iv. The law of motion of the endogenous aggregate state variables is given by

E′(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

xs′ , (O1.7)

η′
i(X, s, s′) =

(1 − κ)ηiRi,n(X, s, s′)(1 − ci(X, s))

∑I
j=1 ηjRj,n(X, s, s′)(1 − cj(X, s))

+ κµi. (O1.8)

v. The market clearing conditions for consumption and the Arrow security for state s ∈ S are
given by

I

∑
i=1

ηici(X, s) =
xsh(E)α − ξ

h(E)1+ν

1+ν

P(X, s)
,

I

∑
i=1

η̃iRn,i(X, s, s′) = Rp(X, s, s′),

(O1.9)
where η̃i ≡ ηi(1−ci(X,s)

∑I
j=1 ηj(1−cj(X,s)

.

Proof. See Online Appendix O3.1.

An implication of the result above is that the LDF corresponds to the risk-neutral ex-
pectation of productivity growth. The following corollary shows that E′(X, s) can be ex-
pressed as the expected productivity growth (under the objective probability measure)
discounted by a risk premium.

Corollary 4. Let Rg(X, s, s′) denote the return on a claim on productivity growth, then

log E′(X, s) = log Es[xs′ ]− log Re
g(X, s), (O1.10)

where Re
g(X, s) ≡ ∑s′∈S pss′

Rg(X,s,s′)
Rb(X,s) is the risk premium on a claim on productivity growth.

Proof. The price of a claim on productivity growth is given by

Pg(X, s) = Es[Λ(X, s, s′)xs′ ], (O1.11)
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and the return on this claim is given by Rg(X, s, s′) = xs′
Pg(X,s) .

Expressing the pricing condition above in terms of covariances, we obtain

Es[Rg(X, s, s′)]− Rb(X, s) = −Covs

(
Λ(X, s, s′)

Es[Λ(X, s, s′)]
,

xs′

Pg(X, s)

)
. (O1.12)

Similarly, we can write E′(X, s) in terms of covariances:

E′(X, s) = Es[xs′ ] + Covs

(
Λ(X, s, s′)

Es[Λ(X, s, s′)]
, xs′

)
. (O1.13)

Using the fact that Pg(X, s) = E′(X, s)/Rb(X, s), we can combine the expressions
above to obtain

E′(X, s) = Es[xs′ ]−
(

Es[Rg(X, s, s′)]
Rb(X, s)

− 1
)

E′(X, s) ⇒ E′(X, s) =
Es[xs′ ]

Re
g(X, s)

. (O1.14)

O1.2 Special Case I: Log utility

We consider next the special case where ψ = γ = 1 for the economy with an arbitrary
number of states. Proposition O.2 below shows that the main implications from Section 5
extends to this more general economy.

Proposition O.2 (Log-utility). Suppose ψ = γ = 1 and that the following condition is satisfied
xN < x1

α .

i. Consumption and portfolio decisions are given by

ci(X, s) = 1 − β, Ri,n(X, s, s′) =
pi

ss′

pss′(X)
Rp(X, s, s′). (O1.15)

ii. The economy’s SDF is given by

Λ(X, s, s′) =
pss′(X)

pss′
R′

p(X, s, s′)−1. (O1.16)
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iii. The price and return on the surplus claim are given by

P(X, s) =
xsh(E)α − ξ

h(E)1+ν

1+ν

1 − β
, (O1.17)

Rp(X, s, s′) =
xs

β

xs′E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O1.18)

iv. The risk premium on the surplus claim and the interest rate are given by

Rb(X, s) =
(

1 − α

1 + ν

)
xs

β

E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O1.19)

Es[Re
p(X, s, s′)] =

xs

β

[Es[xs′ ]− E′(X, s)]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O1.20)

v. The law of motion of the aggregate state variables are given by

E′(X, s) = ∑
s′∈S

xs′
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 (O1.21)

η′
i(X, s, s′) = (1 − κ)ηi

pss′

pss′(X)
+ κµi, (O1.22)

and there exists a unique value of E′(X, s) ∈ (x1, xN) satisfying the law of motion of L.

Proof. See Online Appendix O3.2.

O1.3 Special Case II: Representative Agent with IID Returns

We consider next a different special case which is also particularly tractable: investors
have common iid beliefs, pi

ss′ = p∗s′ , and the supply and demand of labor converge to zero.
Formally, we assume α = α̂ϵ and ξ = ξ̂ϵ and take the limit as ϵ goes to zero. For simplicity,
we focus on the case κ = 0. Because labor is chosen in advance, returns on financial assets
would not be iid even if the process for aggregate productivity is iid. By taking the limit as
supply and demand goes to zero, we ensure that all equilibrium objects are well-defined
in the limit and the economy behaves essentially as an endowment economy, analogous
to an iid version of the Mehra and Prescott (1985) economy.

Proposition O.3 provides a characterization of this limit economy. To highlight these
results apply to this particular limit, we denote the equilibrium objects in the limiting
economy with an ∗, e.g. v∗(X, s) and c∗(X, s).
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Proposition O.3 (IID Returns). Suppose pi
ss′ = p∗s′ , α = α̂ϵ, and ξ = ξ̂ϵ. Suppose also the

following condition is satisfied: β∗ ≡ βE∗[x1−γ
s′ ]

1−ψ−1
1−γ < 1. Then, the economy in the limit as

ϵ → 0 satisfies the following conditions:

i. Consumption and portfolio decisions:

c∗i (X, s) = 1 − β∗, R∗
i,n(X, s, s′) = R∗

p(X, s, s′). (O1.23)

ii. The net-worth multiplier v∗i (X, s) is given

v∗i (X, s) = (1 − β)
1

1−ψ−1 (1 − β∗)
− ψ−1

1−ψ−1 . (O1.24)

iii. Wages, hours, and profits are given by

h∗(E) =
(

α̂E
ξ̂

) 1
1+ν

, w∗(E) = 0, π∗(E, s) = xs. (O1.25)

iv. The economy’s SDF is given by

Λ∗(X, s, s′) = βE∗[x1−γ
s′ ]

γ−ψ−1
1−γ x−γ

s′ . (O1.26)

v. The price and return on the surplus claim are given by

P∗(X, s) =
xs

1 − β∗ , R∗
p(X, s, s′) =

x′s
β∗ . (O1.27)

vi. The risk-free rate and the expected return on the surplus claim are given by

R∗
b(X, s) =

1
β∗

E∗[x1−γ
s′ ]

E∗[x−γ
s′ ]

, (O1.28)

E∗[Rp(X, s, s′)] = Rb(X, s)
E∗[xs′ ]E

∗[x−γ
s′ ]

E∗[x1−γ
s′ ]

. (O1.29)

vii. The law of motion of the state variables are given by

E′(X, s) = E∗, η′
i(X, s, s′) = ηi. (O1.30)
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where E∗ ≡ E∗[x1−γ

s′ ]

E∗[x−γ

s′ ]
.

Proof. See Online Appendix O3.3.

The following corollary shows that we recover the standard asset pricing formulae for
iid economies in continuous time if we assume that xs is approximately log-normal.

Corollary 5. Suppose log xs can be approximated by a normal distribution with mean µ and
variance σ2. Then, under the assumption of Proposition O.3, we obtain

i. Interest rate:

log R∗
b(X, s) ≈ ρ + ψ−1

(
µ +

σ2

2

)
− γ(1 + ψ−1)

2
σ2, (O1.31)

where ρ ≡ − log β.

ii. Risk-premium:

log E

[
R∗

p(X, s, s′)
R∗

b(X, s)

]
≈ γσ2. (O1.32)

iii. Risk-neutral expectation of productivity growth:

log
E′(X, s)
E[xs′ ]

≈ −γσ2. (O1.33)

The corollary above shows how E′(X, s) depends on xs′ and the equity risk premium.

O2 Approximate Solution of the General Economy

In the previous section, we derived exact analytical solutions for two special cases: i)
log-utility; ii) homogeneous beliefs and iid returns. In this section, we derive asymptotic
closed-form solutions for a general economy with an arbitrary number of states, an ar-
bitrary number of households with heterogeneous beliefs, and Epstein-Zin preferences
with unrestricted EIS and risk aversion. The derivations for the benchmark case with
homogeneous beliefs and iid returns will be useful in deriving the approximate solution.

O2.1 Perturbation

Consider a family of economies indexed by ϵ. The parameter ϵ controls three dimensions
through which these economies differ from each other. First, it determines the degree of

6



belief heterogeneity:
pi

ss′ = p∗s′ + δi
ss′ϵ, (O2.1)

where ∑s′∈S δi
ss′ = 0. We also assume that the objective measure coincides with beliefs in

the reference economy, i.e. pss′ = p∗s′ . Second, ϵ scales both supply and demand for labor:

ξ = ξ̂ϵ, α = α̂ϵ. (O2.2)

The economy satisfying ϵ = 0 is essentially an endowment economy with iid common be-
liefs, a special case of the Mehra and Prescott (1985) economy, as described above. Third,
we assume that κ = κ̂ϵ, such that there is no mortality risk in the benchmark economy.

All equilibrium objects are now indexed by ϵ. For instance, the net worth multiplier is
now given by vi(X, s; ϵ). We are interested in the expansion of vi(X, s; ϵ) on ϵ, for ϵ small:

vi(X, s; ϵ) = v∗i (X, s) + v̂i(X, s)ϵ +O(ϵ2), (O2.3)

where v∗i (X, s) ≡ vi(X, s; 0) and v̂i(X, s) represents the first-order correction of vi(X, s; ϵ)

in ϵ.
Similarly, we can write the consumption-wealth ratio ci(X, s; ϵ) as follows:

ci(X, s; ϵ) = c∗i (X, s) + ĉi(X, s)ϵ +O(ϵ2), (O2.4)

and analogously for the remaining equilibrium variables.
The functions v∗i (X, s) and c∗i (X, s) are already known, as they correspond to the solu-

tion of the case with homogeneous beliefs and iid returns, which we characterized above.
It remains to solve for v̂i(X, s), ĉi(X, s), and the first-order correction for the other vari-
ables.

We start by providing a characterization of the households’ problem in this general
economy.

