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Abstract

The present work introduces a new model class for random variables that have support in the
positive real line. This model is designed to explain conditional quantiles and provides an
alternative approach for modeling data with asymmetric behavior and heavy tails. Specifically,
we present a novel autoregressive moving average model based on the τ–th quantile of the
Burr XII distribution. The advantage of using the quantile is that it is less sensitive to
heterogeneous populations and more robust in the presence of outliers than the average. Our
proposed model enables the dynamic modeling of any quantile through a structured approach
incorporating autoregressive terms, moving averages, time-varying regressors, and a link
function. We adopt the conditional maximum likelihood method to estimate the model
parameters and construct confidence intervals. Furthermore, we assess the performance of the
proposed model’s parameter estimators through Monte Carlo simulations. We also
demonstrate the model’s usefulness through diagnostic tools and empirical applications on two
datasets related to the financial market and the environment. Furthermore, we also compare the
new model’s performance to that of competing models.

Keywords: Asymmetric data, Burr XII, conditional quantile, time series, forecast

1. Introduction

The Burr XII (BXII) distribution was initially introduced by Burr (Burr, 1942) as part
of a system of distributions. The BXII is the twelfth model in this system and has found
applications in various fields, including income studies (Bhatti et al., 2021; Guerra et al., 2021),
poverty indicators (Dhongde and Minoiu, 2013; Thompson, 2013), anomaly detection (Sagrillo
et al., 2023), and survival analysis (Low et al., 2021; Ramires et al., 2021). It is often used in
economics to model income data and is sometimes referred to as the Singh-Maddala distribution
(Singh and Maddala, 1976). Tadikamalla (1980), Zimmer et al. (1998), and Watkins (1997) have
explored some of the properties of the BXII model in the methodological literature. In recent
years, researchers have also investigated generalizations of the BXII distribution, including the
Marshall-Olkin generalized Burr XII (Muse et al., 2021), Unit Burr XII (Ribeiro et al., 2022),
Reflected Unit Burr XII (Ribeiro et al., 2021), and Generalized log-logistic Burr XII (Muse
et al., 2021), among others.

In recent years, a growing number of researchers have focused on developing time series
models under the assumption of non-Gaussian distributions. One such seed development is
the Generalized Autoregressive Moving Average (GARMA) models, introduced by Benjamin
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et al. (2003). In the GARMA framework, the dependent variable is modeled as following an
exponential family distribution, conditioned on its past history. One of the most widely used
generalization models is for positive series with a Gamma distribution. After the proposal
of the GARMA model by Benjamin et al. (2003), proposing new models that are not based
on a Gaussian structure was left aside. However, it has recently had an ascendancy in the
literature, Bayer et al. (2020) addressed an autoregressive moving average model based on
the Rayleigh (RARMA) distribution for variables that assume values in positive reals. For
variables that assume values in the range (0, 1), Cribari-Neto et al. (2023) they formulated a
Beta autoregressive moving average (β-ARMA) model, and in the studies of Melchior et al.
(2021), the Kumaraswamy autoregressive moving average (KARMA) model was introduced.

In the context of forecasting, usual models have already been used to model financial market
series to forecast economic indices (Jeong and Lee, 2019), leasing value (Korbi and Lleshaj,
2020), and stock prices (Koh et al., 2020). Articles on trading volume forecasts have also been
published recently, in the stock market in India Shah et al. (2022), Lee and Park (2022) in
the real estate market. Therefore, time series analysis is a strategic tool used to predict future
trends and moreover, it helps investors to make decisions that lead to good results and more
profits. Wind speed data has also been exploited, mainly to help policymakers in the economic
grid market to better utilize wind energy and to know the significant impact that forecasts can
provide (Wang et al., 2018; Wu et al., 2022; Chen et al., 2022). Still considering applications
in meteorological data, (Elsaraiti et al., 2019) analyzed the monthly average speed of Yenagoa,
Nigeria, (Elsaraiti et al., 2019) predicted wind speed on historical data from the Chester region
of Nova Scotia, Canada, (Huang and Gu, 2019) analyzed the wind speed series of Typhoon
Chan-Hom and, finally, (Rasaki et al., 2018) proposed a model to predict the average monthly
temperature in the city of Lagos, Nigeria.

The BXII is a distribution for random variables with support in the positive real line and has
the ability to represent asymmetric behaviors and heavy tails. These characteristics make the
BXII a suitable alternative both in survival analysis applications and in economic, hydrological,
and environmental indicators. It is in this context that the present work is inserted, which aims
to propose a new autoregressive moving average model based on a reparametrization in terms
of the quantiles of the BXII distribution. This new class of model can help in the analysis and
prediction of variables with these asymmetry characteristics.

This paper is divided into seven sections which include the introduction. In Section 2,
the BXII-ARMA model is proposed. Section 3 presents the estimation of the parameters via
conditional maximum likelihood. In Section 4, attentiveness to the diagnostic analysis of the
forecast. Section 5 presents the Monte Carlo simulations. Finally, Sections 6 and 7 contain the
applications and the final remarks, respectively.

2. The Burr XII ARMA model

This section defines the BXII autoregressive moving average (BXII-ARMA) time series
model. For that purpose, we consider the parametrization of the BXII distribution proposed by
Araújo et al. (2022), which is based on the quantities µ and τ, where µ is the τ–th quantile with
τ ∈ (0, 1) a known constant. This parameterization satisfies the relation
d = − log (1 − τ) / log (1 + µc). Figure 1 shows the probability density function (pdf) shapes
for reparameterized BXII with different parameter values. We provide a link to show the
shapes that the BXII can take (https://visionmt.shinyapps.io/RBXII/).
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Figure 1: Plots of the BXII pdf for different values of c, τ = 0.5, and (a) µ = 0.9, (b) µ = 0.5.

Let Y1,Y2, . . . be a sequence of random variables, where each Yt (t ∈ Z) assumes values
yt ∈ R

+. Besides, let Ft be the σ-field generated by past observations {. . . , yt−2, yt−1, yt} (i.e., the
smallest σ-field such that the variables Y1, . . . ,Yt are measurable). Additionally, suppose that
each Yt conditional on previous information set Ft−1 is distributed following a BXII law with
parameters c > 0 and µt, where µt is the conditional τ–th quantile of Yt. Thus, the conditional
pdf of Yt given Ft−1 is

g (yt|Ft−1) = log
(

1
1 − τ

)
cyc−1

t

log
(
1 + µc

t
) (

1 + yc
t
)log(1−τ)/ log(1+µc

t )−1 , (1)

and we denote as Yt|Ft−1 ∼ BXII(µt, c).
The conditional cumulative distribution function (cdf) and conditional quantile function

(cqf) of Yt|Ft−1 are

G (yt|Ft−1) = 1 −
(
1 + yc

t
)log(1−τ)/ log(1+µc

t ) (2)

and

Q (u|Ft−1) =
[
(1 − u)log(1+µc

t )/ log(1−τ)
− 1

]1/c
,

respectively.
The h–th condition moment of Yt|Ft−1 can be expressed as

E(Yh
t |Ft−1) = −

log (1 − τ)
log

(
1 + µc

t
) B

(
−

log (1 − τ)
log

(
1 + µc

t
) − hc−1, 1 + hc−1

)
,

where h < c
[
− log (1 − τ) / log

(
1 + µc

t
)]

and B(·) is the Beta function.
The dynamic general BXII-ARMA model has the following specification for the τ–th

conditional quantile

ηt = g(µt) = α + x⊤t β +
p∑

i=1

ϕi
{
g(yt−i) − x⊤t−iβ

}
+

q∑
j=1

θ jrt− j, (3)

3



where ηt is the linear predictor, α ∈ R is a constant, xt denotes the k-dimensional vector
containing the covariates at time t, β = (β1, . . . , βk)⊤ is a k-dimensional vector of unknown
coefficients associated to the covariates, g(·) is a strictly increasing and twice differentiable
link function that relates the linear predictor to the τ–th quantile. This function has important
purposes in interpreting the response variable. The rt = g(yt) − g(µt) term correspond to the
random error; ϕ = (ϕ1, . . . , ϕp)⊤, and θ = (θ1, . . . , θq)⊤ are the autoregressive and moving
average coefficients, respectively.

