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Abstract

This paper proposes an axiomatic-based foundation for salience-driven random choice

in a nested logit (NL) framework. In this context, the model features a partition of

the set of alternatives (the collection of nests or categories) and utility (or Luce)

values assigned to each option. We call it salience-biased nested logit (SBNL), which

differs from the standard NL model due to the fact that once the agent faces a menu,

salient alternatives, represented in each category, draw the attention of the decision-

makers. This modifies an implicit assumption in the usual NL that all payoffs are

considered in the category choice. Once the category is chosen, the agent picks one

alternative according to the traditional Luce rule, a feature shared by the SBNL

and the standard NL model. We compare our axiomatic foundation for this class of

random choice functions with the axioms underlying the NL model. We show that

this class of models does not obey regularity. We find an “inverse” decoy effect that

cannot be captured by the usual Nested Logit. Moreover, under mild assumptions,

SBNL satisfies the moderate stochastic transitivity. Beyond the axiomatic approach,

we show a derivation of our model in a framework with random utility, presenting the

behavioral axioms underlying the SBNL probabilities under modified conditions used

in the usual NL. Using a parametric version of the utility, we propose an estimation

procedure to estimate the model’s parameters using both individual-level and aggre-

gate market data. In this framework, we provide computations for a rich set of price

elasticities accounting for the possibility of different marginal effects from changes in

salient or common options.
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1 Introduction

There is a broad literature on modeling and applying discrete choice and logit-

type models to deal with individual choice behavior. The seminal model is due

to Luce (1959), which proposed the Luce model, with the behavioral foundation

for what is also known as Multinomial Logit (MNL). This primer model has well-

known limitations due to unrealistic substitution patterns implied by the model,

specifically by the Independence of Irrelevant Alternatives (IIA) axiom. The IIA

problem motivated many model variations, such as the prominent nested logit (NL)

and Mixed Logit models, which are grounded on more flexible assumptions than the

IIA.

In the standard NL model, nests partition the set of alternatives into “similar”

goods, leading to more flexible substitution patterns than in the MNL by dealing

with the correlation between similar alternatives. The NL model works as if it were

a two-stage choice, where the decision-maker first chooses a nest (or category) and

then chooses an alternative within the category. One implicit assumption in the NL

is that all alternatives within the category contribute positively to the likelihood

of the nest. In other words, when comparing categories, the entire payoff into the

category matters. However, it could be costly to pay attention to all alternatives of

each category when comparing them. Related to this attention issue, some models

aim to study salience bias in the choice procedures, meaning that agents focus on

prominent information, payoffs, or alternatives.

Salience bias or perceptual salience describes the tendency of individuals who

are more likely to focus on alternatives or information that are more prominent and

ignore those less so, which creates a bias in favor of striking options or data that

are more noteworthy. Agent’s behavior may present this bias due to inattention

or cognitive limitations in the decision process (Cosemans and Frehen, 2021; Kah-

neman, 1973). There is robust literature showing the importance of introducing

salience in the modeling of consumer choice to rationalize striking evidence of de-

cision theory and behavioral economics. In the context of lotteries, Bordalo et al.

(2012), henceforth referred to as BGS, proposes a model in which salience grabs
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the decision-maker’s attention. This behavior in the choice under risk has direct

implications for asset prices (Bordalo et al., 2013a; Cosemans and Frehen, 2021).

The BGS model is also built for the deterministic framework, where the consumer

choice is affected by salient attributes, e.g., prices (Bordalo et al., 2013b).

In this paper, we propose a salience-biased nested logit (SBNL) model of stochas-

tic choice consistent with the idea that the decision-maker categorizes choice alterna-

tives into disjoint sets, called nests, thus, grounded on the same idea of the standard

NL model. The decision-maker starts picking, at random, one category, and then, to

reach a final decision, she randomly chooses an option within the selected category.

As well-known in the applied literature, some models already fit this two-stage

random process, where similar alternatives are aggregated into categories, notably

the usual nested logit model1. Our interest relies on a two-stage stochastic process

in which the decision-maker wishes to avoid stressful/demanding cognitive strain

when deciding the category. For the sake of cognitive ease, each nest’s likelihood

depends on the most prominent alternatives, characterizing salience bias.

Assume a population choosing cars or an agent choosing (stochastically) a car.

Initially, each agent selects a car brand. If the agent were to consider all pay-

offs/utilities of each brand, she would need to process information about all avail-

able cars. For instance, if there are two brands denoted by {A1, A2}, with cars

A1 = {x, y, z} and A2 = {a, b}, in the standard model such as the NL, the agent

first compares the payoffs of vx + vy + vz with va + vb, thus she needs to know all car

payoffs. After selecting a brand, say brand A2, she compares va with vb. Due to sales

campaigns, advertising on social media, and television, certain options within each

brand are likely more prominent to decision-makers, offering a higher net payoff in

the choice process. To choose a brand (here, assumed to define nests), the agent may

initially consider only these salient options of each brand, let’s say that they are x

and a. After that, she visits the car dealership/store, and learns about other avail-

able payoffs within the chosen brand. Consequently, this results in a (probabilistic)

choice where the prominent alternatives are selected with a higher probability. How-

1Kovach and Tserenjigmid (2022a) proposes a more general model, called nested stochastic
choice function. Faro (2023a) proposed a model where alternatives in the same nest are stochasti-
cally identical.
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ever, since the agent has other options available after the initial nest choice, other

similar options are also chosen with some probability. This process underlies the

SBNL, where initially, the agent compares vx = max
k∈A1

vk with va = max
k∈A2

vk, and after

choosing a brand, she compares the options within that chosen brand, essentially

selecting nests by initially favoring the more prominent options.

Formally, we consider a finite set of choice alternatives X and a decision-maker

(DM) that ranks the choice alternatives according to a Luce value mapping v : X →

(0,∞) and then categorize each one in a different nest described by a partition

A = {A1, ..., An} of X. Each element of the partition is associated with a strictly

increasing map fi : (0,+∞)→ (0,+∞). Given a menu A ⊆ X, the DM’s attention

is drawn to salient choice alternatives within each nest so that the likelihood of the

nest i ∈ {1, ..., n} is given by

fi

(
max
y∈A∩Ai

vy

)
∑

k:A∩Ak 6=∅

fk

(
max

y∈A∩Ak
vy

)

where the main difference to the usual nested logit is that in the standard model

we have that the attention to nests is a function of all alternatives, fi

( ∑
y∈A∩Ai

vy

)
instead only the best option, that we call salient alternative.

Using this framework, we define the Salience-Biased Nested Logit (SBNL) as a

special case given by the function fi(v) = vλi , where λi > 0. In the usual nested

logit model we have that the probability of choosing an element of the nest i is a

function of
∑

z∈A∩Ai
vz instead depending only on the salient option.

Once a nest i ∈ {1, ..., n} is selected, in the second stage, a choice alternative

x ∈ A ∩ Ai is chosen with probability given by a Multinomial Logit (MNL) – also

known as Luce Model – within alternatives in the same nest

vx∑
y∈A∩Aix

vy
.

In this paper, we provide minimal behavioral axioms over (stochastic) choice
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functions to represent them as a salience-biased nested logit, following the Luce

(1959) and Kovach and Tserenjigmid (2022a) approach. Moreover, since most ap-

plied work is grounded on random utility frameworks, we also show how to derive

the model in a framework in which utility is random, and agents are somehow maxi-

mizers, following the McFadden et al. (1973), Cardell (1997), and Berry et al. (1995)

tradition2.

In the axiomatic approach, in a nested stochastic choice structure (Kovach and

Tserenjigmid, 2022a), we show that if the probability of a category represented in

a menu A is not affected by weakly dominated alternatives (within the cattegory)

then the probability of an option in the category being chosen is dependent only the

best payoff available. Thus, we model and provide axioms to a context-dependent

salience in the random choice framework.

In the random utility estimation framework, beyond the derivation of the model

using behavioral and distributional assumptions, we propose a parametric version

that one can estimate with real data, presenting a simple two-step estimation proce-

dure – and applying it in a simulation – to individual-level choices. We demonstrate

how to use the model to get standard parameters of interest in economics and in-

dustrial organization applications, such as price elasticity. We show how the impli-

cations and conclusions of the salience-biased case differ from the usual nested logit.

To be more specific, we present six cases of price elasticities: own-price elasticity,

within-nest price elasticity, cross nest, but for each of these three types we have to

consider if the option changing its price is a salient option of the nest or not. To

understand how salience bias works in this context, we show that if the price of an

option of a nest n is changing, but it is not the price of a salient option, then its

effect on other nests is null. Moreover, another effect not captured by the standard

nested logit is the within-nest cross-price elasticity. The effect of a price change in

an option in the same nest always reduces the conditional (to an option in the nest)

probability. However, the unconditional probability may affect positively or nega-

2Luce (1959) and Kovach and Tserenjigmid (2022a) approach are based on decision theory
characterization, with axioms over random choice functions, while McFadden et al. (1973), Cardell
(1997), and Berry et al. (1995) are based on a random utility characterization, which constructions
are important to match the model with real choice data. In our paper, we build the model in both
traditions.
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tively. This happens because the option changing its price may be a salient option

or not. Thus, an increase in a price may even reduce the share of other options in

the same nest if this increase occurs in a salient option. This happens because the

overall attraction to the nest is reduced. The final direction of the effect depends

on nest parameters as shown in section 5.

To illustrate how the model works and what it implies to applications we show

two additional examples. First, consider a scenario where a decision-maker is se-

lecting among different beaches for a vacation, categorizing beaches according to

the regions they are in, each served by a common airport. Suppose two beaches at

the north, A1 = {x1, x2}, and three beaches at the south, A2 = {x3, x4, x5} form-

ing nests. She chooses A1 with probability 1/3 and {A2} with 2/3. But, once she

arives at the south, she randomizes between the two beaches going 5 times more

frequently to x1 than to x2. Similarly, in the north, beach x5 stands out as the most

salient, visited 50% of the time, with beaches x4 and beach x3 being chosen 30% and

20% of the time, respectively. This selection pattern aligns with the Salience-Biased

Nested Logit model (SBNL) with lambdas equals one, and Luce values (utilities)

v = (5, 1, 4, 6, 10), respectively. Thus, beach one is salient in the south, and beach

five is salient in the north. To choose between south and north, she only compares

v1 = 5 to v5 = 10. 3

Now, consider the same example, but let’s assume that option values are depen-

dent on choice characteristics, such as prices. Denote vj = δj + αpj, where δj is

the portion of the utility that depends on characteristics other than prices and α

represents the impact of price j on the utility vj. Thus, the SBNL can be viewed

as the demand for beaches, when the menu available is the set of all five beaches.