Proposition O.4. Suppose that pi
ss′ = p∗s′ + δi

ss′ϵ, α = α̂ϵ, and ξ = ξ̂ϵ. Suppose also that
β∗ < 1. Then,

i. Net-worth multiplier:

v̂i(X, s)
v∗i (X, s)

= β∗ ∑
s′∈S

ω∗
s′

[
1

1 − γ

δi
ss′

p∗s′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+ β∗v, (O2.5)
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where ω∗
s′ ≡

p∗s′ x
1−γ

s′
∑s̃∈S p∗s̃ x1−γ

s̃
,X∗ = (E∗, {ηi}I

i=1), and

v ≡ β∗

1 − β∗ ∑
s̃∈S

ω∗
s̃ ∑

s̃′∈S
ω∗

s̃′

[
1

1 − γ

δi
s̃s̃′

p∗s̃′
− Λ̂(X∗, s̃, s̃′)

Λ∗(X∗, s̃, s̃′)

]
. (O2.6)

ii. Consumption-wealth ratio:

ĉi(X, s)
c∗(X, s)

= (1 − ψ)
v̂i(X, s)
v̂∗(X, s)

. (O2.7)

iii. Portfolio return:
R̂n,i(X, s, s′)
R∗

p(X, s, s′)
=

1
γ

myopic +
1 − γ

γ
hedging, (O2.8)

where

myopic =

[
δi

ss′

p∗s′
− ∑

s̃′∈S
ω∗

s̃′
δi

ss̃′

p∗s̃′

]
− Λ̂(X, s, s′)

Λ∗(X, s, s′)
(O2.9)

hedging =

[
v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗
s̃

v̂i(X∗, s̃)
v∗(X, s)

]
+ ∑

s̃∈S
ω∗

s̃
Λ̂(X, s, s̃)
Λ∗(X, s, s̃)

. (O2.10)

Proof. See Online Appendix O3.4.

Proposition O.4 provides asymptotic closed-form solutions to the value function and
policy functions. The net-worth multiplier v̂i(X, s) is high when investor i is relatively
optimistic and state-prices are relatively low. The effect of beliefs can be seen by writing
the term involving δi

ss′ as follows:

∑
s′∈S

ω∗
s′

1
1 − γ

δi
ss′

p∗s′
= ∑

s′∈S
p∗s′

1
1 − γ

x1−γ
s′

E∗[x1−γ
s′ ]

δi
ss′

p∗s′
= Cov∗

(
1

1 − γ

x1−γ
s′

E∗[x1−γ
s′ ]

,
δi

ss′

p∗s′

)
, (O2.11)

using the fact that ∑s′∈S p∗s′
δi

ss′
p∗

s′
= 0. The covariance above will be positive when δi

ss′ is
on average positive when xs′ is high, i.e. the covariance is increasing in how optimistic
investor i is.

The term involving Λ̂(X, s, s′) captures the effect of changes in the SDF on the portfolio
return that can be achieved by the household:

1 = Es
[
Λ(X, s, s′; ϵ)Ri,n(X, s, s′; ϵ)

]
⇒ ∑

s′∈S
ω∗

s′
R̂i,n(X, s, s′)
R∗

i,n(X, s, s′)
= − ∑

s′∈S
ω∗

s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.12)
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Hence, if ∑s′∈S ω∗
s′

Λ̂(X,s,s′)
Λ∗(X,s,s′) is negative, then the household is able to achieve higher weighted

portfolio returns in the ϵ > 0 economy.

Given v̂i(X, s), we can characterize the policy functions. The consumption-wealth ratio ĉi(X, s)
is proportional to v̂i(X, s). If ψ > 1, such that the substitution effect on savings dominates, house-

holds save a larger fraction of their wealth when average portfolio returns are high.

As in the continuous-time model of Merton (1992), portfolio returns have two components:

the myopic demand and the hedging demand. The myopic demand depends on current market con-

ditions, while the hedging demand depends on future expected returns as captured by v̂i(X∗, s′).
We consider next the labor market outcomes and firms’ profits.

Proposition O.5 (Hours, wages, and profits). Suppose that pi
ss′ = p∗s′ + δi

ss′ϵ, α = α̂ϵ, and ξ = ξ̂ϵ.
Suppose also that β∗ < 1. Then,

i. Wages:

ŵ(E) = ξ̂

(
α̂E
ξ̂

) ν
1+ν

. (O2.13)

ii. Hours:

ĥ(E) =
(

α̂E
ξ̂

) 1
1+ν log

(
α̂E
ξ̂

)
(1 + ν)2 α̂. (O2.14)

iii. Profits:

π̂(X, s) =

[
xs

log
(
α̂E/ξ̂

)
1 + ν

− E

]
α̂. (O2.15)

Proof. See Online Appendix O3.5

We consider next the behavior of the price of the surplus claim and the riskless asset.

Proposition O.6 (Asset Prices). Suppose that pi
ss′ = p∗s′ + δi

ss′ϵ, α = α̂ϵ, and ξ = ξ̂ϵ. Suppose also that
β∗ < 1. Then,

i. Price of surplus claim:

P̂(X, s)
P∗(X, s)

=

[
log(α̂E/ξ̂)− E

xs

]
α̂

1 + ν
+ (ψ − 1)

I

∑
i=1

ηi
v̂i(X, s)
v∗(X, s)

. (O2.16)

ii. Return on the surplus claim:

R̂p(X, s, s′)
R∗

p(X, s, s′)
=

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
+ (ψ − 1)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
.

(O2.17)

iii. Risk-free rate:
R̂b(X, s)
R∗

b(X, s)
= − ∑

s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.18)
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iv. Conditional risk premium:

R̂E(X, s)
R∗

E(X, s)
= ∑

s′∈S

p∗s′xs′

E∗[xs′ ]

R̂E(X, s, s′)
R∗

E(X, s, s′)
− R̂b(X, s)

R∗
b(X, s)

, (O2.19)

where RE(X, s; ϵ) = E∗
[

RE(X,s,s′;ϵ)
Rb(X,s;ϵ)

]
.

Proof. See Online Appendix O3.6

The next proposition provides the law of motion of the aggregate state variables.

Proposition O.7 (Aggregate state variables.). Suppose that pi
ss′ = p∗s′ + δi

ss′ϵ, α = α̂ϵ, and ξ = ξ̂ϵ.
Suppose also that β∗ < 1. Then,

i. Wealth distribution:

η̂′
i(X, s, s′)

ηi
=

R̂i,n(X, s, s′)
R∗

i,n(X, s, s′)
−

I

∑
j=1

ηi
R̂j,n(X, s, s′)
R∗

j,n(X, s, s′)
− ((β∗)−1 − 1)

(
ĉi(X, s)
c∗i (X, s)

−
I

∑
j=1

ηj
ĉj(X, s)
c∗j (X, s)

)
+ κ

µi − ηi

ηi
.

(O2.20)

ii. Risk-neutral expectation of productivity growth:

Ê′(X, s)
E∗ =

R̂b(X, s)
R∗

b(X, s)
+ ∑

s′∈S
ω∗

s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.21)

Proof. See Online Appendix O3.7.

Propositions O.4 to O.7 characterize the behavior of all equilibrium objects given the econ-

omy’s SDF Λ̂(X, s, s′). The next proposition provides an expression for Λ(X, s, s′) in terms of the

primitives of the economy.

Proposition O.8 (The economy’s SDF). Suppose that pi
ss′ = p∗s′ + δi

ss′ϵ, α = α̂ϵ, and ξ = ξ̂ϵ. Suppose
also that β∗ < 1. Then, the economy’s SDF is given by

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)− (γ−ψ−1)

[
ω∗bΛ(X, s)− β∗ω∗ · bΛ(X∗, s′) + β∗ ∑̃

s∈S
ωs̃(ω

∗ · bΛ(X∗, s̃))

]
,

(O2.22)
where

bΛ(X, s, s′) =
1
γ

δss′(X)

p∗s′
− ψ − γ−1

γ − 1

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗

s̃ (ω
∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O2.23)

Proof. See Online Appendix O3.8.

A particularly simple special case is given by the case of CRRA preferences, i.e. γ = ψ−1.
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Corollary 6. Suppose γ = ψ−1. Then,

i. SDF:
Λ̂(X, s, s′)
Λ∗(X, s, s′)

=
δss′(X)

p∗s′
− γ

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
. (O2.24)

O2.2 Special cases

Consider the special case where δi
ss′ = 0 for all i ∈ I and s, s′ ∈ S . In this case, investors still have

common iid beliefs, but returns will not be iid due to the fact that labor is chosen one period in

advance.

In this case, the economy’s is given by

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= ψ−1
[

log
E
E∗ +

E∗

xs′
− E

xs

]
α̂

1 + ν
− (γ − ψ−1)(1 − β∗) ∑̃

s′
ω∗

s̃′

(
E∗

xs̃′
− E∗

xs′

)
α̂

1 + ν
.

(O2.25)

The interest rate is given by

R̂b(X, s)
R∗

b(X, s)
= − ∑

s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.26)

O2.3 Conditional moments

Consider the conditional risk premium

Re
p(X, s; ϵ) ≡ ∑

s′∈S
p∗s′

Rp(X, s, s′; ϵ)

Rb(X, s; ϵ)
. (O2.27)

Expanding the expression above in ϵ, we obtain

R̂e
p(X, s)
Re,∗

p
= ∑

s′∈S

p∗s′R
∗
p(X, s, s′)

∑s̃′∈S p∗s̃′R
∗
p(X, s, s̃′)

[
R̂p(X, s, s′)
R∗

p(X, s, s′)
− R̂b(X, s)

R∗
b(X, s)

]
= ∑

s′∈S

ps′xs′

E∗[xs′ ]

R̂p(X, s, s′)
R∗

p(X, s)
− R̂b(X, s, s′)

R∗
b(X, s)

.

(O2.28)

The conditional volatility of excess returns is given by

σp(X, s; ϵ) ≡
[

∑
s′∈S

ps′
(

Re
p(X, s, s′; ϵ)− Re

p(X, s; ϵ)
)2
] 1

2

. (O2.29)

Expanding the expression above in ϵ, we obtain

σ̂p(X, s)
σ∗

p (X, s)
=

1
σ∗

p (X, s)2 ∑
s′∈S

ps′
(

Re,∗
p (X, s, s′)− Re,∗

p (X, s)
) (

R̂e
p(X, s, s′)− R̂e

p(X, s)
)

, (O2.30)

where R̂e
p(X, s, s′) = R̂e,∗

p (X, s, s′)
(

R̂p(X,s,s′)
R∗

p(X,s,s′) −
R̂b(X,s)
R∗

b (X,s)

)
.
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O2.4 Stock prices in the log economy

Suppose ψ = γ = 1 and that investors have homogeneous iid beliefs, δi
ss′ = 0. The stock price

satisfies the following recursion:

Q(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
[
π(E′(X, s), s′) + xs′Q(X′, s′)

]
, (O2.31)

where π(E, s) =
(

αE
ξ

) α
1+ν−α xs

[
1 − α

xs
E
]

and pss′Λ(X, s, s′) = pss′(X) β
xs′

(
E

E′(X,s)

) α
1+ν−α 1+ν−α E

xs

1+ν−α
E′(X,s)

xs′
.

