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Abstract 

This paper proposes an innovative methodology for sequential auctions of 

homogeneous goods that creates asymmetry among participants, thereby 

achieving higher revenue for the auctioneer. The asymmetry arises 

endogenously from a competitive advantage in the second auction granted to 

the winner of the first auction. The analysis shows that the auctioneer's expected 

revenue in this scenario is higher than in auctions without a competitive 

advantage and approaches the expected revenue of an optimal reserve price 

auction and strictly exceeds that revenue if there are at least four participants. 

After analyzing the benefits and drawbacks of the competitive advantage 

mechanism, this paper concludes that it represents a more effective, revenue-

enhancing auction design that circumvents the Revenue Equivalence Theorem 

in the traditional paradigm of private values with uniform value distributions. 

Keywords: Sequential auctions; Endogenous asymmetry; Strategic advantage 

mechanism; Asymmetry-creation rule. 
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Resumo 

Este artigo propõe uma metodologia inovadora para leilões sequenciais de bens 

homogêneos que cria assimetria entre os participantes, alcançando assim uma 

maior receita para o leiloeiro. A assimetria surge endogenamente de uma 

vantagem competitiva no segundo leilão concedida ao vencedor do primeiro 

leilão. A análise mostra que a receita esperada do leiloeiro neste cenário é maior 

do que em leilões sem vantagem competitiva e se aproxima da receita esperada 

de um leilão com preço de reserva ótimo, superando estritamente essa receita 

se houver pelo menos quatro participantes. Após analisar os benefícios e 

dificuldades do mecanismo de vantagem competitiva, este artigo conclui que ele 

representa um desenho de leilão mais eficaz, que aumenta a receita e supera o 

Teorema da Equivalência de Receita no paradigma tradicional de valores 

privados com distribuições de valores uniformes. 

Palavras-chave: Leilões sequenciais; assimetria endógena; vantagem 

estratégica; regra de criação de assimetria. 
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1. INTRODUCTION 

In any country, the public sector is one of the largest consumers of goods and services. 

According to McHugh (2020), a typical American school consumes 320,000 sheets of 

paper per year; Nassar et al. (2022), calculates the number of prescriptions in England 

and Wales above 1,918,138 for every 100,000 inhabitants in 2019. Just as the purchase 

of paper for a public school and the purchase of medicines for a public hospital, a large 

part of public procurement of goods and services is implemented through competitive 

auction mechanisms, which have a repetitive character. Thus, the choice of the optimal 

mechanism for acquiring these materials must take into account their recurring nature.  

Since the seminal paper by Vickrey (1961), the academic literature has 

successfully developed the theory of static auctions for a single object, which is now well 

understood, at least under the standard paradigm of independent private values 

(Myerson, 1981). The extension to dynamic auction models, on the other hand, is less 

standard. 

When considering an infinitely repeated relationship, a significant number of 

studies continues to seek conditions to validate the "Folk Theorem," in which a 

cooperative behavior that yield Pareto superior outcomes is reached, as in the seminal 

works of Fudenberg and Maskin (1986) and Abreu (1988), among many 

contemporaneous and subsequent studies. Viewed solely in the context of the players 

themselves, the Folk Theorem presents trigger strategies that generate highly beneficial 

outcomes for all, which are unattainable in a static context. However, in the case of an 

oligopoly, what is beneficial to the players induces an outcome equivalent to a monopoly, 

which can be detrimental to consumers, bringing about deadweight losses to the 

economy. Thus, the study of repeated games highlights the inevitability of collusion, 

which limits competition among oligopolistic firms aware of their long-term interactions, 

as extensively reviewed by Sorin (1992). Consequently, the Folk Theorem in repeated 

games has driven research in Public Economics, focusing on developing mechanisms 

to dismantle cartels of firms with market power. The attractiveness of coalitions among 

players and the search for mechanisms to limit them are issues that have also captured 

the attention of auction theory and applied researchers, particularly in the literature 

known as "bidding rings" (Aoyagi, 2003; Marshall & Marx, 2012; McAfee & McMillan, 

1992; Phillips et al., 2003; Skrzypacz & Hopenhayn, 2004). 

