
Exploring Gaussian-Laplace Combinations in
High-Dimensional Dynamic Spike-and-Slab

Models
Guilherme C. Soares1, Marcio P. Laurini2

Abstract

This study explores the role of prior specifications in dynamic variable selec-
tion models under a Spike-and-Slab framework. Gaussian and Laplace priors
are employed to investigate the impact of penalty functions and their effec-
tiveness in inducing dynamic sparsity. The analysis builds upon the frame-
work discussed by Ročková and McAlinn (2019), addressing the dynamic se-
lection problem through the lens of optimization using a dynamic Expectation-
Maximization (EM) algorithm. The methods are analyzed in terms of their
performance on simulated samples and in an application to real data forecast-
ing.

Keywords: Optimization; Spike and Slab; Variable Selection, Sparsity.

1. Introduction
With the increasing availability of data, access to information for predictive purposes has
advanced rapidly, making it significantly easier to incorporate a wide range of information
into predictive models compared to the past. Combined with the growth in computational
efficiency, this raises a crucial question: ”How do we handle these data?”

From a macroeconomic perspective, this question becomes even more complex. Macroe-
conomic datasets often exhibit a limited number of time periods relative to the number of
available variables, leading to estimation challenges inherent in scenarios where N ≪ P ,
that is, when the sample size N is smaller than the number of parameters in the model.

Pioneering works such as Tibshirani (1996) and George and McCulloch (1993) intro-
duced methods such as Lasso, Ridge, Elastic Net and spike and slab for variable selection,
effectively eliminating less relevant variables from the model and estimating it without
them. However, these are static approaches that remove variables without considering
their potential temporal relevance.

Stock and Watson (2007) examine U.S. inflation forecasting, demonstrating how pre-
dictive dynamics evolve over time. Models that perform well in certain periods may
1. University of São Paulo - FEARP

E-mail: guilhermecsoares@usp.br, laurini@fearp.usp.br

1

become less effective in others due to shifts in the economic environment, such as tran-
sitions between stability and instability, the persistence of shocks, reductions in overall
macroeconomic volatility, and changes in trend components. Similarly, Cogley and Sar-
gent (2005) explore time-varying parameters, proposing models in which the coefficients
of VAR equations and stochastic volatilities evolve over time. They argue that traditional
fixed-parameter models fail to adequately capture economic dynamics across different pe-
riods.

However, when dealing with a large number of variables, the number of parameters
to estimate grows substantially, complicating the model’s implementation. To address
this challenge, a growing body of literature on Dynamic Variable Selection has emerged,
as explored by Ročková and George (2014), Ročková and McAlinn (2019), and Koop
and Korobilis (2023). These approaches introduce specifications that allow for dynamic
coefficients while inducing dynamic sparsity, both vertically, where a parameter can ”enter
and exit” the model over time, and horizontally, where a parameter is shrunk to zero across
all periods.

This paper focuses on a model based on Spike-and-Slab priors, which operate as a mix-
ture of two distributions: the spike, which shrinks parameters to zero to induce sparsity,
and the slab, which permits parameters to deviate from zero and exhibit temporal varia-
tion. The spike-and-slab framework is typically implemented using Gaussian or Laplacian
priors, each influencing the shrinkage behavior in distinct ways.

Our discussion is grounded in the work of Ročková and McAlinn (2019), who introduced
the EMVS (Expectation-Maximization Variable Selection) algorithm for fitting Dynamic
Spike-and-Slab (DSS) priors. The primary objective of this approach is to achieve Max-
imum a Posteriori (MAP) smoothing. This algorithm is particularly advantageous due
to its computational efficiency in handling high-dimensional datasets, where traditional
MCMC (Markov Chain Monte Carlo) methods may be computationally prohibitive, and
its ease of implementation in Gaussian models, where conjugate priors facilitate tractabil-
ity.

Additionally, we explore the implications of employing Laplace priors, which introduce
unique challenges. These include non-differentiability at zero and a higher density near
zero compared to Gaussian priors, both of which significantly influence the shrinkage
properties and sparsity-inducing behavior of the model.

The results in the simulated and empirical analysis demonstrate that models incor-
porating shrinkage mechanisms, particularly the Gaussian-Gaussian (GG) and Laplace-
Gaussian (LG) models, significantly enhance forecasting accuracy across different horizons.
The GG model performs best for short-term forecasts, while the LG model is more robust
over longer horizons. Fixed parameter calibration across all horizons may limit perfor-
mance, suggesting the need for horizon-specific adjustments. Cumulative error analysis
further supports the superiority of these models, especially in handling noise and sparsity.
The study highlights the practical advantages of shrinkage in macroeconomic forecasting
and suggests future research on adaptive calibrations and broader applications.

The remainder of this paper is structured as follows. Section 2 presents the formal
specification of the model with Spike-and-Slab priors. Section 3 explores the influence of
Normal and Laplace distributions on the loss function. Section 4 applies the proposed
model to parameter recovery in a simulated dataset, while Section 5 evaluates its perfor-
mance in forecasting Brazilian inflation using the discussed methods. Finally, Section 6
presents the concluding remarks.

2

2. Variable Selection Structure
The spike-and-slab prior (Ročková and George, 2018; Louzada et al., 2023) is a Bayesian
variable selection method designed to induce sparsity in high-dimensional models. It is
formulated as a mixture of two distributions: a spike, which shrinks coefficients toward
zero, and a slab, which allows nonzero coefficients to vary freely.

Let βj be a model parameter. The spike-and-slab prior is typically defined as a hier-
archical mixture model:

βj | γj ∼ (1− γj) · Spike + γj · Slab
where γj ∈ {0, 1} is a latent indicator variable controlling whether βj is included (γj = 1)
or excluded (γj = 0). The spike component is often a narrow Gaussian distribution, such
as N (0, τ2) with small τ2, or a point mass at zero. The slab component is typically a
broader Gaussian distribution, N (0, σ2), or a Laplacian prior, which provides stronger
shrinkage.

The primary advantage of the spike-and-slab prior lies in its ability to perform auto-
matic variable selection by shrinking irrelevant coefficients to zero. Additionally, modern
estimation techniques, such as the Expectation-Maximization Variable Selection (EMVS)
algorithm, enhance computational efficiency by avoiding costly Markov Chain Monte Carlo
(MCMC) sampling, making it well-suited for high-dimensional applications.

Let us consider a model that follows a Dynamic Spike and Slab structure such that:

yt = βt,jxt−h + εt, (1)

where
εt ∼ N(0, σ),

βt,j ∼ N(γt,jµt,j , γtλ1 + (1− γt)λ0),

µt,j = ϕ0 + ϕµt−1,j + ν, ν ∼ N(0, σµ),

γt,j =

{
1 if spike,
0 if slab.

Here, λ1 and λ0 represent the variances of the Dynamic Spike-and-Slab prior, respec-
tively.

The choice of ϕ is made such that |ϕ| < 1, ensuring stationarity of the parameters.
This allows for a structure such that µt becomes a stationary process with mean ϕ0 and
variance λ1

1−ϕ2 .
The inference procedure used in this work is based on estimation using Maximum a

Posteriori estimation. Maximum a Posteriori (MAP) estimation is a Bayesian approach to
parameter estimation. It finds the parameter θ that maximizes the posterior probability
P (θ | X), given the observed data X. Mathematically, MAP estimation is given by:

θ̂MAP = arg max
θ
P (θ | X)

Using Bayes’theorem:

P (θ | X) =
P (X | θ)P (θ)

P (X)

3

Since P (X) is a constant with respect to θ, MAP estimation simplifies to:

θ̂MAP = arg max
θ
P (X | θ)P (θ)

where P (X | θ) is the likelihood of the data given the parameter and P (θ) is the prior
distribution of the parameter.