Define the price-dividend ratio q(X, s) = xs
Q(X,s)
π(X,s) . The price-dividend ratio satisfies the recur-

sion:

q(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
[
π(E′(X, s), s′) + xs′Q(X′, s′)

]
, (O2.32)

We can then write the expression above as follows:

q(X, s) = β ∑
s′∈S

pss′(X)
1 + ν − α E

xs

1 + ν − α E′(X,s)
xs′

1 − α E′(X,s)
xs′

1 − α E
xs

[
1 + q(X′, s′)

]
. (O2.33)

Let’s assume that ν = νϵ. We can then write q(X, s; ϵ) as follows

q(X, s; ϵ) =
∞

∑
k=0

qk(X, s)ϵk. (O2.34)

Define g(X, s, s′; ϵ) ≡ 1+ν−α E
xs

1+ν−α
E′(X,s)

xs′

1−α
E′(X,s)

xs′
1−α E

xs
. We can expand g(X, s, s′) as follows

g(X, s, s′; ϵ) =
∞

∑
k=0

gk(X, s, s′)ϵk, (O2.35)

where g0(X, s, s′) = 1 and, for k > 0, we obtain

gk(X, s, s′) =
ανk

(
E′(X,s)

xs′
− E

xs

)
(

1 − α E
xs

) (
α E′(X,s′)

xs′
− 1
)k (O2.36)

This gives the following recursion for qk(X, s):

qk(X, s) = β ∑
s′∈S

pss′(X)

[
gk(X, s) +

k

∑
j=0

gj(X, s)qk−j(X′, s′)

]
. (O2.37)

Under our assumptions, the risk-neutral expectation of productivity growth is constant
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E′(X, s) = E. In this case, we can write the recursion

Q(X, s) = β

(
1 − α

1 + ν

E
xs

)
∑

s′∈S

p∗s′xs′

xs′ − α
1+ν E

[
Q(X, s′) +

(
αE
ξ

) α
1+ν−α

(
1 − α

E
xs′

)]

Let Q̃(X, s) ≡ Q(x,s)

1− α
1+ν

E′(X,s)
xs

, Q̃(X) ≡ [Q̃(X, 1), . . . , Q̃(X, N)]′, and bQ ≡

β
(

αE
ξ

) α
1+ν−α

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

. Then, we can write

[
I − β1N(p∗)′

]
Q̃(X) = bQ1N , (O2.38)

Inverting the matrix above, we obtain

Q(X, s) =

[
β

1 − β

(
αE
ξ

) α
1+ν−α

∑
s′∈S

p∗s′
xs′ − αE

xs′ − α
1+ν E

](
1 − α

1 + ν

E
xs

)
. (O2.39)

The price-dividend ratio is given by

xsQ(X, s)
π(X, s)

=
β

1 − β ∑
s′∈S

p∗s′
xs′ − αE

xs′ − α
1+ν E

xs − α
1+ν E

xs − αE
. (O2.40)

Equity returns are given by

RE(X, s, s′) =
π(E, s′) + x′Q(X, s′)

Q(X, s)
=

xs′

β

 1 − β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

1 − α E
xs′

1 − α
1+ν

E
xs

+ β
1 − α

1+ν
E

xs′

1 − α
1+ν

E
xs

 . (O2.41)

Excess returns are given by

Re
E(X, s, s′) = aExs′ + bE, (O2.42)

where

aE ≡ 1(
1 − α

1+ν

)
E

 1 − β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

 (O2.43)

bE ≡ (O2.44)

The conditional risk premium is given by

RE(X, s) =
1(

1 − α
1+ν

)
E


 1 − β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

E[xs′ ]−

 (1 − β)(1 + ν)

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

 α

1 + ν
E

− 1.

(O2.45)
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We can write the expression above as follows:

RE(X, s) =
1(

1 − α
1+ν

)
E


 1 − β

1 − ν ∑s′∈S
p∗s′

α
1+ν E

xs′− α
1+ν E

+ β

E[xs′ ]−

 (1 − β)(1 + ν)

1 − ν ∑s′∈S
p∗s′

α
1+ν E

xs′− α
1+ν E

+ β

 α

1 + ν
E

− 1.

(O2.46)

O2.5 Quantitative implications

Let zt denote demeaned log productivity growth, which we assume follows an AR(1) process:

zt+1 = ρzt + σ
√

1 − ρ2ϵt+1, (O2.47)

where ϵt+1 follows a standard normal distribution and it is serially uncorrelated. In levels, the

(gross) productivity growth is given by xt = eµ+zt , where µ denotes average productivity growth.

We discretize the process above following the method of Rouwenhurst (1995). Let ẑt denote

the discretized variable taking values in the equally-spaced grid {z1, . . . , zN}, where zi = −ψ +
2ψ

N−1 (i − 1), so z1 = −ψ and zN = ψ. We set ψ ≡ σ
√

N − 1, so we match the unconditional

variance.

O2.6 A more general process for productivity growth

Discretization. The evolution of x̂t, under subjective beliefs, can be written in a convenient

matrix form: [
x̂t+1

ẑi,t+1

]
=

[
wt+1

0

]
+

[
θi 1

0 0

] [
x̂t

ẑi,t

]
+

[
σi,u 0

0 σv

] [
ui,t+1

vt+1

]
, (O2.48)

where ẑi,t ≡ Ei,t[x̂t+1] − θi x̂t. We recover objective beliefs in the special case θi = σv = 0.

As wt+1 follows a Markov chain, the process above corresponds to a Markov-switching vec-

tor autoregression (MS-VAR), with state-dependent conditional means. To discretize the sys-

tem above, we adapt the methods of Gospodinov and Lkhagvasuren (2014), who extended the

Rouwenhurst (1995) method to VARs, and Liu (2017), who proposed a discretization of univariate

Markov-Switching models. The discretization provides a state space with dimension S for xt, so

xt ∈ X = {x1, x2, . . . , xS}, and transition probabilities {pi
ss′}, for s, s′ ∈ S = {1, 2, . . . , S}, that ap-

proximate the MS-VAR (O2.48). Notice that our discretization implies that the grid X is the same

for all investors, so they agree on the state s, but they disagree on the transition probabilities pi
ss′ .

Let x̂t ≡ log xt − µ denote the demeaned log productivity growth. We assume that investor i
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believes the process for x̂t is given by

x̂t+1 = Ei,t[x̂t+1] + σi,uui,t+1 (O2.49)

Ei,t[x̂t+1] = θi x̂t + σvvi,t, (O2.50)

vi,t = vt + ṽi,t, where ui,t and vt are mutually independent, serially uncorrelated, standard normal

random variables. Notice that ui,t+1 represents the period t + 1 innovation according to investor

i and vt represents an expectation shock. We assume that this expectation shock is common across

investors, so heterogeneity comes only from θi.

The presence of this expectation shock is important to quantitatively match the volatility of

expectations in the data. To see the role of vt, notice that the unconditional variance of x̂t+1 and

Et[x̂t+1] are given by

Var[x̂t+1] =
σ2

i,u + σ2
v

1 − θ2
i

, Var[Et[x̂t+1]] =
θ2

i σ2
i,u + σ2

v

1 − θ2
i

. (O2.51)

The fraction of total variance explained by movements in expectations is given by

Var[Et[x̂t+1]]

Var[x̂t+1]
= θ2

i + (1 − θ2
i )

σ2
v

σ2
i,u + σ2

v
. (O2.52)

Hence, by adjusting σv, it is possible to obtain any value in the interval [θ2
i , 1) for the fraction of

variance explained by movements in expectations. In the special case σv = 0, we obtain an AR(1)

process for x̂t+1, which achieves the lower bound of this interval.

Discretization. We discretize the process above using the generalization of the method of

Rouwenhurst (1995) proposed by Gospodinov and Lkhagvasuren (2014). The method consists

of mixing the distribution for independent AR(1) processes to approximate the distribution of a

VAR(1) with uncorrelated shocks. Define ẑt ≡ Ei,t[x̂i,t]− θi x̂t, so we can write the system above in

matrix form: [
x̂t+1

ẑt+1

]
=

[
θ 1

0 0

] [
x̂t

ẑt

]
+

[
σu 0

0 σv

] [
ut+1

vt+1

]
, (O2.53)

where we dropped the dependence on the investor i to ease notation. Given this representation,

we can construct the discrete approximation following the three steps described below.

Step 1: grid construction. We construct the grids for x̂ and ẑ as in Rouwenhurst (1995). Let

x̂(Nx, σx) = {x1, x2, . . . , xNx} denote the grid for x̂, where

x̂i = −ψx(Nx, σx) + 2ψx(Nx, σx)
i − 1

Nx − 1
, (O2.54)

ψx(Nx, σx) ≡ σx
√

Nx − 1, and σx denotes the unconditional standard-deviation for x̂t. Notice that
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the grid is equally spaced, x1 = −ψx(Nx, σx), and xNx = ψx(Nx, σx). The grid for ẑ is constructed

analogously.

Step 2: transition matrix for independent AR(1). Let Π(N, ρ, σ) denote the N × N transition ma-

trix for the Rouwenhurst (1995) approximation of an AR(1) process with autocorrelation ρ and

unconditional variance σ2. We denote the k-th row of this matrix by

πk(N, ρ, σ) = {πk,1(N, ρ, σ), πk,2(N, ρ, σ), . . . , πk,N(N, ρ, σ)}, (O2.55)

where πk,l(N, ρ, σ) is the probability of transitioning from state k to state l. In the special case

where ρ = 0, the transition probability is independent of the current state, so we can write

πk,j(N, 0, σ) = π j(N, σ).

Step 3: Markov chain construction. Given Nx points in the grid for x̂ and Nz points in the grid

for ẑt, we have a total of S = Nx × Nz states. Denote the state space by S = {1, 2, . . . , S}. Let

s = i + (k − 1) × Nx and s′ = j + (l − 1) × Nx, where i, j ∈ {1, . . . , Nx} and k, l ∈ {1, . . . , Nz}.

Denote the probability of x̂t+1 = xj given state s by px
s (j) and the probability of ẑt+1 = zl given

state s by pz
s(l). As x̂t+1 and ẑt+1 are conditionally independent, the probability of switching from

state s to state s′ is given by

pss′ = px
s (j)× pz

s(l). (O2.56)

As z is serially uncorrelated, we have that pz
s(l) = πl(Nz, σz). The transition probability for x̂t

will be obtained by appropriately mixing the distribution of an AR(1) process with autocorrelation

ρx ≡
√

1 − σ2
u

σ2
x

and unconditional variance σ2
x .

Let µx(s) ≡ θx̂i + ẑk denote the conditional expectation of x̂ at state s. Suppose first that

µx(s) ∈ [ρxx1, ρxxNx ]. Define the probability of x̂t+1 = xj given state s as follows:

px
s (j) = λ(ρx)πι,j(Nx, ρx, σx) + (1 − λ(ρx))πι+1,j(Nx, ρx, σx), (O2.57)

where ι is such that ρxxι ≤ µx(s) ≤ ρxxι+1 and λ(ρx) ≡ ρxxι+1−µx(s)
ρxxι+1−ρxxι .

