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Abstract

We introduce the Risk-Budgeted Mean-Variance (RBMV) portfolio, a novel framework that

connects the classical Markowitz mean-variance problem and the risk budgeting approach. By

modifying the risk budgeting optimization problem to include constraints on expected returns

and volatility, RBMV offers a disciplined way to manage the trade-off between risk concentration

and return maximization. The investor gains a lever to adjust how close the portfolio sits to either

framework, depending on her preferences. We show that the optimization problem that defines

the RBMV portfolio is convex, efficiently computable, and typically delivers competitive returns

with reduced risk concentration in the context of long-only portfolios. We illustrate our method-

ology using daily equity returns from the U.S. and show that our methodology efficiently controls

the volatility of returns while also delivering Sharpe ratios that are consistently higher than the

traditional mean-variance approach.
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1 Introduction

While several quantitative investment strategies have been proposed the academic literature as well

as in industry, one has stood up the test of time and reigns supreme: the Markowitz mean-variance

portfolio. This portfolio is the cornerstone of modern portfolio theory and has been the subject of

countless academic papers and books. The Markowitz portfolio is the solution to an optimization

problem that aims to maximize the expected return of a portfolio while minimizing its volatitly. Al-

though theorectically sound, the Markowitz portfolio has some drawbacks. One of the most impor-

tant is that it tends to concentrate the portfolio on a few assets with high Sharpe ratios, which makes

the portfolio’s overall risk heavily dependent on what happens to a few assets. Another drawback is

how sensitive the optimal portfolio is to small changes in the inputs parameters, which is especially

important as the expected returns and the covariance matrix have to be estimated.

To circumvent the issue of risk concentration, Maillard et al. (2010) and Roncalli (2013) introduced

the heuristic idea of forcing the investor to define a budget for the risk of each individual asset in

the overall portfolio. These authors define the risk contribution of an asset as the fraction of the total

portfolio risk assigned to each asset. A risk budget portfolio is then constructed by ensuring the risk

contribution of each asset matches a predefined proportion of the total portfolio risk. In the seminal

paper Maillard et al. (2010), the authors show that the risk budget portfolio is the solution to an

optimization problem where the investor minimizes the portfolio risk subject to a seemingly arbitraty

constraint: that the sum of the product between the pre-specified risk contributions and the log of the

exposures should be non-negative. This optimization problem is convex and can be solved efficiently

(see e.g. Freitas Paulo da Costa et al. (2023)). Whilst the risk budget portfolio naturally diversifies

the risk of the portfolio among its assets and its less sensitive to estimation error (see discussion

in Section 2.3.2, below), it is not necessarily the portfolio with the highest expected return nor the

portfolio with the highest Sharpe ratio.

To blend the benefits of both approaches, we propose a novel portfolio optimization framework

(named the Risk Budgeted Mean-Variance Portfolio) that interpolates between the Markowitz mean-

variance and a risk budgeting portfolio, naturally nesting these two frameworks. Our methodology

allows investors to balance the trade-off between maximizing expected returns and diversifying risk

contributions across assets. This is done by modifying the risk budget portfolio optimization problem

by including constraints on both the expected return and the volatility of the resulting portfolio. As

added constraints are also convex, we mantain the convexity of the optimization problem, which

ensures that the resulting portfolio is computationally efficient to obtain.

We take our methodology to the data and provide an application focusing on the construction of

long-only equity portfolios for the U.S. market. Using more than 30 years of daily data from CRSP,

we show that our methodology, in contrast to the traditional Mean-Variance framework, generates

portfolios with lower volatility, lower portfolio concentration, and higher Sharpe ratios. In constrast

to the risk budgeting framework, our methodology generates portfolios with higher returns. Impor-

tantly, we show how tuning the parameters of our methodology enables the investor to have either a
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portfolio closer to the one generated by Mean-Variance or a portfolio closer to one generated by risk

budgeting.

The remainder of this paper is organized as follows. In Section 2 we review the basic Mean-

Variance and Risk Budgeting portfolios and thoroughly discuss the empirical differences observed

between both, including the consequences of adding estimation error to the population moments.

In Section 3, we formally introduce the RBMV framework, discuss some of its properties, and com-

pare it with the portfolio obtained by simply averaging Mean-Variance and Risk Budgeting portfolio

weights. Section 4 presents a detailed empirical study on the performance of the RBMV portfolio for

the U.S. stock market. Section 5 concludes the paper.

1.1 Literature review

1.2 Extensions to the Mean-Variance Approach

Since the seminal work of Markowitz (1952), the mean-variance portfolio has inspired a vast body of

research. Many extensions aim to address key practical challenges, such as sensitivity to estimation

error and excessive concentration. One important theoretical extension is the two-fund separation

theorem introduced by Tobin (1958), which shows that under certain assumptions, investors can

achieve optimal portfolios by combining a risk-free asset with a tangency portfolio of risky assets.

Despite its elegance, this result relies on strong assumptions and has limited direct applicability.

In practice, one of the most pressing issues is the instability of the Markowitz solution when

inputs are estimated from historical data. Several authors have proposed incorporating robust es-

timators to alleviate this problem. Jorion (1986) introduced a Bayes-Stein shrinkage approach to

improve expected return estimates, while the Black-Litterman model (Black and Litterman, 1991)

combined prior market equilibrium returns with investor views to generate more stable and intuitive

expected returns. Ledoit and Wolf (2003) proposed a shrinkage estimator for the covariance matrix,

now widely used in portfolio construction. DeMiguel et al. (2009) showed that simple heuristics like

the equally weighted portfolio often outperform optimized portfolios out-of-sample due to estima-

tion error. In response, Michaud (1989) introduced resampled efficient frontiers, emphasizing the

importance of accounting for estimation uncertainty.

To reduce portfolio concentration, Jagannathan and Ma (2003) demonstrated that imposing norm

constraints can improve out-of-sample performance by effectively regularizing the solution. Alter-

native risk measures have also been proposed. Konno and Yamazaki (1991) introduced the mean-

absolute deviation model, replacing variance with a linear objective. Cardinality and transaction

cost constraints were addressed in Chang et al. (2000), Bienstock (1996), and Lobo et al. (2007). These

extensions, while useful, often lead to non-convex optimization problems, raising computational

challenges and reducing scalability.
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1.3 Extensions to the risk budgeting approach

The idea of allocating portfolio weights based on risk contributions was formalized in Maillard et al.

(2010) and extended in Roncalli (2013), who introduced the concept of risk budgeting. These models

aim to construct portfolios where each asset contributes a predefined fraction of the portfolio’s total

risk. This approach naturally leads to better risk diversification, as no single asset dominates the total

portfolio risk. Moreover, risk budgeting portfolios are known by practitioners to be less sensitive to

estimation error and remain tractable due to their convex optimization formulation. Mathematical

properties of this investment strategy, such as existence and uniqueness, have been studied in Freitas

Paulo da Costa et al. (2023) and Cetingoz et al. (2024).

A large body of work has explored alternative risk measures within the risk budgeting framework.