3. Parameter estimation

This section describes the estimation of the parameters of the model by conditional
maximum likelihood method. Let y1, . . . , yn be the random sample satisfying the specification
given by Equations (1) and (3) with δ = (α,β⊤,ϕ⊤, θ⊤, c)⊤ denoting the
(2 + k + p + q)-dimensional parametric vector. The log-likelihood function of the BXII-ARMA
model is expressed as

ℓ = ℓ(δ; yt|Ft−1) =
n∑

t=m+1

ℓt(µt, c), (4)

where

ℓt(µt, c) = log

 c log
(

1
1−τ

)
log(1 + µc

t )

 + (c − 1) log(yt) +
[

log(1 − τ)
log(1 + µc

t )
− 1

]
log(1 + yc

t ),

µt = g−1(ηt), and ηt is defined in Equation (3). Note that Equation (4) holds, once ℓt(µt, c) is
null for the first m = max(p, q) observations of yt.

The conditional maximum likelihood estimators (CMLE), δ̂ for δ are obtained through
the maximization of Equation (4). Furthermore, the CMLE are obtained by equalizing the
score vector to zero and solving the resulting system of equations. The calculations for the
conditionals score vector and Fisher’s information matrix, and the construction of confidence
intervals and hypothesis testings considering τ = 0.5, the median for the BXII-ARMA model,
are presented in the following sections.

3.1. Conditional score vector
The condicional score vector is given by U(δ) = [Uα(δ)⊤,Uβ(δ)⊤,Uϕ(δ)⊤,Uθ(δ)⊤,Uc(δ)⊤]⊤,

where Ur(δ) = ∂ℓ/∂r, for r ∈ δ. Therefore, using the chain rule, the (2 + k + p + q) first
components of the conditional score vector are obtained as

∂ℓ

∂δr
=

n∑
t=m+1

∂ℓt(µt, c)
∂µt

dµt

dηt

∂ηt

∂δr
=

n∑
t=m+1

zt

g′(µ1)
∂ηt

∂δr
,

where dµt/dη = 1/g′(µ1), δr is the r–th element of δ and

zt =
∂ℓt(µt, c)
∂µt

= −
cµc−1

t

ut log (ut)
[
1 + ht log

(
1 + yc

t
)]
,

with ut = (1 + µc
t ) and ht = log(1 − τ)/ log(ut).
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The first order partial derivatives, ∂ηt/∂δr, can be obtained as

∂ηt

∂α
= 1 −

q∑
j=1

θ j
∂ηt− j

∂α
, for r = 1,

∂ηt

∂βl
= xtl −

p∑
i=1

ϕix(t−i)l −

q∑
j=1

θ j
∂ηt− j

∂βl
, for r = 2, . . . , k + 1, and l = 1, . . . , k,

∂ηt

∂ϕi
= g(yt−i) − x⊤t−iβ −

q∑
j=1

θ j
∂ηt− j

∂ϕi
, for r = k + 2, . . . , p + 1, and i = 1, . . . , p,

and

∂ηt

∂θ j
= rt− j −

q∑
j=1

θ j
∂ηt− j

∂θ j
, for r = p + 2, . . . , q + 1, and j = 1, . . . , q.

The last component of the conditional score vector is given by

∂ℓ

∂c
=

n∑
t=m+1

∂t(µt, c)
∂c

=

n∑
t=m+1

wt,

where

wt =
1
c
+ log(yt) −

(1 − ht) yc
t log (yt)

1 + yc
t

−
µc

t log (µt)
ut log (ut)

[
1 + ht log

(
1 + yc

t
)]
.

Let T a diagonal matrix defined by T = diag{1/g′(µm+1), . . . , 1/g′(µn)}, ν =
(
∂ηm+1
∂α

, . . . , ∂ηn
∂α

)⊤
,

z = (zm+1, . . . , zn)⊤, and M, P, R are matrices with dimension (n − m) × k, (n − m) × p and
(n − m) × q, respectively. The (i, j)–th element of these matrices are determined by

Mi, j =
∂ηi+m

∂β j
, Pi, j =

∂ηi+m

∂ϕ j
, and Ri, j =

∂ηi+m

∂θ j
,

respectively. Thus, the elements of the conditional score vector reduce to

Uα(δ) = ν⊤T z,
Uβ(δ) =M⊤T z,
Uϕ(δ) = P⊤T z,
Uθ(δ) = R⊤T z

and

Uc(δ) =w⊤T 1.

The CMLE δ̂ of δ are obtained through the joint solution of the system of nonlinear
equations U(δ) = 0, where 0 is a null vector in Rk+p+q+2. However, it is not possible to solve the
derivatives analytically, and numerical optimization algorithms are indispensable. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Ruszczynski, 2011), implemented in R
software (Team, 2019), is used as the optimization method. The initial guesses for the moving
average parameters, θ, are equal to zero and the initial guess for the shape parameter c is one,
as suggested by Bayer et al. (2017). For α, β and ϕ, are estimated by the ordinary least squares
method of a linear regression model. To adjust this model, we consider the procedure
analogous to KARMA (Bayer et al., 2017).
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3.2. Conditional Fisher’s information matrix
This section presents the conditional Fisher’s information matrix of the BXII-ARMA model.