This choice of λ(ρx) implies that we match the conditional moments:

Nx

∑
j=1

px
s (j)xj = λ(ρx)ρxxι + (1 − λ(ρx))ρxxι+1 = µx(s). (O2.58)

The conditional second moment is given by

Nx

∑
j=1

px
s (j)(xj)2 = σ2

x(1 − ρ2
x) + ρ2

x

[
λ(ρx)(yι)2 + (1 − λ(ρx))(yι+1)2

]
. (O2.59)
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Denote the conditional variance of the discrete process by σ̃2
u , which is given by

σ̃2
u = σ2

x(1 − ρ2
x) + ρ2

x

[
λ(ρx)(yι)2 + (1 − λ(ρx))(yι+1)2

]
− ρ2

x

[
λ(ρx)yι + (1 − λ(ρx))yι+1

]2

= σ2
x(1 − ρ2

x) + ρ2
xλ(ρx)(1 − λ(ρx))(xι+1 − xι)2

= σ2
x(1 − ρ2

x) + σ2
x ρ2

x
4λ(ρx)(1 − λ(ρx))

Nx − 1
, (O2.60)

using the fact that (xi+1 − xi)2 = 4σ2
x

N−1 . As Nx → ∞, the second term on the right converges to

zero and σ̃u = σ2
x(1 − ρ2

x) = σ2
u , given our choice of ρx. If µx(s)/ρx does not belongs to the grid

of x̂, then the discretization matches the conditional mean of x̂, but it overstates the conditional

variance.

Suppose now that µx(s) /∈ [ρxx1, ρxxNx ]. In this case, we set px
s (j) = π1,j(Nx, ρx, σx) if µx(s) <

ρxx1 and px
s (j) = πNx ,j(Nx, ρx, σx) if µx(s) > ρxxNx . In both cases, the conditional variance is

matched exactly and the conditional mean achieves the value closest to µx(s) given the grid points.

A different representation. An equivalent representation of the system is given by

x̂t+1 = zt + σuut+1 (O2.61)

zt+1 = θizt + θiσuut+1 + σvvt+1, (O2.62)

where zt ≡ Ei,t[x̂t+1]. Hence, expected growth follows an AR(1) process and it is exposed to

both expectation shocks, vt+1, and shocks to realized growth rates, ut+1. Notice that we cannot

independently choose the persistence of expectations and the correlation between zt+1 and x̂t+1.

The impact of vt in expected future growth is

∂Et[x̂t+k]

∂vt
= σvθk−1

i , (O2.63)

for k ≥ 1.

O2.7 A process with richer heterogeneity

Under the objective measure, log productivity follows a Markov-Switching process:

log(xt+1) = µt+1 + θ(log(xt)− µt) + ut+1, (O2.64)

where ut+1 ∼ N (0, σ2
u) and µt+1 follows a two-state Markov chain, that is, µt+1 ∈ {µ1, µ2} and

Pr(µt+1 = µj|µt = µi) = pµ
ij for i, j ∈ {1, 2}. The different regimes enable us to capture the fact that

productivity is subject to small fluctuations most of the time with occasional rare large shocks.
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Under subjective beliefs, productivity follows the process

log(xt+1) = µt+1 + θi(log(xt)− µt) + vi,t + ui,t+1, (O2.65)

where ui,t+1 ∼ N (0, σ2
i,u), vi,t = ρσi,vvt +

√
1 − ρ2σi,vv̂i,t, and (vt, vi,t) are iid standard normal

random variables. We assume that (ui,t, v̂i,t, vt) are mutually independent.

Subjective beliefs differ from the objective one in two important dimensions. First, the persis-

tent parameter θi may differ from the objective one θ. Second, subjective beliefs are exposed to

expectation shocks vi,t. These expectations shocks are exposed to a common component vt and

an investor-specific component vi,t. Differences in θi capture the fact that investors differ on how

they react to news, with some investors extrapolating and some investors under-reacting. The

expectation shocks vi,t are important to capture the volatility of subjective expectations observed

in the data.

Define x̂t ≡ log(xt)− µt and the vector v̂t = [v̂1,t, . . . , v̂I,t]
′. Investor i believes that [x̂t, vt, v̂t]

follows the process:

x̂t+1

vt+1

v̂t+1

 =

 θi ρσi,v
√

1 − ρ2σi,ve′i
0 0 01×I

0I×1 0I×1 0I×I


x̂t

vt

v̂t

+

ui,t+1

vt+1

v̂t+1

 (O2.66)

Notice that the total variance and the variance of the conditional expectation are given by

Var[x̂t+1] =
σ2

i,u + σ2
i,v

1 − θ2
i

, Var[Et[x̂t+1]] =
θ2

i σ2
i,u + σ2

i,v

1 − θ2
i

. (O2.67)

The fraction of total variance explained by movements in expectations is given by

Var[Et[x̂t+1]]

Var[x̂t+1]
= θ2

i + (1 − θ2
i )

σ2
i,v

σ2
i,u + σ2

i,v
. (O2.68)

O2.8 A more general process for productivity growth

Let x̂t ≡ log xt − µ denote the demeaned log productivity growth. We assume that x̂t follows the

process:

x̂t+1 = zt + σx

[√
1 − ρ2

xzut+1 + ρxzvt+1

]
(O2.69)

zt+1 = θzzt + σzvt+1, (O2.70)

where ut and vt are standard normal random variables, serially uncorrelated, and uncorrelated

with each other. Notice that Et[xt+1] = zt, so zt corresponds to expected productivity growth. The

disturbance vt+1 can then be interpreted as expectations shocks. These expectations shocks are
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potentially correlated with cash-flow shocks, with correlation coefficient ρxz. In the long-run risk

literature, vt+1 is referred to as a long-run risk shock, while ut+1 corresponds to a short-run risk

shock.

The ARMA(1,1) case. Suppose ρxz = 1. This implies that the process for x̂t specializes to

x̂t+1 = θz x̂t + σxvt+1 − (θzσx − σz)vt, (O2.71)

which is an ARMA(1,1) process. If we further assume that σz = θzσx, then we obtain an AR(1)

process.

Notice that we can write the conditional expectation of xt+1 as follows

Et[xt+1] = θz x̂t − b
x̂t − Et−1[xt]

σx
⇒ Et[xt+1] =

θz − b/σx

1 − bL
x̂t. (O2.72)

where b ≡ θzσx − σz and L is the lag operator.

Define ŵt as follows

ŵt ≡
x̂t

1 − bL
=

∞

∑
j=1

bj x̂t−j. (O2.73)

Unconditional moments. The unconditional variance of zt+1 is given by

Var[zt+1] =
σ2

z
1 − θ2

z
, (O2.74)

and the unconditional variance of x̂t+1 is given by

Var[x̂t+1] = E [Vart[x̂t+1]] + Var[Et[x̂t+1]] = σ2
x +

σ2
z

1 − θ2
z

. (O2.75)

In this general case, we can choose θz and σz to match the persistence and variance of expecta-

tions and choose σ2
x to match the unconditional variance of productivity growth. The parameter

ρxz controls the correlation between expected and realized productivity growth.

In the special case ρxz = 1 and σz = θzσx. This allows us to match the persistence of expec-

tations and either the unconditional variance of expected productivity growth or unconditional

variance of realized productivity growth.

If σz = θzσx, then

Var[zt+1] = θ2
z

σ2
x

1 − θ2
z
= θ2

z Var[xt+1]. (O2.76)
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Discretization of the productivity growth process. Using the process for zt+1 to eliminate

vt+1 from the expression for x̂t, we obtain

x̂t+1 = θ−1
z zt+1 +

(
ρxzσx

σz
− 1

θz

)
(zt+1 − θzzt) + σx

√
1 − ρ2

xzut+1. (O2.77)

Given zt, zt+1, and ut+1, this allow us to solve for x̂t+1. Suppose zt takes on Nz discrete values

and ut takes on Nu values. This implies that x̂t can take on N ≡ N2
z × Nu values. If we impose

the constraint ρxz = 1, then x̂t+1 is independent of ut+1, so x̂t takes on N2
z possible values. If we

further assume that σz = θzσx, then x̂t can take only Nz values.

The current value of x̂ is determined by (zt−1, zt, ut) = (zi, zj, uk), where i, j ∈ {1, . . . , Nz} and

k ∈ {1, . . . , Nu}. We can define the current state as a function of (i, j, k): s = i + (j − 1)Nz + (k −
1)N2

z . The transition matrix is then given by

Pr(s′ = i′ + (j′ − 1)Nz + (k′ − 1)N2
z |s) =

{
Pr(z′ = zj′ |z = zj)Pr(u′ = uk), if i′ = j

0, if i′ ̸= j
, (O2.78)

where s = i + (j − 1)Nz + (k − 1)N2
z .

We can write the system above in matrix form:[
x̂t+1

zt+1

]
=

[
0 1

0 θz

] [
x̂t

zt

]
+

[
σx 0

ρxzσz
√

1 − ρ2
xzσz

] [
ut+1

vt+1

]
. (O2.79)

Notice that the spectral decomposition of the matrix of coefficients is given by[
0 1

0 θz

]
=

[
1 1

θz 0

] [
θz 0

0 0

] [
0 θ−1

z

1 −θ−1
z

]
. (O2.80)

Define the following transformed variables:[
w1,t

w2,t

]
≡
[

0 θ−1
z

1 −θ−1
z

] [
xt − µ

zt

]
. (O2.81)

The difference equation for wt is given by[
w1,t+1

w2,t+1

]
=

[
θz 0

0 0

] [
w1,t

w2,t

]
+

[
ρxz

σz
θz

√
1 − ρ2

xz
σz
θz

σx − ρxz
σz
θz

−
√

1 − ρ2
xz

σz
θz

] [
ut+1

vt+1

]
. (O2.82)

We can write the original variables in terms of w1,t and w2,t:

log xt = µ + w1,t + w2,t, zt = θzw1,t (O2.83)
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We can then discretize w1,t and w2,t.

w2,t+1 =
√

1 − ρ2
xzσxut+1 + (ρxzσx − σzθ−1

z )vt+1 (O2.84)

w1,t+1 = θzw1,t + σzθ−1
z ut+1 (O2.85)

xt+1 = µ + w1,t+1 +
√

1 − ρ2
xzσx(w1,t+1 − θzw1,t)

θz

σz
+ (ρxzσx − σzθ−1

z )vt+1. (O2.86)

O3 Proofs

O3.1 Proof of Proposition O.1

Proof. We provide the characterization of the economy with N-possible states in steps, proceeding

from the households’ problem to the market clearing conditions.

Step 1: households’ problem. Household i chooses consumption Ci, hours hi, and arrow

securities Bi(X, s, s′) to maximize (3) subject to the budget constraint:

Ci + Es[Λ(X, s, s′)Bi(X, s, s′)] = Bi + Whi, (O3.1)

and an appropriate No-Ponzi condition.

As in the two-state case, it is useful to transform this budget constraint in terms of net con-

sumption and total wealth:

C̃i + Es

[
Λ′
(

B′
i + W ′h′i − ξ ′

(h′i)
1+ν

1 + ν
+H′

i

)]
= Bi + Whi − ξ

h1+ν
i

1 + ν
+Hi ≡ Ni, (O3.2)

where we used the fact that Hi = Es

[
Λ′
(

W ′h′i − ξ ′ (h
′
i)

1+ν

1+ν +H′
i

)]
and C̃i = Ci − ξ

h1+ν
i

1+ν .