Bruder et al. (2016) and Jurczenko and Teiletche (2019) derived closed-form expressions for Expected

Shortfall (ES) risk contributions under Gaussian assumptions, enabling ES-based budgeting. Ji and

Lejeune (2018) incorporated downside risk, Bellini et al. (2021) studied expectile risk measures, and

Anis and Kwon (2022) added cardinality constraints to control portfolio sparsity. Freitas Paulo da

Costa et al. (2023) proposed a cutting-planes-based stochastic optimization algorithm for comput-

ing risk budgeting portfolios under general convex risk measures, capable of handling distributions

where closed-form risk contributions are unavailable.

Other researchers focused on structural extensions. Bai et al. (2016) proposed a least-squares for-

mulation for risk parity, while Haugh et al. (2017) explored budgeting risk across overlapping groups

of assets in conjunction with return objectives. Risk factor budgeting—where diversification is ap-

plied to risk factors rather than individual assets—has been developed by Meucci et al. (2015), Ron-

calli and Weisang (2016), and Lassance et al. (2022), the latter introducing independent component

analysis to improve factor orthogonality. More recently, Cetingoz and Guéant (2025) proposed a

framework that balances the risk contributions from both assets and factors. Li et al. (2022) and Pe-

senti et al. (2024) extended risk parity into multi-period settings, highlighting its potential in dynamic

environments.

Finally, algorithmic innovations have enhanced the applicability of these models. Mausser and

Romanko (2018) proposed convex optimization methods for ES-based risk parity using discrete loss

distributions. Alternatively, Griveau-Billion et al. (2013), Chaves et al. (2012), and Spinu (2013) de-

veloped efficient algorithms for variance-based risk budgeting. These formulations—many rooted

in or inspired by the original logarithmic formulation of Maillard et al. (2010)—continue to evolve,

expanding the toolbox of practitioners seeking robust and diversified portfolio solutions under un-

certainty.

The literature reviewed in this section demonstrates that while many extensions of the mean-

variance approach offer improvements, they typically address only one aspect of the problem: either

estimation error, diversification, or tractability.

Despite these innovations, few approaches offer a unified framework that balances the trade-off
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between expected return maximization and risk diversification. This gap motivates the development

of models that can interpolate between the mean-variance and alternative risk-based allocations in a

computationally efficient way.

2 Mean-Variance and Risk Budgeting

This section briefly reviews the mean-variance and the risk budget portfolio problems. We start with

basic notation. We use uppercase letters to indicate random variables, and bold symbols to denote

a vector of variables with the same name, so that x = (x1, x2, . . . , xn), for example. The investor can

allocate resources across d ∈ N assets with current prices p ≡ (p1, . . . , pd), and corresponding future

(random) prices P ≡ (P1, . . . , Pd).

Even though portfolio allocation problems are generally described in terms of portfolio propor-

tions, the risk budgeting problem is more easily described in terms of dollar amounts. That will also

be true for our methodology since we connect the traditional mean-variance framework to the risk

budgeting problem. Hence, we develop our setup assuming the investor has a total dollar amount

v0 to invest across the risky assets. His problem will consist of picking a vector of dollar amounts

v = (v1, v2, ..., vd) to invest. We further assume that vi ≥ 0, i.e., the investor will build a long-only

portfolio. The risk budgeting problem, and as a consequence, our methodology, is not well-defined

when short positions are allowed.

After choosing the dollar amount vi to be allocated on asset i, this investor acquires vi/pi shares

of this asset, which will have a value of vi · Pi
pi

in the future. We call vi the exposure of the portfolio to

the ith asset, and wi ≡ vi/v0 ≥ 0 the portfolio weights, that is, the proportion of the budget invested

into asset i, so that ∑d
i=1 wi = 1.

The investor’s dollar return on a portfolio with exposure v is the random variable given by

R(v) ≡
d

∑
i=1

vi
Pi

pi
− v0 =

d

∑
i=1

vi

󰀕
Pi

pi
− 1

󰀖
= v0

󰀥
d

∑
i=1

wi

󰀕
Pi

pi
− 1

󰀖󰀦
. (1)

We further assume that µ ∈ Rd and Σ ∈ Rd×d are the expected returns and the covariance matrix

of asset returns, respectively. We assume that Σ is positive-definite. In our setup, the investor knows

these population moments. In our empirical application, they will be estimated using daily returns.

2.1 The Mean-Variance Portfolio Problem

The traditional long-only mean-variance portfolio problem consists in finding the portfolio weights

w that maximizes the expected return µ(R(w)) ≡ µ⊤w while minimizing the portfolio variance
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σ2(R(w)) ≡ w⊤Σw. One mathematical formulation for the portfolio selection problem is:

min
w≥0

σ(R(w))

s.t. ∑d
i=1 wi = 1

µ(R(w)) ≥ µMV
min ,

(2)

where µMV
min is the minimum expected return accepted by investor. The first constraint corresponds

to the intuitive idea that the wi’s are indeed portfolio weights, while the second is the target return

constraint. We also could have cast this problem as a return maximization program under a volatil-

ity constraint. The formulation above, however, will be more convenient when we introduce our

methodology.

If, instead, the investor is interested in the portfolio exposures v = v0w, substituting w := v/v0

in the Markowitz portfolio problem yields

min
v≥0

1
v0

σ(R(v))

s.t. 1
v0

∑d
i=1 vi = 1

1
v0

µ(R(v)) ≥ µMV
min .

(3)

A positive constant multiplying the objective function will not change the optimal solution. More-

over, we can multiply both sides of the constraints by v0 and have the equivalent optimization prob-

lem:

min
v≥0

σ(R(v))

s.t. ∑d
i=1 vi = v0

µ(R(v)) ≥ µMV
min · v0.

(4)

The first constraint implies that we have a fully invested portfolio, from where we easily interpret

v0 on its right-hand side as the total wealth of the investor. Note that the expected return constraint,

when formulated as a function of the exposures v, must also include a v0 factor, since the left-hand

side is homogeneous of degree one in v. Furthermore, if we rescale the total wealth by a factor γ > 0,

the corresponding portfolio exposures will be scaled by γ as well.

We denote by v∗
MV the solution to problem (4). The return rate corresponding to this allocation is

denoted µMV = 1
v0
· µ(R(v∗

MV)). Usually, this is equal to the parameter µMV
min in problem (4) and will

differ only when µMV
min is chosen as something smaller than the return rate of the minimum variance

portfolio. Likewise, we define σMV = 1
v0
· σ(R(v∗

MV)).

2.2 The Risk Budgeting Portfolio Problem

One important drawback of the mean-variance approach is concentrating the portfolio on a few as-

sets with high Sharpe ratios (the ratio between expected returns and volatility). This is an undesirable

feature from the risk management perspective since it will make the portfolio’s overall risk heavily
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dependent on what happens to a few assets. Another drawback is how sensitive the optimal portfo-

lio is to small changes in µ and Σ (see, for instance, Li (2015) for a modern review). Small changes in

these parameters might induce sharp changes to optimal weights.

To circumvent the issue related to risk concentration, Maillard et al. (2010) and Roncalli (2013)

introduced the heuristic idea of forcing the investor to define a budget for the maximum risk each

individual asset can expose the overall portfolio to. This budget is a safeguard against overly con-

centrating overall risk. Before defining the risk budgeting portfolio problem, we define the risk

contribution of individual assets.