MAP estimation incorporates prior knowledge, which helps in regularization and pre-
vents overfitting. Unlike Maximum Likelihood Estimation (MLE), which only considers
the likelihood function, MAP includes prior information, making it more robust, partic-
ularly in small-sample settings. The prior acts as a form of regularization, ensuring that
the estimates remain stable. This makes MAP especially useful when data is limited or
when MLE produces ill-posed solutions.

2.1 Dynamic Spike-and-Slab structure of βt,j

To derive the MAP (Maximum A Posteriori) estimator for β1:T,j , we maximize the poste-
rior distribution:

β̂1:T,j = arg max
β1:T,j

π(β1:T,j |Y1:T), (2)

where π(β1:T,j |Y1:T) is proportional to the product of the likelihood and the prior:

π(β1:T,j |Y1:T) ∝ L(Y1:T |β1:T,j) · π(β1:T,j). (3)

The prior for βt,j is defined as a mixture of the spike and slab distributions:

π(βt,j |γt,j , βt−1,j) = (1− γt,j)ψ0(βt,j |λ0) + γtψ1(βt,j |µt, λ1), (4)

where:
• ψ0(βt|λ0) is the spike distribution with variance λ0,

• ψ1(βt|µt, λ1) is the slab distribution with mean µt and variance λ1,

• γt ∈ {0, 1} is the binary indicator for spike/slab membership.
For now, we assume arbitrary distributions for ψ0 and ψ1. In later sections, we will discuss
the implications of using Gaussian or Laplace distributions for each case. To work with
the γtj inclusion parameter, it’s necessary to introduce its structure:

P (γt = 1 | βt−1) = θt. (5)

The specification given by Ročková and McAlinn (2019) for θt involves introducing an
interpretable parameter called the marginal importance weight Θ, where 0 ≤ Θ ≤ 1. This
scalar parameter controls the overall balance between the spike and slab distributions.

Given (Θ, λ0, λ1, ϕ0, ϕ1), the conditional inclusion probability θt (or a transition func-
tion θ(βt−1)) is defined as:

θt ≡ θ(βt−1) =
ΘψST1 (βt−1|λ1, ϕ0, ϕ1)

ΘψST1 (βt−1|λ1, ϕ0, ϕ1) + (1−Θ)ψ0(βt−1|λ0)
. (6)

It is interesting to note that changing the value of Θ to 0 or 1 will make the model tend
toward two extremes: a dynamic linear model (DLM) without shrinkage when Θ = 1, or
a model composed entirely of the spike distributions when Θ = 0, meaning all parameters
will be shrunk to zero.

4

2.2 Algorithm Description
The algorithm iteratively updates the regression coefficients βj,t by calculating posterior
inclusion probabilities and performing dynamic shrinkage adjustments. Below, we present
the main steps of the algorithm, which incorporates spike-and-slab priors defined by the
functions ψ0 and ψ1 for the spike and slab components, respectively.

Before starting the iterative process, the algorithm defines several auxiliary functions
to compute posterior probabilities and shrinkage adjustments. These functions rely on
the spike-and-slab prior distributions represented by ψ0(βt | λ0) for the spike component
and ψ1(βt | λ1, µt) for the slab component.

2.2.1 Posterior Inclusion Probability (p∗)

The posterior inclusion probability, denoted as p∗j (x), measures the likelihood that a vari-
able is included in the model at time t. It is computed as follows:

p∗j (x) =
1

1 + (1−Θ)ψ0(x|λ0)
Θψ1(x|λ1,µt)

(7)

This equation balances the relative contributions of the spike and slab components, weighted
by the prior inclusion probability Θ.

2.2.2 Conditional Inclusion Probability

The conditional inclusion probability, denoted as pcond
j (x), incorporates information from

past values of the regression coefficients and is computed as:

pcond
j (x) =

θjψ1(x | λ1, µt)
θjψ1(x | λ1, µt) + (1− θj)ψ0(x | λ0)

(8)

This function dynamically adjusts the inclusion probability based on the past evolution of
the model’s coefficients.

2.2.3 Expectation Step (E-Step)

During the Expectation step, the algorithm computes the posterior inclusion probabilities
for each variable j in each time period t. The main tasks in this step are as follows:

1. Compute the mixing weights θj and the posterior inclusion probabilities p∗j using
the auxiliary functions defined above.

2. Compute the precision terms and auxiliary quantities νt and dt for the posterior
distributions of the coefficients, which are used in subsequent updates.

2.2.4 Maximization Step (M-Step)

In the Maximization (M) step, the algorithm updates the regression coefficients βj,t and
intercepts β0,j using the posterior probabilities computed in the E-step.

5

Updating Regression Coefficients (βj,t) For each variable j and time period t, the
regression coefficient βj,t is updated using the following expressions for the mean µ and
the variance σ2:

µ =
ϕ1p

∗
jβj,t−1

λ1
+
ϕ1p

∗
jβj,t+1

λ1
+ z (9)

σ2 =
1

reg2 + p∗j
λ1

+ ϕ21
p∗j,t+1

λ1
+ (1− ϕ21)

shrink
λ1

(10)

The term z represents the adjusted residual, and the term shrink represents the shrinkage
adjustment applied to the coefficients.

The final value of βj,t is computed by applying a threshold-based shrinkage adjustment:

βj,t = max(0, µ− shrink)− max(0,−µ− shrink) (11)

2.2.5 Convergence Criterion

The algorithm iterates until the squared difference between updated and previous coeffi-
cients is below a predefined threshold ϵ, indicating convergence. The convergence criterion
is given by:

ϵ =

p∑
j=1

T∑
t=1

(βnew
j,t − βj,t)

2 (12)

The algorithm described in this section was implemented in Python, and the core
functions were further optimized by translating them to C++ using the Cython library.
This adaptation significantly accelerates the computation by leveraging compiled code,
which is particularly beneficial for large datasets and complex models.

The complete implementation of the algorithm can be found in the Appendix, where
the Python code and its C++-optimized version are provided. The use of Cython allows
for a seamless integration of C++ code within the Python environment, maintaining the
flexibility of Python while achieving the performance of compiled languages.

3. Choosing Between Gaussian and Laplace for Spike
and Slab

The general case, and the most common choice, is to use a Gaussian slab and a Laplace
spike. This configuration balances smooth variation for significant coefficients provided by
the Gaussian slab, with strong sparsity induced by the ℓ1-like penalty, as demonstrated
by LASSO approach of Tibshirani (1996), of the Laplace spike Ročková and McAlinn
(2019). However, in this work, we will explore other combinations of spike and slab
distributions, including Gaussian-Gaussian and Laplace-Laplace, to evaluate their effects
on model behavior and penalization structures.

The selection of spike and slab distributions significantly influences the behavior and
penalization structure of the Dynamic Spike-and-Slab framework. Where the first term
corresponds to the spike distribution and the second to the slab distribution. Each con-
figuration has distinct implications for the model’s penalization and sparsity-inducing
properties.

6

3.1 DSS Penalty
As shown by Ročková (2018), the Dynamic Spike-and-Slab (DSS) penalty is defined as:

Pen(β | βt−1, βt+1) = pen(β | βt−1) + pen(βt+1 | β) + C, (13)

where C ≡ −Pen(0 | βt−1, βt+1) is a norming constant.
It is easy to see that the penalty has a dependence on the previous and next parameters.