We can then write the budget constraint above as follows

C̃i + Es
[
Λ′N′

i
]
= Ni. (O3.3)

The household’s problem can then be equivalently expressed as choosing

(C̃i(N, X, s), N′
i (N, X, s, s′)) to maximize (3) subject to the constraint above and the natural

borrowing limit N′
i (N, X, s, s′) ≥ 0. The solution takes the form in Equation (??). It will be useful

to define the consumption-wealth ratio ci ≡ C̃i
N and the normalized net worth n′

i ≡
N′

i
Ni

. Define the

portfolio return as Ri,n(X, s, s′) ≡ n′
i(X,s,s′)

1−ci(X,s) , which gives the budget constraint n′ = R′
i,n(1− c). The
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function vi(X, s) must then satisfy the condition

(vi(X, s)N)1−ψ−1 − 1
1 − ψ−1 = max

ci ,n′
i

(1 − β)
(ciN)1−ψ−1 − 1

1 − ψ−1 + β
Ei
[
(vi(X′, s′)n′N)1−γ

] 1−ψ−1
1−γ − 1

1 − ψ−1 , (O3.4)

subject to n′ = R′
n(1 − ci), Es[Λ′R′

n] = 1, and n′ ≥ 0.

Step 2: optimality conditions. The first-order conditions for the consumption-wealth ratio

and the portfolio share are given by

(1 − β)c−ψ−1

i = βRi(X, s)1−ψ−1
(1 − ci)

−ψ−1
(O3.5)

pi
ss′vi(X′, s′)1−γR′

i,n(X, s, s′)−γ = pss′Λ(X, s, s′)µ(X, s), (O3.6)

where Ri(X, s) = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))1−γ|X, s

] 1
1−γ and µ(X, s) is the (normalized) multiplier

on the constraint on returns. From the first-order condition for consumption, we obtain Equation

(A.10). The envelope condition is given by

vi(X)1− 1
ψ = (1 − β)c

− 1
ψ

i ⇒ vi(X)1−γ = (1 − β)θc
− θ

ψ

i . (O3.7)

Notice that the multiplier is given by

µ(X, s) = Ei[(vi(X, s′)R′
i,n(X, s, s′))1−γ] = Ri(X, s)1−γ =

(
1 − β

β

)θ [ ci

1 − ci

]− θ
ψ

. (O3.8)

Combining the previous two expressions above with the first-order condition for R′
i,n, we ob-

tain

pss′Λ(X, s, s′) = pi
ss′
(1 − β)θ(c′i)

− θ
ψ R′

i,n(X, s, s′)−γ(
1−β

β

)θ [ ci
1−ci

]− θ
ψ

(O3.9)

= pi
ss′ β

θ

(
c′i N

′

ciN

)− θ
ψ

(R′
i,n)

−(1−θ), (O3.10)

≡ pi
ss′Λi(X, s, s′), (O3.11)

using the fact that θ
ψ + 1 − θ = γ.

Hence, expressions (A.10) and (11) hold unchanged with multiple states. Moreover, the

change-of-measure equation Λi(X, s, s′) = pss′
pi

ss′
Λ(X, s, s′) also holds.

Step 3: firms’ problem and labor market outcomes. The firm’s problem is essentially the

same and the first-order condition (13) holds without change. The equations for hours and wages

22



(14) are also unchanged.

Step 4: law of motion of aggregate state variables. The aggregate state variables are the

same as before. The law of motion of L is given by

E′(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

xs′ , (O3.12)

and the law of motion of ηi is unchanged.

Step 5: market clearing conditions. Notice that ∑I
i=1 µiBi must coincide with the cum-

dividend value of the firm. Hence, ∑I
i=1 µiNi coincides with the cum-dividend value of the surplus

claim, A−P(X, s), where A− denotes lagged productivity.

The market clearing condition for net consumption is then given by

I

∑
i=1

µiNici(X, s) = A−

(
xsh(E)α − ξ

h(E)1+ν

1 + ν

)
. (O3.13)

Using the fact that ∑I
i=1 µiNi = A−P(X, s), we obtain the market clearing for consumption in

Equation (18). The market clearing for Arrow securities is given by

I

∑
i=1

µiNini(X, s, s′) = xs A−P(X′, s′). (O3.14)

We can write the expression above in terms of portfolio returns:

I

∑
i=1

µiNi(1 − ci(X, s))

∑I
j=1 µjNj(1 − cj(X, s))

Rn,i(X, s, s′) =
xs A−P(X′, s′)

A−
[

P(X, s)−
(

xsh(E)α − ξ h(E)1+ν

1+ν

)] , (O3.15)

using the fact that ∑I
j=1 µjNj(1 − cj(X, s)) = A−

[
P(X, s)−

(
xsh(E)α − ξ h(E)1+ν

1+ν

)]
.

We can write the expression above as follows

I

∑
i=1

η̃iRn,i(X, s, s′) = Rp(X, s, s′), (O3.16)

for each s′ ∈ S .

O3.2 Proof of Proposition O.2

Proof. We provide next a characterization of the economy with log-utility and an arbitrary number

of states.
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Step 1: consumption and portfolio decisions. Suppose ψ = γ = 1. This implies that

ci(X, s) = 1 − β and that Λi(X, s, s′) = R−1
i,n (X, s, s′). From the change-of-measure equation, we

obtain

R−1
i,n (X, s, s′) =

pss′Λ(X, s, s′)
pi

ss′
⇒ Ri,n(X, s, s′) =

pi
ss′

pss′Λ(X, s, s′)
. (O3.17)

Step 2: the economy’s SDF. Plugging the expression for Ri,n(X, s, s′) into the market clearing

condition for Arrow securities paying off in state s′, we obtain

∑I
i=1 ηi pi

ss′

pss′Λ(X, s, s′)
= Rp(X, s, s′) ⇒ Λ(X, s, s′) =

pss′(X)

pss′
R−1

p (X, s, s′). (O3.18)

Notice that the portfolio return for household i is given by

Ri,n(X, s, s′) =
pi

ss′

pss′(X)
Rp(X, s, s′). (O3.19)

Hence, optimistic investors, i.e. investors satisfying pi
ss′ > pss′(X), hold a levered position on the

surplus claim.

Step 3: the surplus claim. From the market clearing condition for goods, we obtain

P(X, s) =
xsh(E)α − ξ h(E)1+ν

1+ν

1 − β
. (O3.20)

This implies that the return on the surplus claim is given by

Rp(X, s, s′) =
xsP(X′, s′)

P(X, s)−
(

xsh(E)α − ξ h(E)1+ν

1+ν

) =
xs

β

xs′h(E′(X, s))α − ξ h(E′(X,s))1+ν

1+ν

xsh(E)α − ξ h(E)1+ν

1+ν

. (O3.21)

Using the expression for h(E), we can simplify the expression above

Rp(X, s, s′) =
xs

β

xs′E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O3.22)

which coincides with the expression for the two-type case.

Step 4: interest rate and risk premium. Using the fact that Rb(X, s) is the risk-neutral expec-

tation of Rp(X, s, s′) and E′(X, s) is the risk-neutral expectation of xs′ , we obtain

Rb(X, s) =
(

1 − α

1 + ν

)
xs

β

E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O3.23)
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which coincides with the expression for the two-type case.

The expected return on the surplus claim is given by

Es[Rp(X, s, s′)] =
xs

β

Es[xs′ ]E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O3.24)

Taking the difference of the previous two equations, we obtain the risk premium on the surplus

claim:

Es[Re
p(X, s, s′)] =

xs

β

[Es[xs′ ]− E′(X, s)]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O3.25)

Step 5: law of motion of aggregate state variables. The risk-neutral probability is given by

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

=
pss′(X)R−1

p (X, s, s′)

∑s̃∈S pss̃(X)R−1
p (X, s, s̃)

=
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 . (O3.26)

From the law of motion of L, we obtain

E′(X, s) = ∑
s′∈S

xs′
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 . (O3.27)

Rearranging the expression above, we obtain

∑
s′∈S

pss′(X)(xs′ − E′(X, s))
xs′ − α

1+ν E′(X, s)
= 0 (O3.28)

The left-hand side is positive for E′(X, s) = x1, it is negative for E′(X, s) = xN , and it is strictly

decreasing in E′(X, s), assuming the condition xN < x1

α such that the denominator is positive in

the range x1 < E′(X, s) < xN . Therefore, a solution exists and it is unique.

The law of motion of the wealth share is given by

η′
i(X, s, s′) =

ηiRi,n(X, s, s′)

∑I
j=1 ηjRj,n(X, s, s′)

= ηi
Ri,n(X, s, s′)
Rp(X, s, s′)

= ηi
pss′

pss′(X)
. (O3.29)

O3.3 Proof of Proposition O.3

Proof. We will construct an equilibrium that has iid returns for any financial asset. We guess-and-

verify that the consumption-wealth ratio and the net-worth multiplier are constant.
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Step 1: consumption and portfolio decisions. Let the consumption-wealth ratio be given

by c∗i (X, s) = 1 − β∗, given a constant β∗ that we need to determine. Given that there is

no heterogeneity in beliefs, we obtain from the market clearing condition for Arrow securities

R∗
i,n(X, s, s′) = R∗

p(X, s, s′). Plugging c∗i (X, s) and R∗
i,n(X, s, s′) into the expression for Λ∗

i (X, s, s′),
we obtain

Λ∗
i (X, s, s′) = βθ(β∗)−

θ
ψ [R∗

p(X, s, s′)]−γ. (O3.30)

Step 2: net-worth multiplier. From the envelope condition, we obtain

v∗i (X, s)1−ψ−1
= (1 − β)c∗i (X, s)−ψ−1 ⇒ v∗i (X, s) = (1 − β)

1
1−ψ−1 (1 − β∗)

− ψ−1

1−ψ−1 . (O3.31)

Step 3: wages, hours, and profits. Using α = α̂ϵ, ξ = ξ̂ϵ, and taking the limit of the expres-

sions for wages, hours, and profits as ϵ → 0, we obtain the expressions provided in the proposi-

tion.

Step 4: The price and return on the surplus claim. For an arbitrary α and ξ, the market

clearing condition for goods implies that

P∗(X, s) =
xsE

α
1+ν−α − α

1+ν E
1+ν

1+ν−α

1 − β∗

∣∣∣∣∣
ϵ=0

=
xs

1 − β∗ . (O3.32)

The return on the surplus claim is given by

R∗
p(X, s, s′) =

xs

β∗
xs′E′(X, s)

α
1+ν−α − α

1+ν E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

∣∣∣∣∣
ϵ=0

=
xs′

β∗ . (O3.33)

Step 4: The economy’s SDF. From the pricing equation, we obtain

Ei[Λ∗
i (X, s, s′)R∗

p(X, s, s′)] = 1 ⇒ βθ(β∗)−θEi[(x′s)
1−γ] = 1 (O3.34)

Rearranging the expression above, we obtain

β∗ = βEi[(x′s)
1−γ]

1−ψ−1
1−γ . (O3.35)

Notice that the condition β∗ < 1 is required to ensure that the consumption-wealth ratio is

positive.

The SDF is then given by

Λ∗(X, s, s′) = βE∗[x1−γ
s′ ]

γ−ψ−1
1−γ (xs′)

−γ, (O3.36)
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using the fact that Λ∗(X, s, s′) = Λ∗
i (X, s, s′).