Notice that we can compute the impact of any price change on goods’ demand. If

a discount or sales campaign reduces the price of the salient beach in south p5, its

value (v5) increases (assuming α < 0, i.e., a usual demand). Thus, the probability

of choosing x5 increases. This price change may affect other goods in both nests.

Since x5 is the salient option, this increase in v5 increases the overall probability

of an option in A2 being chosen, decreasing the probability of A1, and then, of all

3And since lambdas are one, Pr(south) = 5/(5 + 10) = 1/3 and Pr(south) = 2/3.
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options in A1. However, notice that if one promotes the good x4 by decreasing its

price (i.e., increasing v4)4, the price change will affect the demand for x5, but this

does not affect the overall probability of A2. This occurs since x4 is not a salient

option, and then, it is not taken into account in the first stage of choice. Moreover,

changes in x4 also have a null effect on good in A1. This result is formally stated in

the results of the paper.

Extending to this random utility structure, we provide a simple application using

aggregate market data, a frequent context in applications of the usual nested logit

model, once it is possible to transform it into simple linear regressions using market

shares. The salience-biased nested logit has an analogue transformation. We use

this transformation to apply the model to Brazilian flight destination choice, using

five country regions as nests, and price tariff and living cost (of the destination)

as explanatory variables. We deal with endogeneity by estimating each step using

instrumental variables.

Importantly, the salience-biased nested logit (SBNL) model can capture non-

regularity in stochastic choice models even when the nest utility function is concave

(which the traditional nested logit cannot). Thus, we rationalize the existing em-

pirical evidence of non-regularity through a salience effect (Huber et al., 1982). We

provide an example where a product introduction can increase probabilities (de-

mand) of similar alternatives, using a salience-driven probability that differs from

the traditional decoy effect concept.

Another significant result is that, under mild conditions (on nest parameters),

SBNL satisfies moderate stochastic transitivity, a form of choice transitivity to the

random choice context. To show this, we fit the SBNL model on the framework of He

and Natenzon (2022), which established a general model called the moderate utility

model and showed that any stochastic choice function is a moderate utility model

if and only if it satisfies moderate stochastic transitivity. We show that the model

is a moderate utility model when for any pair of nests, the nest-specific parameters

4This result holds provided that the marginal change in p4 is sufficiently small such that v4
is still lower than v5. A sharp change that modifies the salient option of a nest may affect the
demand for all goods available.
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satisfy λi + λk ≤ 2.5 Hence, under this condition, the salience-biased nested logit

satisfies moderate stochastic transitivity.

This work relates to the literature modeling bounded rationality in the stochas-

tic choice framework, particularly inattention models. Matějka and McKay (2015)

study the presence of rational inattention in discrete choice, providing a new foun-

dation for the Multinomial Logit when the full knowledge of the menu is costly.

Kovach and Tserenjigmid (2022b) proposes a focal Luce model weakening the con-

troversial assumption of Independence of Irrelevant Alternatives, capturing bounded

rationality for agents that have a bias for focal sets.

Our model differs from the previous by describing a salience weighting in a two-

stage choice in which similar alternatives belong to common nests. The behavioral

foundation of this type of a two-stage decision – or nested stochastic choice – was

provided by Kovach and Tserenjigmid (2022a). The authors built a class of models

called Nested Stochastic Choice (NSC). We incorporate salience bias in an NSC

structure where attention to categories is driven by context-dependent salience. Faro

(2023b) proposes a Luce model with replicas that fit the NSC structure. In this work,

nests are composed of identical (in utility terms) alternatives. The Luce model with

replicas is a limit case of the nested logit where no salience can emerge from each

nest since no variation exists within each nest. Our model allows for this variation

with the salience attribute given by the best alternative of each nest, producing

non-regularity in a stochastic choice model, which usual Random Utility Models

cannot do.

In the next section, we detail the stochastic choice theory with bounded ratio-

nality and the salience theory. Then, we present the framework of our model in

section (iii). We move to the axiom-based characterization and show how the model

can capture non-regularity in section (iv). Section (v) presents the derivation of the

model in the random-utility framework, showing its usage and an estimation proce-

dure. We finish discussing the practical implications of applied economic issues.

5The NL model constantly asks λs to be lower or equal to one in order to be a random utility
model, which is verified by all usual applications in the IO context.

8



2 Literature Review

There is theoretical and experimental evidence on the behavioral economics litera-

ture arguing that agents may not satisfy the traditional rationality concept or that,

in some frameworks, one should consider restrictions in agents’ capacity. The the-

ory developed different frameworks to incorporate bounded rationality. Acquiring

information can be costly (Stigler, 1961; Caplin and Dean, 2015), that is, it can

be challenging, or even impossible, to process all information available. The con-

text/restrictions (as the time to choose) may affect how choices are made Gul et al.

(2014). Individuals may have cognitive limitations (Camerer et al., 2004), thinking

aversion (Ergin and Sarver, 2010; Ortoleva, 2013), and there can exist attention

grabbers in the choice problems faced by individuals (Barber and Odean, 2008).

These limitations in the individuals’ behavior are associated with the bounded ra-

tionality concept.

Empirical evidence shows that agents are not fully attentive, simplifying the

choice process. This type of behavior leads agents to limit the search scope to an

extensive menu of options using some criteria. De los Santos et al. (2012) used a

big-data analysis of internet search-shopping data to investigate how deep is the

consumers’ search in the choice of books to buy. Usually, people go into a few

bookstores, and due to this poor search, people often do not purchase in the lowest

price bookstore. Indeed, a skewed distribution is observed favoring the most popular

stores (e.g., Amazon). Notice that, at least partially, salience can drive this effect.

This choice simplification is also observed in experimental frameworks Dean and

Neligh (2017).

The economic literature developed new theories aiming to capture this simplifica-

tion of the consumer’s choice process. Tversky and Kahneman (1992) developed the

concept of rank-dependent utility in which utility weights are higher for top-ranked

alternatives. This theory is known as cumulative prospect theory and incorporates

the idea that there is a rank effect on consumer choice. This phenomenon has

been documented in the behavioral finance literature (Frydman and Wang, 2020;

D’Acunto et al., 2019; Hartzmark, 2015). For instance, individuals tend to trade
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more top and worst stocks than what is predicted by an optimal portfolio allocation.

Hartzmark (2015) argues that the rank effect is driven by salience. Some alterna-

tives are more protuberant in the menu faced by the individual, grabbing individual

attention. Moreover, as discussed by Bordalo et al. (2013b) and Cosemans and

Frehen (2021), the distortion towards the top-ranked alternatives depends on how

salient these alternatives are relative to the others available. That is, the salience

attribute is context-dependent, which is a key property in the economic/decision

theory of salience.

Studies like Bordalo et al. (2013b) and Cosemans and Frehen (2021) incorporate

this salience pattern in the choice model. With salience in agents’ utility, the authors

provide a unified rationalization to other different behavioral puzzles documented

by the decision theory and behavioral economics literature. Some examples are the

decoy effect, context-dependent willingness to pay, preference reversal, and others.

These models are more general than Tversky and Kahneman (1992) in the way that

the utility weights favor salient alternatives, attributes, or payoffs.

Ellis and Masatlioglu (2019) provide minimal behavioral axioms for BGS’ utility

functions. Moreover, they provide a salience version of the Strong Axiom of Revealed

Preference (salience-SARP), which is weaker than the usual SARP assumption. This

allows testing whether some empirically observed behavior is consistent with the

Salience Choice Model of BGS, showing that it’s essential to have a clean behavioral

axiomatization of choice models and that those axioms provide testable implications

for empirical tests.

Meanwhile, there is scant work on random choice models of salience. Data is

noisy, and individuals usually respond differently in similar situations, even in ex-

perimental settings, as highlighted by McFadden et al. (1973); Agranov and Ortoleva

(2017). Thus, stochastic choice models are considered as the natural approach to

fill this gap between theories and real data (Manzini and Mariotti, 2014). Our pa-

per contributes to the literature by incorporating salience preferences in stochastic

choice models.

Apart from salience, other general types of puzzling behaviors stand in random

choice settings. In Manzini and Mariotti (2014), agents’ choice is made through
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consideration sets, where agents reduce the set of alternatives to a smaller subset.

This reduction in the originally available menus is what defines inattention. More-

over, agents may be rationally inattentive by using optimal consideration sets, which

defines the concept of rational inattention of Caplin et al. (2019). Cattaneo et al.

(2020) modelled this inattention as random. Finally, Aguiar et al. (2021) unifies

the random attention framework with rational inattention models. More related to

salience, Kovach and Tserenjigmid (2022b) proposes a version of Luce (1959) model

in which there is a focal set that imbalances the probabilities in favor of the focal

alternatives.

Finally, our model fits in a recent structure of Nested Stochastic Choice (NSC).

In this framework, the choice set is composed by a partition of similar alternatives.

The elements in the partition are called Nests. The most prominent model in the

class of models is the nested logit. Kovach and Tserenjigmid (2022a) proposes a

behavioral axiomatization to NSC models, weakening the axiom in Luce (1959).

Faro (2023b) developed a model – the Luce model with replicas – where alternatives

in a nest have identical payoffs, also called replicas. The Luce model with replicas is

an extreme case of the nested logit where no variation is allowed within each nest.

We allow this variation and model the nest attractiveness by the best alternative of

each nest, generating a non-regular behavior that fits the NSC structure. We show

that the proposed model can be applied in different settings – as in a random utility

framework – or different types of data, contributing to the econometric literature.

The next section presents the setup and the model defining how we are introducing

salience bias in a nested logit context.

3 Framerwork and Model

Let X be a nonempty set of choice objects. We assume that X is finite. The

elements of 2X\ {∅} are called choice sets (also called menus or choice problems).

The mapping p : 2X ×
(
2X\ {∅}

)
→ [0, 1] is a random choice function if for all
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A ∈ 2X\ {∅}, p(·, A) : X → [0, 1] satisfies p(x,A) := p({x}, A) = 0 ∀x /∈ A and

∑
x∈A

p(x,A) = 1.