If we write the derivative of the penalty, we can see the effects of the variables in the spike-
and-slab dynamics.

∂Pen(β | βt−1, βt+1)

∂|β|
= −Λ⋆(β | βt−1, βt+1), (14)

By dividing the effects into past and future penalties, we can better understand how
these dynamics affect the model. The penalty from the past can be written as:

Λ⋆(β | βt−1, βt+1) = λ⋆(β | βt−1) + λ̃⋆(β | βt+1), (15)

and:

λ⋆(β | βt−1) = −∂pen(β | βt−1)

∂|β|
, λ̃⋆(β | βt+1) = −∂pen(βt+1 | β)

∂|β|
.

Using the past penalty as an example, λ⋆(β | βt−1) can be expanded as:

λ⋆(β | βt−1) = −p⋆t (β)
∂ logψ1(β | µt, λ1)

∂|β|
− [1− p⋆t (β)]

∂ logψ0(β | λ0)
∂|β|

,

where:
p⋆t (β) ≡

θtψ1(β | µt, λ1)
θtψ1(β | µt, λ1) + (1− θt)ψ0(β | λ0)

.

The future penalty follows the same logic, but with respect to βt+1, and is defined as:

λ̃⋆(βt+1 | β) = −∂pen(β | βt+1)

∂|β|

= −p⋆t (βt+1)
∂ logψ1(βt+1 | µt, λ1)

∂|βt+1|
− [1− p⋆t (βt+1)]

∂ logψ0(βt+1 | λ0)
∂|βt+1|

, .

It is important to note that there is an implicit dependence on the previous value βt−1

in pen(β | βt−1), which is hidden in θt and µt, as discussed in Ročková and McAlinn
(2019).

3.2 Gaussian-Gaussian Specification
Let us assume a Gaussian distribution for the spike, such that:

ψ0(β|λ0) =
1√
2πλ0

exp
(
− β2

2λ0

)
. (16)

7

where µ is the mean and σ2 is the variance. In the case of the spike, we assume µ = 0,
as the spike is centered around zero, and λ0, which defines the variance of the spike. It
follows a slab gaussian distribution, given by: σ2 = λ0 and replacing x with β:

ψ1(β|λ1, µt) =
1√
2πλ1

exp
(
− (x− µt)

2

2λ1

)
. (17)

This distribution represents the spike in the Dynamic Spike-and-Slab framework, with
λ0 controlling the strength of the shrinkage around zero Ročková and McAlinn (2019).Under
a Gaussian slab distribution, ψ1(βt|µt, λ1), we arrive at a model where the autoregressive
process for βt follows a stationary Gaussian AR(1) process. Specifically, the process is
given by:

βt = ϕ0 + ϕ1(βt−1 − ϕ0) + et,

where: - |ϕ1| < 1, ensuring stationarity, - et
iid∼ N(0, λ1).

This formulation highlights the smoothing property of the Gaussian slab, as it incor-
porates past values of βt to ensure a structured and stationary dynamic process.

Figure 1: Gaussian-Gaussian Penalty

Figure 1 illustrates how the penalty function operates under the Gaussian spike and
slab specification. This visualization highlights the interplay between the spike and slab
distributions in shaping the penalty applied to the coefficients βt.

In Figure 2, we explore the sensitivity of the transition weight parameter θt, which is
critical for determining the balance between the spike and slab components. The param-
eters used for both figures are as follows: λ0 = 0.1for the penalty and λ0 = 0.9 for the
transition weight plot, ϕ1 = 0.96, and λ1/(1−ϕ21) = 25 for the penalty and λ1/(1−ϕ21) = 10
for the transition weight. These values were chosen solely for visualization purposes to
provide a practical visualization of the penalty function’s behavior. Additionally, Θ = 0.9
reflects the marginal importance weight.

It can be observed that a small λ0 concentrates the distribution mass around zero,
effectively shrinking the coefficients to values close to zero. This highlights the impor-
tance of finding a suitable balance between λ0 and λ1 to ensure adequate sparsity while
simultaneously allowing the parameters to vary over time. Such flexibility is essential for
capturing data patterns dynamically.

It is also noteworthy that the transition weight θ(β) in this specification assigns higher
probabilities as |β| increases, effectively reducing shrinkage for larger coefficients. Con-
versely, smaller values of |β| are more strongly shrunk toward zero.

8

Figure 2: Gaussian-Gaussian Transition Weight

The sensitivity of the parameters is illustrated in Figure 2. The variance parameter
λ0 influences the magnitude of the coefficients that can be included in the model. Ad-
ditionally, Θ acts as a global shrinkage strength parameter, while λ1, the slab variance,
determines the probability of slab inclusion.

3.3 Laplace-Gaussian Specification
The Gaussian slab is defined according to (18), while the Laplace spike is given by the
following expression:

ψ1(βt | λ0) =
λ0
2
e−|βt|λ0 , (18)

where ψ1(βt | λ0) represents the Laplace distribution with scale parameter λ0, applied
to the regression coefficient βt. The behavior of βt under a Laplace distribution changes
to a Laplace Autoregressive process, which tends to concentrate the next value close to
the last due to the density of the Laplace distribution. Kalli and Griffin (2014) discuss its
implications.

As demonstrated by Ročková and McAlinn (2019) and Ročková (2018) (see Figure 3),
the Laplace spike offers the advantage of shrinking parameters directly to zero without re-
quiring any threshold. This property is particularly desirable for computational efficiency,
as it enables focusing solely on the active parameters, which form a smaller subset for
estimation. As shown by Ročková and McAlinn (2019) the prospective and retrospective

Figure 3: Laplace Gaussian Penalty

penalties depend on the mixing weight θt ≡ θ(β) in (put equation number here). How-

9

ever, Laplace tails will begin to dominate for large enough |β|, where the probability θ(β)
will start to drop (for |β| greater than δ ≡ (λ0 +

√
2C/A)A, where A = λ1/(1− ϕ21) and

C = log[(1−Θ)/Θλ0/2
√
2πA]). Nevertheless, the turning point δ can be made sufficiently

large by increasing Θ and reducing λ0. This behavior can be seen in Figure 4.

Figure 4: Laplace Gaussian Transition Weight

As shown by Ročková and McAlinn (2019) the behavior of the prospective and ret-
rospective penalties in the Laplace spike case, is ultimately tied to the mixing weight
θt ≡ θ(β). It can be seen that the Laplace tails will begin to dominate the probabilities
for large enough |β|, where the probability θ(β) will begin to drop for |β| greater than

δ ≡ (λ0 +
√
2C/A)A

Where A = λ1/(1 − ϕ21) and C = log[(1 − Θ)/Θλ0/2
√
2πA]). However, we can make

the turning point δ large enough with larger values Θ and smaller values λ0, as indicated
in Figure 4.

3.4 Laplace-Laplace Specification
The Laplace slab, show in (19), and Laplace spike specification, called Spike-and-Slab
LASSO by Ročková (2018), is a framework where the spike is assigned a smaller variance
compared to the slab to induce sparsity. Additionally, the Laplace slab generates a con-
centration of mass around µt, which implies that it tends to keep the parameter more
stable near its previous value than the gaussian slab. This characteristic is particularly
useful in scenarios where one aims to minimize excessive changes in the parameter values,
leaning towards a structural model specification.