The second-order derivatives of ℓ, with respect to δ are obtained using the chain rule as

∂2ℓt(µt, c)
∂δi∂δ j

=

n∑
t=m+1

∂

∂µt

(
∂ℓt(µt, c)
∂µt

dµt

dηt

∂ηt

∂δ j

)
dµt

dηt

∂ηt

∂δi

=

n∑
t=m+1

[
∂2ℓt(µt, c)

∂µ2
t

dµt

dηt

∂ηt

∂δ j
+
∂ℓt(µt, c)
∂µt

∂

∂µt

(
dµt

dηt

∂ηt

∂δ j

)] (
dµt

dηt

∂ηt

∂δi

)
,

where i, j ∈ {1, . . . , k + p + q + 2}, and

∂2ℓt(µt)
∂µ2

t
=

cµc−2
t

u2
t log(ut)

[
ut − c +

cµc
t

log(ut)

]
+

cµc−2
t ht log(1 + yc

t )
u2

t log(ut)

[
ut − c +

2cµc
t

log(ut)

]
. (5)

Since E
(
∂ℓt(µt)/∂µt

∣∣∣Ft−1
)
= 0, it follows that

E

(
∂2ℓt(µt)
∂δi∂δ j

∣∣∣∣∣∣Ft−1

)
=

n∑
t=m+1

E

(
∂2ℓt(µt)
∂µ2

t

∣∣∣∣∣∣Ft−1

) (
dµt

dηt

)2
∂ηt

∂δi

∂ηt

∂δ j
. (6)

By combining (5) and (A.1) from Appendix A and replacing in (6) we obtain

E
(
∂2ℓ

∂δi∂δ j

∣∣∣∣∣Ft−1

)
=

n∑
t=m+1

at

g′(µt)2

∂ηt

∂δi

∂ηt

∂δ j
,

where

at = −
c2µ2(c−1)

t

u2
t log2(ut)

1[
g′(µt)

]2

The derivated of Uc(δ) whith respect of δ∗ = (α, β⊤, ϕ⊤, θ⊤), is given by

∂2ℓt(µt, c)
∂δ∗i ∂c

=

n∑
t=m+1

∂

∂c

(
∂2ℓt(µt, c)
∂µt∂c

)
µt

ηt

ηt

µt
=

n∑
t=m+1

∂zt

∂c
µt

ηt

ηt

µt
,

where δ∗i is the i–th element of δ∗.

∂zt

∂c
=

cµc−1
t

ut log(ut)

[
µc

t log(µt)
ut log(ut)

−
htyc

t log(yt)
1 + yc

t
−

log(µt)
ut

−
1
c

]
+
µc−1

t ht log(1 + yc
t )

u2
t log(ut)

[
2cµc

t log(µt)
log(ut)

− c log(µt) − ut

]
.

Therefore, we have (A.1) from Appendix A that

E
(
∂2ℓ

∂δ∗i ∂c

∣∣∣∣∣Ft−1

)
=

n∑
t=m+1

bt

g′(µt)
∂ηt

∂δ∗i
,

and bt, is expressed as

bt = −
µc−1

t

ut log(ut)

{
cµc

t log(µt)
ut log(ut)

−
log(1 − τ)

[
γ − 1 + ψ (−ht)

]
log(ut) − log(1 − τ)

}
,
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where γ denotes the Euler-Mascheroni constant and ψ(·) is the digamma function.
Finally, we calculate the darivate of Uc(δ) whith respect of c as

∂2ℓt(µt, c)
∂c2 =

htµ
c
t log2(µt)

u2
t log(ut)

2µc
t
∑n

i=1 log(1 + yc
t )

log(ut)
−

2ut

log(µt)

n∑
i=1

[
yc

t log(yt)
1 + yc

t

]
−

n∑
i=1

log(1 + yc
t )


+ (ht − 1)

n∑
i=1

[
yc

t log2(yt)
(1 + yc

t )2

]
+

nµc
t log2(µt)

u2
t log(ut)

[
µc

t

log(ut)
− 1

]
−

n
c2 , (7)

with that using the result in A.1 from Appendix A, we obtain

E
(
∂2ℓ

∂c2

∣∣∣∣∣Ft−1

)
=

n∑
t=m+1

dt,

where

dt = −
µc

t log2(µt)

u2
t log2(ut)

{
µc

t −
2 log(1 − τ)

[
(ψ (−ht) + γ − 1

]
ut log(ut)

log(µt)c[log(ut) − log(1 − τ)]

}
−

n
c2

+
log(1 − τ)

6c2[2 log(ui) − log(1 − τ)]

{
π2 + 6

[
ψ′ (1 − ht) + 2γ

[
ψ (1 − ht) − 1

]
+ ψ (1 − ht)

[
ψ (1 − ht) − 2

]
+ γ2

]}
,

for t = m + 1, . . . , n, and ψ′(·) is the trigamma function.
Let A = diag{am+1, . . . , an}, B = diag{bm+1, . . . , bn}, D = diag{dm+1, . . . , dn}, the joint

conditional Fisher information matrix for δ is

K = K(δ) =


K(α,α) K(α,β) K(α,ϕ) K(α,θ) K(α,c)

K(β,α) K(β,β) K(β,ϕ) K(β,θ) K(β,c)
K(ϕ,α) K(ϕ,β) K(ϕ,ϕ) K(ϕ,θ) K(ϕ,c)
K(θ,α) K(θ,β) K(θ,ϕ) K(θ,θ) K(θ,c)
K(c,α) K(c,β) K(c,ϕ) K(c,θ) K(c,c)

 , (8)

where K(α,α) = v⊤AT2v, K(α,β) = K⊤
(β,α)
= v⊤AT2 M, K(α,ϕ) = K⊤

(ϕ,α)
= v⊤AT2 P, K(α,θ) = K⊤

(θ,α)
=

v⊤AT2R, K⊤(α, c) = K⊤(c,α) = v⊤BT1, K(β,β) = M⊤AT2 M, K(β,ϕ) = K⊤
(ϕ,β)
= M⊤AT2 P, K(β,θ) =

K⊤
(θ,β)
= M⊤AT2R, K(β,c) = K⊤

(c,β)
= M⊤BT1, K(ϕ,ϕ) = P⊤AT2 P, K(ϕ,θ) = K⊤

(θ,ϕ)
= P⊤AT2R,

K(ϕ,c) = K⊤
(c,ϕ)
= P⊤BT1 K(θ,θ) = R⊤AT2R, K(θ,c) = K⊤

(c,θ)
= R⊤BT1, K(c,c) = tr(S).

3.3. Confidence Intervals and hypothesis testing
Under usual regularity conditions, the asymptotic normality property of CMLE ensures that

when the sample size increases

δ̂ ∼ N(2+k+p+q)

(
δ, K−1

)
,

approximately, where δ̂ = (α̂, β̂
⊤
, ϕ̂
⊤
, θ̂
⊤
, ĉ)⊤ is CMLE of the parametric vector δ, N(2+k+p+q)

denotes a (2 + k + p + q)–multivariate normal distribution and K−1 is the inverse of conditional
Fisher’s information matrix. Based on the asymptotic normality property, we can build
confidence intervals for the model parameters. Let δ̂r be the r–th component of δ̂, with
r = 1, . . . , (2 + k + p + q). Follow that (δ̂r − δr)êp(δ̂r)−1 ∼ N(0, 1), where the êp(δ̂r) is an

estimate for the standard error of δ̂r equal to
√

K(δ̂)rr and K(δ̂)rr is the r–th diagonal element
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of K−1(δ̂). Therefore, the asymptotic confidence interval for δr considering (1 − α) × 100%
confidential, is expressed by

[δ̂r − z1−α/2 êp(δ̂r); δ̂r + z1−α/2 êp(δ̂r)],

where 0 < α < 1/2 is the significance level and zζ indicates the quantile ζ of the normal
distribution N(0, 1) (Davison and Hinkley, 1997).

To test if a given value, say δ0
r , is equivalent to the true value of the parameter δr, that is,

H0 : δr = δ
0
r vs H1 : δr , δ

0
r , we can consider Wald’s statistic (Wald, 1943), expressed by

Z =
δr − δ

0
r

êp(δ̂r)
.

The Z-test statistic follows an asymptotically standard normal distribution and is compared to
the quantiles of the standard normal distribution (Pawitan, 2001).