The value p(x,A) is interpreted as the probability of an individual agent (decision-

maker), on whose behavior we focus, choosing the alternative x from the menu A.

Another common interpretation is that p(x,A) captures the fraction of a given

population choosing x from A. A random choice function p is non-degenerate if

p(x,A) ∈ (0, 1) for all A ∈ 2X\ {∅} with card (A) ≥ 2 and x ∈ A (this property is

also called full-support assumption).

Recall that a family {Ai : i ∈ I} of subsets of X is a partition if: Ai 6= ∅ for each

i ∈ I; ∪i∈IAi = X; and Ai ∩ Aj = ∅ for all i 6= j. Since X is finite, we have only

finite partition, denoted by A = {A1, ..., An}, where n ≤ card (X). In this setup, we

present our first definition:

Definition 1 (Salience-Biased Nested Stochastic Choice): We say that a stochastic

choice rule p is a salience-biased nested stochastic choice rule if there exists a parti-

tion A = {A1, ..., An} of X (note that each x ∈ X can be associated with a particular

Aix ∈ A in which x lies), a set of n increasing maps fi : (0,+∞)→ (0,+∞), and a

Luce value function v : X → (0,+∞) such that for all A ∈ 2X\ {∅}, x ∈ A

p (x,A) =

fix

(
max

y∈A∩Aix
vy

)
∑

i:A∩Ai 6=∅

fi

(
max
y∈A∩Ai

vy

) vx∑
y∈A∩Aix

vy
.

A particular case of interest is the salience-biased nested logit model, similar to

the usual nested logit model.

Definition 2 (Salience-Biased Nested Logit) The salience-biased nested logit model

is a salience-biased nested stochastic choice with fi(v) = vλi for each i ∈ {1, ..., n},

where λi ≥ 0.

The main difference between the salience-biased nested logit and the Nested

Logit is how agents evaluate the nest utility. In the usual Nested Logit Model, the
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dependence is not on max
y∈A∩Aix

vy but on
∑

y∈A∩Aix
vy. This difference between the SBNL

and the NL allows us to capture non-regularities caused by salience that the NL is not

able to do even in the case 6.

To illustrate this behavior, suppose an agent choosing among three alternatives x, y,

z in different menus A ⊆ {x, y, z}. Table 1 presents one possible scenario showing how

salience bias, as defined by our model, arises in probability choices.

First, notice that when the agent chooses among {x, y}, she chooses more frequently

x than y. In the second line, we see that x and z are both equally probable. However, when

introducing z to the menu {x, y}, we see two important facts: firstly, p(x, {x, y, z})/p(y, {x, y, z}) =

p(x, {x, y})/p(y, {x, y}), which is a characteristic of a nested choice where a nest A1 is com-

posed by x and y and another nest A2 = {z}. Secondly, from the menu {x, z} to {x, y, z}

the probability of alternatives in A1 is invariant to the introduction of y (Table 1, lines 2

to 4).

Table 1: Example of a Salience Bi-
ased Nested Logit behavior

A p(x,A) p(y,A) p(z,A)
{x, y} 0.800 0.200 0.000
{x, z} 0.500 0.000 0.500
{y, z} 0.000 0.333 0.667
{x, y, z} 0.400 0.100 0.500

Example of a choice with salience
bias in the nest probabilities

Indeed, these probabilities can be represented as an SBNL model with (vx = 4, vy =

1, vz = 8) and (λ1 = 1/2, λ2 = 1/3). One possible explanation for this behavior is that

from the menu {x, z} to {x, y, z}, we add an alternative that is not salient relative to

nest 1. However, introducing x to {y, z} increases the probability of an alternative in the

first nest being chosen. This happens because p(x, {x, y}) > p(y, {x, y}), that is, x can be

viewed as the salient option of nest A1 in the menu {x, y, z}. In the usual nested logit,

both alternatives would increase the probability of the first nest, provided that a regularity

condition, that we explore later, holds.

We note that we obtain the Luce’s model (Luce, 1959) when the partition A is given

6The nested logit is regular (set-monotone) when λi ≤ 1 for all nest i.
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by

A = {{x1} , ..., {xn}} ,

where X = {x1, ..., xn}. In this case, it follows that, given A ∈ 2X\ {∅}, for all x ∈ A,

p(x,A) =
vx∑

y∈A
vy
.

A related model is the Luce model with replicas, developed by Faro (2023b). In the

Luce model with replicas, nests are formed by alternatives with identical Luce utilities,

and then, an agent chooses uniformly within each nest. In this case, introducing a new

option in some nest to a menu will not increase the probability of choosing that nest

because no change occurs in the nest’s salience.

The Luce model with replicas is also characterized by a partition A = {A1, ..., An}

where for each nest ∃v∗Ai ∈ R++ such that for all A ⊆ X and x ∈ A

p(x,A) =
v∗Aix

card (A ∩Aix)
∑

i:A∩Ai 6=∅

v∗Ai

.

In our model, considering nests with non-identical options, we have the opposite case

since only the best option matters to the nest probability. However, even an agent with

salience bias would behave exactly as in the Luce model with replicas in a context where

nests are composed of identical utilities. Our following proposition shows that both models

intersect in this case.

Proposition 1 Given a salience-biased nested stochastic choice function p represented by

with a partition A = {A1, ..., An} i ∈ {1, 2, ..., n}, if for all x ∈ Ai vx = vi (i.e., all utilities

in the same nests are equivalent), then the salience-biased nested logit is a Luce model with

replicas.

We note that if for each i ∈ {1, ..., n} , there exist vAi > 0 s.t. vz = vAi for all z ∈ Ai
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then

p(x,A) =
fi
(
vAix

)∑
i:A∩Ai 6=∅

fi (vAi)

vAix∑
y∈A∩Aix

vAix

=
v∗Aix

card (A ∩Aix)
∑

i:A∩Ai 6=∅

v∗Ai

,

where v∗Ai := fi (vAi) > 0, which is the Luce model with replicas characterized by Faro

(2023b).

Both models belong to a larger class of stochastic choice functions called nested stochas-

tic choice, characterized by Kovach and Tserenjigmid (2022a). A positive stochastic choice

rule p is a nested stochastic choice (NSC) if there exists a partition A = {A1, ..., An} of

X (note that each x ∈ X can be associated with a particular Aix ∈ A in which x lies), a

utility v : X → (0,+∞), and a set-function V : 2X → [0,+∞), with V (∅) = 0 such that

for all A ∈ 2X\ {∅}, x ∈ A

p(x,A) =
V (A ∩Aix)∑

i:A∩Ai 6=∅

V (A ∩Ai)
vx∑

y∈A∩Aix

vy
.

We note that the model we characterize is an NSC with n nests where for each nest

i ∈ {1, ..., n}

V (A ∩Ai) = fi

(
max

y∈A∩Aix
vy

)

4 Axioms and Main Results

To build an axiomatic-based characterization for the SBNL, we start defining the Indepen-

dence of Irrelevant Alternatives (IIA), the core axiom used by Luce (1959) to characterize

the Luce model, also known as Multinomial Logit model:

Definition 3 (Independence of Irrelevant Alternatives): A stochastic choice function p

satisfies IIA between x, y ∈ X if for all A ⊆ X such that x, y ∈ A

p(x, {x, y})
p(y, {x, y})

=
p(x,A)

p(y,A)

We say that p satisfies IIA when it holds for all pairs in x, y ∈ X.
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From IIA we define the similarity relation commonly used in the literature (Li and

Tang, 2016; Kovach and Tserenjigmid, 2022a):

Definition 4 For any alternatives a, b ∈ X, we say that a and b are similar, denoted by

a ∼p b, if p satisfies IIA at a and b. We also say that a and b are dissimilar if a 6∼p b.

As stated previously, the most remarked property of the NL model is that IIA only

holds within each nest. The similarity relation above is extremely useful for defining nests.

Given an alternative x ∈ X, we denote [x] = {y ∈ X : y ∼p x}. As it is well-known

that a collection of sets {[x] : x ∈ X} forms a partition of X if and only if ∼p is an

equivalence relation. Li and Tang (2016) show that, in general, the relation ∼p is not an

equivalence relation because it may fail to satisfy transitivity.

Kovach and Tserenjigmid (2022a) introduce an axiom called Independence of Sym-

metric Alternatives (ISA) that guarantees the transitivity of ∼p (so, it is an equivalence

relation under ISA) that we present below:

Axiom 1 (Independence of Symmetric Alternatives) For any A ⊆ X, x, y ∈ A, and

z /∈ A:

x ∼p z ∧ y ∼p z

or

x 6∼p z ∧ y 6∼p z

⇒ p(x,A)

p(y,A)
=
p(x,A ∪ {z})
p(y,A ∪ {z})

.

Kovach and Tserenjigmid (2022a) show that a positive stochastic choice function sat-

isfies ISA if and only if it can be represented by a nested stochastic choice (NSC) model,

defined in the previous section. Thus, we can see that this is the minimal model where

IIA holds within each nest, not the nested logit, which requires more axioms7.

As said previously, our model is an NSC, and then we need axiom 1 plus other assump-

tions to build our model with salience bias. Next, we present the main axiom characterizing

salience bias in the nested choice function:

Axiom 2 (Neutrality of weakly dominated alternatives within categories) Let x, y be two

alternatives such that x ∼p y and p(x, [x]) ≥ p(y, [x]). For all A ⊆ [x] s.t. x ∈ A and

B ⊆ [x]c,

p(A,A ∪B) = p(A \ {y}, (A \ {y}) ∪B).

7See Kovach and Tserenjigmid (2022a) for details.

16



Intuitively, the salience option of a nest Ai relative to a menu is the only one that

matters to predict the attention of individuals to options in that nest. We can characterize

the generalized salience-biased nested stochastic choice with a flexible functional form for

nest probabilities with this axiom.

Theorem 1 (salience-biased Nested Stochastic Choice) A positive stochastic choice func-

tion p satisfies Independence of Symmetric Alternatives and Neutrality of weakly

dominated alternatives within categories if and only if there exist a partition A =

{A1, ..., An} of X ( Aix ∈ A is s.t. x ∈ Aix), a collection of n strictly increasing maps

fi : (0,+∞) → (0,+∞), and a Luce value function v : X → (0,+∞) such that for all

A ∈ 2X\ {∅} and x ∈ A

p (x,A) =

fix

(
max

y∈A∩Aix
vy

)
∑

i:A∩Ai 6=∅

fi

(
max

y∈A∩Ai
vy

) vx∑
y∈A∩Aix

vy
.