Step 6: Law of motion of aggregate state variables. The risk-neutral probability is given

by
p∗s′Λ

∗(X, s, s′)
∑s̃∈S p∗s̃ Λ∗(X, s, s̃)

=
p∗s′x

−γ
s′

E∗[x−γ
s′ ]

(O3.37)

Hence, E′(X, s) is given by

E′(X, s) =
E∗[x1−γ

s′ ]

E∗[x−γ
s′ ]

. (O3.38)

Step 5: The interest rate and risk premium on surplus claim. The interest rate and risk

premium are given by

R∗
b(X, s) =

E′(X, s)
β∗ , Re

p(X, s) =
E∗[xs′ ]− E′(X, s)

β∗ . (O3.39)

Using the expression for β∗ and E′(X, s), we can write the interest rate as follows

R∗
b(X, s) = β−1E∗[(x′s)

1−γ]
ψ−1−γ

1−γ E∗[(xs′)
−γ]−1, (O3.40)

The expected return on the surplus claim is given by

E∗
[

R∗
p(X, s, s′)

]
= β−1E∗[(x′s)

1−γ]
ψ−1−1

1−γ E∗[xs′ ] (O3.41)

and the risk premium on the surplus claim is given by

E∗
[

R∗
p(X, s, s′)
R∗

b(X, s)

]
=

E∗[xs′ ]E
∗[x−γ

s′ ]

E∗[x1−γ
s′ ]

(O3.42)

O3.4 Proof of Proposition O.4

Proof. We provide a characterization of the first-order correction for the value function, summa-

rized by the net-worth multiplier vi(X, s; ϵ), and the policy functions, namely the consumption-

wealth ratio ci(X, s; ϵ) and the portfolio return Ri,n(X, s, s′; ϵ), given the expansion for the econ-

omy’s SDF

Λ(X, s, s′; ϵ) = Λ∗(X, s, s′) + Λ̂(X, s, s′)ϵ +O(ϵ), (O3.43)

where Λ̂(X, s, s′) is the first-order correction for the SDF. We take Λ̂(X, s, s′) as given for now and

we will solve for it in a later stage.
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Step 1: value function. The Bellman equation for household i can be written as follows:

vi(X, s; ϵ)1−ψ−1

1 − ψ−1 = (1 − β)
c1−ψ−1

i
1 − ψ−1 + β

[
∑s′∈S pi

ss′(vi(X′, s′; ϵ)R′
n(1 − ci))

1−γ
] 1−ψ−1

1−γ

1 − ψ−1 (O3.44)

+ µ(X, s; ϵ)

[
1 − ∑

s′∈S
p∗s′Λ(X, s, s′; ϵ)R′

n

]
,

where X′ = χ(X, s, s′; ϵ).

Taking the derivative of the expression above with respect to ϵ and evaluating at ϵ = 0, we

obtain a condition involving the first-order correction for vi:

(v∗i )
−ψ−1

v̂i(X, s) = β

[
∑

s′∈S
p∗s′(v

∗
i R∗

p(s
′)β∗)1−γ

] γ−ψ−1
1−γ

[
∑

s′∈S
δi

ss′
(v∗i R∗

p(s′)β∗)1−γ

1 − γ
+

∑
s′∈S

p∗s′(v
∗
i )

−γ(R∗
p(s

′)β∗)1−γv̂i(X∗, s′)

]
− µ∗(X, s) ∑

s′∈S
p∗s′Λ̂1(X, s, s′)R∗

p(s
′),

(O3.45)

where we used the fact that R′
n(X, s, s′; 0) = R∗

p(X, s, s′), ci(X, s; 0) = 1− β∗. We also used
the fact that χ(X, s, s′; 0) = X∗, where X∗ = (E∗, {ηi}I

i=1) as E′(x, s) = E∗ and the wealth
distribution is constant in the benchmark economy.

Using the results for the benchmark economy, we can simplify the expression above:

v̂i(X, s) = β

[
∑

s′∈S
p∗s′x

1−γ
s′

] γ−ψ−1
1−γ

[
v∗i ∑

s′∈S
δi

ss′
x1−γ

s′

1 − γ
+ ∑

s′∈S
p∗s′x

1−γ
s′ v̂i(X∗, s′)

]
− µ∗(X, s)(v∗i )

ψ−1
∑

s′∈S
p∗s′Λ̂1(X, s, s′)Rp(s′), (O3.46)

where we used the fact that v∗(X, s) is constant and R∗
p(s′)β∗ = xs′ .

Let’s solve for µ∗(X, s) next. The first-order condition for Rn(X, s, s′; ϵ) is given by

β

[
∑

s′∈S
pi

ss′(vi(X′, s′; ϵ)R′
n(1 − ci))

1−γ

] γ−ψ−1
1−γ

pss′(vi(X′, s′)(1− ci))
1−γRn(X, s, s′)−γ = µ(X, s; ϵ)p∗s′Λ(X, s, s′; ϵ)

(O3.47)

Multiplying by Rn(X, s, s′) both sides and adding across states, we obtain

µ(X, s; ϵ) = β

[
∑

s′∈S
pi

ss′(vi(X′, s′; ϵ)R′
n(1 − ci))

1−γ

] 1−ψ−1
1−γ

. (O3.48)
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Evaluating the expression above at ϵ = 0, we obtain

µ∗(X, s) = βv∗(X, s)1−ψ−1

[
∑

s′∈S
p∗s′x

1−γ
s′

] 1−ψ−1
1−γ

. (O3.49)

Given µ∗(X, s), we obtain a system of equations for v̂i(X, s′):

v̂i(X, s)
v∗i (X, s)

− βE∗[x1−γ
s′ ]

1−ψ−1
1−γ ∑

s′∈S
ω∗

s′
v̂i(X∗, s′)
v∗(X, s)

= βE∗[x1−γ
s′ ]

1−ψ−1
1−γ

[
∑

s′∈S

ω∗
s′

1 − γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗

s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

]
(O3.50)

using the fact that Rp(s′)Λ∗(X, s, s′) =
x1−γ

s′
E∗[x1−γ

s′ ]
and the definition ω∗

s ≡ p∗s x1−γ
s

E∗[x1−γ

s′ ]
.

We will solve first for the case X = X∗. We can write the system above in matrix form:


1 − χvω∗

1 −χvω∗
2 . . . −χvω∗

N

−χvω∗
1 1 − χvω∗

2 . . . −χvω∗
N

...
... . . .

...
−χvω∗

1 −χvω∗
2 . . . 1 − χvω∗

N




v̂i(X∗,1)
v∗(X,s)
v̂i(X∗,2)
v∗(X,s)

...
v̂i(X∗,N)
v∗(X,s)

 =


bv

i,1(X∗)
bv

i,2(X∗)
...

bv
i,N(X∗)

 , (O3.51)

where χv ≡ βE∗[x1−γ
s′ ]

1−ψ−1
1−γ and

bv
i,s(X∗) ≡ χv

[
∑

s′∈S

ω∗
s′

1 − γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗

s′
Λ̂(X∗, s, s′)
Λ∗(X, s, s′)

]
. (O3.52)

Let ω∗ = [ω∗
1 , ω∗

2 , . . . , ω∗
N] denote a row vector, v̂i(X) = [v̂i(X, 1), . . . , v̂i(X, N)]′ de-

note a column vector, bv
i (X) =

[
bv

i,1(X), . . . , bv
i,N(X)

]′
denote a column-vector, and 1N

denote a N-dimensional column vector filled with ones. We can then write the expres-
sion above as follows:

[I − χv1Nω∗]
v̂i(X∗)

v∗i
= bv

i (X∗). (O3.53)

The matrix on the left-hand side corresponds to the sum of an invertible matrix and
rank-one matrix. An application of the Sherman-Morrison formula gives the inverse of
this matrix, which gives the solution

v̂i(X∗) = v∗i (X, s)
[

I +
χv

1 − χv
1Nω∗

]
bv

i (X∗) (O3.54)
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The net-worth multiplier at state (X, s) is then given by

v̂i(X∗, s)
v∗i (X, s)

= bv
i,s +

χv

1 − χv
∑
s̃∈S

ω∗
s̃ bv

i,s̃(X∗). (O3.55)

Using the expression for bv
i,s, we can write the expression above as follows

v̂i(X∗, s)
v∗i (X, s)

= χv ∑
s̃∈S

(
1s̃=s +

χv

1 − χv
ω∗

s̃

)[
∑

s′∈S

ω∗
s′

1 − γ

δi
s̃s′

p∗s′
− ∑

s′∈S
ω∗

s′
Λ̂(X∗, s̃, s′)
Λ∗(X, s, s′)

]
. (O3.56)

Taking the average of the expression above using the weights ω∗
s , we obtain

∑
s∈S

ω∗
s

v̂i(X∗, s)
v∗i (X, s)

=
χv

1 − χv
∑
s̃∈S

ω∗
s̃

[
∑

s′∈S

ω∗
s′

1 − γ

δi
s̃s′

p∗s′
− ∑

s′∈S
ω∗

s′
Λ̂(X∗, s̃, s′)
Λ∗(X, s, s′)

]
. (O3.57)

The net-worth multiplier at (X, s) is then given by

v̂i(X, s)
v∗i (X, s)

= χv

[
∑

s′∈S

ω∗
s′

1 − γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗

s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ ∑
s′∈S

ω∗
s′

v̂i(X∗, s′)
v∗(X, s)

]
(O3.58)

We can then write the expression above as follows:

v̂i(X, s)
v∗i (X, s)

= χv ∑
s′∈S

ω∗
s′

[
1

1 − γ

δi
ss′

p∗s′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+ χvv, (O3.59)

where

v ≡ χv

1 − χv
∑
s̃∈S

ω∗
s̃ ∑

s′∈S
ω∗

s′

[
1

1 − γ

δi
s̃s′

p∗s′
− Λ̂(X∗, s̃, s′)

Λ∗(X∗, s̃, s′)

]
. (O3.60)

Step 2: consumption-wealth ratio. From the envelope condition, the consumption-
wealth ratio is given by

ci(X, s; ϵ) = (1 − β)ψvi(X, s; ϵ)1−ψ. (O3.61)

The first-order correction for consumption is then given by

ĉ1(X, s) = (1 − β)ψ(v∗i (X, s))1−ψ(1 − ψ)
v̂i(X, s)
v∗i (X, s)

. (O3.62)
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Step 3: portfolio return. Using the expression for the Lagrange multiplier, we can write
the first-order condition for the portfolio return as follows

pi
ss′

p∗s′
vi(X′, s′)1−γRn(X, s, s′; ϵ)−γ = Λ(X, s, s′; ϵ) ∑

s′∈S
pi

ss′(vi(X′, s′; ϵ)Rn(X, s, s′; ϵ))1−γ

(O3.63)
Expanding the expression above in ϵ, we obtain

δi
ss′

p∗s′
+ (1 − γ)

v̂i(X∗, s′)
v∗(X, s)

− γ
R̂n,i(X, s, s′)
R∗

p(X, s, s′)
=

Λ̂(X, s, s′)
Λ∗(X, s, s′)

(O3.64)

+ ∑
s′∈S ′

p∗s′(v
∗(X, s)R∗

p(s′))1−γ

∑s̃∈S p∗s̃ (v∗(X, s)R∗
p(s̃))1−γ

[
δi

ss′

p∗s′
+ (1 − γ)

(
v̂i(X∗, s′)
v∗(X, s)

+
R̂n,i(X, s, s′)
R∗

p(X, s, s′)

)]
(O3.65)

Rearranging the expression above, we obtain

γ
R̂n,i(X, s, s′)
R∗

p(X, s, s′)
+ (1 − γ) ∑

s̃∈S ′
ω∗

s̃
R̂n,i(X, s, s̃)
R∗

p(X, s, s̃)
= bR

i (X, s, s′), (O3.66)

where

bR
i (X, s, s′) ≡ δi

ss′

p∗s′
+ (1 − γ)

v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗
s̃

[
δi

ss̃
p∗s̃

+ (1 − γ)
v̂i(X∗, s̃)
v∗(X, s)

]
− Λ̂1(X, s, s′)

Λ∗(X, s, s′)

(O3.67)

We can write the system above in matrix form:


γ + (1 − γ)ω∗

1 (1 − γ)ω∗
2 . . . (1 − γ)ω∗N

(1 − γ)ω∗
1 γ + (1 − γ)ω∗

2 . . . (1 − γ)ω∗
N

...
... . . .