4. Diagnostic analysis forecasting

In this section, we present a diagnostic analysis forecasting to identify whether a particular
model is suitable and fully captures the dynamics of a data set. The diagnostic analysis is
fundamental to ensure more accurate forecasts in time-series studies. In what follows, we
present and discuss some forecast diagnostic measures.

We use some comparison and model selection measures, which are obtained through the
maximized conditional log-likelihood function of the BXII-ARMA model. They are known as
Akaike Information Criterion (AIC) (Akaike, 1973), Bayesian Information Criterion
(BIC) (Schwarz, 1978), and Hannan-Quinn information criterion (HQ) (Hannan and Quinn,
1979) given by

AIC = −2ℓ(θ̂) + 2p,

BIC = −2ℓ(θ̂) + p log(n), and

HQ = 2ℓ(θ̂)
( n
n − m

)
+ p log[log(n)].

We consider the quantile residuals (Dunn and Smyth, 1996) to verify that the model provides
a good fit to the data. They are defined as

rq
i = Φ

−1{F(yt|Ft−1)},

where Φ−1(·) denotes the standard normal quantile function and F(·) is the cdf given in (2).
Quantile residuals can detect a lack of fit in models, and their distribution is approximately
normal, with a mean equal to zero and unit variance. The model provides a good fit if the
residual indices plot shows no trend or standard.

According to the time series prediction theory of an ARMA (Brockwell and Davis, 2009)
model, the conditional median predictions of a BXII-ARMA model can be obtained as follows.
Let h0 be the forecast horizon, we assume that the values of the covariate xt are available or
obtainable for t = n + 1 . . . , n + h0. To obtain the estimates µ̂m+1, . . . , µ̂n for the conditional
median µt considering the CMLE δ̂ we need to recompose the error term {rt}

n
t=1, which will be

denoted by r̂t. We start by defining r̂t = E(rt) , for t ∈ {1, . . . , m}, which is usually equal to 0.
Starting at t = m + 1, we sequentially define

µ̂t = g−1

 α̂ + x⊤t β̂ +
p∑

i=1

ϕ̂i

[
g(yt−i) − x⊤t−iβ̂

]
+

q∑
j=1

θ̂ jr̂t− j

 ,
8



where r̂t = g(yt) − g(µ̂t) for t ∈ {m + 1, . . . , n}. The predict values of the µn+h, where h =
1, 2, . . . , h0, are defined sequentially by

µ̂n+h = g−1

 α̂ + x⊤n+hβ̂ +
p∑

i=1

ϕ̂i

[
g(yn+h−i) − x⊤n+h−iβ̂

]
+

q∑
j=1

θ̂ jr̂n+h− j

 ,
where r̂t = 0, for t > n and

g(yt) =
{

g(µ̂t) if t > n,
g(yt) if t ≤ n.

To compare the predicted values of the BXII-ARMA model with other known models, some
accuracy measures are also defined in this section. Among them, we can mention the Mean
Square Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Scaled
Error (MASE) measures. For more information on univariate time series accuracy measures,
see Hyndman and Koehler (2006). These measurements are obtained through the difference
between the observed and predicted values. Therefore, the lower these measures, the better
the model has performance, so the model that performs better in the accuracy measures is the
model that best represents the series in question. The MSE, MAPE, and MASE measures can
be expressed as

MSE =
1
h0

h0∑
h=1

(yh − µ̂h)2,

MAPE =
1
h0

h0∑
h=1

|yh − µ̂h|

|yh|
and

MASE =
1
h0

h0∑
h=1

|yh − µ̂h|

1
h−1

∑h0
h=2 |yh − yh−1|

,

respectively, where yh are the observed values, and µ̂h are the predicted values for the forecast
horizon (h = 1, . . . , h0). Lower values of these measures indicate more accurate predictions.

5. Monte Carlo simulation

In this section, a Monte Carlo study is carried out to evaluate the performance of CMLEs
of the BXII-ARMA model. R = 10,000 replicas and sample sizes n are considered, with n ∈
{70, 150, 300, 500}. The value of τ = 0.5 is fixed so that the parameter µ represents the median
of the distribution. The simulation study is implemented in software R (Team, 2019), and we use
the optim() function to maximize the log-likelihood with the BFGS algorithm for numerical
optimization.

The mean of the estimates, the relative bias (RB%), and the mean squared error (MSE) are
used as a measure to evaluate the performance of the CMLEs. The coverage rate (CR95%) of
the confidence intervals is estimated, considering a nominal confidence level of 95% and using
the inverse of Fisher’s information matrix to obtain the standard errors.

In Table 1, we have the results for the Monte Carlo simulation considering different
structures of the BXII-ARMA model, namely: ARMA(1,1), ARMA(1,0) or AR(1) and
ARMA(0,1) or MA(1). We observe that the means of the estimates approximate the true
values of the parameters across all the different data generation mechanisms. In all structures
of the BXII-ARMA model, the RB% decreases rapidly as the sample increases, and
considering a sample size of 500, all RB% results are less than 1%. All CMLEs are
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approximately equal to zero, even in samples of size 70; hence they are considered consistent.
For a sample size of 500, the CR95%. In general, all results presented are adequate. For more
results considering other structures of the BXII-ARMA model, we recommend that the reader
consult Appendix A.

Table 1: Numerical evidence on the performance of the CMLEs for the BXII-ARMA(p, q) model under different
data-generating mechanisms setting τ = 0.5.

Model n Measures α = 1.0 ϕ1 = 0.5 θ1 = 0.2 c = 0.5

BXII-ARMA(1,1)

70

Mean 1.0316 0.4715 0.2211 0.5304
RB% −3.1554 5.6982 −10.5693 −6.0748
MSE 0.3483 0.0214 0.0136 0.0070
CR95% 0.9416 0.9474 0.9004 0.9529

150

Mean 1.0126 0.4835 0.2097 0.5129
RB% −1.2645 3.3099 −4.8603 −2.5894
MSE 0.1548 0.0102 0.0108 0.0024
CR95% 0.9466 0.9505 0.9172 0.9526

300

Mean 1.0036 0.4897 0.2054 0.5062
RB% −0.3569 2.0508 −2.6901 −1.2483
MSE 0.0748 0.0048 0.0042 0.0011
CR95% 0.9454 0.9528 0.9265 0.9432

500

Mean 1.0000 0.4931 0.2024 0.5039
RB% −0.0043 1.3785 −1.1828 −0.7810
MSE 0.0437 0.0039 0.0032 0.0007
CR95% 0.9434 0.9497 0.9311 0.9480

BXII-ARMA(1,0)

70

Mean 1.0191 0.4791 − 0.5246
RB% −1.9136 4.1827 − −4.9223
MSE 0.2179 0.0107 − 0.0069
CR95% 0.9462 0.9389 − 0.9584

150

Mean 1.0070 0.4894 − 0.5107
RB% −0.7047 2.1216 − −2.1333
MSE 0.0946 0.0045 − 0.0025
CR95% 0.9494 0.9457 − 0.9521

300

Mean 1.0040 0.4952 − 0.5056
RB% −0.3957 0.9609 − −1.1275
MSE 0.0473 0.0021 − 0.0011
CR95% 0.9475 0.9446 − 0.9554