Definition 1. The risk contribution of asset i to the total portfolio risk σ (R(v)), which we denote by RC i(v),

is given by:

RC i(v) ≡ vi ·
∂σ(R(v))

∂vi
(5)

Using this definition, we see that the risk contribution of a certain asset to the overall risk can be

high for either of two reasons: 1) there is a large exposure to asset i, i.e., vi is high; 2) an increment

in the exposure vi will cause a large increase in σ(R(v)), which obviously depends on the whole

correlation structure of asset returns.1

Since σ(R(v)) is a homogeneous function of degree one when seen as a function of v, Euler’s

theorem for homogeneous functions implies that we can write:

σ(R(v)) =
d

∑
i=1

RC i(v). (6)

In this sense, it is natural to interpret RC i(v) as how much asset i contributes to the portfolio’s total

risk. We also note that RC i(v) is a homogeneous function of degree one. To define the risk budgeting

problem, we assume that the investor chooses a set of d proportions 0 < bi < 1 that represent how

much of the overall risk of the portfolio each asset can command. We call b = (b1, . . . , bd) the risk

budget. We also assume ∑d
i bi = 1. We are now ready to define the risk budgeting portfolio.

Definition 2 (The Risk Budgeting Portfolio). For a risk budget b = (b1, . . . , bd) and a total endowment

v0, the risk budgeting (RB) portfolio is defined by a vector of exposures v that satisfies

bi · σ(R(v)) = RC i(v) , for all i = 1, . . . , d , (7)

and ensures that v0 =
d
∑

i=1
vi.

We highlight that if some v satisfies (7), any other vector γ · v with γ > 0 will also satisfy the

same condition. It is the requirement of full investment that identifies the scale of the risk budgeting

portfolio.

1Even though our discussion uses the standard deviation of (dollar) returns as the chosen risk measure, this definition

can be applied for any coherent risk measure (in the sense of Artzner et al. (1999)) that is homogeneous of degree one as

a function of the exposures v. In fact, our whole methodology can be extended to these more general risk measures. We

chose not to pursue this more general problem because the connection with the traditional mean-variance setup would not

be so clear.
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One example of a risk budgeting portfolio is the risk parity portfolio, in which every asset has equal

risk contribution, that is b ≡ ( 1
d , . . . , 1

d ). In this case, even though assets are allowed to have different

volatilities, each asset will contribute equally to the overall risk. As another example, assume d = 3

the risk budget b = (0.5, 0.3, 0.2). This means that the investor targets a portfolio in which the assets

have risk contributions of 50%, 30%, and 20%, respectively.

Now, we further characterize the risk budgeting portfolio. The next proposition, whose proof

we delegate to the appendix, is crucial for our methodology since it hints at how to compute v in

practice.

Lemma 1. Given a budget b and a total endowment v0, the risk budgeting portfolio is the portfolio with

exposure v that satisfies

bi RC j(v) = bj RC i(v) , for all i, j = 1, . . . , d , (8)

v0 =
d

∑
i=1

vi . (9)

This lemma shows that the correct v that ensures risk budgeting is the solution of a non-linear

system of equations. However, for large d, obtaining RC i(v) in closed form is cumbersome and, in

fact, could be impossible if we had picked a more involved risk measure other than the standard

deviation. Following an insight from Maillard et al. (2010), we propose computing v, up to a scaling

factor, as the solution of an optimization problem that will generate the conditions in Lemma 1 as

first-order conditions of a convex optimization problem. This is introduced by the next proposition,

which is proven below.

Proposition 1. Given a risk budget b, any optimal solution v∗ to

min
v∈Rd

+

σ(R(v)) , subject to
d

∑
i=1

bi log(vi) ≥ 0 (10)

is proportional to the exposure v of the RB portfolio for risk budget b.

Proof. We define the Lagrangian function

J(v, λ) ≡ σ(R(v))− λ
d

∑
i=1

bi log(vi) , (11)

where the parameter λ ≥ 0 corresponds to the Lagrange multiplier. Taking derivatives with respect

to vi, i = 1, . . . , d, we obtain

∂vi J(v
∗, λ) =

∂σ(R(v∗))

∂vi
− λ

bi

v∗i
. (12)

Imposing the first order condition yields, for all i = 1, . . . , d,

λ =
v∗i
bi

· ∂σ(R(v∗))

∂vi
=

1
bi
RC i(v∗), for all i = 1, . . . , d . (13)

Hence, the optimal v∗ fulfills (8). By homogeneity, we may define v ≡ Cv∗ so that the exposure v

also satisfies v0 = ∑d
i=1 vi. By Lemma 1, this yields the desired risk budgeting portfolio.
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Conversely, if we are given strictly positive exposures vi such that the conditions in (8) hold,

then all ratios RC i(v)
Bi

are equal. We can scale the vi’s using a factor C such that xi ≡ Cvi and

∑i bi log(xi) = 0, yielding a vector x at the boundary of the feasible region. By homogeneity of

the risk contribution, we still have that all ratios RC i(x)
bi

are equal (scaled up by C), so we can define a

positive λ via Equation (13). Given such λ, the xi’s are feasible and satisfy the first order conditions.

Since the optimization problem is convex and has a strictly feasible interior point, the first-order

conditions are both necessary and sufficient, implying that x is a solution of (10).

Proposition 1 provides a powerful numerical result for the characterization of v. It identifies the

ray along v∗ that will contain the correct exposure v the risk budgeting problem looks for. The exact

risk budgeting portfolio will be a rescaled version of v∗ such that the portfolio is fully invested.

Formally, the risk budgeting portfolio is v = v0

∑d
i v∗i

· v∗.

From the optimization point of view, the objective function is strictly convex, and the constraint

is the upper-contour set of a strictly concave function. This will imply that numerical algorithms can

efficiently solve this problem and that the solution v∗, if it exists, it will be unique. Hence, given a

budget b and endowment v0, we have also proven that the risk budget portfolio v, if it exists, it is

unique.2

Similarly to the mean-variance optimization problem, we denote by v∗
RB the solution to prob-

lem (10). The return rate and volatility corresponding to this allocation are denoted, respectively, by

µRB ≡ 1
∑d

i=1 v∗RB,i
µ(R(v∗

RB)) and σRB ≡ 1
∑d

i=1 v∗RB,i
σ(R(v∗

RB)).

2.3 Comparing Both Approaches

We now contrast both approaches. The mean-variance portfolio delivers the portfolio with the lowest

overall risk among the portfolios with high enough expected returns. The price to pay for such

optimality is typically the concentration of the portfolio on a few assets and a portfolio that is highly

sensitive to small changes in inputs parameters, which is especially important in a context where µ

and Σ have to be estimated.

On the other hand, the risk budgeting framework allows the investor to have full control over the

distribution of overall risk across different assets. The price to pay for such control is, in general, a

portfolio with lower returns when compared with a mean-variance portfolio with the same volatility.

To make this trade-off clear, we provide a numerical example with calibrated parameters. Then, we

introduce moment estimation errors via a simulation exercise.

