

Síntese e caracterização de Pontos Quânticos Gigantes de CdTe/CdS/ZnS

Thalita Cristina Teixeira (PG)* e Marco Antonio Schiavon (PQ)

Universidade Federal de São João del-Rei (UFSJ), Departamento de Ciências Naturais (DCNAT), São João del-Rei, MG, Brasil, 36301-160 thalita.teixeira50@gmail.com; schiavon@ufsj.edu.br

RESUMO

Os pontos quânticos (PQs) de semicondutores são nanocristais coloidais com tamanhos entre 2 e 15 nm, sendo o efeito de confinamento quântico o principal responsável por suas propriedades. Os Pontos Quânticos Gigantes (PQG) são nanocristais do tipo caroço-casca, com cascas espessas (acima de 8 monocamadas) e livres de defeitos. Neste trabalho, foram sintetizados PQs de CdTe/CdS/ZnS por meio da rota aquosa e do método SILAR (Sucessiva Reação e Adsorção de Camadas Iônicas), uma síntese simples e de baixa temperatura. Foram utilizados três tamanhos de caroço CdTe (2,8; 3,08 e 3,2 nm) e diferentes espessuras de casca (1-5 monocamadas de CdS e 1-3 de ZnS). As bandas de absorção e emissão mostraram deslocamento para o vermelho no espectro, indicando o aumento no tamanho dos PQs conforme mais camadas de CdS e/ou ZnS são adicionadas.

Palavras-chave: Pontos Quânticos Gigantes, Monocamadas, Nanocristais, Semicondutores nanocristalinos coloidais.

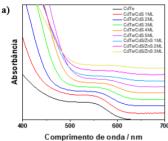
Introdução

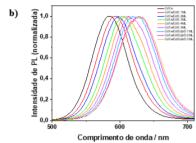
As tecnologias estudadas atualmente têm como principal objetivo o bem-estar humano e a preservação do meio ambiente. Nos estudos envolvendo pontos quânticos (PQs), essa afirmação não é diferente. O termo "ponto quântico" é dado a materiais que apresentam efeito de confinamento quântico em todas as dimensões. [1] É importante ressaltar que esta é uma área ativa na ciência, a qual concedeu aos pesquisadores Moungi G. Bawendi, Louis E. Brus e Aleksey Yekimov a premiação do Nobel de Química de 2023, pela descoberta e síntese de PQs. [2] A estabilidade coloidal de diversos tipos de PQs vem sendo estudada incessantemente, a fim de melhorar a vida útil dos dispositivos que utilizam desses nanomateriais. [3] Os estudos indicam que estruturas multicamadas pode aumentar a estabilidade dos PQs, evitando a ocorrência de oxidação e lixiviação do material do núcleo, assim como reduzindo os defeitos de superfície e as armadilhas que podem diminuir a luminescência. [4] A formação dupla de casca permite a obtenção dos chamados Pontos Quânticos Gigantes (PQG), os quais são um tipo único de nanocristais semicondutores coloidais, no qual a casca é adicionada para ser especialmente espessa e livre de defeitos ao redor do caroço, formada, geralmente, por mais de 8 monocamadas. [5]

Experimental

A preparação do procedimento de síntese do sistema caroço/casca/casca de CdTe/CdS/ZnS pela técnica *SILAR* foi realizada em três etapas experimentais. Os primeiros passos referiram-se à formação de PQs do núcleo de CdTe pelo método *one-poting*. A deposição das camadas de CdS foi realizada por meio de sucessivas injeções dos precursores de Cd e S sobre a solução recémpreparada de CdTe. A solução precursora de Cd (0,03 mol.L⁻¹) foi preparada dissolvendo-se 0,05 mmol de CdCl₂.H₂O e 1,4 mmol de MPA em 20 mL de água, sendo o pH desta solução ajustado a 10 pela adição de NaOH 1 mol.L⁻¹. Já a solução precursora de enxofre