If we want to shrink µt, which determines the structure of βt, towards its past value,
we can specify it as a Laplace slab. The Laplace slab distribution can be defined as:

ψ1(βt | µt, λ1) =
λ1
2
e−|βt−µt|λ1 (19)

While both the Gaussian and Laplace slabs lead to a conditional posterior mean that
shrinks towards the last value, the conditional posterior mode will shrink exactly to the
past value in the case of the Laplace slab (but not for the Gaussian) Ročková and McAlinn
(2019).

Ročková (2018) provide a detailed discussion on the Spike-and-Slab LASSO and demon-
strate that the difference in variance between the two components of the mixture generates

10

Figure 5: Laplace-Laplace Penalty

Figure 6: Laplace-Laplace Transition Weight

a threshold δ, which classifies whether a parameter belongs to the spike or the slab. The
threshold, representing the point where the slab starts to dominate the spike, is given by:

p⋆θ(βj) =
θψ1(βj)

θψ1(βj) + (1− θ)ψ0(βj)
.

δ =
1

λ0 − λ1
log

(
1

p⋆θ(0)
− 1

)
.

This is evident in Figure 5, where the LASSO approach shrinks the parameter towards
its last value. As a result, the penalty exhibits a greater point mass at µt. Additionally,
the transition weights are significantly more sensitive to small changes in the specifica-
tion of λ0 and λ1 compared to other specifications, as can be seen in Figure 6. This
highlights the importance of carefully tuning these parameters into the Spike-and-Slab
LASSO framework.

The left panel of Figure 6 illustrates that, in the case where both the slab and spike
components follow Laplace distributions, if the precision parameter λ1 is significantly
larger than λ0, the spike component dominates the inclusion probability across the entire
relevant space of the function. This behavior is evident from the way the inclusion proba-
bility degenerates as λ1 increases, effectively suppressing the contribution of the slab and
leading to a near-zero probability of variable inclusion.

11

4. Results in Simulated Dataset
To evaluate the model, we will simulate a dataset and assess its performance using three
fit metrics:

1. Sum of Squared Errors (SSE):

SSE =

T∑
t=1

p∑
j=1

(
βtrue
t,j − βestimated

t,j

)2
2. Sum of Absolute Errors (SAE):

SAE =

T∑
t=1

p∑
j=1

∣∣βtrue
t,j − βestimated

t,j

∣∣
3.Hamming Distance:

Hamming Distance =

T∑
t=1

p∑
j=1

∣∣I (θt,j > threshold)− I
(
βtrue
t,j ̸= 0

)∣∣
where I(·) is an indicator function that equals 1 if the condition inside is true, and 0
otherwise, where the probability threshold is 0.5.

In this dataset, time series data is generated with coefficients that evolve over time
according to an autoregressive process (AR(1)) while incorporating sparsity and regime
switching. The goal is to simulate a dynamic environment where the relationships between
predictors and the response variable are time-varying, and certain predictors may become
inactive (with coefficients equal to zero) depending on the regime.

The simulation involves 200 time periods (T = 200) and 10 informative predictors
(p = 5), which follow an AR(1) process. The coefficients start in an active or inactive state
based on the zero probability parameter (zero_prob = 0.5). This parameter determines
the likelihood that a coefficient starts in the inactive state (0) at the beginning of the series.
Once initialized, the persistence parameter (persistence = 0.98) governs the probability of
remaining in the current state (active or inactive) at each time step. Higher persistence
values ensure smoother transitions and more prolonged periods of activity or inactivity,
creating a stable temporal structure.

For coefficients in the active state, their values evolve over time based on an AR(1)
process. This process is defined by the autoregressive coefficient (ϕ = 0.98) and a noise
term with a standard deviation (σ = 0.25). Together, these parameters ensure that active
coefficients remain temporally dependent while allowing for some variability. Predictors
from time t−1 are lagged and used to influence the dependent variable at time t, creating
a dynamic relationship between past predictors and current outcomes.

In addition to the informative predictors, 45 uninformative noise variables are included
in the dataset to mimic real-world scenarios where not all predictors are relevant. These
noise variables add complexity to the simulation, making it suitable for testing models
that can effectively identify and utilize only the informative predictors. The response
variable is generated by summing the contributions of the active predictors (weighted by
their respective coefficients) and adding random noise to introduce randomness in the
outcomes.

12

This simulation framework produces a realistic and dynamic dataset with time-varying
coefficients, sparsity, and a temporal structure. It is particularly suited for testing ad-
vanced models like dynamic spike-and-slab specifications, as it challenges the model to
handle both temporal dependencies and feature selection in the presence of noise and
sparsity.

We began by running a Dynamic Linear Model (DLM), that is achieved by setting
Θ = 1. The parameters for this model were ϕ0 = 0, ϕ1 = 0.98, λ0 = 0.9 the spike
parameter and λ11 = 10(1 − ϕ21), the parameter for the slab. The model assumes Θ = 1,
indicating that it is fully dynamic without additional sparsity.

Next, we ran the Gaussian-Gaussian model. The parameters for this model were
ϕ0 = 0, ϕ1 = 0.95, a slightly lower persistence of βt parameter compared to the DLM.
The variance of the observation noise was reduced to λ0 = 0.1, introducing more sparsity,
while the variance of the state noise was λ1 = 10(1 − ϕ21), dependent on the persistence
parameter. The model assumed Θ = 0.92, making it less dynamic and incorporating some
level of sparsity.

Following this, we implemented the Laplace-Gaussian model. The parameters for this
model were ϕ0 = 0, ϕ1 = 0.99, λ0 = 5, allowing for more flexibility in the data, while
the variance of the state noise was set to λ1 = 5(1− ϕ21), scaled based on the persistence
parameter. This model assumed Θ = 0.90, balancing dynamics and sparsity.

Finally, we ran the Laplace-Laplace model. The parameters for this model were ϕ0 =
0, ϕ1 = 0.99, λ0 = 0.05and λ1 = 5, a fixed variance for the state noise. The model
assumed Θ = 0.5, representing a sparsity-dominant configuration that significantly reduces
dynamics.

Figure 7: Coefficients Estimated

In Figure 7, we can observe the trajectories of the estimated parameters compared to
the true ones for each model. The figure illustrates the fit of each model by plotting the
first 10 parameters. Among these, the first five represent active parameters, while the
remaining five correspond to noise parameters.

The dataset under analysis contains many noise parameters, which directly impact the
performance of the DLM (Θ = 1). Since the DLM captures information without incor-

13

porating mechanisms of sparsity, it ends up propagating noise throughout the estimates,
making it difficult to distinguish between relevant and irrelevant parameters. This be-
havior is evident in the noise coefficients (β6 to β10), where the DLM exhibits significant
fluctuations, indicating excessive sensitivity to non-informative variations.

On the other hand, models that incorporate sparsity, such as the Laplace-Gaussian and
Laplace-Laplace, demonstrate a much greater ability to address this issue. In particular,
the Laplace-Gaussian model appears to be less responsive to noise parameters, keeping
them closer to zero, which contributes to the robustness of the estimates. At the same
time, the Laplace-Gaussian achieves a good fit to the true coefficients (β1 to β5), balancing
responsiveness and sparsity. This flexibility is a significant advantage over the Laplace-
Laplace model, which, although more sparse, can be overly conservative and less adaptable
to the dynamics of active coefficients.

Thus, the plot demonstrates that the Laplace-Gaussian model strikes a balance: it
efficiently reduces the impact of noise while maintaining sufficient flexibility to capture
the trajectories of relevant coefficients. This characteristic makes the model particularly
appealing in contexts where it is necessary to handle many noise parameters without
sacrificing the fit to the data.