We assume d = 5 and use the following population moments for the mean returns µ, the individ-

2Freitas Paulo da Costa et al. (2023) shows that, in fact, the constraint will be binding at the optimal solution.
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ual standard deviations s and correlation matrix C:

µ =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0.5

0.12

0.09

0.05

0.15

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, s =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0.10

0.20

0.15

0.08

0.13

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, C =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0.20 0.40 0.25 0.50

0.20 1 −0.20 0.40 0.6

0.40 −0.20 1 −0.10 0.30

0.25 0.40 −0.10 1 0.30

0.50 0.60 0.30 0.30 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

. (14)

We further define Σ ≡ s⊺Cs.

2.3.1 No Estimation Error

With these population moments at hand, we compute the Markowitz efficient frontier, defined as the

points in the (σ, µ)-plane that denote the expected returns and volatility of mean-variance portfolios.

This is represented by the dashed line in Figure 1. Given the moments above, it is not feasible to have

any portfolios above this frontier, by definition.

Figure 1: We show the different portfolios in the (σ, µ)-plane, computed using the calibrated parameters from

(14). Both expected returns and volatility are measured in percentages. We only consider long-only portfolios.

Figure 1 also shows the location of four portfolios. The blue dot represents the minimum volatility

portfolio, defined as the portfolio with the lowest possible volatility across all possible portfolios.

The diagonal cross represents the risk parity portfolio, which is the risk budgeting portfolio where

all assets contribute equally to overall risk, i.e., b = (0.2, 0.2, 0.2, 0.2, 0.2). The triangle locates the

tangency portfolio, which is defined as the point along the frontier with the highest ratio between

expected return and volatility (the Sharpe ratio). Finally, the square represents the portfolio with

equal weights on all assets, identified by w = (0.2, 0.2, 0.2, 0.2, 0.2).
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Table 1: For each of the portfolios from Figure 1, we report their expected return, volatility, Sharpe ratio

(measured as the ratio between expected return and volatility), the Gini index of associated weights, and the

Gini index of risk contributions.

Portfolio Return Volatility Sharpe Ratio Gini Index (wi) Gini Index (RC i)

Equal weights 0.092 0.085 1.083 0.000 0.238

Minimum volatility 0.058 0.065 0.890 0.568 0.568

Tangency 0.107 0.086 1.236 0.534 0.625

Risk parity 0.081 0.075 1.084 0.184 0.000

We highlight two important features in Figure 1. First, we note that the risk parity portfolio is not

identical to the equal weights one. In the risk budgeting framework, even if we require risk parity,

weights are not necessarily equal across assets exactly because different assets will have different

volatilities, and these returns are not assumed to be independent. Second, the risk parity portfolio is

strictly inside the frontier. This means that there exist portfolios that dominate it in the mean-variance

sense. However, these dominating portfolios will not feature any other particularly desirable charac-

teristics, such as risk parity. The cost of risk budgeting is exactly the loss of mean-variance optimality.

In other words, risk budgeting, in general, will push portfolios toward the interior of the frontier.

Table 1 illustrates these points by computing different portfolio summary statistics. For instance,

by design, the tangency portfolio has the highest Sharpe ratio, even though the risk parity portfolio

is not that far behind. This table also shows one of the important drawbacks of the mean-variance

framework, which is the concentration of weights on a few assets. In the fourth column, we report

the Gini index for the associated weights of these portfolios.3 This is a concentration measure that

ranges from zero to one. When it is zero, it means that all weights are equal to 1/d, so the portfolio

is evenly distributed. Alternatively, it measures one when 100% of a portfolio is concentrated in a

single asset. Table 1 makes it clear that the risk parity portfolio has a much lower Gini index than the

tangency portfolio. Going inside the frontier implies a necessarily lower Sharpe ratio, but it enables

much lower concentration in terms of portfolio weights.

The last column in Table 1 reports the Gini index of RC i for the different portfolios. The tangency

portfolio has the highest concentration of risk using that measure, while the risk parity portfolio has

the lowest by design. The last column also helps illustrate that a portfolio with evenly distributed

weights will not have, in general, evenly distributed risk contributions.

Figure 2 further documents this tendency of the mean-variance approach to concentrate risk. The

panel on the left computes the Gini index for all portfolios along the efficient frontier and compares

this measure with the Gini index for the risk parity portfolio. Along the frontier, the concentration

measure is almost always in the [0.5, 0.8] range, uniformly higher than the concentration measure for

the risk parity portfolio.4

3Given a vector x = (x1, ..., xn), we define the Gini index of x as ∑n
i=1 ∑n

j=1 |xi−xj |
2n ∑n

i=1 xi
.

4The Gini index is also a commonly used measure of wealth inequality. As a reference of absolute magnitudes, the

Gini index for South Africa, ranked as the most unequal country in the World Bank’s database, has a Gini index of 0.63.
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Figure 2: In panel (a), we show the Gini index of portfolio weights for all the portfolios along the efficient

frontier. We also show, as a reference, the Gini index of weights for the Risk Parity portfolio as a dashed line.

In panel (b), we show the risk contributions RC i for each of the d assets and each of the portfolios.

(a) Portfolio weight Gini indices (b) Risk Contribution Gini indices

The panel on the right shows the risk contributions RCi(v) for each asset and portfolio. We nor-

malize these contributions as a fraction of the overall risk. As expected, the risk parity portfolio has

RCi(v)/σ(R(v)) = 1
5 across the five assets. On the other hand, the risk contributions for the tan-

gency portfolio are very different across assets. Asset 5 contributes roughly 70% of the overall risk of

that portfolio, indicating a strong level of concentration of the overall risk. In fact, even the equally

weighted portfolio displays some level of concentration. In that case, Asset 2 makes up a third of the

overall risk, while Asset 4 accounts for less than 10% of the overall standard deviation.

Mean-variance and risk budgeting are different allocation frameworks with different strengths

and weaknesses. This first exercise without estimation error shows the tendency mean-variance

portfolios have in concentrating weights and the overall risk in a few assets. Risk budgeting is an

explicit safeguard against this issue. The cost of such a safeguarding mechanism is the lack of mean-

variance optimality.

2.3.2 Adding Estimation Error

Our discussion so far assumed that the portfolio manager knows µ and Σ. Now, we study the role

of estimation error and how these two frameworks will behave in a more challenging scenario. We

conduct the following procedure 500 times:

1. We simulate 252 returns from N(µ, Σ) – which is the equivalent of a trading year;

2. With these returns, we compute the sample average and the sample covariance matrix, denoted

by 󰁥µ and 󰁥Σ, respectively;

Brazil has a Gini index of 0.52, while the U.S. Gini index is around 0.41, and Sweden is around 0.29. See the data at

https://data.worldbank.org/indicator/SI.POV.GINI.
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Figure 3: In panel (a), each of the dots represents the volatility and expected return of a portfolio constructed

using either the Mean-Variance (blue) or the Risk Parity (orange) methodologies based on population mo-

ments estimated using simulated data from a Gaussian distribution parametrized as (14). The black diagonal

crosses represent the theoretical locations of the Mean-Variance portfolio with σmax = 0.1 and of the Risk Parity

portfolio. In Panel (b), we report the histogram of the realized Gini index for portfolio weights.