500

Mean 1.0012 0.4972 − 0.5033
RB% −0.1239 0.5639 − −0.6519
MSE 0.0280 0.0012 − 0.0006
CR95% 0.9480 0.9464 − 0.9496

BXII-ARMA(0,1)

70

Mean 0.9861 − 0.1925 0.5170
RB% 1.3889 − 3.7607 −3.4029
MSE 0.2386 − 0.0112 0.0049
CR95% 0.9393 − 0.9255 0.9527

150

Mean 0.9929 − 0.1968 0.5076
RB% 0.7138 − 1.6172 −1.5136
MSE 0.1100 − 0.0043 0.0019
CR95% 0.9449 − 0.9370 0.9545

300

Mean 0.9964 − 0.1987 0.5041
RB% 0.3582 − 0.6608 −0.8234
MSE 0.0543 − 0.0020 0.0009
CR95% 0.9491 − 0.9447 0.9526

500

Mean 0.9967 − 0.1993 0.5023
RB% 0.3300 − 0.3270 −0.4567
MSE 0.0327 − 0.0012 0.0005
CR95% 0.9480 − 0.9463 0.9502
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6. Application

In this context, the BXII-ARMA model is applied to two sets of real data, one related to the
financial market and the other to meteorological data. Time series models have already been
used to forecast financial market data. In the stock market, time series analysis is essential to
improve accuracy when trading, becoming a strategy to stay one step ahead of your competitors.
Jeong and Lee (2019) used the ARMA-GARCH model with the incorporation of hyperbolic
tangent functions and used it to forecast the daily closing index of the S&P500 from January
1950 to December 2018. Korbi and Lleshaj (2020) used the ARMA model to predict the value
of Albania finance lease over the period 2008 to 2020. Koh et al. (2020) forecast the opening
prices of Maxis Berhad shares from January 2018 to December 2019 based on the previous 96
months. In the studies of Shah et al. (2022) a proposal was made to aggregate the ARIMA
model with the Long Short-Term Memory model (LSTM) to obtain more adequate coefficients,
with this, the proposal was also compared with other conventional models applied to the data
of the Indian stock market. Lee and Park (2022) also applied the ARIMA and Recurrent Neural
Network (RNN) models to predict the trading volume of houses for the real estate market.

Forecast studies have also been explored in the meteorological field and mainly with wind
speed data, which help in the creation of new policies in the economic market of the electric
grid, in addition, the forecasts provide analyzes to improve the use of wind energy. (Wang et al.,
2018) used the ARMA model to forecast wind energy in the short term, based on historical data
from a wind farm. Wu et al. (2022) we developed a Temporal Fusion Transformer (TFT) model
and applied it to 8 different wind speed datasets, which obtained results that outperformed other
methodologies. Chen et al. (2022) presented a new forecasting model for wind speed based on
the combination of LSTM and neural network. Elsaraiti et al. (2019) used the ARIMA model
to predict wind speed on historical data from the Chester region of Nova Scotia, Canada. In
the proposal of the RARMA model, Bayer et al. (2020) studied trends in ocean winds and their
monthly average speed from Yenagoa, Nigeria. Huang and Gu (2019) analyzed the time-varying
standard deviation of the wind speed series of Typhoon Chan-Hom as it passed over the sea east
of Xanguai by combining the ARMA-GARCH model and the first-order difference GARCH
method. Wind speed is an important parameter in meteorological studies, which encompasses
studies of atmospheric systems, ocean-atmospheric mechanisms, and especially for wind energy
applications (Bayer et al., 2020).

Furthermore, the ARMA (Box and Jenkins, 1970), GARMA (Benjamin et al., 2003), and
RARMA Bayer et al. (2020) models are also fitted for comparative purposes. The function
arima() is used to the ARMA fit. The implementation of the GARMA and RARMA models is
similar to the BXII-ARMA model and is available in the PTSR package using the ptsr.fit()
function. For more information, see Prass et al. (2022). The application is implemented in the
R software. Thus, the ARMA, GARMA, RARMA, and BXII-ARMA models were adjusted to
choose the model that best represents the behavior of the series studied. The best fit of each
model class is selected through the AIC, BIC, and HQ measures. After, the best fit of each
class, the model with the best prediction is chosen. The last observations of the series were
removed to obtain the MSE, MAPE, and MASE measures to choose the most accurate model.
The forecast is estimated by one-step-ahead, updated by the actual value.

6.1. Time series model for finance data
This section presents an empirical application in data sets related to economics. The first

data set referred to the trading volume of Banco Bradesco S.A. (BBD) stocks and was
collected from the Yahoo Finance website (https://finance.yahoo.com/most-active),
which provides up-to-date financial news, international market data, including stock quotes,
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financial reports and original content. The information corresponds from February 14, 2022, to
February 10, 2023, totaling 250 observations. The trading volume corresponds to the number
of stocks bought and sold in a day, and the standard unit of these assets is given in U.S. Dollars
(US$). Since trading volumes are usually large-scale numbers, we divided the series by one
hundred million to better visualize the results. The last thirty observations of the series were
removed to obtain accuracy measures for choosing the best model.

Table 2: Descriptive analysis of BBD trading volume data
Minimum Median Mean Maximum Variance

0.1261 0.3317 0.3556 1.4854 0.0245
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Figure 2: Time series plot of BBD trading volume

Table 2 presents some descriptive statistics of the series in question. On the original scale
of the series, the average BBD trading volume is $35.56 million and the median volume
corresponds to $33.17 million. The minimum and maximum trading volume is $12.61 and
$148.54 million respectively. The change in trading volume is 0.02. Figure 2 shows the graphs
of the BBD trading volume series. Figure 3 shows the autocorrelation function (ACF) and
partial autocorrelation (PACF) plots of the BBD trading volume. A positive correlation is
observed in the ACF (Figure 3(a)), and the vast majority of observations are outside the
confidence interval (CI). In the PACF, shown in Figure 3(b), almost all observations are within
the CI. The series was identified as stationary through the unit root tests, Phillips-Perron (PP)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) with p-values equal to 0.01 and 0.1,
respectively.
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Figure 3: ACF and PACF of BBD trading volume

Table 3 shows the fit of the models with the parameter estimates, the standard errors (SE),
and the p-values of each estimate. The structure for the BBD trading volume is given by one
autoregressive coefficient and four moving average filters, namely ARMA(1,4), GARMA(1,4),
RARMA(1,4), and BXII-ARMA(1,4). For the ARMA model, only the intercept was
significant. For the GARMA and RARMA models, all coefficients were significant, except for
the autoregressive ϕ1 and the moving average coefficient θ4. All coefficients of the
BXII-ARMA model were significant at the 5% significance level. Table 4 presents the
adequacy measures adopted as methodologies for comparing forecast performance between
the different best-fitted models in each class. Therefore, the MSE, MAPE, and MASE
measurements are calculated for all models, considering the thirty-day out-of-sample estimates
with the last thirty observations taken from the series. Therefore, the best results of the
accurate measurements are given by the BXII-ARMA model for the data sets.