Figure 8: Inclusion Probabilities

In figure 8 it’s possible to observe from the inclusion probabilities that the model
demonstrates a good fit to the parameters, with some ”extra” sparsity when the dynamic
β approaches zero. However, as β moves away from zero, it is once again captured by
the model. The noise in the Gaussian-Gaussian model becomes evident when observing
the ”short” jumps in inclusion probabilities, which are sporadically captured in noise
variables. Despite this, these variables do not persist in the model, which helps maintain
its robustness.

The double Laplace model exhibits the highest level of sparsity and appears to be
highly responsive to the true variables. Among all models, the one that propagated the
least noise was the Gaussian-Laplace model. In the variables shown in the figure, no
”jumps” are observed, as is the case with the Gaussian-Gaussian model. Additionally, in
the variables not plotted, such ”jumps” are very isolated and practically do not occur.

14

Model SSE SAE Hamming Distance
Gaussian-Gaussian 252.68 419.04 203
Laplace-Gaussian 200.77 268.23 255
Laplace-Laplace 231.87 357.83 38
DLM (Θ = 1) 435.00 1298.60 9412

Table 1: Fit Metrics for Different Models

Through Table 1, it is possible to observe that the model with the best fit for the
betas is the Gaussian-Gaussian model. Although it does not exhibit the best shrinkage, it
replicates the models most effectively, as evidenced by its SSE and SAE metrics. However,
the model with the best shrinkage is the Laplace-Laplace model, demonstrating that
the structure of assigning more density to past values appears to provide a favorable
characteristic for variable selection.

5. Empirical Analysis: Forecasting Brazilian Inflation
In this section, we apply the proposed method to forecast Brazilian inflation using the
high-dimensional dataset from Garcia et al. (2017), which contains data on the Brazilian
consumer price index (IPCA). The IPCA is the official inflation index in Brazil and is
widely used as a reference for inflation-linked bonds. The dataset covers the period from
January 2003 to December 2015, with a total of 156 monthly observations. The data were
obtained from Bloomberg and the Central Bank of Brazil and consist of 59 macroeconomic
variables and 34 variables linked to specialist forecasts (Garcia et al., 2017).

Table 2: Macroeconomic variables
Column 1 Column 2 Column 3
Brazil CPI IPCA MoM Brazil Unemployment Statistic Male Brazil Central Government Net Revenue
FGV Brazil General Prices IGP- Brazil Unemployment Statistic Total Brazil Central Government Revenue from the Central Bank
FGV Brazil General Prices IGP-DI IMF Brazil Unemployment Rate in Percentage Brazil Central Government Total Expenditures
FGV Brazil General Prices IGP-M CNI Brazil Manufacturing Industry Employment Brazil National Treasury Gross Revenue
FGV Brazil General Prices IGP-10 Brazil Industry Working Hours Brazil Importing Tax Income
Brazil CPI IPCA Median Market Expectations Brazil Average Real Income BNDES Brazil Income Taxes
Brazil Total Electricity Consumption Brazil Minimum Wage Brazil Treasury Revenue from Import Tax
Brazil Industrial Electricity Consumption USD-BRL X-RATE Brazil Treasury Revenue from Social Security
BofA Merrill Lynch Economic Conditions Index USD-BRL X-RATE Tourism Brazil Current Account Balance
CNI Brazil Manufacture Industrial Confidence Index EUR-BRL X-RATE Brazil Trade Balance FOB
CNI Brazil Manufacture Industrial Installed Capacity BRAZIL IBOVESPA INDEX Brazil Public Net Fiscal Debt as Percentage of GDP
Brazil Industrial Production Seasonally Adjusted Brazil Savings Accounts Deposits Brazil Public Net Fiscal Debt
Brazil Industrial Production Annual Brazil Total Savings Deposits Brazilian Federal Government Domestic Debt
IBGE Brazil Unemployment Rate Brazil BNDES Long Term Interest Rate Brazilian Public Net Government and Central Bank Domestic Debt
Brazil Unemployment Statistic Female Brazil Selic Target Rate Brazilian States Debt to Consolidated Net Debt
Brazil Cetip DI Interbank Deposits Brazilian States Debt to Foreigners Brazilian Cities Debt to Foreigners
Brazil Monetary Base Brazilian Cities Debt Total Brazilian Cities Debt to Foreigners Total
Brazil Money Supply M1 Brazil t+1 median Top5 t+1 median
Brazil Money Supply M2 Brazil t+2 median Top5 t+2 median
Brazil Money Supply M3 Brazil t+3 median Top5 t+3 median
Brazil Money Supply M4 Brazil t+4 median Top5 t+4 median
t+5 median Top5 t+5 median t+6 median
Top5 t+6 median t+7 median Top5 t+7 median
t+8 median Top5 t+8 median t+9 median
Top5 t+9 median t+10 median Top5 t+10 median
t+11 median Top5 t+11 median t+12 median
Top5 t+12 median t+13 median Top5 t+13 median
1 median2 1 mean 1 mean2

1 Std 2 median 2 mean
2 mean2 2 Std fmed2
fmean fmean2 fdp
lfmed2 lfmean lfmean2
lfdp

15

The macroeconomic variables cover a wide range of indicators, including several infla-
tion and industry indexes, unemployment rates and other labor-related variables, energy
consumption, exchange rates, stock markets, government accounts, expenditure and debt,
taxes, monetary variables, and the exchange of goods and services (Garcia et al., 2017).
The dataset also includes expert forecasts from the FOCUS survey, produced by the Cen-
tral Bank of Brazil. The expectation variables include the median of the h-period-ahead
specialist forecasts, the median of the top five (Top5) experts—i.e., the five experts who
produced the best forecasts in the previous period—and, finally, the mean and the stan-
dard deviation of the Top5 experts. These expectation variables aim to provide a more
accurate assessment of future inflation expectations. The variables can be seen in table 2.

To ensure stationarity, we conduct the augmented Dickey-Fuller test for each time series
in the dataset. If a unit root is detected, we apply the logarithmic difference to achieve
stationarity. Once all variables are stationary, we normalize them to have zero mean
and unit variance to facilitate model convergence and interpretability. The transformed
variables are then used as inputs for the forecasting model discussed in previous sections.

The primary objective of this empirical analysis is to assess the forecasting performance
of the dynamic variable selection model with spike-and-slab priors when applied to real-
world macroeconomic data, particularly in a high-dimensional setting. By leveraging both
macroeconomic indicators and expectation variables, the model aims to improve predictive
accuracy by dynamically selecting the most relevant variables at each time step. The
inclusion of the Top5 expert forecasts is particularly relevant, as previous studies have
shown that these forecasts tend to perform better in short-term horizons but lose accuracy
as the forecast horizon increases.

To implement the forecasting models, we test several parameterizations to calibrate
the models described in Table 3. The models are constructed following the methodology
discussed in the previous sections, leveraging the theoretical framework and estimation
procedures detailed earlier in this paper. The implementation of the models is carried
out using the Python and Cython code provided in the appendix, ensuring computational
efficiency and reproducibility.

Table 3: Specification of Spike-and-Slab Models
Model Spike (ψ0) Slab (ψ1)

Gaussian-Gaussian ψ0(βt | λ0) = 1√
2πλ0

exp
(
− β2

t

2λ0

)
ψ1(βt | µt, λ1) = 1√

2πλ1
exp

(
− (βt−µt)

2

2λ1

)
Laplace-Gaussian ψ0(βt | λ0) = 1

2λ0
exp(−|βt|

λ0
) ψ1(βt | µt, λ1) = 1√

2πλ1
exp

(
− (βt−µt)

2

2λ1

)
Laplace-Laplace ψ0(βt | λ0) = 1

2λ0
exp(−|βt|

λ0
) ψ1(βt | µt, λ1) = 1

2λ1
exp(−|βt−µt|

λ1
)

These parameterizations aim to explore the sensitivity of the models to different con-
figurations and identify the optimal settings for forecasting Brazilian inflation.