Finally, we need to obtain a specific shape for the nest attractiveness function in order

to obtain the salience-biased nested logit. The axiomatic foundation to the SBNL, from

definition 2, is based on an additional technical condition in the same spirit of the log

ratio invariance proposed by Kovach and Tserenjigmid (2022a). We present this axiom in

Appendix A and call it salience log-ratio invariance.

Alternatively, section 5 presents a foundation to the SBNL in the Random Utility

framework. In this case, even not imposing the axiom 3, we can obtain a random choice

model equivalent to the SBNL. To do this, we use our central axiom, the axiom 2, and use

distributional and optimization assumptions similar to the standard nested logit model.

The salience-biased nested logit model differs from the Nested Logit changing the nest

utility function. In the nested logit the nest utility is given by (
∑

y∈A∩Ai
vy)

λi , that is, all

utility
∑

y∈A∩Ai
vy in the same nest count for the attractiveness of the nest, while in our

model only max
y∈A∩Ai

vy matters. Similarly, the General salience-biased nested logit changes

the Exteded Nest Logit model, provided by Kovach and Tserenjigmid (2022a), in which

the attractiveness of the nest is given by a more general function fi(
∑

y∈A∩Ai
vy), while in

the salience-biased version, only fi( max
y∈A∩Ai

vy) is important. This change is able to capture

some behavioral phenomena that we discuss next.
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4.1 On Regularity

A basic property satisfied by the Multinomial Logit Model is regularity. Roughly speaking,

regularity states that if we add new options to the menu, the prior probabilities of each

good must decrease. The usual Nested Logit model satisfies regularity when the nest

parameters are all lower (or equal) to one.

More formally, a stochastic choice function p satisfies regularity when ∀x ∈ A,

A ⊆ B =⇒ p(x,B) ≤ p(x,A) (1)

In the salience-biased nested logit, after the choice of the nest, the agent chooses

among alternatives within that nest as in an MNL, and then this second-stage probability

decreases with the addition of new similar options. However, the nest probability is non-

decreasing and has a non-smooth dependence on the Luce value of the salient option,

which can move choice probability upwards when we add a new salient option in that

nest.

There is evidence that the decision-maker’s behavior can violate regularity. The clas-

sical violation of the regularity is known as the decoy effect. This phenomenon is due to

Huber et al. (1982) and occurs when an inferior alternative can increase the probability

of the dominant option relative to its competitor. The SBNL presents a different type of

violation by allowing the probability of some alternatives to increase with more options

because those options can sharply increase the attractiveness of their nests. Indeed, if we

add a new salient option to the menu, that is, the new option has a higher relative choice

probability relative to its similar options, the probability of the nest will increase. As we

can show, this can lead to an increase in the probability of some alternative x.

The Nested Logit Model is regular provided that λi ≤ 1,∀i which is the case that

(
∑

y∈A∩Ai
vy)

λi is concave. Analogously, in the Extended Nested Logit8 the regularity holds

when fi(
∑

y∈A∩Ai
vy) is concave, as shown by Kovach and Tserenjigmid (2022a). As we argue,

there are cases in which the regularity is violated in the salience-biased nested logit, and

more importantly, this may happen even with concave nest utilities. To make it more

concrete, we provide an example.

Example 1 Let X = {x1, x2, x3, x4, x5, y1, y2} and suppose a Stochastic Choice Function

8Kovach and Tserenjigmid (2022a) define the extended nested logit by changing the nest at-
tractiveness (u)λi by a general increasing function fi(u).
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p over a consumption set . Suppose that p can be represented by a salience-biased nested

logit with a partition {A1, A2} with A1 = {x1, x2, x3, x4, x5} with respective Luce Values

{1/2,1,3/2,2,10}, A2 = {y1, y2} with respective Luce Values {100, 400}, and Nest specific

functions f1(x) = x and f2(x) = x1/2.

Suppose a menu A = X \ {x5} = {x1, x2, x3, x4, y1, y2}. Notice that max
u∈A1∩A

vu = vx4 =

2. Now, computing p(x2, A) we get:

p(x2, A) =
2

(
√

400 + 2)

1

(1/2 + 1 + 3/2 + 2)
=

=
2

22

1

5
=

=
1

55

Now, adding x5 to the menu we have that, the salience of the nest 1 changes by

max
u∈A1∩A

vu = vx5 = 5, then:

p(x2, A ∪ {x5}) =
10

(20 + 10)

1

(1/2 + 1 + 3/2 + 2 + 10)
=

=
10

30

1

15
=

=
1

45
>

1

55
= p(x2, A)

Hence, p does not satisfy regularity.

The example shows that a salience-biased nested logit can capture regularity violations

even in the concave case, while the Nested Logit model does not.

To understand which type of regularity this model can capture, we use two types of

regularity defined in Kovach and Tserenjigmid (2022a):

Definition 5 Given A ⊆ X, a ∈ A, we say that p satisfies Dissimilar Regularity if for all

b /∈ A such that b /∈ [a], p(a,A ∪ {b}) ≤ p(a,A). Moreover, it satisfies Similar Regularity

when for all b̂ /∈ A such that b̂ ∈ [a], p(a,A ∪ {b̂}) ≤ p(a,A).

Notice that the SBNL model satisfies Dissimilar Regularity. However, as we show in

the example 1 the model does not satisfy Similar Regular. Intuitively, we may have this

violation is when we add an option y that becomes the salient option of the nest [x]. In

this case, y decreases the conditional probability of options in [x] but increases the nest

[x] probability.
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The Regularity property is also important because all Random Utility Models are

regular (or monotonic). Then, in general, the SBNL is not a RUM. The traditional Nested

Logit model is a Random Utility Model when it is regular, i.e., λi ≤ 1.

A strand of the literature constructs menu-dependent stochastic choice models to dif-

ferent model information brought by different menus. Thus, there exist models that are

menu-dependent Random Utility. One important stochastic model that is equivalent to a

menu-dependent utility model is the Cross-nested logit9.

We can show that the SBNL is a cross-nested logit and then a menu-dependent Random

Utility model with a specific type of dependence. The nest parameters depend precisely

on the way it causes salience bias in nest probabilities. That is, each menu brings different

information with its alternatives.

4.2 SBNL and Stochastic Transitivity

An important property of the usual choice framework is transitivity. This consistency

assumption is one of the properties characterizing rationality in the deterministic choice

framework. Researchers have been working in different types of transitivity in the random

choice set-up, called stochastic transitivity (Rieskamp et al., 2006; He and Natenzon,

2022). Recently, He and Natenzon (2022) proposed a model that entails all stochastic

choice functions satisfying the moderate version of stochastic transitivity, this model is

called Moderate Utility Model (MUM).

A stochastic choice function p satisfies moderate transitivity when for all x, y, z, min{p(x, y), p(y, z)} ≥

1/2 =⇒ p(x, z) > min{p(x, y), p(y, z)} or p(x, z) = p(x, y) = p(y, z). He and Natenzon

(2022) show that a random choice p satisfies moderate transitivity if and only if it is a

Moderate Utility Model, i.e., if there exists v : X → R, a metric d : X ×X → R+, and a

strictly increasing F , such that for every x 6= y ∈ X, we can write p(x, y) = F
(
vx−vy
d(x,y)

)
.

Assume a salience-biased nested logit model with ux = evx , and let ṽx = vx/λk, if

x ∈ Ak (i.e. x belongs to the nest k). Then:

p(x, y) =
eṽx/λk

eṽx/λk + eṽy/λk

when x, y ∈ Ak, and
eṽx

eṽx + eṽy

9See Kovach and Tserenjigmid (2022a) to details.
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when x /∈ [y].

Thus, after few manipulations, we can show that

p(x, y) =
1

1 + e
− (ṽx−ṽy)

d(x,y)

where d(x, y) = λk when x, y ∈ Ak and d(x, y) = 1 when x /∈ [y]. Since F (t) = 1
1+e−at

is increasing in t (for a ≥ 0) then we can apply the characterization of Moderate Utility

Models (MUM) of He and Natenzon (2022) to state that if p(·) is a SBNL then it is a MUM

and, hence, it satisfies the moderate transitivity, provided that d(·) is a metric. Thus,

although our model is not regular which does not impose restrictions on λs, transitity

may impose it. To see this, take x, y, z ∈ X, then if x ∈ [z] = Ak and y /∈ [z] then

d(x, z) = λk, and d(x, y) + d(y, z) = 2. Thus, in order to d(·) be a metric, we need to

impose λk ≤ 2, k = 1, 2, ..., n 10.

Thus, d(·) is a metric and our model satisfies moderate transitivity when λk ≤ 2 for all

nest k. Notice that this is a weak restriction if the researcher is interested in transitivity.

The usual nested logit imposes λ ≤ 1, thus moderate transitivity is satisfied. Moreover,

as shown by He and Natenzon (2022), the EBA and the usual Luce rule are also MUM.

5 Salience-Biased Nested Logit in Practice

This section discusses the practical application of the nested logit with salience bias. To do

this, we consider the model as a modified Random Utility Maximization, in a framework

similar to the derivation of the standard nested logit problem. We show how choice

probabilities with salience can be derived within the nested logit framework by slightly

modifying optimization assumptions. We then develop a simple estimation strategy to a

parametric version of the model and present a Monte Carlo simulation example. Most

of the results shown in this section are standard and widely used in the Random Utility

literature. We refer the readers to this literature for proofs and other technical details

behind our derivations. The derivation of the model can be done similarly to the standard

nested logit model. However, as shown previously, the main difference between both

models relies on nest probabilities. In the usual nested logit, all payoffs are taken into

10all other cases the triangular inequality d(x, z) ≤ d(x, y) + d(y, z) can be easily verified. More-
over, for binary choices, our model can be written as a usual nested logit, which satisfies the
moderate transitivity, as shown by He and Natenzon (2022).
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account to compute the probability of a nest being chosen against others. In the salience-

biased nested logit, only the option with the highest payoff plays a role in this first-stage

choice. In the second stage, the choice within the nest, both models are identical and work

as the Luce rule.