foi preparada dissolvendo-se 0,05 mmol de Na₂S.9H₂O em 20 mL de água. Para tanto, sucessivas injeções dos precursores catiônicos e aniônicos foram realizadas sobre a solução contendo os PQs de CdTe, a uma velocidade de 0,1 mL.min⁻¹. Entre cada monocamada adicionada, houve um tempo de espera de 10 minutos. A deposição das monocamadas de ZnS foi realizada de forma semelhante ao CdS. Assim, a solução precursora de Zn (0,03 mol.L⁻¹) foi preparada dissolvendo-se 0,05 mmol de ZnCl₂.H₂O e 1,4 mmol de MPA em 20 mL de água, sendo o pH desta solução ajustado para 10 pela adição de NaOH 1 mol.L⁻¹. A solução precursora de enxofre foi preparada dissolvendo-se 0,05 mmol de Na₂S.9H₂O em 20 mL de água. Os materiais obtidos foram caracterizados por um conjunto de técnicas físicas como espectroscopias de absorção UV/Vis, emissão de fotoluminescência, tempo de vida do estado excitado, determinação de rendimento quântico e DRX.


Resultados e Discussão


A análise dos espectros de absorção apresentados na Figura 1a e de emissão fotoluminescente, Figura 1b, para o material CdTe-90min/CdS/ZnS evidencia claramente o efeito combinado das monocamadas conformais de CdS e ZnS sobre as propriedades ópticas dos NCs. Inicialmente, o núcleo de CdTe sintetizado por 90 min apresenta 546 nm de λ_{abs} , assim como 584 nm de λ_{emiss} . Com o acréscimo progressivo de monocamadas de CdS, observa-se um deslocamento batocrômico que se estende até aproximadamente 580 nm para 5 ML de CdS nos espectros de absorção, indicando o aumento efetivo do diâmetro excitônico dos PQs e a redução do confinamento quântico devido à sobreposição das bandas de energia CdTe/CdS (tipo I). Na emissão, esse mesmo acréscimo de monocamadas de CdS promove um red-shift concomitante da banda fotoluminescente, deslocando-o gradativamente de ~584 nm para ~614 nm, além de reduzir a largura de meia-altura (FWHM), o que sugere melhoria na uniformidade de tamanho e redução de sítios de defeito superficial que atuam como centros de recombinação não-

radiativa. Quando, por fim, se deposita uma casca de ZnS sobre as 5 ML de CdS, nota-se que a banda de absorção sofre apenas um leve *red-shift* adicional (próximo a ~604 nm), ao passo que a banda de emissão experimenta um ligeiro deslocamento para ~630 nm, reflexo de uma passivação ainda mais eficiente das armadilhas de superfície e do aprimoramento das barreiras de confinamento de portadores elétricos. Em essência, a adição sucessiva de CdS seguida de ZnS transfere os portadores gerados no núcleo de CdTe para um ambiente com menor densidade de defeitos, favorecendo o confinamento excitônico e resultando em emissões mais estreitas e intensas, em concordância com a literatura de sistemas CdTe/CdS/ZnS onde a casca externa de ZnS é responsável pela estabilização óptica e pela maximização do rendimento quântico do nanomaterial. [6]

Figura 1. Espectros de a) absorção óptica UV-vis e b) fotoluminescência normalizados de PQs de CdTe/CdS/ZnS crescidos no núcleo de CdTe-90 min excitadas em 355 nm

Tabela 1. Parâmetros obtidos das curvas de decaimento de fotoluminescência dos PQs de CdTe-90 min/CdS/ZnS