In this analysis, we will first run a model with Θ = 1, which is equivalent to a Dy-
namic Linear Model (DLM). Subsequently, we will compare its performance with five
well-calibrated parameterizations for each of the specifications described in Table 3. This
approach allows us to benchmark the proposed dynamic variable selection models with
spike-and-slab priors against a simpler baseline model, evaluating their relative perfor-
mance in forecasting Brazilian inflation.

16

Before proceeding, it is essential to discuss the recursive forecasting algorithm employed
in this study. The data are divided into training and testing sets, where the training set
consists of 100 samples and the testing set includes 56 samples. Initially, the model
estimates parameters with Θ = 1, corresponding to a Dynamic Linear Model (DLM).
These estimated parameters are then used as priors to estimate the model with active
shrinkage (Θ < 1). This approach is particularly useful for avoiding local minima, a
common issue in Expectation-Maximization (EM) algorithms, as discussed by Ročková
and McAlinn (2019).

For each forecast, the parameters are first estimated using the DLM, and a prediction
is made with active shrinkage (Θ < 1) by using the DLM estimates for β as priors for
the model. This iterative procedure ensures that the parameters estimated at the last
time step t, denoted as βt, are projected forward using the dynamic equation for µt,
which defines βt+1 = ϕ0 + ϕ1βt. The estimated value of βt+1 is then multiplied by the
corresponding xt+1 (which is possible since we use a lagged data in the input xt) values
to forecast yt+1, without the model having observed the actual value of yt+1.

Finally, we compute the predicted mean squared error (MSE) and the predicted mean
absolute error (MAE) for each model. This methodology allows for a robust compari-
son of forecast performance across different specifications, while ensuring the models are
evaluated in a forward-looking, out-of-sample framework.

Table 4 presents forecast results across different horizons: short-term (h = 1), medium-
term (h = 6), and long-term (h = 12). The error metrics used are the Mean Forecast
Squared Error (MFSE) and the Mean Absolute Forecast Error (MAFE). The AR(1) model
and the DLM (Θ = 1) model are considered benchmarks to compare the performance of
more complex models such as Gaussian-Gaussian, Laplace-Gaussian, and Laplace-Laplace.

17

Ta
bl

e
4:

Fo
re

ca
st

in
g

R
es

ul
ts

M
od

el
ϕ

1
λ
1
1

λ
0

Θ
h

=
1

h
=

6
h

=
12

M
F

SE
M

A
F

E
M

F
SE

M
A

F
E

M
F

SE
M

A
F

E
A

R
(h

)
-

-
-

-
0.

66
51

0.
66

11
1.

46
61

0.
92

80
1.

30
49

0.
87

60
D

LM
(Θ

=
1
)

0.
98

1.
3

0.
9

1.
0

0.
51

81
0.

48
76

0.
79

37
0.

54
80

0.
70

47
0.

55
93

G
au

ss
ia

n-
G

au
ss

ia
n

0.
98

1.
3

0.
02

4
0.

9
0.

30
52

0.
41

29
0.

87
92

0.
47

36
0.

58
45

0.
47

29
0.

98
1.

3
0.

02
3

0.
9

0.
28

27
0.

38
03

0.
67

11
0.

46
45

0.
56

35
0.

47
54

0.
98

1.
3

0.
02

5
0.

9
0.

30
01

0.
41

25
0.

77
02

0.
46

04
0.

52
15

0.
45

97
0.

98
1.

3
0.

02
4

0.
92

0.
31

79
0.

41
26

0.
71

46
0.

46
89

0.
53

40
0.

45
88

0.
98

1.
3

0.
02

3
0.

92
0.

29
97

0.
39

26
0.

65
94

0.
46

42
0.

54
78

0.
46

95

La
pl

ac
e-

G
au

ss
ia

n

0.
98

0.
65

0.
02

0.
5

0.
32

53
0.

39
05

0.
87

48
0.

50
53

0.
48

07
0.

43
76

0.
98

0.
65

0.
02

0.
4

0.
31

68
0.

39
03

0.
85

23
0.

50
07

0.
46

34
0.

43
34

0.
98

0.
65

0.
02

0.
3

0.
31

12
0.

38
49

0.
86

20
0.

49
65

0.
51

11
0.

44
52

0.
98

0.
65

0.
02

0.
2

0.
29

59
0.

38
21

0.
75

43
0.

47
47

0.
48

30
0.

43
97

0.
98

0.
65

0.
02

0.
1

0.
28

43
0.

37
69

0.
70

09
0.

46
53

0.
44

32
0.

41
77

La
pl

ac
e-

La
pl

ac
e

0.
98

0.
65

0.
04

0.
45

0.
29

22
0.

38
83

0.
91

18
0.

49
59

0.
58

07
0.

46
62

0.
98

5
0.

67
0.

03
7

0.
42

0.
29

67
0.

38
63

0.
63

45
0.

44
72

0.
48

86
0.

44
07

0.
98

0.
65

0.
03

8
0.

42
0.

29
76

0.
38

67
1.

26
07

0.
52

79
0.

54
12

0.
46

05
0.

97
5

0.
65

0.
03

5
0.

4
0.

30
20

0.
38

98
0.

72
65

0.
46

47
0.

55
49

0.
46

77
0.

98
0.

65
0.

03
2

0.
38

0.
30

64
0.

39
98

0.
71

45
0.

46
64

0.
51

25
0.

44
04

18

For the short-term horizon (h = 1), both the Gaussian-Gaussian and Laplace-Gaussian
models showed superior performance compared to the benchmarks. The Gaussian-Gaussian
model with λ0 = 0.023 and Θ = 0.9 achieved the lowest MFSE (0.2827) and one of the low-
est MAFE values (0.3803). Similarly, the Laplace-Gaussian model with λ0 = 0.02 and Θ =
0.1 also performed very well, presenting the lowest MAFE (0.3769). The AR(1) bench-
mark model, by contrast, exhibited significantly higher error values (MFSE = 0.6651,
MASE = 0.6611), indicating that the use of shrinkage in these models provided better
predictive accuracy at the short-term horizon.

For the medium-term horizon (h = 6), the Laplace-Laplace model with λ0 = 0.037 and
Θ = 0.42 delivered the best results in both MFSE and MAFE metrics. The model showed
a clear improvement over the DLM benchmark, which presented an MFSE of 0.7937 and a
MAFE of 0.5480. The AR(1) model for this horizon performed even worse, with an MFSE
of 1.4661 and a MAFE of 0.9280. These results confirm that incorporating more flexible
shrinkage structures improves predictive performance, even for medium-term horizons.

For the long-term horizon (h = 12), the best-performing model was again from the
Laplace-Gaussian family, with λ0 = 0.02 and Θ = 0.1, showing an MFSE of 0.4432 and a
MAFE of 0.4177. The performance gap between the benchmarks (AR(1) and DLM) and
the more sophisticated models becomes even more evident in this horizon. The AR(1)
model presented an MFSE of 1.3049 and a MAFE of 0.8759, while the DLM model, de-
spite being better than AR(1), still showed worse performance compared to the Gaussian-
Gaussian and Laplace-based models.