Thus, we can view this model as if the decision-maker first chooses a nest, simplifying

his choice by using only options that are salient to her. Then she chooses as a usual logit

(Luce) model between options in the surviving nest. in this section, we first show the step-

by-step derivation of the usual nested logit. Thus, we modify an optimization assumption,

based on our previous axioms, to characterize the model in a random utility estimation

framework. After that, we provide practical procedures to apply the model using both

individual-level (or purchase-level) and aggregate market-level data, as in common Indus-

trial Organization applications. Moreover, we derive a rich set of price elasticities implied

by the model, highlighting the role of salience in the substitution patterns.

5.1 Salience Bias in a Random Utility Estimation Frame-

work

The Random Utility framework is the backbone of empirical models of discrete choice

and is widely used in many fields (McFadden, 1977; 2001). Typically, in empirical stud-

ies involving the analysis of discrete choices, researchers derive choice probabilities – or

individual demand functions – from some basic assumptions defining (i) the individual

choice set, (ii) the indirect utility individuals attribute to each alternative contained in

the choice set, and (iii) a behavioral assumption that describes how agents make choices.

Different discrete choice models such as the Multinomial Logit, the standard Nested Logit,

and the Random Coefficients Logit are derived from variations of these three assumptions

(Anderson et al., 1992; Train, 2009; Ben-Akiva and Lerman, 2018).

Choice Set. Following this literature, we start by defining decision-marker choice sets.

Employing a common notation used in empirical studies of discrete choices, let C be a set

of alternatives available to decision maker i.11 We assume that C exhibits the following

properties:

• Assumption C1: C is finite, discrete, and exhaustive (i.e. all possible alternatives

11In principle, C can vary across individuals. To simplify the notation, we assume that the
choice set is the same for all individuals.
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available to individual i are included in C);

• Assumption C2: C can be partitioned into M < |C| subsets Cm (also called nests),

m ∈ {1, 2, 3, ...,M}, such that
⋃M
m=1Cm = C and Cm ∩ Cm′ = ∅ for any m, m′ ∈

{1, 2, 3, ...,M} , m 6= m′.

Indirect Utility Function. Individual i derives his random utility Uijm from any alter-

native jm ∈ Cm. We also assume that:

• Assumption U1: Uijm = Vjm + ξm+ ξijm , where Vjm is a choice specific utility index,

ξm is a nest specific index and ξijm is an individual-choice specific index;

• Assumption U2: ξijm is independent and identically distributed across individuals

and choices and has distribution Extreme Value type I with scale parameter µm > 0.

We highlight that only agent observes Uijm , but the econometrician only observes Vjm

and know the distribution of the shocks ξm and ξjm .

Individual Behavior. Assumptions C1-C2 and U1-U2 are commonly used for the deriva-

tion of the standard nested logit within the Random Utility Maximization framework –

see, for instance, Ben-Akiva and Lerman (2018). The main difference between the nested

logit and the Salience-Biased nested logit is the assumption defining individuals’ choice

behavior. To illustrate this point, we decompose individuals’ decision processes into two

steps. In the first step, individual i chooses a nest Cm; in the second, given the choice of

the nest, she selects an alternative within that nest.

Now, notice that we can write

P (ai = jm) = P (ai ∈ Cm)× P (ai = jm|ai ∈ Cm)

which allows the reasearcher to solve the two problems separetely.

Solving this problem backwards, we assume that in each nest Cm, individual i chooses

the alternative jm ∈ Cm that maximizes her utility. In other words, conditional on the

choice of the nest, we assume that individual i chooses alternative jm ∈ Cm if the alterna-

tive gives her the highest alternative among all the alternatives in nest m. More formally,

let ai ∈ C represent individual i’s choice. Our assumption B1 defines the set of events

where agent i chooses jm ∈ Cm:
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• Assumption B1: Given an event such that ai ∈ Cm, then ai = jm if and only if

Uijm ≥ Uij′m for any j
′
m ∈ Cm, j

′
m 6= jm.

Under assumptions B1, C1, and C2, the choice probability, conditional to the choice

of the nest, has the standard Multinomial Logit formula (McFadden et al., 1973):

P (ai = jm|ai ∈ Cm) =
eµmVjm∑

km∈Cm
eµmVkm

, (2)

where, P (ai = jm|ai ∈ Cm) represents the probability of choosing alternative jm given

that the choice set is restricted to nest Cm.

Based on this result, we derive now P (ai ∈ Cm) – i.e., the probability of choosing

an alternative that is in nest Cm – consistent with salience bias. But first, we present

the standard nested logit derivation and we restrict the assumptions to derive the SBNL

model.

In the standard nested logit framework (Ben-Akiva and Lerman, 2018), the set of

events such that individual i chooses any alternative in nest Cm are defined by the events

where max
jm∈Cm

Uijm ≥ max
jm′∈Cm′

Uijm′ for or any Cm′ ∈ C, m′ 6= m or, substituting the utility

function, ai ∈ Cm if and only if:

ξm + max
jm∈Cm

{Vjm + ξijm} ≥ ξm′ + max
jm′∈Cm′

{Vjm′ + ξijm′}, ∀m
′ 6= m. (3)

Given assumption U2, it is easy to show that max
jm∈Cm

{Vjm + ξijm} has distribution

Extreme Value with scale parameter µm and location parameter given by:

Ṽm =
1

µm
ln

 ∑
jm∈Cm

exp (µmVjm)

 .
The probability P (ai = jm|ai ∈ Cm) consistent with the nested logit is thus derived

assuming that ξm has a probability distribution such that ξm + max
jm∈Cm

{Vjm + ξijm} has

distribution Extreme Value with location parameter V̂m and scale parameter equal to 1 –

see Cardell (1997) for a proof of the existence of this distribution. Using these assumptions

and the set of inequalities (3), the probability of choosing an alternative in nest m that

is consistent with the nested logit Model is given by – see, for example, Ben-Akiva and
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Lerman (2018):

G (ai ∈ Cm) =
exp

(
Ṽm

)
∑M

k=1 exp
(
Ṽk

) . (4)

Now, let’s consider the SBNL case. First, define V ∗m = max
jm∈Cm

Vjm (and remember that

C is finite, so is Cm). Suppose that:

• Assumption SB1: |V ∗m| = 1, i.e., the highest payoff of each nest is unique.

Let j∗m = arg max
jm∈Cm

P (ai = jm|ai ∈ Cm) be the salient option in nest Cm. Notice

that, given SB1, arg max
jm∈Cm

P (ai = jm|a ∈ Cm) = arg max
jm∈Cm

Vjm (and we denote V ∗m =

Vj∗m), which means that the salient option in nest m is the option with the best-observed

characteristics in that nest.

Notice that, using axiom 2 we can write

P (ai ∈ Cm) = P (j∗m, {j∗1 , j∗2 , ..., j∗M}) = P (Vj∗m + εj∗m + ξm ≥ Vj∗k + εkn + ξn : ∀n 6= m)

This, toguether with distributional assumption, lead to the SBNL representation in

the RU estimation framework:

• Assumption SB2: an event satisfies ai ∈ Cm if and only if

ξm + max
jm∈E(Cm)

{Vjm + ξijm} ≥ ξm′ + max
jm′∈E(Cm′ )

{Vjm′ + ξijm′}, ∀m
′ 6= m.

where E(Cm) = arg max
jm∈Cm

Vjm .

• SB3: ξm is such that ξm + ξj∗m ∼ EV (1, 0), where ξj∗m is the good specific shock

associated with the salient option of nest m12.

Thus, under SB1-SB3:

P (ai ∈ Cm) = P (ξm + max
jm∈E(Cm)

{Vjm + ξijm} ≥ ξm′ + max
jm′∈E(Cm′ )

{Vjm′ + ξijm′}, ∀m
′ 6= m)

=
eV
∗
m∑

k

eV
∗
k

(5)

Clearly, the key difference between the nested logit and the Salience-Biased nested

logit is summarized by assumption SB2. Intuitively, considering that choice is a two-step

12See Cardell (1997) to the existence of such ξm.
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decision problem, assumption SB2 implies that in our model, individuals exhibit a specific

form of bounded rationality: before visiting a nest Cm, individuals only pay attention to

the subset of salient options of each nest, E(C1) = j∗1 , ...E(Cm) = j∗m. After choosing

the nest, individuals are able to select an option as a random utility maximizer within

each nest. Hence, the assumption in the nest choice is in the spirit of the inattention

and consideration sets literature (Manzini and Mariotti, 2014; Matějka and McKay, 2015;

Cattaneo et al., 2020).

Finally, using the Bayes rule and equations (2) and (5) we can derive the Salience-

Biased nested logit choice probability:

P (ai = jm) =

(
max
jm∈Cm

eVjm
)

∑
k

(
max
jk∈Ck

eVjk

) eµmVjm∑
j′m∈Cm

e
µmVj′m

(6)

=

(
max
jm∈Cm

eV̄jm
)λm

∑
k

(
max
jk∈Ck

eV̄jk

)λk eV̄jm∑
j′m∈Cm

e
V̄j′m

(7)

in which we transform λm = 1
µm

and V̄jm =
Vjm
λm

.

This derivation of the SBNL under the Random Utility framework can be summarized

by the following proposition:

Proposition 2 Under the conditions above, if εjm ∼ EV (0, µm) for all alternatives jm

and ξm is such that εj∗m + ξm ∼ EV (0, 1) then:

P (ai = jm) =

(
max
jm∈Cm

eV̄jm
)λm

∑
k

(
max
jk∈Ck

eV̄jk

)λk eV̄jm∑
j′m∈Cm

e
V̄j′m

(8)

where, λm = 1
µm

and V̄jm =
Vjm
λm

.

In the next subsection, we discuss the estimation of the SBNL model, where one needs

to estimate {µm}Mm=1 and {Vjm}jm∈Cm,m=1,2,...M , when V s are function of product/choice

caracteristics.
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5.2 Estimation of Salience-Biased Nested Logit Models

This section develop a simple estimation strategy for the Salience-Biased nested logit

probabilities represented by equation (7). We base our estimation procedure on the same

procedure of two-step estimation for the NL, but with particular differences due to the

construction of the SBNL.