(a) Simulated portfolios in the (σ, µ)-plane (b) Distribution of realized Gini indices for wi

3. Given 󰁥µ and 󰁥Σ, we compute the weights of the risk parity portfolio and the weights for a mean-

variance portfolio with maximum volatility of 10%, which we denote by wRP and w10%;

4. We compute these portfolios’ true expected returns and volatility, which depend on µ and Σ,

and not on estimated moments.

Each of these simulated samples generates two dots on the left panel of Figure 3: one around the

true risk parity portfolio and another one around the mean-variance portfolio whose true volatility

is 10%. Hence, each of these clouds is composed of 500 dots, and the efficient frontier is constructed

with the population parameters. We use black diagonal crosses to identify the true risk parity port-

folio and the true mean-variance portfolio with 10% volatility.

The most striking fact from these simulations is that the cloud around the risk parity portfolio is

much more concentrated around its center than the cloud around the mean-variance portfolio with

a volatility target of 10%. Since the mean-variance portfolios typically concentrate weights (and risk)

in assets with the highest estimated Sharpe ratios, estimation error will be particularly detrimental for

this framework. Conversely, the risk parity framework handles estimation errors with more success.

Once again, the cost of such robustness is generally lower returns.

The panel on the right from Figure 3 shows the associated histograms for the realized Gini indices

of wRP and w10%, computed after each of the 500 simulations. We see that the risk parity approach

systematically generates less concentrated weights (lower Gini) than the mean-variance portfolio,

leading to better robustness against estimation error.
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Overall, this section showed that mean-variance optimality implies the cost of concentrating risk,

leading to portfolios sensitive to estimation error. Spreading that risk through risk budgeting is

one possible solution, but one with its own costs: no control over expected returns and typically a

lower Sharpe ratio. The risk budgeting framework, specialized here to risk parity for the sake of an

example, was also more robust to estimation error of population parameters.

3 Our Methodology

Now, we connect the two frameworks we described and present our methodology. Our motivation

is to give the investor the ability to have, at the same time, some control over both individual risk

contributions and the minimum expected return a portfolio can achieve.

There are two ways to view our methodology. First, it is a regularized version of the mean-

variance approach in which the optimal exposures will be tilted to incorporate the idea that the

investor might want to spread the overall risk across assets. Another way of understanding it is a tilt

in the risk budgeting portfolio that will give up perfect budgeting in favor of higher expected returns.

Our portfolio construction framework is defined by the following optimization problem below.

Definition 3 (The Risk Budgeted Mean-Variance Portfolio). Given a risk budget b, an endowment v0,

a minimum required expected return µmin, and a maximum volatility bound σmax, the Risk Budgeted Mean-

Variance Portfolio (RBMV) is given by v = v0

∑d
i=1 v∗i

· v∗, where v∗ is the solution to the following optimization

program if it exists:

min
v∈Rd

+

σ(R(v))

s.t. ∑d
i=1 bi log(vi) ≥ 0 [λv]

µ(R(v)) ≥ µmin ∑d
i=1 vi [λµ]

σ(R(v)) ≤ σmax ∑d
i=1 vi , [λσ]

(15)

where we have indicated Lagrange multipliers for each constraint in brackets. The corresponding portfolio

weights are given by w = 1
v0

v.

Similarly to the pure risk budgeting problem, the solution v∗ to the program above does not

need to satisfy ∑d
i=1 v∗i = v0. But we can normalize the solution for the problem above such that

v = v0

∑d
i=1 v∗i

· v∗ is a fully invested factor of exposures. This will also scale the risk contributions, but

the ratio of these risk contributions across assets will remain the same.

The first constraint in this problem forces the individual risk contributions to be as close as pos-

sible to the desired budget b. The second constraint ensures that the portfolio delivers an expected

return of at least µmin. The last constraint further ensures that seeking higher returns while also

maintaining some proximity to the desired risk budget does not lead to excessive volatility.

Analyzing the Lagrangian function of this problem is instructive. If we let L(v; λv, λµ, λσ) be the
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Figure 4: On the left, we show the path created by our methodology (diagonal crosses) as we vary µmin. The

triangles represent the expected returns and volatilities of portfolios created by linearly interpolating between

the weights provided by the Mean-Variance approach and the Risk Parity framework. On the right, we com-

pute the L2-distance between the realized risk contributions along the RBMV path and the desired risk budget

b as a function of µmin.

associated Lagragian, we have:

∂L(v; λv, λµ, λσ)

∂vi
=

∂σ(R(v))
∂vi

− λv
bi

vi
− λµ(µi − µmin)− λσ

󰀕
σmax −

∂σ(R(v))
∂vi

󰀖
. (16)

The results from Freitas Paulo da Costa et al. (2023) show that the first constraint will always bind,

which implies λv > 0. In case the Lagrange multipliers satisfy λµ = λσ = 0, the second and third

restrictions are not binding, and we are back at the pure risk budgeting problem. The first-order

conditions of the Lagrangian will imply perfect risk budgeting in this case. Hence, if µmin is low

enough and σmax is high enough, our methodology will deliver the risk budgeting portfolio from the

previous section, perfectly nesting that methodology.

The more interesting case, however, happens when λµ > 0 or λσ > 0. This will happen either

when µmin is large enough or when σmax is low enough. In these cases, the first-order conditions will

not be equivalent to (8), implying that we are giving up perfect risk budgeting in favor of higher

expected returns or lower volatility. These Lagrange multipliers’ magnitude controls exactly how

much the final risk contributions will deviate from the desired risk budget b.

It might also happen that the solution to the problem above does not exist. That will happen if the

pair (σmax, µmin) lies outside of the mean-variance frontier traced by the mean-variance problem. By

definition, the frontier traces the smallest possible volatility a portfolio can have if it ensures a certain

minimum expected return. Choosing a point that lies outside this frontier for program (15) would

imply that we are optimizing over an empty set.

We conduct a simulation exercise using the same calibrated population moments from the previ-

ous section to show the RBMV portfolio in action and how it compares to the two other frameworks.
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Figure 4, on the panel on the left, shows the efficient frontier as a black dashed line. The blue and

orange dots represent a mean-variance portfolio with a targeted volatility of 10% and the risk par-

ity portfolio, respectively. The red diagonal crosses mark the expected return and volatility of the

RBMV portfolio as we gradually increase µmin, starting from w⊺
RPµ and going up to w⊺

10%µ. We solve

the optimization problem (15) with σmax = 10% and b = (0.2, 0.2, 0.2, 0.2, 0.2).

The path created by the RBMV portfolio naturally connects the two colored dots. When we have

µmin = w⊺
RPµ, we can enjoy perfect risk budgeting since the risk parity portfolio satisfies all of the

constraints. As the investor starts requiring higher expected returns, we have to give up perfect risk

budgeting, i.e., the solution for the optimization will imply λµ ∕= 0, leading to a distortion of the final

risk contributions.

Increasing µmin implies that the RBMV portfolio will also feature higher volatility. As soon as we

hit σmax, there is a kink in the RBMV path. Since the optimization problem will not allow a final

volatility higher than σmax, the RBMV path goes upwards. In other words, from that point on, we

have λσ ∕= 0 as well, further distorting the risk contributions.

The nature of these distortions is evidenced by the panel on the right in Figure 4. For each value of

µmin, we can solve the optimization problem and recover a d × 1 vector of risk contributions RC(v).