Table 3: ARMA, GARMA, RARMA, and BXII-ARMA adjustments in the time series.
ARMA(1,4) GARMA(1,4)

Coef. Estimate SE p-value Coef. Estimate SE p-value
Int. 0.3558 0.0189 0.0000 α −1.0887 0.1188 0.0000
ϕ1 −0.2537 2.4091 0.9161 ϕ1 −0.0280 0.0971 0.7730
θ1 0.8051 2.4058 0.7379 θ1 1.4578 0.1434 0.0000
θ2 0.5003 1.3250 0.7057 θ2 1.0380 0.2281 0.0000
θ3 0.4213 0.8648 0.6261 θ3 1.0413 0.1716 0.0000
θ4 0.0881 0.7846 0.9106 θ4 −0.0078 0.1746 0.9640

φ 11.5539 1.0861 0.0000
RARMA(1,4) BXII-ARMA(1,4)

Coef. Estimate SE p-value Coef. Estimate SE p-value
α −1.3357 0.1799 0.0000 α −0.6286 0.0880 0.0000
ϕ1 0.3683 0.5293 0.4866 ϕ7 0.3398 0.0663 0.0000
θ1 1.2574 0.3980 0.0016 θ1 0.3705 0.0541 0.0000
θ2 1.0528 0.4046 0.0093 θ2 0.2454 0.0651 0.0002
θ3 1.1475 0.3057 0.0002 θ3 0.2801 0.0611 0.0000
θ4 −0.0185 0.3283 0.9549 θ6 0.2361 0.0626 0.0002

c 3.7013 0.1806 0.0000
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Table 4: Forecasting performance comparison among different best-fitted models in each class.
Model MSE MAPE MASE
ARMA 0.0555 0.4233 0.8224
GARMA 0.0567 0.4129 0.8215
RARMA 0.0676 0.3834 0.8679
BXII-ARMA 0.0071 0.1491 0.3020

Figure 4 shows the residuals BXII-MA(1,4) plots to the BBD trading volume. In Figure
4(a), the quantile residuals show the absence of the tendency, and their behavior is similar to
white noise. Figures 4(b) and 4(c), have the ACF and PACF of the residuals that confirm that
they are similar to white noise. In Figure 4(d), it is concluded that the quantile residuals follow
a standard normal distribution. The result of the Ljung-Box test showed a p-value of 0.5321, so
the quantile residuals are not autocorrelated. Figure 5 provides a plot of the actual and adjusted
values. Figure 5 shows the observed and adjusted values of the BBD trading volume. All
analyzed graphs show that BXII-ARMA models adjusted to BBD trading volume can be used
to make step-ahead predictions of the considered sample.
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Figure 4: Residual diagnostic plots of the fitted BXII-ARMA(1,4) model for the trading volume of BBD.
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Figure 5: Observed and adjusted values of the BXII-ARMA model

6.2. Time series model for meteorological data
This section presents a real data application related to meteorology. The second data set

is the average monthly wind speed for Yenagoa, Nigeria. It is reported in Amadi (2018). The
series corresponds to January 2013 to December 2017, totaling 60 observations. The last twelve
months of the series were removed to obtain accuracy measures for choosing the best model.
The wind speed measurement is given in meters per second (m/s), and the series is divided by
ten for better visualization of the results.

Table 5: Descriptive analysis of Yenagoa wind speed data
Minimum Median Mean Maximum Variance

0.0614 0.1589 0.1786 0.3392 0.0064
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Figure 6: Time series plot of Yenagoa wind speed

Table 5 presents some descriptive statistics of the series in question. The Yenagoa wind
speed data, the series average is 1.79 m/s. The median velocity corresponds to 1.59 m/s. The
minimum and maximum wind speed is 0.61 m/s and 3.39 m/s, respectively, and the variance
is 0.06 m/s. Figure 6 shows the graphs of the Yenagoa wind speed series. Figure 7 brings the
ACF and PACF of the Calabar Wind Speed. The ACF (Figure 7(a)) shows a positive correlation
until lag 15. From lag 16 onwards, we perceive a negative correlation, and it is noticed that
some observations are outside the CI. In the sample PACF, Figure 7(b), only one observation
is outside the CI. The series was identified as stationary through the PP and KPSS tests with
p-values equal to 0.01 and 0.55, respectively.
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Figure 7: ACF and PACF of Yenagoa wind speed

Table 6 shows the structure of the models adjusted for the Yenagoa wind speed
corresponds to one autoregressive coefficient and two moving average filters, that is,
ARMA(1,2), GARMA(1,2), RARMA(1,2) and BXII-ARMA(1,2). All coefficients are
significant at the 5% significance level, except the θ1 of the BXII-ARMA(1,2) model adjusted,
which was significant at 10%. Table 7 presents the adequacy measures adopted as
methodologies for comparing forecast performance between the different best-fitted models in
each class. Therefore, the MSE, MAPE, and MASE measurements are calculated for all
models, considering the twelve-month out-of-sample estimates with the last twelve
observations that were taken from the series. Therefore, the best results of the accurate
measurements are given by the BXII-ARMA model for the data sets.

Table 6: ARMA, GARMA, RARMA, and BXII-ARMA adjustments in the time series.
ARMA(1,2) GARMA(1,2)

Coef. Estimate SE p-value Coef. Estimate SE p-value
Int. 0.5738 0.1633 0.0004 α −0.7345 0.2637 0.0053
ϕ1 −0.3515 0.1654 0.0336 ϕ1 0.5567 0.1407 0.0001
θ1 0.4817 0.1545 0.0018 θ1 −1.5956 0.7105 0.0247
θ2 0.1797 0.0232 0.0000 θ2 2.9015 0.7833 0.0002

φ 8.3038 1.6621 0.0000
RARMA(1,2) BXII-ARMA(1,2)

Coef. Estimate SE p-value Coef. Estimate SE p-value
α 0.2149 −2.3516 0.0000 α −1.1128 0.2482 0.0000
ϕ1 3.0436 1.1281 0.0070 ϕ3 0.3384 0.1279 0.0081
θ1 0.9512 −2.1907 0.0213 θ1 0.3060 0.1605 0.0565
θ2 3.4043 1.0684 0.0014 θ2 0.3997 0.1136 0.0004

c 3.2151 0.3643 0.0000

Table 7: Forecasting performance comparison among different best-fitted models in each class.
Model MSE MAPE MASE
ARMA 0.0036 0.4728 1.3922
GARMA 0.0042 0.5285 1.5398
RARMA 0.0028 0.3499 1.1174
BXII-ARMA 0.0008 0.1809 0.5698
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In Figure 8, the diagnostic analysis of the residuals of the BXII-ARMA(1,2) model adjusted
to the Yenagoa wind speed. In Figure 8(a), the quantile residuals are arranged randomly, and
their behavior is similar to white noise. Figures 8(b) and 8(c) show the residual ACF and PACF,
where all lags are inside the IC. In Figure 8(d), it is concluded that the quantile residuals follow
a standard normal distribution. The result of the Ljung-Box test showed a p-value of 0.7412, so
the quantile residuals are not autocorrelated. Figure 9 provides a plot of the actual and adjusted
values. Figure 9, we have the observed and adjusted values of the Yenagoa wind speed. All
analyzed graphs show that BXII-ARMA models adjusted to Yenagoa wind speed can be used
to make step-ahead predictions of the considered sample.
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Figure 8: Residual diagnostic plots of the fitted BXII-ARMA(1,2) model for the Yenagoa wind speed.
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Figure 9: Observed and adjusted values of the BXII-ARMA model