...
(1 − γ)ω∗

1 (1 − γ)ω∗
2 . . . γ + (1 − ω)ω∗

N





R̂n,i(X,s,1)
R∗

p(X,s,1)
R̂n,i(X,s,2)
R∗

p(X,s,2)
...

R̂n,i(X,s,N)
R∗

p(X,s,N)

 =


bR

i (X, s, 1)
bR

i (X, s, 2)
...

bR
i (X, s, N)


(O3.68)

Denote the matrix above by A∗ and define the row vector ω∗ ≡
[ω∗(s1), ω∗(s2), . . . , ω∗(sN)] and the column-vector 1 with 1 in every entry. We can
then write A∗ as follows:

A∗ = γI + (1 − γ)1ω∗. (O3.69)
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The inverse of A∗ is given by

(A∗)−1 =
1
γ

I − 1 − γ

γ
1ω∗. (O3.70)

The portfolio return is then given by

R̂n,i(X, s, s′)
R∗

p(X, s, s′)
=

1
γ

bR
i (X, s, s′) +

1 − γ

γ ∑
s̃∈S

ω∗
s̃

Λ̂1(X, s, s̃)
Λ∗(X, s, s̃)

. (O3.71)

We can write the expression above as follows:

R̂n,i(X, s, s′)
R∗

p(X, s, s′)
=

1
γ ∑̃

s∈S
ω∗

s̃

[(
δi

ss′

p∗s′
− δi

ss̃
p∗s̃

)
− Λ̂1(X, s, s′)

Λ∗(X, s, s′)

]
+

1 − γ

γ ∑̃
s∈S

ω∗
s̃

[(
v̂i(X∗, s′)
v∗(X, s)

− v̂i(X∗, s̃)
v∗(X, s)

)
+

Λ̂1(X, s, s̃)
Λ∗(X, s, s̃)

]
.

(O3.72)
Notice that we can write the term involving v̂i(X, s) as follows

v̂i(X∗, s′)
v∗(X∗, s′)

− ∑
s̃∈S

ω∗
s̃

v̂i(X∗, s̃)
v∗(X∗, s̃)

= χv ∑
s̃∈S

ω∗
s̃ ∑

s̃′∈S
ω∗

s̃′

[
1

1 − γ

(
δi

s′ s̃′

p∗s̃′
− δi

s̃s̃′

p∗s̃′

)
−
(

Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

)]
(O3.73)

O3.5 Proof of Proposition O.5

Proof. From the expression for wages, we obtain:

w(E; ϵ) = ξ

(
α̂E
ξ̂

) ν
1+ν−α

= ξ̂

(
α̂E
ξ̂

) ν
1+ν

ϵ +O(ϵ2). (O3.74)

Hours are given by

h(E; ϵ) = exp
[

1
1 + ν − α

log
(

α̂E
ξ̂

)]
=

(
α̂E
ξ̂

) 1
1+ν

+

(
α̂E
ξ̂

) 1
1+ν log

(
α̂E
ξ̂

)
(1 + ν)2 α̂ϵ +O(ϵ2). (O3.75)

Profits are given by

π(X, s; ϵ) =

(
α̂

ξ̂

) α
1+ν−α [

xsE
α

1+ν−α − αE
1+ν

1+ν−α

]
= xs +

[
xs

log
(
α̂E/ξ̂

)
1 + ν

− E

]
α̂ϵ +O(ϵ2), (O3.76)

where we used the following Taylor expansion:

E
α

1+ν−α = 1 +
log E
1 + ν

α̂ϵ +O(ϵ2). (O3.77)
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O3.6 Proof of Proposition O.6

Proof. We derive next the expression for the price and return for the surplus claim and riskless

asset.

Step 1: price of surplus claim. The market clearing for consumption can be written as

P(X, s; ϵ)
I

∑
i=1

ηici(X, s; ϵ) =

(
α

ξ

) α
1+ν−α

[
xsE

α
1+ν−α − α

1 + ν
E

1+ν
1+ν−α

]
. (O3.78)

Expanding the expression above in ϵ, we obtain

P̂(X, s)
P∗(X, s)

+
I

∑
i=1

ηi
ĉi(X, s)
c∗(X, s)

=

[
log(α̂E/ξ̂)

1 + ν
− 1

1 + ν

E
xs

]
α̂. (O3.79)

Rearranging the expression above, and using the expression for ĉi(X, s), we obtain

P̂(X, s)
P∗(X, s)

=

[
log(α̂E/ξ̂)− E

xs

]
α̂

1 + ν
− (1 − ψ)

I

∑
i=1

ηi
v̂i(X, s)
v∗(X, s)

. (O3.80)

Step 2: return on surplus claim. The return on the surplus claim is defined as follows

Rp(X, s, s′; ϵ) =
xsP(χ(X, s, s′; ϵ), s′; ϵ)

P(X, s; ϵ)−
(

xsh(E)α − ξ h(E;ϵ)1+ν

1+ν

) . (O3.81)

Expanding the expression above in ϵ, we obtain

R̂p(X, s, s′)
R∗

p(X, s, s′)
=

P̂(X∗, s′)
P∗(X∗, s′)

−
[

P∗(X, s)
P∗(X, s)− xs

P̂(X, s)
P∗(X, s)

− 1
P∗(X, s)− xs

(
xs log

(
α̂

ξ̂
E
)
− E

)
α̂

1 + ν

]
.

(O3.82)

We can write the expression above as follows:

R̂p(X, s, s′)
R∗

p(X, s, s′)
=

P̂(X∗, s′)
P∗(X∗, s′)

−
[
(β∗)−1 P̂(X, s)

P∗(X, s)
+ (1 − (β∗)−1)

(
log
(

α̂

ξ̂
E
)
− E

xs

)
α̂

1 + ν

]
, (O3.83)

using the fact that P∗(X, s) = xs/(1 − β∗).

Using the expression for the price of the surplus claim, we obtain

R̂p(X, s, s′)
R∗

p(X, s, s′)
=

[
log(E∗/E)−

(
E∗

xs′
− E

xs

)]
α̂

1 + ν
− (1 − ψ)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
,

(O3.84)
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Step 3: interest rate. The interest rate is given by

Rb(X, s, s′; ϵ) =

[
∑

s′∈S
p∗s′Λ(X, s, s′; ϵ)

]−1

⇒ R̂b(X, s)
R∗

b(X, s)
= − ∑

s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O3.85)

Step 4: stock prices. Stock prices, normalized by current productivity, satisfy the functional

equation:

Q(X, s; ϵ) = ∑
s′∈S

p∗s′Λ(X, s, s′; ϵ)

[(
α̂

ξ̂

) α
1+ν−α (

xs′E′(X, s; ϵ)
α

1+ν−α − αE′(X, s; ϵ)
1+ν

1+ν−α

)
+ xs′Q(χ(X, s, s′; ϵ), s′; ϵ)

]
(O3.86)

For ϵ = 0, we obtain

Q∗(X, s) = ∑
s′∈S

p∗s′Λ
∗(X, s, s′)xs′

[
1 + Q∗(X∗, s′)

]
. (O3.87)

We can write the expression above as follows:

Q∗(X, s) = β∗ ∑
s′∈S

p∗s′x
1−γ
s′

E∗[x1−γ
s′ ]

[
1 + Q∗(X∗, s′)

]
⇒ Q∗(X, s) =

β∗

1 − β∗ . (O3.88)

Expanding the expression for Q(X, s), we obtain

Q̂(X, s)
Q∗(X, s)

= ∑
s′∈S

ω∗
s′

 Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ (1 − β∗)

 log
(

α̂E∗

ξ̂

)
1 + ν

− E∗

xs′

 α̂ + β∗ Q̂(X∗, s′)
Q(X∗, s)

 . (O3.89)

Evaluating the expression above at X = X∗, we obtain

[I − β∗1Nω∗] Q̂(X∗) = bQ(X∗), (O3.90)

where Q̂(X) ≡ [Q̂(X, 1), . . . , Q̂(X, N)]′, bQ(X) ≡
[
bQ(X, 1), . . . , bQ(X, N)

]′, and bQ(X, s) ≡

Q∗(X, s)∑s′∈S ω∗
s′

[
Λ̂(X,s,s′)
Λ∗(X,s,s′) + (1 − β∗)

(
log
(

α̂E∗
ξ̂

)
1+ν − E∗

xs′

)
α̂

]
.

Solving the system above, we obtain

Q̂(X∗) =
[

I +
β∗

1 − β∗ 1Nω∗
]

bQ(X∗). (O3.91)

We can then write Q̂(X, s) as follows:

Q̂(X, s)
Q∗(X, s)

= ∑
s′∈S

ω∗
s′

[
Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ β∗ Λ̂(X∗, s, s′)
Λ∗(X∗, s, s′)

+
(β∗)2

1 − β∗ ∑
s̃∈S

ω∗
s̃

Λ̂(X∗, s̃, s′)
Λ∗(X∗, s, s′)

]
+

 log
(

α̂E∗
ξ̂

)
1 + ν

− ∑
s′∈S

ω∗
s′

E∗

xs′

 α̂.