Overall, the results indicate that shrinkage plays a crucial role in improving forecasting
accuracy. The more advanced models outperform the simpler benchmarks across all hori-
zons, particularly in longer horizons. However, it is essential to note that a simplification
was made in this study by applying the same parameter calibration across all forecasting
horizons. Ideally, different parameter settings would be recalibrated for each horizon to
better capture the dynamics of each timeframe. In this case, we selected five combinations
for each family that performed relatively well and used them across all horizons, acknowl-
edging that this approach may not fully optimize the models for each specific forecast
length.

Figure 9 presents the cumulative forecasting errors for the horizons h = 1, h = 6, and
h = 12. These errors were calculated based on the predictions of different models, namely
DLM (Dynamic Linear Model), Gaussian-Gaussian (GG), Laplace-Gaussian (LG), and
Laplace-Laplace (LL), compared to the actual data. The cumulative errors provide an
intuitive understanding of how the models’ forecasting accuracy evolves over time.

Figure 9: Cumulative Forecasting Errors

19

Starting with the horizon h = 1, we observe that the DLM model serves as a bench-
mark and exhibits a relatively higher cumulative error compared to the best-performing
Gaussian-Gaussian (GG) model. This finding aligns with the results in Table 4, where the
best GG combination for h = 1 (with λ0 = 0.023 and Θ = 0.9) achieved the lowest MFSE
and MASE. The figure clearly shows that the best GG model accumulates errors more
slowly over time, demonstrating superior predictive performance for short-term horizons.

For horizon h = 6, the cumulative forecasting errors are slightly higher across all
models, as expected due to the increased forecasting uncertainty over longer periods.
Nevertheless, the best-performing models (specifically LG and LL) still outperform the
DLM benchmark. The shrinkage effect introduced by these models appears to contribute
positively to reducing forecast errors, which is evident in both the cumulative error plots
and the numerical results from Table 4. The LG model, in particular, shows robust
performance in reducing errors over the medium-term horizon.

In the h = 12 horizon, the cumulative errors further increase, as longer-term forecasts
naturally involve greater uncertainty. However, even in this challenging forecasting sce-
nario, the best LL model continues to outperform the DLM benchmark, as seen in both
the cumulative error plot and the table. The LL model with parameters λ0 = 0.037 and
Θ = 0.42 shows the lowest cumulative error growth among the models, indicating that the
Laplace prior effectively handles long-term shrinkage requirements.

Overall, the more sophisticated spike-and-slab models (GG, LG, and LL) generally
outperform the simpler benchmark models such as AR(1) and DLM, particularly over
longer horizons. The results also reinforce the importance of properly calibrated shrinkage
parameters, as the best-performing models demonstrate that shrinkage plays a key role in
reducing cumulative forecasting errors. However, it is important to note that the models
were calibrated using the same parameter values across different horizons, which may have
influenced the results. Ideally, parameter calibration should be horizon-specific to account
for the different dynamics at various forecast lengths.

6. Conclusions
In this study, we explored the application of dynamic variable selection models in fore-
casting, focusing on Gaussian and Laplace priors within the Spike-and-Slab framework.
The primary objective was to compare these models against simpler benchmarks, such as
the AR(1) and Dynamic Linear Model (DLM), across different forecasting horizons.

The results indicate that more sophisticated models incorporating shrinkage mecha-
nisms significantly improve forecasting performance compared to traditional benchmarks.
Specifically, the Gaussian-Gaussian (GG) and Laplace-Gaussian (LG) models consistently
outperformed the AR(1) and DLM across short, medium, and long-term horizons. For in-
stance, the GG model showed superior performance for short-term forecasts (h = 1), while
the LG model demonstrated robustness over longer horizons (h = 6 and h = 12).

The analysis also revealed that applying the same parameter calibration across all hori-
zons may limit the models’ potential. Ideally, each horizon would require a recalibration
of parameters to better capture the distinct dynamics of each timeframe. Nevertheless,
the models selected for this study, using a fixed calibration, still provided significant im-
provements over the benchmark models. This finding shows the importance of shrinkage
in dynamic forecasting models, as it helps control overfitting and enhances predictive

20

accuracy.
The cumulative error plots further support the numerical results, highlighting the

effectiveness of the GG and LG models in reducing forecasting errors over time. These
models accumulate errors more slowly compared to the benchmarks, especially in longer
forecasting horizons. The Laplace-based models, in particular, showcased their ability to
handle noise and sparsity, making them suitable for high-dimensional data forecasting.

Overall, this study contributes to the literature by demonstrating the practical advan-
tages of dynamic variable selection models with Spike-and-Slab priors in macroeconomic
forecasting. The results suggest that incorporating more flexible shrinkage structures is
essential for improving forecasting accuracy, particularly in high-dimensional settings. Fu-
ture research could further enhance these findings by exploring horizon-specific calibrations
and testing the models in other real-world forecasting scenarios.

References
Cogley, T. and Sargent, T. J. (2005). Drift and volatilities: Monetary policies and outcomes

in the post WWII U.S. Review of Economic Dynamics, 8(2):262–302.

Garcia, M., Medeiros, M., and Vasconcelos, G. F. (2017). Real-time inflation forecasting
with high-dimensional models: The case of Brazil. International Journal of Forecasting,
33(3):679–693.

George, E. and McCulloch, R. (1993). Variable selection via Gibbs sampling. Journal of
The American Statistical Association, 88:881–889.

Kalli, M. and Griffin, J. E. (2014). Time-varying sparsity in dynamic regression models.
Journal of Econometrics, 178(2):779–793.

Koop, G. and Korobilis, D. (2023). Bayesian dynamic variable selection in high dimensions.
International Economic Review,, 64(1):1047–1074.

Louzada, F., Ferreira, P. H., and Nascimento, D. C. (2023). Spike-and-Slab Priors and
Their Applications, pages 1–8. John Wiley & Sons, Ltd.

Ročková, V. (2018). Bayesian estimation of sparse signals with a continuous spike-and-slab
prior. The Annals of Statistics, 46(1):401 – 437.

Ročková, V. and George, E. I. (2014). EMVS: The EM approach to Bayesian variable
selection. Journal of the American Statistical Association, 109(506):828–846.

Ročková, V. and George, E. I. (2018). The Spike-and-Slab LASSO. Journal of the Amer-
ican Statistical Association, 113(521):431–444.

Ročková, V. and McAlinn, K. (2019). Dynamic variable selection with Spike-and-Slab
process priors. Bayesian Analysis, 0:01.

Stock, J. H. and Watson, M. W. (2007). Why Has U.S. Inflation Become Harder to
Forecast? Journal of Money, Credit and Banking, 39(s1):3–33.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society Series B Methodological, 58:267–288.

21

7. Appendix

A. Code Implementation
The full implementation of the EM-DSS algorithm used in this study. The code was
written in Python and optimized using Cython for computational efficiency.