7. Concluding remarks

This study proposes an autoregressive moving averages model based on a quantile
parameterization of the Burr XII distribution. We carried out an economic and meteorological
application using the trading volume of Banco Bradesco stock and the Yenagoa wind speed to
verify the adequacy of the proposed model. The proposed model is compared with other
models of time series to verify its goodness of fit to the dataset used. We show some results for
the mathematical properties of the proposed model, such as conditional moments and
probability density, cumulative distribution, and conditional quantile functions. In addition, we
estimated the model’s parameters by the maximum likelihood method and derived Fisher’s
conditional information matrix. The Monte Carlo results under different data generation
mechanisms show that the maximum likelihood method is very efficient in estimating the
parameters of the BXII-ARMA model. We also discuss diagnostic tools for the BXII-ARMA
model predictions and model selection criteria. In the application, two data sets were
considered. The first refers to the BBD trading volume and BXII-ARMA(1,4) was fitted, with
one autoregressive coefficient and four moving average filters with positive effects. The second
application was performed with wind speed data from Yenagoa, Nigeria, and a
BXII-ARMA(1,2) model was fitted, with one autoregressive coefficient and two moving
average filters with positive effects. The BXII-ARMA models fitted in both applications and
obtaining predicted values close to the real values of the series also outperform the ARMA and
GARMA models in the MSE, MAPE, and MASE measurements, being a useful and flexible
alternative for the adjustment of non-negative time series and with asymmetric patterns. Thus,
the BXII-ARMA model is suitable to satisfactorily capture the dynamics of Banco Bradesco’s
trading volume data and the Yenagoa wind speed. It should be noted that the BXII-ARMA is a
new methodology whose applicability can be extended to other topics.
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Appendix A.

Let Yt be a random variable with conditional pdf in (1), using the results of Watkins (1997),
we know that

E
[
log(1 + Yc

t )|Ft−1
]
= −h−1

t ,

E
[
Yc

t log(Yt)
1 + Yc

t
|Ft−1

]
=

1 − γ − ψ (−ht)
c (1 − ht)

and (A.1)

E
[
Yc

t log2(Yt)
(1 + Yc

t )2 |Ft−1

]
=

π2

6 + γ
2 − 2γ + 2(γ − 1)ψ (1 − ht) + ψ2 (1 − ht) + ψ′ (1 − ht)

c2 (1 − ht) (2 − ht) (−ht)−1 .
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Table A.8: Further numerical evidence on the performance of the CMLEs for the BXII-ARMA(p, q) model under
different data-generating mechanisms setting τ = 0.25.

Model n Measure α = −1 ϕ1 = 0.1 ϕ2 = −0.4 θ1 = 0.3 θ2 = 0.2 c = 3

BXII-ARMA(2,2)

70

Mean −1.0337 0.1584 0.2974 0.2396 0.2639 3.1746
RB% −3.3750 −58.4001 25.6505 20.1368 −31.9363 -5.8196
MSE 0.1156 0.0938 0.0815 0.0978 0.0451 0.1242
CR% 0.9027 0.8494 0.8344 0.8358 0.8410 0.9227

150

Mean −1.0093 0.1225 0.3618 0.2770 0.2216 3.0740
RB% −0.9349 −22.4711 9.5411 7.6753 −10.7921 −2.4655
MSE 0.0400 0.0284 0.0242 0.0296 0.0147 0.0428
CR% 0.9313 0.9193 0.9178 0.9140 0.9088 0.9375

300

Mean −1.0040 0.1091 0.3838 0.2907 0.2092 3.0358
RB% −0.4033 −9.1181 4.0566 3.1098 −4.5933 −1.1945
MSE 0.0177 0.0103 0.0088 0.0110 0.0062 0.0186
CR% 0.9439 0.9416 0.9389 0.9380 0.9403 0.9442

500

Mean −1.0026 0.1043 0.3911 0.2958 0.2042 3.0212
RB% −0.2639 −4.2792 2.2146 1.3957 −2.1049 −0.7066
MSE 0.0104 0.0054 0.0048 0.0058 0.0035 0.0107
CR% 0.9432 0.9446 0.9452 0.9426 0.9458 0.9464

BXII-ARMA(2,0)

70

Mean −1.0588 0.0876 0.3693 − − 3.1125
RB% −5.8830 12.3973 7.6849 − − −3.7513
MSE 0.0442 0.0092 0.0097 − − 0.1021
CR% 0.9491 0.9404 0.9343 − − 0.9438

150

Mean −1.0241 0.0954 0.3858 − − 3.0582
RB% −2.4074 4.6068 3.5468 − − −1.9385
MSE 0.0182 0.0038 0.0040 − − 0.0409
CR% 0.9466 0.9482 0.9413 − − 0.9460

300

Mean −1.0074 0.0989 0.3958 − − 3.0149
RB% −0.7370 1.0980 1.0607 − − −0.4957
MSE 0.0049 0.0011 0.0011 − − 0.0105
CR% 0.9491 0.9472 0.9476 − − 0.9485

500

Mean −1.0129 0.0985 0.3922 − − 3.0232
RB% −1.2914 1.4892 1.9532 − − −0.7750
MSE 0.0085 0.0018 0.0019 − − 0.0182
CR% 0.9476 0.9469 0.9426 − − 0.9444

BXII-ARMA(0,2)

70

Mean −0.9795 − − 0.2937 0.1926 3.1049
RB% 2.0530 − − 2.1141 3.6910 −3.4961
MSE 0.0124 − − 0.0099 0.0112 0.0931
CR% 0.9190 − − 0.9369 0.9261 0.9441

150

Mean −0.9929 − − 0.2983 0.1973 3.0414
RB% 0.7078 − − 0.5642 1.3636 −1.3816
MSE 0.0056 − − 0.0040 0.0042 0.0363
CR% 0.9367 − − 0.9439 0.9413 0.9483

300

Mean −0.9953 − − 0.2983 0.1987 3.0228
RB% 0.4721 − − 0.5805 0.6378 −0.7611
MSE 0.0028 − − 0.0019 0.0019 0.0172
CR% 0.9449 − − 0.9467 0.9457 0.9458

500

Mean −0.9968 − − 0.2989 0.1993 3.0147
RB% 0.3227 − − 0.3659 0.3741 −0.4889
MSE 0.0017 − − 0.0011 0.0011 0.0102
CR% 0.9428 − − 0.9502 0.9487 0.9467
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Table A.9: Further numerical evidence on the performance of the CMLEs for the BXII-ARMA(p, q) model under
different data-generating mechanisms setting τ = 0.5.