We plot in red the L2-distance between RC(v), which is the realized risk contribution, and b, the

desired risk budget. The higher this measure is, the further away the final risk contributions are from

b. The red curve naturally starts at zero since the lowest µmin we consider is w⊺
RPµ, implying that

perfect risk budgeting was available and was indeed attained.

The red curve increases as the investor becomes greedier, showing that the final risk contributions

start deviating from b. The slope of this red curve is a measure of the trade-off between two objec-

tives: achieving higher expected returns and still managing risk through a desired risk budget. This

curve is at the heart of our contribution because it informs the investor how much risk budgeting

she needs to give up in order to achieve higher returns. Upon seeing this curve, an investor who is

very concerned with risk management might say it is too steep and, as a result, she should prefer

portfolios that are closer to achieving perfect risk budgeting. Alternatively, an investor who is not so

concerned about risk concentration might think this curve is not too steep and that it actually repre-

sents “a good deal” in terms of the risk budgeting/higher returns trade-off. Such a conclusion would

draw the investor to pick weights closer to the mean-variance frontier.

The red curve also displays a kink. It suddenly becomes steeper when λσ becomes positive be-

cause both λµ and λσ are distorting the first-order conditions from (15) to what they should have

been to achieve perfect risk budgeting (see (8)). In that case, the final portfolio balances out three

objectives: risk budgeting, a minimum expected return requirement, and a maximum tolerated level

of volatility.

We also compare the RBMV portfolio to what the investor could get if she used a simple convex

combination of risk parity and mean-variance weights. That would obviously provide another path

connecting the two colored dots by construction. This path is marked by grey triangles in Figure
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4. Such an alternative path is entirely above the RBMV path, implying that points along the linear

interpolation provide better Sharpe ratios than the corresponding RBMV portfolio. We do not see

this as a weakness of our methodology since there is no reason to think about risk budgeting if all

one cares about is mean-variance optimality in the first place. In that case, one should stick with the

traditional mean-variance approach – and bear the costs associated with it.

The linear interpolation procedure has two important downsides, nonetheless. First, linear inter-

polation will not provide simultaneous control over both minimum expected returns and volatility, as

our methodology provides. Second, and perhaps more importantly, linear interpolation does not pro-

vide an explicit way to limit risk contributions. The panel on the right in Figure 4 shows the distance

between the risk contributions implied by the linear interpolation method and b as we progressively

get closer to the portfolio on the efficient frontier, plotted as a grey line. Such a curve is much steeper

than the corresponding curve generated by the RBMV path, which means a worse trade-off between

spreading risk across assets and achieving higher returns. The RBMV portfolios guard against the

concentration of risk as much as they can, leading to a red curve entirely below the grey one. This

means that risk contributions are closer to the desired goal of risk parity across the entire paths (with

the exceptions of the endpoints) when we use our methodology.

In summary, the RBMV provides a disciplined optimization problem for the investor. Through

it, she can tilt the optimal portfolio to better control risk contributions and is assured that the final

portfolio achieves a minimum level of expected return while also displaying a level of volatility that

is below some maximum allowed threshold. We make clear the trade-off between higher returns and

risk budgeting, providing a tool for the investor to pick where she wants to be.

4 Empirical Application

We showcase how our methodology can be deployed focusing on an application of long-only port-

folio formation in the U.S. equity market. Our data comes from the Center of Research in Security

Prices (CRSP), ranging from 1990 to 2022 at the daily frequency.

One important choice for the application of any methodology for portfolio formation is the uni-

verse of assets available for investment. On the one hand, we would like to include as many assets

as possible, aiming at a comprehensive study. On the other hand, increasing the number of assets, or

increasing d in our notation, implies estimating more parameters with the same amount of data. Our

exercise, trying to take this trade-off seriously, uses d = 50. We build portfolios using three different

frameworks: Mean-Variance, Risk Parity (as a special case of risk budgeting), and the Risk-Budgeted

Mean-Variance (RBMV). We detail how these portfolios are created below and then compare their

evolution over time.
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4.1 Portfolio Formation Procedure

Starting in January 1990, at the beginning of each month, we deploy the following procedure:

1. We select the top d = 50 firms with the largest market capitalization in the U.S. on the first

trading day of the month;

2. We consider the last two years of daily returns to estimate a d × 1 vector of expected returns 󰁥µ
and a d × d covariance matrix 󰁥Σ. We use the sample average of returns for 󰁥µ and the sample

covariance matrix for 󰁥Σ;

3. We solve for the long-only minimum variance portfolio weights, whose volatility we denote by

σMinVol . Then, we set σmax = min{σMinVol + 0.02, 0.2};

4. We solve the traditional Mean-Variance problem, finding the non-negative weights that will

deliver the highest possible expected return with a maximum volatility of σmax. The expected

return of this portfolio is denoted by µMV ;

5. Given these estimated parameters, we set the risk budget b =
󰀃 1

50 , ..., 1
50

󰀄
and solve the Risk

Parity problem, as in (10);

6. We finally compute two RBMV portfolios, fixing b and σmax as above, but imposing two differ-

ent values for µmin. We define

µmin, conservative ≡ min{µMV − 0.05, 0.1} (17)

µmin, greedy ≡ min{µMV − 0.05, 0.2} (18)

One of the RBMV portfolios will be more conservative, while the second will typically require

higher expected returns;

7. We hold these four portfolios for twelve months, keeping track of their daily realized returns.

We call the date in which these portfolios were computed their “portfolio formation date”’;

8. We repeat the same procedure, including the estimation of sample moments, for the subsequent

months;

As seen above, to ensure feasibility, we cannot simply define σmax = 0.2 and µmin = 0.1, for

example. The reason is that the RBMV problem might look for a portfolio that is outside the efficient

frontier. That can happen if the volatility of the minimum volatility portfolio is below 20% or if, given

a maximum volatility value, µMV < 0.1. Then, in that case, we would be looking for a portfolio that

is too good to exist, given the estimated sample moments. To accommodate this issue, we adjust the

optimization parameters to deliver a feasible estimate.

In Appendix A, Figures A.1 and A.2 show the evolution of σmax and µMV , respectively. The volatil-

ity threshold of 20% was only an issue for the period immediately after the start of the Global Finan-

cial Crisis in 2008. Even during that period, however, the volatility of the minimum variance portfolio
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was around 26%, implying that our adaptive procedure will not distort estimates in a significant way.

Similarly, it was only during the aftermath of the dot-com bubble and the Global Financial Crisis that

µMV dropped below 20%, dropping below 10% even less frequently.

We will have a time series of daily realized returns for each portfolio and each formation date. We

can also compute the Gini index of these weights as a measure of portfolio concentration. We analyze

the characteristics of these portfolios below.

4.2 Results

4.2.1 Portfolio Concentration

It is instructive to first analyze the Gini index of the portfolio weights over time. Unlike realized re-

turns, these are not subjective to uncertainty after the portfolios are formed. They are only potentially

affected by estimation error of population moments. Figure 5 displays the time-series evolution of

the Gini indexes.

The dashed lines refer to the traditional Mean-Variance and Risk Parity frameworks. Building on

intuition from Figure 4, they are extreme poles in terms of portfolio concentration. The solid lines in

Figure 5 represent the Gini index of the RBMV portfolios.