We consider a simple case where

Vjm = x′jmβ

where, xjm is a L-dimensional vector of observed characteristics of alternative jm and β

is a L-dimensional vector of parameters. We further assume that the researcher observes

a cross-section DN = {ai, x′i}
N
i=1 of N individual choices (ai ∈ C) and the K-dimensional

vector of characteristics of the choices made by each individual (x′i).
13 The goal of the

researcher is to consistently estimate β and µm, m = 1, 2, ...M from the data DN .

The key issue behind the estimation of the Salience-Biased nested logit is to identify

the salient option from choices, input this information into the estimation procedure, and

then, estimate the model parameters. Notice that the option with the highest value in the

nest (the salient option) must also be the option chosen with the highest probability. Thus,

we identify salient options as the options with the highest probability in each nest. Using

this idea, we present a step-by-step method to recover β and {µm}Mm=1. Since equation

(7) is not differentiable in a set of points, in principle, the Maximum Likelihood estimator

commonly employed to estimate the standard nested logit cannot be directly used to

estimate the nested logit with salience. Our proposed estimation strategy is outlined

below:

1) First, for each nest, select j∗m = argmaxP (jm|Cm). Using these salient options, run

a logit model for P (a ∈ Cm), recovering β from the first stage:

P (ai ∈ Cm) =
e
x′
j∗m
β∑M

n=1 e
x′
j∗n
β
.

2) Using the estimate β̂, compute V̂jm = x′jm β̂.

13For simplicity, we focus here on cross-sectional data. The procedures we develop here can be
trivially extended to accommodate other types of data structures.
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3) For each nest m, run a logit model for P (ai = jm|Cm) to recover µm, using V̂jm a

explanatory variable:

P (ai = jm|ai ∈ Cm) =
eµmV̂jm∑

km∈Cm
eµmV̂km

.

This procedure can be easily implemented using common Logit commands available

in many statistical software. However, in this two-step estimation, since we are using

estimated β̂ from the first stage, it can carry an inefficiency in the estimation. Moreover,

To illustrate the properties of this estimator, we conducted a simple Monte Carlo

experiment.14 We assumed that:

Ui,jm = β0 + β1xi,jm,1 + β2xi,jm,2 + ξi,m + ξi,jm ,

where, xjm,1 and xjm,2 are 2 observed (simulated) characteristics of choices, β ≡ (β0, β1, β2)

is the vector of parameters to be estimated joint to the nest specific parameters, ξjm is

iid Extreme Value across individuals with scale parameter µm, ξm satisfies the previous

assumption in this section. We further assume that each nest has three products and the

number of nests is equal to 2. Using the SBNL probabilities in equation (7) we simulated

1000 samples of N observations and estimated the parameters of the model using the

procedure described above. We compute the sample mean squared error (MSE) of each

parameter using the SBNL probabilities.

Table 2 shows the results for samples with N = 100, N = 500, N = 1000 and

N = 10000 observations. The first column has the true value of the parameters. The

columns in the table show the MSE results of the estimation using the SBNL estimator.

Moreover, we present the resulting MSE of the second stage using the true β to recover

V̂ . The MSE decreases quickly when the sample size increases. However, notice that the

parameters µ1 and µ2 have a significantly lower MSE when the estimation does not carry

the first stage error. Thus, there is an inefficiency in the two-stage procedure proposed.

Overall, the results in the table suggest that the estimation procedure developed in this

paper works well even when the sample size is moderate.

14This two-step estimator is analogous to the two-step estimator for the traditional NL model as
proposed in McFadden (1981). The estimator is consistent and

√
N -asymptotically normal under

general conditions (McFadden, 1981). In the second step, however, the variances of µm have to be
corrected to account for the first step estimates of β – see the appendix in McFadden (1981) for
details.
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Table 2: Monte Carlo Experiment Results

Mean Squared Error

True Parameter N=100 N=500 N=1000 N=10000

β1 -2 0.537 0.100 0.044 0.004
β2 3 0.746 0.118 0.054 0.005

Sample MSE

µ1 1 0.096 0.018 0.009 < 0.001
µ2 1 0.092 0.019 0.008 < 0.001

Sample MSE using the true β

µ1 1 0.066 0.009 0.005 < 0.001
µ2 1 0.056 0.009 0.005 < 0.001

Note: Monte Carlo with H = 1000 simulations of samples of size N ∈
{100, 1000, 10000, 100000}. Two-step estimation of the model for the SBNL
model. The numbers in each row represent the Mean Square Error of each pa-
rameter averaged across 1000 simulations.

5.3 Aggregate Market Data and Applications

A critical issue in the applications of logit-type models to economics is how to deal with

aggregate market data. In the nested logit model, there is a concern regarding the use of

an individual choice model to the usually available data, as data on market shares and

aggregate prices Berry et al. (1995). The traditional models, such as the Multinomial

Logit and nested logit, can be linearized by a log transformation, where its reduced form

can be estimated by the usual OLS or by GMM when dealing with endogeneity issues

or structural estimations. This section takes the parallel of the SBNL model with the

usual NL, showing how one can compute price elasticities, an important object in models

of demand, and how to log-transform the model so that it can be used in an aggregate

market data context.

5.3.1 Price elasticities

Recall that price elasticities refer to how a change in one good price affects the demand (the

choice probability) for another good. There are two elasticities: the own price elasticity

and the cross-price elasticity. Additionally, since alternatives in the same nest are similar,

the cross-price elasticity is different for a price change in an alternative in the same nest

than for a price change of an alternative in a different nest. In the SBNL, we must also
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take into account if the price change refers to a salient option or not since the salient

option is the driver of the nest probability. This led to several special cases in presenting

price elasticities.

The demand for a good is dependent on its characteristics, which is important to model

product differentiation, mainly to its price. To simplify notation, we denote αm as the

price coefficient of a good in nest m, hence

Vjm = x′jmβ + α · pjm ,

where we expect α < 0, since a usual demand is negatively related to price.

To denote the market share of good jm we use the notation sjm . We can also have the

conditional market (to nest m) share of jm by sjm|Cm , and the category m market share

by sm =
∑

jm∈Cm
sjm .

In Appendix B we compute the derivative (∂sjm/∂pkn) to get the price elasticity of

good j in nest m with respect to a change in the price of good k in nest n, εjm,kn , where:

εjm,kn =
∂sjm
∂pkn

pkn
sjm

This difference between the response of a good to a salient good leads the model to

six cases of price elasticity, which we present next.

Own-price elasticity:

εjm =

αµm(1− sjm|Cm)pjm , if jm is not a salient option

α
(
(1− sm) + µm(1− sjm|Cm)

)
pjm , if jm = j∗m is a salient option

Since only characteristics in nest m are changing, the first term is the same as multinomial

logit models. The second term takes into account that if jm = j∗m (jm is the salient option

of m), an increase in pjm reduces the attractiveness of alternatives in m relative to other

nests.

Within nest cross-price elasticity:

Now we consider a price pkm in the same nest changing

εjm,km =

−αµmskm|Cmpkm , if km is not a salient option

α
(
(1− sm)− µmskm|Cm

)
pkm , if km = j∗m is a salient option
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Again, in the first term, we are considering only changes within nest m. In the second

term, we consider both the change within the nest and the change of the salient option of

nest m relative to the others.

Cross nest cross-price elasticity:

Finally, considering changes in kn from a different nest we get

εjm,kn =

0, if kn is not a salient option

−αsnpkn , if kn is a salient option

Notice that if we change some price of a non-salient good of nest n, nothing is expected

to happen with options in nest m. In the usual nest logit, any change in n will affect nest

m probability.

Following the previous observation on the regularity of section 4, it is important to

notice that increasing the price of a similar option may both increase or decrease the

market share of jm depending on how salient km is within the nest. If km is not a salient

option, increasing its price will decrease its value Vkm , increasing the demand for good jm.

However, when km is salient in that nest, the attractiveness of the nest m will decrease,

and the final effect is ambiguous.

This result implies that a firm may want to capture individuals’ welfare by focusing on

fire sales and discounts on the more salient goods. Moreover, with a product introduction,

the firm can increase a category demand strategically with releases of prominent options.

In the usual nested logit, any product introduction or discount to a product in a category

would increase its demand. Additionally, this salience effect is not equal to the decoy

effect. Introducing a good will increase the category probability only if this is the good

chosen with the highest probability within the nest, i.e., it is a better good relative to

its similar. In contrast, in a decoy effect, usually, a dominated but similar alternative is

introduced.

There are well-known advantages to using the nested logit model instead of the multi-

nominal logit. The IIA problem also reflects unrealistic substitution patterns between

different goods15. Addressing the IIA assumption also implies a more unrestricted sub-

stitution pattern between alternatives, which the nested logit does. Not only nested logit

allow for more flexible substitution patterns, but other nested stochastic choice models

generally have more flexible substitution patterns implied by the model. Our model has

15See Train (2009), ch. 6, for examples and discussion.
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the advantage of a more general substitution pattern while simultaneously capturing how

goods in different nests respond to a change in the salience of some nest. In the next

subsection, we discuss other practical implications of the model using aggregate data and

comparing equation estimation of the multinomial logit and the nested logit model.

5.3.2 Fitting the SBNL model using aggregate data

Several applications of stochastic choice models, as nested logit models, explore aggregate

market data, such as data on market-shares and product characteristics (e.g. prices),

to estimate model parameters – and consequently, the demand – instead of observing

individual-level choices. In particular, researchers may face a time-product data structure

to fit the demand model. A usual procedure is to transform the model via log-linearization

so linear panel data techniques can estimate it. In this section, we propose a transforma-

tion of the model to apply it on aggregate market data context, comparing the resulting

estimable equation to the usual NL and with the multinomial logit model.

In this context, the probabilities P (ai = jm) are usually interpreted as market shares,

which we simplify the notation to sjm . Also, common to this framework, assume that

the utility of an outside option is V0 = 0 and let s0 be its market share. In Appendix C

we present a log transformation to the SBNL model that is useful when researchers have

repeated observations of market shares and product characteristics:

log(sjm/s0)− log(sj∗m|Cm) = x′j∗mβ + µm(xjm − xj∗m)′β + ζjm (9)

which makes explicit the non-linearity in parameters from the equation.

Equation (9) shows the importance of the salience in defining market shares. We can

see that both a marginal change in a characteristic of xjm or a change in the characteristic

of the salient option, x∗jm of the nest, may directly change the market share of the good.