Listing 1: Cython implementation of the EM-DSS algorithm
1 %%cython
2 #cython: profile=True, boundscheck=False, wraparound=False, cdivision=

True, language_level=3
3

4 import numpy as np
5 cimport numpy as cnp
6 from libc.math cimport sqrt, exp, pi, fabs
7

8 # Auxiliary functions in Cython
9 cdef double gaussian_spike(double x, double lambda0):

10 return (1 / (sqrt(2 * pi) * lambda0)) * exp(-0.5 * (x / lambda0) **
2)

11

12 cdef double gaussian_slab(double x, double mu, double sigma):
13 return (1 / (sqrt(2 * pi) * sigma)) * exp(-0.5 * ((x - mu) / sigma)

** 2)
14

15 cdef double laplace_spike(double x, double lambda0):
16 return (1 / (2 * lambda0)) * exp(-fabs(x) / lambda0)
17

18 cdef double laplace_slab(double x, double mu, double scale):
19 return (1 / (2 * scale)) * exp(-fabs(x - mu) / scale)
20

21 # Function to select the spike-and-slab model
22 cdef void select_spike_and_slab(char* model_type ,
23 double (**spike_func)(double, double),
24 double (**slab_func)(double, double,

double)):
25 if model_type == b"gg":
26 spike_func[0] = gaussian_spike
27 slab_func[0] = gaussian_slab
28 elif model_type == b"lg":
29 spike_func[0] = laplace_spike
30 slab_func[0] = gaussian_slab
31 elif model_type == b"ll":
32 spike_func[0] = laplace_spike
33 slab_func[0] = laplace_slab
34 else:
35 raise ValueError("Invalid␣model␣type.␣Use␣'gg',␣'lg',␣or␣'ll'.")
36

37 # Main calculation functions
38 cdef double p_star_stat(double x, double phi0, double phi1, double Theta

22

, double lambda1, double lambda0,
39 double (*spike_func)(double, double), double (*

slab_func)(double, double, double)):
40 cdef double mu = phi0 / (1 - phi1)
41 cdef double sigma = sqrt(lambda1 / (1 - phi1**2))
42 cdef double numerator = (1 - Theta) * spike_func(x, lambda0)
43 cdef double denominator = Theta * slab_func(x, mu, sigma)
44 return 1 / (1 + numerator / denominator)
45

46 cdef double pstar_cond(double x, double previous, double phi0, double
phi1, double theta, double lambda1, double lambda0,

47 double (*spike_func)(double, double), double (*
slab_func)(double, double, double)):

48 cdef double mu = phi0 + phi1 * previous
49 cdef double numerator = theta * slab_func(x, mu, sqrt(lambda1))
50 cdef double denominator = (1 - theta) * spike_func(x, lambda0)
51 return numerator / (numerator + denominator)
52

53 cdef double shrink_extra(double x, double future, double phi0, double
phi1, double Theta, double lambda1, double lambda0, int plus,

54 double (*spike_func)(double, double), double (*
slab_func)(double, double, double)):

55 cdef double theta_k = p_star_stat(x, phi0, phi1, Theta, lambda1,
lambda0, spike_func , slab_func)

56 cdef double pstar = pstar_cond(future, x, phi0, phi1, theta_k,
lambda1, lambda0, spike_func , slab_func)

57 cdef double der1 = lambda0 if plus == 1 else -lambda0
58 return pstar * (1 - theta_k) - (1 - pstar) * theta_k
59

60 # Main EM-DSS model function
61 def EM_DSS_cy(cnp.ndarray[double, ndim=1] y, cnp.ndarray[double, ndim=2]

X,
62 double phi0, double phi1, double lambda11, double lambda0,
63 cnp.ndarray[double, ndim=2] start, double epsilon, double

Theta, int max_iter, str model_type):
64 # Select spike-and-slab functions
65 cdef double (*spike_func)(double, double)
66 cdef double (*slab_func)(double, double, double)
67 select_spike_and_slab(model_type.encode('utf-8'), &spike_func , &

slab_func)
68

69 cdef int T = X.shape[0]
70 cdef int p = X.shape[1]
71 cdef cnp.ndarray[double, ndim=2] beta = np.copy(start)
72 cdef cnp.ndarray[double, ndim=2] beta_new = np.copy(beta)
73 cdef double eps = epsilon + 1
74 cdef cnp.ndarray[double, ndim=1] beta0 = np.zeros(p)
75 cdef cnp.ndarray[double, ndim=1] beta0_new = np.copy(beta0)
76 cdef cnp.ndarray[double, ndim=2] pstar = np.ones((p, T + 1)) * 0.5
77 cdef cnp.ndarray[double, ndim=2] theta = np.ones((p, T)) * 0.5
78 cdef double lambda1 = lambda11

23

79 cdef int niter = 0
80 cdef double sigmasq, mu, z, shrink, shrink1, shrink2
81 cdef int i, j, k
82

83 print(f"Now␣you␣are␣running␣EM_DSS␣with␣model␣type:␣{model_type.
upper()}")

84

85 # EM algorithm iteration
86 while eps > epsilon and niter < max_iter:
87 if niter % 100 == 0 and niter > 0:
88 print(f"Iteration␣{niter}:␣eps␣=␣{eps:.6f}")
89

90 for i in range(T):
91 for j in range(p):
92 # Calculate z by removing element j
93 z = y[i]
94 for k in range(p):
95 if k != j:
96 z -= X[i, k] * beta[k, i]
97

98 previous = beta[j, i - 1] if i > 0 else beta0[j]
99 future = beta[j, i + 1] if i < T - 1 else phi0 + phi1 *

beta[j, i]
100 reg = X[i, j]
101

102 # Calculate pstar and theta using auxiliary functions
103 pstar[j, i] = pstar_cond(beta[j, i], previous , phi0,

phi1, theta[j, i], lambda1, lambda0, spike_func ,
slab_func)

104

105 # Update beta
106 if i < T - 1:
107 sh = shrink_extra(beta[j, i], future, phi0, phi1,

Theta, lambda1, lambda0, 1, spike_func ,
slab_func)

108 sigmasq = 1 / (reg**2 + pstar[j, i] / lambda1 + phi1
2 * pstar[j, i + 1] / lambda1 + (1 - phi12)
/ lambda1 * sh)

109 mu = sigmasq * (phi1 * pstar[j, i] * previous /
lambda1 + phi1 * pstar[j, i + 1] * future /
lambda1 + reg * z)

110 shrink1 = sigmasq * sh * lambda0
111 shrink2 = -sigmasq * sh * lambda0
112 else:
113 sigmasq = 1 / (reg**2 + pstar[j, i] / lambda1)
114 mu = sigmasq * (phi1 * pstar[j, i] * previous /

lambda1 + reg * z)
115 shrink1 = 0
116 shrink2 = 0
117

118 shrink = sigmasq * (1 - pstar[j, i]) * lambda0

24

119 beta[j, i] = 0
120

121 if mu > (shrink - shrink1):
122 beta[j, i] = mu - shrink + shrink1
123 elif mu < (-shrink - shrink2):
124 beta[j, i] = mu + shrink + shrink2
125 theta[j, i] = p_star_stat(previous , phi0, phi1, Theta,

lambda1, lambda0, spike_func , slab_func)
126 eps = 0
127 for j in range(p):
128 for i in range(T):
129 eps += (beta_new[j, i] - beta[j, i])**2
130

131 beta_new[:, :] = beta[:, :]
132 niter += 1
133

134 print(f"Total␣iterations:␣{niter},␣eps␣=␣{eps:.6f}")
135 return beta.T, theta.T, pstar.T

25

	Introduction
	Variable Selection Structure
	Dynamic Spike-and-Slab structure of t,j
	Algorithm Description
	Posterior Inclusion Probability (p*)
	Conditional Inclusion Probability
	Expectation Step (E-Step)
	Maximization Step (M-Step)
	Convergence Criterion

	Choosing Between Gaussian and Laplace for Spike and Slab
	DSS Penalty
	Gaussian-Gaussian Specification
	Laplace-Gaussian Specification
	Laplace-Laplace Specification

	Results in Simulated Dataset
	Empirical Analysis: Forecasting Brazilian Inflation
	Conclusions
	Appendix
	Code Implementation