Figure 5: For each of the portfolios, we show the Gini index of portfolio weights over time. The dates refer to

the dates when these portfolios were formed. The universe of investable assets is the d = 50 largest stocks in

the U.S. market at the moment of portfolio formation.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Portfolio Formation Date
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The Gini index for the Mean-Variance portfolio is consistently close to 1 and always above 0.8.

Throughout our exercise, this framework never chose more than five assets to invest in, leading to
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high Gini index values in general. On the other extreme in terms of portfolio concentration, the Gini

index values for the Risk Parity portfolio are consistently below 0.2.

On several occasions, the RBMV portfolios coincide with Risk Parity, leading to the same Gini

index. In light of our discussion from Section 3, these are cases in which perfect risk budgeting is

available, given estimated parameters. Using the notation from program (15), λv is the only non-zero

Lagrange multiplier.

However, given the other constraints, perfect risk budgeting will not be feasible in other moments.

Hence, the RBMV portfolios will have to concentrate more risk on some assets, leading to typically

higher values for the Gini index. Given our discussion about the simulation results presented in

panel (b) from Figure 4, this is the expected behavior. Indeed, especially during moments of higher

volatility and lower expected returns, like after the dot-com bubble burst and the Global Financial

Crisis, the RBMV methodology had to deliver portfolios close to the Mean-Variance one. In those

cases, the constraints on volatility and expected returns were relatively stringent given the market

conditions, which implied that the RBMV methodology had to deliver a portfolio far away from Risk

Parity to satisfy the other constraints.

We also note that the Gini index of the greedier RBMV portfolio is generally higher than the values

for the other RBMV portfolio. This is also in line with our previous discussion: as we require a higher

minimum expected return, our methodology has to deviate more from the risk budget we imposed

and will allow for more concentration as a way to meet a higher expected return requirement. We

view Figure 5 as confirmation that our methodology presents a way to bridge the gap between the

Mean-Variance and Risk Parity (or risk budgeting more generally) frameworks. Parameters such as

µmin act as a lever that allows the investor to choose how close she wants to be to either of these poles.

4.2.2 Realized Returns and Volatility

We now turn to the analysis of the returns generated by these portfolios. Figure 6 reports the evolu-

tion of the 12-month returns generated by these methodologies, while Figure 7 shows the annualized

realized volatility of the daily returns. The randomness from the data will affect results in two ways,

in comparison with the ideal setup from Section 3. First, estimation error of population moments

distorts optimal weights. Second, given portfolio weights, we can only, at best, approximate the

expected returns these portfolios have and associated volatilities with sample moments.

The returns earned by the RBMV portfolios are generally positive but become sharply negative

when these portfolios are formed just before large and long-lasting market downturns. We see this

behavior for portfolios formed during 2000 and 2001, which would have had low returns one year

later due to the dot-com bubble burst. A similar phenomenon happens with portfolios formed on

the eve of the Global Financial Crisis. Interestingly, this was not the case at the beginning of 2020,

when the Covid pandemic hit the U.S. stock market. The reason for that different behavior is that

the recovery from COVID-19, from the stock market point of view, was faster than during the Global

Financial Crisis, for example. We do see, nonetheless, negative returns being realized for portfolios
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formed after 2021 since they suffered from a market downturn caused by tighter monetary policy

from the Federal Reserve in the U.S. We also note that portfolios formed around 2009 earned large

positive returns as all methodologies could buy almost any of the d = 50 assets at a discount.

Figure 6: We hold each portfolio for 12 months and report the return earned by each of them over time. The

dates refer to when the portfolios were formed. The universe of investable assets is the d = 50 largest stocks

in the U.S. market at the moment of portfolio formation.
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Figure 7: We hold each portfolio for 12 months and report the annualized standard deviation of daily returns.

The dates refer to when the portfolios were formed. The universe of investable assets is the d = 50 largest

stocks in the U.S. market at the moment of portfolio formation.
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From Figure 7, we see how the portfolio concentration shown by Figure 5 is translated to higher
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Figure 8: For each portfolio held for 12 months, we compute its Sharpe ratio as the average between its mean

daily return and the standard deviation of these returns. The dates refer to when these portfolios were formed.

The universe of investable assets is the set of d = 50 largest stocks in the U.S. market at the time of portfolio

formation.
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volatility for the Mean-Variance portfolio. The dashed blue line is consistently above the others,

showing how the Mean-Variance portfolio is more volatile than any other of the alternatives. It is

also frequently above the 20% maximum volatility target. The largest realizations of the volatility

measure happened during the Global Financial Crisis and during 2020. We note how the RBMV

portfolios do much better in terms of keeping volatility below the 20% threshold.

Given daily returns, we can compute their realized Sharpe ratio as their mean divided by their

standard deviation. We report the realized Sharpe ratios for the four portfolios in Figure 8. These four

series tend to comove, even though the blue dashed line (Mean-Variance) attains extreme negative

realizations more frequently. We also note the slight and expected tendency of the greedy RBMV to

follow the Mean-Variance portfolio more closely, while the conservative RBMV stays closer to Risk

Parity. This can be seen in the period between 2004 and 2006, and then between 2016 and 2018.

Table 2 reports the time-series averages of the quantities presented in the figures above for dif-

ferent subsamples. Panel A focuses on our full sample (1990-2022). As expected from our previous

discussions, the Risk Parity portfolio is the one with the lowest average annual returns. It is also

the less volatile portfolio. The RBMV portfolios have higher returns, with moderately more volatil-

ity. The Mean-Variance portfolio has the highest volatility, averaging a realized volatility measure of

more than 22%.

The results from Panel A also show that the RBMV portfolios had, in fact, higher Sharpe ratios

than the Mean-Variance portfolio, which paid a large price for exhibiting high volatility. This is

somewhat surprising because the Mean-Variance portfolio is designed to provide the best risk-return
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Table 2: We present averages of different moments of portfolio returns. The first column displays the time-

series average of 12-month realized returns across subsamples (see Figure 6). The second column presents the

average realized volatility across subsamples (see Figure 7). The third column computes the average realized

Sharpe ratio, defined as the mean daily return divided by its standard deviation. The corresponding time

series is reported in Figure 8 in Appendix A. The last column reports the average Gini index of portfolio

weights across subsamples (see Figure 5).

Panel A: Full Sample (1990-2022)

Portfolio Return (%) Volatility (%) Sharpe Ratio Gini Index (wi)

Risk Parity 9.68 15.69 0.84 0.16

RBMV (µmin = 0.1, σmax = 0.2) 10.29 15.98 0.86 0.29

RBMV (µmin = 0.2, σmax = 0.2) 10.50 16.70 0.81 0.43

Mean-Variance (σmax = 0.2) 10.20 22.28 0.58 0.96

Panel B: Before the Great Financial Crisis (1990-2006)

Portfolio Return (%) Volatility (%) Sharpe Ratio Gini Index (wi)

Risk Parity 10.79 14.42 0.89 0.15

RBMV (µmin = 0.1, σmax = 0.2) 10.90 14.45 0.91 0.26

RBMV (µmin = 0.2, σmax = 0.2) 10.74 14.99 0.85 0.39

Mean-Variance (σmax = 0.2) 9.92 20.84 0.50 0.95

Panel C: After 2020 (2021-2022)

Portfolio Return (%) Volatility (%) Sharpe Ratio Gini Index (wi)

Risk Parity 0.07 15.65 0.21 0.16

RBMV (µmin = 0.1, σmax = 0.2) 0.93 16.00 0.27 0.46

RBMV (µmin = 0.2, σmax = 0.2) 1.52 16.01 0.30 0.47

Mean-Variance (σmax = 0.2) 12.62 16.31 0.84 0.96

trade-off among all feasible portfolios whose volatility is less than 0.2. Yet, from this point of view,

the RBMV portfolios did better, providing similar returns with lower volatility.