(O3.92)
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Step 5: equity returns. Equity returns are given by

RE(X, s, s′; ϵ) =
xs′Q(χ(X, s, s′; ϵ), s′) + π(E′(X, s; ϵ; ϵ), s′)

Q(X, s; ϵ)
. (O3.93)

Evaluating the expression above at ϵ = 0, we obtain

R∗
E(X, s, s′) =

xs′Q∗(X∗, s′) + π∗(E∗, s′)
Q∗(X, s; ϵ)

=
xs′

β∗ . (O3.94)

The first-order correction is given by

R̂E(X, s, s′)
R∗

E(X, s, s′)
= β∗ Q̂(X∗, s′)

Q∗(X, s)
+ (1 − β∗)

π̂(E∗, s′)
xs′

− Q̂(X, s)
Q∗(X, s)

. (O3.95)

Step 6: conditional risk premium. The conditional risk premium is defined as follows:

RE(X, s; ϵ) = ∑
s′∈S

p∗s′
[

RE(X, s, s′; ϵ)

Rb(X, s; ϵ)

]
. (O3.96)

The first-order correction is given by

R̂E(X, s)
R∗

(X, s)
= ∑

s′∈S

p∗s′xs′

E∗[xs′ ]

R̂E(X, s, s′)
R∗

E(X, s, s′)
− R̂b(X, s)

R∗
b(X, s)

. (O3.97)

O3.7 Proof of Proposition O.7

Proof. We consider next the law of motion of ηi and L.

Step 1: wealth distribution. The law of motion of ηi can be written as

η′
i(X, s, s′; ϵ)

I

∑
j=1

ηjRj,n(X, s, s′; ϵ)(1 − cj(X, s; ϵ)) = ηiRi,n(X, s, s′; ϵ)(1 − ci(X, s; ϵ)). (O3.98)

Expanding the expression above in ϵ, we obtain

η̂′
i(X, s, s′) = ηi

[
R̂i,n(X, s, s′)
R∗

i,n(X, s, s′)
−

I

∑
j=1

ηi
R̂j,n(X, s, s′)
R∗

j,n(X, s, s′)
− c∗i (X, s)

1 − c∗i (X, s)

(
ĉi(X, s)
c∗i (X, s)

−
I

∑
j=1

ηj
ĉj(X, s)
c∗j (X, s)

)]
.

(O3.99)

Using c∗i (X, s) = 1 − β∗ gives the expression in the proposition.
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Step 2: risk-neutral probability of productivity growth. The law of motion of L can be

written as

E′(X, s; ϵ) = Rb(X, s; ϵ) ∑
s′∈S

p∗s′Λ(X, s, s′; ϵ)xs′ . (O3.100)

Expanding the expression above in ϵ, we obtain

Ê′(X, s)
E∗(X, s)

=
R̂b(X, s)
R∗

b(X, s)
+ ∑

s′∈S

p∗s′Λ
∗(X, s, s′)xs′

E∗[Λ∗(X, s, s′)xs′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

(O3.101)

We can write the expression above as follows:

Ê′(X, s)
E∗ =

R̂b(X, s)
R∗

b(X, s)
+ ∑

s′∈S

p∗s′x
1−γ
s′

E∗[x1−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O3.102)

Using the definition of E∗ and ω∗
s , we obtain the expression given in the proposition.

O3.8 Proof of Proposition O.8

Proof. We consider the derivation of the economy’s SDF Λ̂(X, s, s′).

Step 1: the system of equations. The market clearing for the Arrow security paying off in

state s′ is given by

I

∑
i=1

ηi(1 − ci(X, s; ϵ))Rn,i(X, s, s′) = Rp(X, s, s′)
I

∑
i=1

ηi(1 − ci(X, s; ϵ)). (O3.103)

Expanding the expression above, we obtain

I

∑
i=1

ηiR̂n,i(X, s, s′) = R̂p(X, s, s′). (O3.104)

Using the expression for R̂n,i(X, s, s′) and R̂p(X, s, s′), we obtain

1
γ

[
δss′(X)

p∗s′
− ∑

s̃′∈S
ω∗

s̃′
δss̃′(X)

p∗s̃′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+

1 − γ

γ

[
I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗
s̃

v̂i(X∗, s̃)
v∗(X, s)

]
+ ∑

s̃∈S
ω∗

s̃
Λ̂(X, s, s̃)
Λ∗(X, s, s̃)

]
=

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
+ (ψ − 1)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
. (O3.105)
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Using the expression for v̂i(X, s), we obtain

1
γ

Λ̂(X, s, s′)
Λ∗(X, s, s′)

+
1 − γ

γ

[
β∗ ∑

s̃∈S
ω∗

s̃ ∑
s̃′∈S

ω∗
s̃′

(
Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

)
− ∑

s̃′∈S
ω∗

s̃′
Λ̂(X, s, s̃′)
Λ∗(X, s, s̃′)

]
(O3.106)

(ψ − 1)β∗
[
− ∑

s̃′∈S
ω∗

s̃′

(
Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− 1
β∗

Λ̂(X, s, s̃′)
Λ∗(X, s, s̃′)

)
+ ∑

s̃∈S
ω∗

s̃ ∑
s̃′∈S

ω∗
s̃′

Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

]
= bΛ(X, s, s′),

(O3.107)

where

bΛ(X, s, s′) ≡ 1
γ

[
δss′(X)

p∗s′
− ∑

s̃′∈S
ω∗

s̃′
δss̃′(X)

p∗s̃′

]
+

β∗

γ

[
∑
s̃∈S

ω∗
s̃ ∑

s̃′∈S
ω∗

s̃′

[
δs′ s̃′(X)

p∗s̃′
− δs̃s̃′(X)

p∗s̃′

]]
+

− ψ − 1
1 − γ ∑

s̃∈S
ω∗

s̃ ∑
s̃′∈S

ω∗
s̃′

[
δss̃′(X)

p∗s̃′
− β∗ δs′ s̃′(X∗)

p∗s̃′
+ β∗ δs̃s̃′(X)

p∗s̃′

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.108)

We can simplify the expression above as follows:

1
γ

Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ (ψ − γ−1)

[
ω∗ · Λ̂(X, s)− β∗ω∗ · Λ̂(X∗, s′) + β∗ ∑

s̃∈S
ωs̃(ω

∗ · Λ̂(X∗, s̃))

]
= bΛ(X, s, s′),

(O3.109)

where Λ̂(X, s) =
[

Λ̂(X∗,s,1)
Λ∗(X∗,s,1) , Λ̂(X∗,s,2)

Λ∗(X∗,s,2) , . . . , Λ̂(X∗,s,N)
Λ∗(X∗,s,N)

]′
and ω∗ · Λ̂(X, s) = ∑s̃′ ω∗

s̃′
Λ̂(X,s,s̃′)
Λ∗(X,s,s̃′) .

Step 2: solving the system. We can write the system above in matrix form as follows:[
γ−1 I + (ψ − γ−1)1Nω∗

]
Λ̂(X, s) = b̃Λ(X, s), (O3.110)

where b̃Λ(X, s) = [b̃Λ(X, s, 1), b̃Λ(X, s, 2), . . . , b̃Λ(X, s, N)]′ and

b̃Λ(X, s, s′) = bΛ(X, s, s′) + (ψ − γ−1)β∗
[

ω∗ · Λ̂(X∗, s′)− ∑
s̃∈S

ωs̃(ω
∗ · Λ̂(X∗, s̃))

]
(O3.111)

Applying the Sherman-Morrison formula, we can invert the system above

Λ̂(X, s) =
[
γI − (γ − ψ−1)1Nω∗

]
b̃Λ(X, s). (O3.112)
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We can then write the expression above as follows:

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)+ (γψ− 1)β∗
[

ω∗ · Λ̂(X∗, s′)− ∑̃
s∈S

ωs̃(ω
∗ · Λ̂(X∗, s̃))

]
− (γ−ψ−1)ω∗bΛ(X, s).

(O3.113)

Step 3: solving for the average Λ̂(X, s, s′). Assuming X = X∗, multiplying by ω∗
s′ , and

adding across states, we obtain

ω∗Λ̂(X∗, s) = ψ−1ω∗bΛ(X∗, s). (O3.114)

Averaging across s, we obtain

∑
s̃∈S

ω∗
s̃ [ω

∗Λ̂(X∗, s̃)] = ψ−1 ∑
s̃∈S

ω∗
s̃ [ω

∗bΛ(X∗, s̃)]. (O3.115)

We can then write Λ̂(X, s, s′) as follows

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)− (γ−ψ−1)ω∗bΛ(X, s)+ (γ−ψ−1)β∗
[

ω∗ · bΛ(X∗, s′)− ∑̃
s∈S

ωs̃(ω
∗ · bΛ(X∗, s̃))

]
.

(O3.116)

Step 4: simplifying the expression for bΛ(X, s, s′). We can write bΛ(X, s, s′) as follows:

bΛ(X, s, s′) =
1
γ

[
δss′(X)

p∗s′
− ω∗ · δs(X)

]
+

β∗

γ

[
ω∗δs′(X)− ∑̃

s
ω∗

s̃ ω∗ · δs̃(X)

]

+
ψ − 1
1 − γ

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗

s̃ (ω
∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.117)

Combining terms, we obtain

bΛ(X, s, s′) =
1
γ

δss′(X)

p∗s′
− ψ − γ−1

γ − 1

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗

s̃ (ω
∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.118)

Notice that we can Λ̂(X, s, s′) as follows:

Λ̂(X, s, s′)
Λ∗(X, s, s′)

=
Λ̂(X∗, s, s′)
Λ∗(X, s, s′)

+ ψ−1
[

log
E
E∗ −

E − E∗

xs

]
α̂

1 + ν
. (O3.119)
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O3.9 The economy with no labor frictions and iid returns

Suppose that labor can be chosen conditional on the current productivity level. In this case, the

problem of the firm can be written as

max
ht

xthα
t − wtht, (O3.120)

where wt ≡ Wt
At−1

. Labor demand takes the familiar form:

αxthα−1
t = wt ⇒ ht =

(
αxt

wt

) 1
1−α

. (O3.121)

The labor supply from households is given by

ht =

(
wt

ξ

) 1
ν

. (O3.122)

Combining labor supply and labor demand, we obtain the equilibrium hours and wages:

ht =

(
αxt

ξ

) 1
1+ν−α

, wt = ξ
1−α

1+ν−α (αxt)
ν

1+ν−α . (O3.123)

Firm’s profits are given by

πt = At−1(1 − α)

(
α

ξ

) α
1+ν−α

x
1+ν

1+ν−α
t . (O3.124)

Total surplus is given by

C̃t = At−1

[
xthα

t − ξ
h1+ν

t
1 + ν

]
= At−1

(
1 − α

1 + ν

)(
α

ξ

) α
1+ν−α

x
1+ν

1+ν−α
t . (O3.125)

Let P(X, s) denote the price of the surplus claim normalized by lagged productivity. Market

clearing condition implies that

1 − β∗ =
(

1 − α

1 + ν

)(
α

ξ

) α
1+ν−α x

1+ν
1+ν−α
s

P(X, s)
, (O3.126)

where 1 − β∗ is the consumption-wealth ratio, which we assume to be constant.
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The return on the surplus claim is given by

Rp(X, s, s′) =
xs

β∗
x

1+ν
1+ν−α

s′

x
1+ν

1+ν−α
s

=
xs′

β∗

(
xs′

xs

) α
1+ν−α

. (O3.127)
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