Amostra	$\alpha_1(\%)$	$\tau_1(ns)$	$\alpha_2(\%)$	$\tau_2(ns)$	τ (ns)
CdTe 90 min	23,36	7,51	76,42	27,53	26,44
CdTe/CdS 1ML	44,57	16,94	55,43	51,37	44,15
CdTe/CdS 2ML	40,99	16,26	59,01	47,56	41,55
CdTe/CdS 3ML	39,95	16,83	60,05	49,20	43,20
CdTe/CdS 4ML	37,29	16,25	62,71	49,56	44,12
CdTe/CdS 5ML	35,56	17,38	64,44	52,27	46,86
CdTe/CdS/ZnS 1ML	30,21	19,59	69,79	57,69	52,81
CdTe/CdS/ZnS 2ML	30,48	23,92	69,52	64,45	58,78
CdTe/CdS/ZnS 3ML	27,44	21,45	72,56	62,62	57,90

A análise da **Tabela 1** revela uma clara evolução dos tempos de vida excitônicos médios $(\bar{\tau})$ conforme o número de monocamadas de revestimento é aumentado. A amostra de CdTe sintetizada por 90 min apresenta um tempo de vida médio de 26,44 ns, que é significamente ampliado já com a deposição da primeira monocamada de CdS, atingindo 44,15 ns.

Esse acréscimo indica uma melhora na passivação da superfície do núcleo, reduzindo os canais de recombinação não radiativa. Com a adição sucessiva de mais monocamadas de CdS (até 5 ML), observase uma variação relativamente pequena, mas consistente, dos tempos de vida, que permanecem na faixa de 41-47 ns, sugerindo um estado de saturação na eficácia da passivação promovida pelo CdS. A deposição posterior de cascas de ZnS resulta em um incremento ainda mais expressivo no tempo de vida, com $\bar{\tau}$ aumentando de 52,81 ns (1 ML de ZnS) para 58,78 ns (2 ML), e mantendo-se elevado em 57,90 ns para 3 ML. Este comportamento evidencia que o ZnS, por possuir maior gap e menor constante dielétrica, atua como barreira mais eficiente ao confinamento de portadores, minimizando as perdas por recombinação não radiativa e estabilizando os estados excitônicos. Assim, o sistema CdTe/CdS/ZnS demonstra efeito cumulativo na proteção dos portadores de carga, com impacto direto na elevação dos tempos de vida e, consequentemente, na eficiência quântica dos NCs.

Conclusões

Os espectros de absorção e fotoluminescência revelaram deslocamentos sistemáticos para comprimentos de onda maiores com o aumento do número de monocamadas, comportamento coerente com a redução do confinamento quântico e a expansão do volume efetivo do NC. As análises de rendimento quântico confirmaram que a deposição de camadas sucessivas promoveu um aumento significativo da eficiência de emissão, especialmente nas amostras CdTe/CdS/ZnS, evidenciando a eficácia da passivação superficial na supressão de defeitos e canais de recombinação não radiativa. Adicionalmente, os tempos de vida no estado excitado revelaram um prolongamento das constantes de decaimento em função do número de monocamadas, o que reforça a hipótese de que a estrutura em multicamadas *core/shell/shell* contribui para um confinamento mais eficiente dos portadores de carga e reduz as perdas energéticas.

Agradecimentos

Os autores agradecem às agências de fomento FAPEMIG, CAPES, FINEP e CNPq.

Referências

- 1. Park, H.; Shin, D. J.; Yu, J. J Chem Educ. 2021, 98, 703.
- 2. Yu, K.; Schanze, K. S. ACS Cent Sci 2023, 9, 1989.
- 3. Albaladejo-Siguan, M.; Baird, E. C.; Becker-Koch, D.; Li, Y.; Rogach, A. L.; Vaynzof, Y. Adv Energy Mater **2021**, 11, 2003457.
- 4. Farahmandzadeh, F.; Molaei, M.; Alehdaghi, H.; Karimipour, M. Applied Physics A. **2022**, 128, 239.
- 5. Irani, E.; Yazdani, E.; Bayat, A. Optik (Stuttg) 2022, 249, 168198.
- Gao, Y.; Liu, H.; Li, J.; Deng, X.; Hu, W.; Xiao, S.; Qiu, X.; Lin, X.; Wang, K.; He, T. The Journal of Physical Chemistry C. 2020, 124, 7994.