In the last column, we also report the average Gini index for portfolio weights. In line with Figure

5, the average Gini index is the lowest for the Risk Parity approach, followed by the two RBMV

portfolios and then Mean-Variance, which averages a Gini index of 0.96.

Panel B reports the same averages, but focuses on portfolios that were not affected by the Global

Financial crisis, with portfolio formation dates between 1990 and 2006. These portfolios are affected

by data only up to the end of 2007. We see a pattern similar to Panel A, with the exception that

the Mean-Variance framework delivered the lowest expected returns across the board. All portfolios

displayed lower volatilities during this period in comparison to the whole sample (Panel A). In this

case, the more conservative RBMV portfolio attained the highest Sharpe ratio. We see the same

pattern in terms of portfolio concentration from Panel A as well.

Panel C, alternatively, shows that our methodology will not always outperform the other frame-
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works. We concentrate on portfolios created between 2021 and 2022 for the third panel. These port-

folios were formed during the recovery from the major downturn in March 2020 and the subsequent

tightening of monetary policy. In this case, only the Mean-Variance framework performed well.

The RBMV portfolios and Risk Parity had returns of less than 1%, while the Mean-Variance frame-

work delivered more than 12% of annualized returns. The realized volatility for the Mean-Variance

approach was the lowest in Panel C compared to the other panels. This good performance of the

Mean-Variance framework is due to its bet, during this period, on big companies from the technol-

ogy sector, which did well over this subsample, delivering higher returns with moderate volatility.

In summary, our empirical exercise confirms the tendency that Mean-Variance portfolios have

to be concentrated on a few assets, which ends up eroding the benefits of diversification. The Risk

Parity framework did well, in general, but with lower returns. Our methodology sits at the middle of

these two frameworks, providing portfolio weights that aim, at the same time, to have some explicit

control regarding concentration and to have higher returns.

4.2.3 The (σ, µ)-plane

Finally, in a similar fashion to Figures 3 and 4, we display these portfolios in the (σ, µ)-plane. Figure

9 displays a scatter plot of realized moments for the four portfolios. There is one element in the plot

for each methodology and formation date. Most of the realizations in the far right are blue dots,

representing the Mean-Variance framework. These portfolios displayed high volatility and negative

returns. We notice that the other methodologies do not visit this part of the plot because of the explicit

risk control that both Risk Parity and the RBMV methodology feature.

In a consistent manner with Table 2, the blue dots do not visit the far left of the plot so frequently,

which is a low volatility area. Most of the portfolios in this area are squares, diagonal crosses, and

stars (conservative RBMV, greedy RBMV, and Risk Parity, respectively). In fact, many of the squares,

diagonal crosses, and stars are close to each other.5 This happens when the RBMV methodology

delivers the same portfolio as Risk Parity, i.e., when perfect risk budgeting is available given the

estimated parameters.

We further notice how most of the RBMV portfolios are located to the left of the vertical line at

0.2. This implies that these portfolios, designed to have volatility lower than 20%, indeed delivered,

very often, realized volatilities below this threshold. On the other hand, it is visually clear that

there are many blue dots to the right of the threshold, showing that the Mean-Variance framework,

even though designing a portfolio to have a maximum volatility of 20% as well, cannot deliver on

its promise. Finally, we also note that there are essentially no stars with more than 50% of realized

returns. This is a manifestation of one of the most important drawbacks of the Risk Parity framework,

which is delivering typically lower returns. This was confirmed by Table 2.

5We offer a “zoomed-in” version of this picture in Figure A.4, in Appendix A, where we can see the elements close to

each other but not exactly on top of each other. We “zoom-in” by cropping part of the picture, inevitably leaving out some

of the elements with more extreme realized volatility.
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Figure 9: For each portfolio created and held for 12 months, we report the its realized volatility and realized

return in the (σ, µ)-plane. The dashed vertical line is a reference at σmax = 0.2, which was imposed for the

Mean-Variance and RBMV approches.
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5 Conclusion

The Mean-Variance portfolio formation framework is one or the cornerstones of modern portfolio

theory. More recently, the Risk Budgeting framework was introduced to circumvent some of its

caveats, such as portfolio risk concentration and its high sensitivity to estimated parameters. How-

ever, pure risk budgeting enables no control over expected returns. Our methodology, the Risk-

Budgeted Mean-Variance portfolio, introduces a disciplined way to balance the trade-off between

risk concentration and the desire for higher returns. We also show how to efficiently compute this

portfolio, given a set of population moments.

Our simulation results show our methodology naturally nests the two other frameworks and, cru-

cially, gives the investor a way to choose how close she wants to be to either of them. Our method-

ology makes explicit the trade-off between risk concentration and expected returns and enables the

investor to use the parameters of the optimization problem we propose to assess this trade-off given

estimated parameters.

We provide an empirical illustration of our methodology using data from the U.S. stock mar-
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ket. We contrast the behavior of the Risk-Budgeted Mean-Variance portfolios to traditional Mean-

Variance and Risk Parity. Our methodology typically delivered effective volatility with realized re-

turns that were comparable to the Mean-Variance approach without stark portfolio concentration.

Portfolios constructed using our methodology and held for one full year averaged Sharpe ratios of

more than 0.8.

All cases studied in the empirical example require, nonetheless, a previous step in which the in-

vestor must estimate expected returns and a covariance matrix for these returns. Even though our

application was not made in an extremely high-dimensional setting (fifty assets), estimating these

moments efficiently is a crucial step for portfolio formation, and it is a complicated estimation prob-

lem due to the number of estimated parameters. One could couple more sophisticated estimators

with the subsequent use of our methodology. Since we were focused on comparing our approach to

traditional portfolio formation approaches, we leave this possibility for future research.
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A Extra Figures

Figure A.1: We report the σmax value used in our empirical application. It is defined as σmax ≡ {σMinVol +

0.02, 0.2}, where σMinVol is the volatility of the minimum variance portfolio given the estimated population

parameters in each given portfolio formation date.
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Figure A.2: We report the evolution of µMV , which is the expected return of the Mean-Variance portfolio when

σmax was used as a volatility bound. We recompute the population parameters for each portfolio formation

date with the last two years of data.
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Figure A.3: For each portfolio held for 12 months, we keep track of the daily returns and report the annualized

average of these returns. The dates refer to when these portfolios were formed. The universe of investable

assets is the set of d = 50 largest stocks in the U.S. market at the time of portfolio formation.
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Figure A.4: This is a cropped version of Figure 9. See the details in the main text.
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