Moreover, notice that the left-hand side of the equation (9) depends not only on sjm but

also on sj∗m|Cm and s0. Thus, if, for example, one of the characteristics is the price, we

need to use the procedure in section (5.3.1) and Appendix B, deriving the marginal effects

from the structural model. For instance, if we are interested in the marginal effect of

changing the price of the salient option of a nest n in demand for a good jm in another

nest m, they have ∂sjm/∂pk∗n = −αsnsjm , where sn denotes the demand to goods in nest
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n,
∑

kn∈Cn skn and α is the price coefficient associated with alternatives in the nest Cn,

which we assume equal for all nests in the econometric model with aggregate market data,

which is also a common modeling choice in the usual nested logit.

Moreover, with this equation, one can estimate the model with common linear panel

data techniques. To see this, notice that

sm/s0 = eV
∗
m

thus, it is possible to estimate β using the linear equation

ln(sm/s0) = x′j∗mβ + ξj∗m

then, we can get β̂ by running a linear model using the observations of market-shares of

salient options of each nest. Then, plugging β̂ into equation (9) we can estimate µm using

the linear model, with nest-specific parameters

log(sjm/s0)− log(sj∗m|Cm) = x′j∗m β̂ + µm(xjm − xj∗m)′β̂ + ζjm .

Notice that most applications would have a panel data of market-shares and product

characteristics, i.e., variables indexed by time {sjm,t, xjm,t}, t = 1, 2, ..., T . We omit this

subscript t above for the sake of simplification.

To compare with the Multinomial Logit model and the usual nested logit, an estimation

equation in the nested logit case would be:

log(sjm/s0) = (1− λm) log(sjm|Cm) + xjm · β + ζjm . (10)

with 1 − λ = 0 in the Multinomial Logit case16. Thus in the SBNL both LHS and RHS

of the estimation equation are taking into account the salient option when computing the

model parameters.

Example 2 presents the fit of the model with real data on flight destination and how

to use the fitted parameters to understand elasticities.

Example 2 (Fitting the model with aggregate data on flight-destination) To give one ex-

ample and estimate the probability and utility parameters in real data, we collected Brazil-

16As we show in the previous section, in our model µm is analogous to the inverse of the λm
used in the nested logit, i.e., λm = 1

µm
.
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ian data on domestic flights starting from the State of Sao Paulo from any airport to

any other airport (including others in the same state). In this data, we have the origin

and destination of the air-passages, the number of flight seats sold, and the price paid.

We have monthly observations from 2002 until 2019 for the 27 Brazilian states. We also

collected a proxy for the living cost, which is the average m2-cost of construction in each

Brazilian state, computed and publicly available at IBGE (Brazilian Institute of Geography

and Statistics). We use January, July, and December to be vacation seasons and February

due to the carnival, a period with lots of tourist travel in Brazil.

In this framework, we build nests naturally as regions. Thus we have five nests m,

where each nest corresponds to a collection of Brazilian States, m = 1 is Southeast, m = 2

corresponds to South, m = 3 to Midwest, m = 4 to Northeast, and m = 5 to North.

Hence, we parametrize the utility of travel to state j in the region m, Vjm,t, as a

function of the price pjm,t and living cost cjm,t of destination j in the region m bought in

period t. Our estimated equation following equation (7) is

log(sjm,t/s0)−log(sj∗m|Cm) = β0+β1pj∗m,t+β2cj∗m,t+µm(β1(pjm,t−pj∗m,t)+β2(cjm,t−cj∗m))+ζjm,t.

To compute market shares using the number of seats sold each period, we need to define

the potential market. Here, we took the estimated population of the State of Sao Paulo

at each month t, also available at IBGE, and consider the population in the first income

quintile as the potential market for flight travels 17. Then, we divide the number of seats

sold in month t to travel for state jm by this potential market, s0 is the “residual” of this

market-shares such that shares add up to a unit.

In particular, we did two exercises fitting the model parameters. First, we estimated

by Non-Linear Least Squares. After that, we fit a GMM using instruments to the moment

conditions. Results are presented in Table 3. We did not restrict λ to be positive, although

the researcher can include this restriction to ensure this constraint in the estimates.

17We restricted the sample for flights from the State of Sao Paulo because it is the most populated
state in Brazil. Moreover, flight services are considered very expansive in the country, not accessible
to the whole population.
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Table 3: Model Estimation with Aggregate Market Data

First-Equation (Estimated by TSLS) Second-Equation (Estimated by GMM)
Dependent Variable ln(sm/s0) Dependent Variable ln(sjm/s0)− ln(sj∗m)

β0 -3.023*** µ1 16.539
(0.149) (23.079)

β1 -0.005*** µ2 10.256
(0.000) (18.165)

β2 0.001*** µ3 14.995***
(0.000) (18.165)

µ4 1.847***
(0.061)

µ5 3.895***
(0.140)

F-Statistic 1st-stage IV F-statistic 469.68
Overid. Test 0.167 Overid. Test 0.309

p-value 0.6825 p-value 0.857

***p < .01, **p < .05, *p < .1. Estimation of utility and probability parameters of SBNL model.
Robust standard errors in parentheses. The instruments for the salient price in the first-equation are
the total cost of salient options in other nests and the squared cost of the salient option of the nest.
Instruments for pjm are the living cost of options in other nests, the living cost of salient option, and
the squared cost of the option. Bootstrap standard-error in the GMM equation. 1080 observations
in the first-equation (salient-options) and 4340 valid observations in the second-equation.

The price coefficient is negative, as expected. The control variable, living cost, is

positive but very small. With no need for restriction in the estimation procedure, we got

positive nest coefficients in the estimation.

The example above has price-elasticity implications and also implies stochastic tran-

sitivity. The estimates of λm = 1/µm are all lower than two, the condition we obtain to

the MUM representation of He and Natenzon (2022). Moreover, one can plug the nest pa-

rameters and the price coefficient into the price-elasticity formulas to derive the response

behavior of the Brazilian flight market to price changes (see section 5.3.1). To exemplify,

considering the aggregate market data on dec/2019, a price change in a non-salient state

of south would not change the flight tariff in the State of Sao Paulo (in southeast, m = 1),

however, we can compute that a change in the price of the salient state in south (m = 2),

by 1%, would change the demand for the State of Sao Paulo flights in 0.02%. Moreover, an

increase in the salient option of southeast would have a positive net effect on the demand

for the State of Sao Paulo destination. The higher µ1, the higher is the net effect of the

salient option on the demand for the State of Sao Paulo.
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6 Conclusion and Discussion

This paper presents a novel foundation to the nested logit model to incorporate salience

bias. We designed an axiom-based characterization in the spirit of Kovach and Tserenjig-

mid (2022a), providing testable conditions defining the model. We show how this model

is able to capture a new type of violation on regularity, a common property of stochastic

choice models, in special random utility models. The SBNL model can be non-regular

even when λi < 1, which corresponds to the concave case of the usual NL model.

The violation of regularity shows how a salient option can discontinuously increase the

attractiveness of a nest, increasing the demand for similar options, which the traditional

nested logit is not able to predict. One can notice that this characterizes a new type of

violation of regularity different from the decoy effect. In the decoy effect, a similar but

dominated alternative attracts attention to the dominant one. Our central axiom defines

an invariance of nest probabilities to the inclusion of non-salient options to a menu.

In a more structural setting, we show how the model can be derived in a random

utility framework, in a similar choice structure to the usual nested logit, but modifying

the behavioral maximization of agents. Thus, our model can also be derived in the random

utility tradition of McFadden et al. (1973). One can add common parametric assumptions

in the utility, usual in econometric applications of multinomial choice (as MNL and NL).

Using these assumptions, the model can be estimated with real data using standard logit

estimation routines in a two-step logit estimation.

One of the potential applications of the model is the estimation of demand considering

salience bias. In many settings, researchers have access to aggregate market data. We

show how to apply a log transformation in the model to achieve an estimable equation

with aggregate market share and market characteristics. Finally, one important object

in the Industrial Organization literature is price elasticity. We derive the price elasticity

of the SBNL, considering the own price elasticity, cross-price elasticity, and if the price

change comes from a salient option of a nest, which leads our model to more elasticity

cases than in the usual nested logit, showing that we can capture more market movements

using our model. We present a simple application to show how to fit an estimable equation

using flight demand data.

Additionally, due to the capacity to capture non-regularity, our model also fits in the

evaluation of the effects of product innovation and mergers and acquisitions using our im-
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plied demand. In these frameworks, the salient option of each firm may change, generating

a possible incentive (or disincentive) for these actions. Moreover, it is interesting to inves-

tigate whether firms capture more consumer welfare due to the salience bias. Thus, there

is an opportunity to revisit some empirical applications comparing the usual nested logit

with the salience-biased nested logit. As highlighted by Ellison (2006), the literature lacks

investigation on the interplay of supply and demand in a structural model with bounded

rationality. Since our model directly describes the demand, one can apply it to structural

empirical estimation in an adequate context.

Appendix A - Proofs

In the appendix, we provide proof of our results.

Proof. (Proof of Theorem 1)

Sufficiency: From Kovach and Tserenjigmid (2022a) we know that there exists a

partition {A1, ..., An}, a luce value vx : X → R++ and a nest utility V : ∪ni=12Ai → R+

representing p as a Nested Stochastic Choice. Indeed, we can take v(A∩Ai) = p(A∩Ai, A)

and u(x) = p(x,Aix) = p(x, [x]).

Now, from the axiom 2, given x ∈ A, let x∗ be the salient option of [x] relative to the

menu A. since A = (A ∩Aix) ∪ (A ∩Acix) . Then, for all y ∈ Aix ∩A

p(Aix ∩A,A) = V (A ∩Aix) = V (A ∩Aix \ {y})

Then, V (A ∩Aix) = V (A ∩ {x∗}) = V (x∗).

Since V (x∗) is a constant function of the salient option of Aix (relative to A), we can

take V (x∗) = fi
(
p(x∗, [x])

)
= fi(vx∗).