Model n Measure α = −1 ϕ1 = 0.1 ϕ2 = −0.4 θ1 = 0.3 θ2 = 0.2 c = 3

BXII-ARMA(2,2)

70

Mean −1.1362 0.1320 0.3060 0.2651 0.2683 3.1767
RB% −13.6190 −32.0296 23.5113 11.6226 −34.1643 −5.8915
MSE 0.2348 0.0822 0.0709 0.0877 0.0446 0.1308
CR% 0.9040 0.8560 0.8498 0.8417 0.8409 0.9296

150

Mean −1.0481 0.1144 0.3634 0.2855 0.2237 3.0752
RB% −4.8117 −14.4078 9.1426 4.8431 −11.8274 −2.5066
MSE 0.0733 0.0280 0.0239 0.0291 0.0154 0.0456
CR% 0.9384 0.9165 0.9130 0.9134 0.9063 0.9426

300

Mean −1.0233 0.1060 0.3835 0.2940 0.2109 3.0388
RB% −2.3293 −5.9751 4.1337 2.0138 −5.4489 −1.2936
MSE 0.0327 0.0102 0.0090 0.0108 0.0066 0.0206
CR% 0.9454 0.9409 0.9376 0.9394 0.9293 0.9414

500

Mean −1.0104 0.1035 0.3920 0.2966 0.2056 3.0230
RB% −1.0414 −3.4815 1.9888 1.1232 −2.8004 −0.7665
MSE 0.0185 0.0055 0.0048 0.0058 0.0037 0.0116
CR% 0.9448 0.9443 0.9451 0.9425 0.9410 0.9476

BXII-ARMA(2,0)

70

Mean −1.0858 0.0899 0.3699 − − 3.1176
RB% −8.5769 10.1215 7.5321 − − −3.9205
MSE 0.0765 0.0090 0.0096 − − 0.1048
CR% 0.9412 0.9415 0.9350 − − 0.9475

150

Mean −1.0389 0.0960 0.3860 − − 3.0550
RB% −3.8871 3.9711 3.4914 − − −1.8337
MSE 0.0311 0.0038 0.0039 − − 0.0438
CR% 0.9475 0.9483 0.9449 − − 0.9438

300

Mean −1.0172 0.0983 0.3935 − − 3.0278
RB% −1.7205 1.6738 1.6131 − − −0.9257
MSE 0.0145 0.0018 0.0018 − − 0.0197
CR% 0.9476 0.9459 0.9436 − − 0.9446

500

Mean −1.0111 0.0989 0.3959 − − 3.0148
RB% −1.1070 1.0531 1.0172 − − −0.4923
MSE 0.0085 0.0010 0.0011 − − 0.0111
CR% 0.9480 0.9531 0.9476 − − 0.9499

BXII-ARMA(0,2)

70

Mean −1.0013 − − 0.3004 0.2017 3.1068
RB% −0.1261 − − −0.1435 −0.8616 −3.5598
MSE 0.0055 − − 0.0113 0.0124 0.0938
CR% 0.9333 − − 0.9337 0.9221 0.9450

150

Mean −1.0003 − − 0.3000 0.2010 3.0476
RB% −0.0289 − − 0.0093 −0.5052 −1.5870
MSE 0.0025 − − 0.0044 0.0047 0.0363
CR% 0.9455 − − 0.9455 0.9378 0.9494

300

Mean −1.0006 − − 0.3005 0.2007 3.0240
RB% −0.0592 − − −0.1635 −0.3351 −0.8002
MSE 0.0013 − − 0.0021 0.0021 0.0169
CR% 0.9473 − − 0.9449 0.9436 0.9514

500

Mean −1.0002 − − 0.3001 0.2001 3.0147
RB% −0.0186 − − −0.0243 −0.0453 −0.4892
MSE 0.0008 − − 0.0012 0.0012 0.0100
CR% 0.9464 − − 0.9446 0.9479 0.9510
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Table A.10: Further numerical evidence on the performance of the CMLEs for the BXII-ARMA(p, q) model under
different data-generating mechanisms setting τ = 0.75.

Model n Measure α = −1 ϕ1 = 0.1 ϕ2 = −0.4 θ1 = 0.3 θ2 = 0.2 c = 3

BXII-ARMA(2,2)

70

Mean −1.2169 0.1514 0.2770 0.2432 0.2847 3.1800
RB% −21.6892 −51.4123 30.7596 18.9194 −42.3303 −5.9999
MSE 0.3836 0.1062 0.0867 0.1116 0.0472 0.1358
CR% 0.8933 0.8282 0.8169 0.8156 0.8218 0.9286

150

Mean −1.0917 0.1146 0.3557 0.2833 0.2291 3.0791
RB% −9.1724 −14.6417 11.0761 5.5716 −14.5421 −2.6371
MSE 0.1101 0.0286 0.0252 0.0301 0.0154 0.0477
CR% 0.9430 0.9116 0.9062 0.9109 0.9012 0.9385

300

Mean −1.0425 0.1037 0.3825 0.2952 0.2118 3.0379
RB% −4.2543 −3.6934 4.3859 1.6032 −5.9016 −1.2632
MSE 0.0484 0.0103 0.0093 0.0108 0.0066 0.0209
CR% 0.9498 0.9413 0.9396 0.9413 0.9332 0.9434

500

Mean −1.0238 0.1040 0.3885 0.2957 0.2071 3.0233
RB% −2.3820 −3.9875 2.8852 1.4260 −3.5693 −0.7755
MSE 0.0280 0.0058 0.0051 0.0060 0.0037 0.0118
CR% 0.9435 0.9427 0.9453 0.9445 0.9397 0.9484

BXII-ARMA(2,0)

70

Mean −1.1102 0.0902 0.3698 − − 3.1144
RB% −11.0249 9.7660 7.5470 − − −3.8124
MSE 0.1091 0.0092 0.0092 − − 0.1032
CR% 0.9346 0.9365 0.9352 − − 0.9457

150

Mean −1.0483 0.0955 0.3870 − − 3.0535
RB% −4.8255 4.4873 3.2494 − − −1.7834
MSE 0.0437 0.0037 0.0038 − − 0.0417
CR% 0.9475 0.9483 0.9468 − − 0.9507

300

Mean −1.0219 0.0978 0.3944 − − 3.0293
RB% −2.1880 2.2273 1.4054 − − −0.9767
MSE 0.0206 0.0018 0.0018 − − 0.0198
CR% 0.9470 0.9496 0.9477 − − 0.9482

500

Mean −1.0136 0.0994 0.3957 − − 3.0151
RB% −1.3602 0.5858 1.0836 − − −0.5030
MSE 0.0120 0.0011 0.0011 − − 0.0113
CR% 0.9505 0.9469 0.9476 − − 0.9490

BXII-ARMA(0,2)

70

Mean −1.0162 − − 0.2946 0.1974 3.1146
RB% −1.6198 − − 1.7945 1.2868 −3.8205
MSE 0.0066 − − 0.0111 0.0123 0.1000
CR% 0.9173 − − 0.9277 0.9218 0.9430

150

Mean −1.0066 − − 0.2999 0.2005 3.0496
RB% −0.6626 − − 0.0428 −0.2747 −1.6519
MSE 0.0028 − − 0.0044 0.0046 0.0384
CR% 0.9391 − − 0.9437 0.9379 0.9489

300

Mean −1.0034 − − 0.2992 0.1995 3.0259
RB% −0.3414 − − 0.2688 0.2738 −0.8643
MSE 0.0014 − − 0.0021 0.0021 0.0183
CR% 0.9407 − − 0.9489 0.9483 0.9492

*500 Mean −1.0021 − − 0.2999 0.1997 3.0152
RB% −0.2051 − − 0.0232 0.1322 −0.5059
MSE 0.0008 − − 0.0012 0.0012 0.0108
CR% 0.9480 − − 0.9494 0.9491 0.9458
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