Necessity: Take x 6= y such that x ∼p y and p(x, [x]) ≥ p(y, [y]). Take A ⊆ [x] = Aix

with {x, y} ⊆ Aix and B ⊆ [x]c. Let x∗ be the salient option of [x] relative to A. Then

notice that vx∗ ≥ vx ≥ vy hence

p(A,A ∪B) =
fi(vx∗)∑n

k=1 fk

(
max

z∈A∩Ak
vz

)
Moreover, since either y is not a salient option or there exists more than one salient

option (relative to A ∪B), we get
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p(A \ {y}, A \ {y} ∪B) =

fi( max
z∈A∩Aix

vz)

n∑
k=1

fk( max
z∈A∩Ak

vz)

=

=
fi(vx∗)

n∑
k=1

fk( max
z∈A∩Ak

vz)

=

= p(A,A ∪B)

Thus, Axiom 2 holds. Axiom 1 is straightforward since p is an NSC function.

Axiom 3 (Salience Log-Ratio Invariance) Given x ∈ X, for all A,B ⊆ [x],∀y ∈ [x]c. If

p(a∗, A) ≥ p(a,A) for all a ∈ A and p(b∗, B) ≥ p(b, B) for all b ∈ B, then, for all â s.t.

p(â, [x]) < min{p(a∗, [x]), p(b∗, [x])} then

ln
(
p(A,A∪{y})
p(y,A∪{y})

/p(x,{x,y})
p(y,{x,y})

)
ln
(
p(a∗,A∪{â})
p(â,A∪{â})

) =
ln
(
p(B,B∪{y})
p(y,B∪{y})

/p(x,{x,y})
p(y,{x,y})

)
ln
(
p(b∗,B∪{â})
p(â,B∪{â})

)

Theorem 2 A positive stochastic choice function p satisfies Independence of Sym-

metric Alternatives, Neutrality of Weakly Dominated Alternatives within Cat-

egories and Salience Log-Ratio Invariance if and only it is a salience-biased nested

logit, i.e., ∃A = {A1, A2, ...An} partitioning X, a set of parameters {λ1, λ2, ..., λn} ⊆ Rn+
and a luce value v : X → R++ such that for all A ∈ 2X \ {∅}, and for all x ∈ A

p(x,A) =

(
max

y∈A∩Aix
vy

)λix
∑

i:A∩Ai 6=∅

(
max

y∈A∩Ai
vy

)λi vx∑
y∈A∩Aix

vy

Proof. (Proof of Theorem 2)

Sufficiency: Given a partition {A1, A2, ..., An} and i ∈ {1, 2, ..., n} take A ⊆ Ai and
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take â s.t. vâ < max
z∈A

vz
18. Define λi as following

λi :=

ln

(
fi(max

z∈Ai
vz)

fi(vâ)

)

ln

(max
z∈Ai

vz

vâ

) =
ln
(
p(Ai,Ai∪{y})
p(y,Ai∪{y})

/p(x,{x,y})
p(y,{x,y})

)
ln
(
p(a∗i ,Ai∪{â})
p(â,Ai∪{â})

)
Then, in axiom 3, we can take B = Ai to get that:

λi =
ln
(
p(A,A∪{y})
p(y,A∪{y})

/p(â,{x,y})
p(y,{â,y})

)
ln
(
p(a∗,A∪{â})
p(â,A∪{â})

) =

ln

(
fi(max

z∈A
vz)

fi(vy)

/
fi(vâ)
fi(vy)

)
ln

(
max
z∈A

vz

vâ

) =

ln

(
fi(max

z∈A
vz)

fi(vâ)

)
ln

(
max
z∈A

vz

vâ

)

Now, taking δi = (vâ)λi

fi(vâ) we get:

fi

(
max
z∈A

vz

)
= δi

(
max
z∈A

vz

)λi
Thus, transforming the Luce values to δivz if z ∈ Ai we get the salience-biased nested logit

representation.

Necessity: Given x ∈ X A ⊆ [x], y /∈ [x] and â s.t. vâ < va∗A , notice that

(i)

p(A,A ∪ {y})
p(y,A ∪ {y})

=
(va∗A)λi

(vy)λi

(ii)
p(x, y)

p(y, x)
=
vλix

vλiy

(iii)
p(a∗, A ∪ {â})
p(â, A ∪ {â})

=
va∗A
vâ

Then:
ln
(
p(A,A∪{y})
p(y,A∪{y})

/p(x,{x,y})
p(y,{x,y})

)
ln
(
p(a∗,A∪{â})
p(â,A∪{â})

) = λi
ln
(va∗

A
vâ

)
ln
(va∗

A
vâ

) = λi

i.e., axiom 3 holds.

18When |{vy : y ∈ Ai}| = 1 we can take w.l.o.g. λi = 1.
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Appendix B - Market-share responses to prices

In this appendix, we provide market share derivatives of good jm with respect to price of

good kn. Here, we keep the assumption |V ∗m| = 1, that is, each nest has a single salient

option. Moreover, derivatives are valid locally so that the salient option of each nest

remain the same after the price change.

We denote:

• sm = P (ai ∈ Cm): the share of nest m

• Vjm = x′jmβ+αpjm : thus, the scalar α is the price coefficient, following the common

notation in Industrial Organization.

Own-price response:

To compute the own-price response we need to consider the cases when jm 6= j∗m and

jm = j∗m, i.e., when jm is or is not the salient option in nest m

• Case 1: jm 6= j∗m.

In this case, sm does not depend on pjm and using the fact that smsjm|Cm = sjm

then:

∂sjm
∂pjm

= sm
∂

∂pjm

(
eµmVjm∑

km∈Cm e
µmVkm

)
= sm

(
αµmsjm|Cm(1− sjm|Cm)

)
= αµmsjm(1− sjm|Cm)

• Case 2: jm = j∗m. In this case, both sm and sjm|Cm dependent on pjm , then a new

term composes the derivative:

∂sjm
∂pjm

=
∂sjm
∂p∗jm

=
∂sm
∂pj∗m

sjm|Cm + sm
∂sjm|Cm
∂pjm

=

= αsm(1− sm)sjm|Cm + sm(αµmsjm|Cm(1− sjm|Cm))

= αsjm [1− sm + µm(1− sjm|Cm)]

Within nest cross-price response:

Now, we compute the response of sjm to a change in price of km ∈ Cm.
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• Case 3: km 6= j∗m (and km 6= jm with km ∈ Cm).

∂sjm
∂pkm

= sm
∂sjm|Cm
∂pkm

= sm

(
−αµm

eµVjm

(
∑

k̃m∈Cm e
µmVk̃m )2

eµmVkm

)
= −smsjm|Cmskm|Cmαµm

= −αµmsjmskm|Cm .

• Case 4: km = j∗m (and km 6= jm with km ∈ Cm)

∂sjm
∂pkm

=
∂sjm
∂pj∗m

=
∂sm
∂pj∗m

sjm|Cm + sm
∂sjm|Cm
∂pkm

= (αsm − αs2
m)sjm|Cm + sm(−αµmsjm|Cmskm|Cm)

= αsjm(1− sm)− αµmsjmskm|Cm

= αsjm [(1− sm)− µmskm|Cm ]

where we use that sjm = smsjm|Cm .

Cross-nest price responses

• Case 5: kn 6= jm, kn ∈ Cn 6= Cm and kn 6= k∗n (alternatives in different nests, and

ks is not a salient option of nest s)

∂sjm
∂pks

= 0.

• Case 6: kn 6= jm, kn ∈ Cn 6= Cm and kn = k∗n (alternatives in different nests, and

ks is the salient option of nest s, so we denote k∗s)

∂sjm
∂pkn

=
∂sm
∂pk∗n

sjm|Cm = −αsnsjm ,

where, sn = Pr(ai ∈ Cn).

Appendix C - Log-transformation of the SBNL

In this appendix we show how to do a log-transformation type to the individual choices

in the SBNL to accommodate aggregate market data. In other words, suppose that the
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researcher observes DN =
{
{si,jm}jm∈C , xi

}N
i=1

, where i here represents a market (or time

periods) and si,jm is the market share of product jm at market i, and xi represents the

product characteristics face by agent i. As in many applications, assume that V0 = 0 the

utility of the outside option that is assumed to be the only alternative at nest m = 0,

with market share s0. Let sjm be the share of the good j that belongs to nest m, and

analogously, sj∗m the share of the salient option in nest m. Using the SBNL probabilities

in equation (7) we have that:

P (ai = jm)

P (ai = 0)
= eVj∗m

eµmVjm∑
km∈Cm

eµmVkm
= eV

∗
m

 eµmVj∗m∑
km∈Cm

eµmVkm

 eµmVjm

eµmVj∗m
.

Notice that e
µmVj∗m∑

km∈Cm
eµmVkm

= sj∗m|Cm . Then, taking the log on both sides we get

log(sjm/s0)− log(sj∗m|Cm) = Vj∗m + µm(Vjm − Vj∗m).

In this framework its usual to assume a utility shock νjm observed by the agent, not the

econometrician so that Vjm = x′jmβ + νjm , then we get

log(sjm/s0)− log(sj∗m|Cm) = x′j∗mβ + µm(xjm − xj∗m)′β + νj∗m + µm(νjm − νj∗m)

where we finally define ζjm := νj∗m + µm(νjm − νj∗m), an error term that is not observed by

researchers.

log(sjm)− log(sj∗m|Cm)− log(s0) = x′j∗mβ + µm(xjm − xj∗m)′β + ζjm

which is an estimable equation by usual methods as Non-linear Least Squares or GMM,

when addressing endogeneity in the model.
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Matějka, F. and McKay, A. (2015). Rational inattention to discrete choices: A new

foundation for the multinomial logit model. American Economic Review, 105(1):272–

98.

McFadden, D. (1977). Modelling the choice of residential location.

McFadden, D. (1981). Econometric models of probabilistic choice. Structural analysis of

discrete data with econometric applications, 198272.

McFadden, D. (2001). Economic choices. American economic review, 91(3):351–378.

McFadden, D. et al. (1973). Conditional logit analysis of qualitative choice behavior.

Institute of Urban and Regional Development, University of California . . . .

Ortoleva, P. (2013). The price of flexibility: Towards a theory of thinking aversion. Journal

of Economic Theory, 148(3):903–934.

Rieskamp, J., Busemeyer, J. R., and Mellers, B. A. (2006). Extending the bounds of ra-

tionality: Evidence and theories of preferential choice. Journal of Economic Literature,

44(3):631–661.

45



Stigler, G. J. (1961). The economics of information. Journal of political economy,

69(3):213–225.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.

Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative repre-

sentation of uncertainty. Journal of Risk and uncertainty, 5(4):297–323.

46