A more recent strand of the literature considers finite sequential auctions, typically 

two auctions, and seeks to understand how this dynamic relationship alters the equilibria 

found in the static version of the games. A key focus of this literature is to determine 
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whether the mechanism design choice of selling multiple objects in two sequential 

auctions, as opposed to a single simultaneous auction, leads to an increase in the 

auctioneer's expected return. For instance, Salant & Cabral (2019) find that in the case 

of unit demand by risk-neutral participants, sequential selling is beneficial for the 

auctioneer. Similar results are found in Charkraborty (2018) for the case of multiple-unit 

demand and in Charkraborty (2019) for the case of unit demand with risk-averse 

participants. 

Despite being extremely rich, this literature does not apply to situations where 

there is no option for simultaneous sales, as in the case of recurring public procurements. 

Another line of research assumes that objects are sold sequentially and tries to 

understand how this auction format affects participant behavior when there is a 

relationship between the goods auctioned in the first and second auctions. De Silva et 

al. (2005) focus on the context of construction service bidding and argue that winning a 

bid yields a cost reduction if the same bidder wins the subsequent bid, due to economies 

of scale, for instance. In this case, the winner of the first auction bids more aggressively, 

benefiting the auctioneer. Similarly, Jofre-Benet & Pesendorfer (2014) consider the 

possibility that the goods sold in sequential auctions may be complements or substitutes, 

concluding that in the case of substitute goods, the first-price format is more desirable, 

and if the goods are complements, the second-price format is more desirable from the 

auctioneer’s expected revenue perspective. 

In the examples mentioned above, there is an asymmetry between the 

participants of the second auction depending on who won the first. This asymmetry, 

however, is generated exogenously and is due to a relationship between the good sold 

in the first auction and the one sold in the second, which affects the expected benefit of 

winning the second auction for the winner of the first auction, thus benefiting the 

auctioneer. 

However, when there is no synergy between the two goods, there is no 

exogenous asymmetry that can favor the auctioneer. The goal of this paper is precisely 

to propose a mechanism to be applied to sequential auctions without synergies that has 

the effect of increasing the auctioneer's expected revenue. The basic principle of the 

mechanism is to endogenously create asymmetry among the participants, thereby 

making their bids more aggressive. The mechanism, applied to two consecutive 

auctions, introduces asymmetry in the second auction by granting a competitive 

advantage to the winner of the first auction. By introducing this advantage, the auction 

design increases the interest of all participants in winning the first auction, as the benefits 

of victory are now enhanced: in addition to receiving the item, the winner has an increase 
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in her chance of winning the second auction. With the augmented interest in winning the 

first auction, all participants raise their bids, thereby increasing the auctioneer's expected 

revenue in the first auction and generating a higher expected revenue across both 

auctions than would be obtained by simply repeating the static auction without 

introducing the asymmetry-generating rule. 

The literature on auctions has extensively researched a different type of 

asymmetry: the exogenous differences between participants. These differences may 

arise from an asymmetric ex-ante distribution of values (Kaplan & Zamir, 2012; 

Kirkegaard, 2022), or from participants having differential information about the value of 

the auctioned object (Wilson, 1966; Wilson, 1967; Milgrom & Webert, 1982; Xu & 

Cavallo, 2022). In the present model, the participants are ex-ante identical, and the 

asymmetry arises endogenously from the auction design. 

In addition to this introduction, this paper is organized as follows. Section 2 first 

defines the basic elements of the model of independent private values with two 

sequential auctions. It then presents the symmetric Bayesian Nash equilibria as well as 

the auctioneer’s expected revenue for the standard cases where no reserve price is used 

and where the reserve price that maximizes the auctioneer's revenue is included. 

According to auction theory, this latter mechanism is the one that maximizes the 

auctioneer's revenue among all possible standard auctions (Krishna, 2010, chapter 5). 

Section 3 proposes the new mechanism, finds the corresponding Nash equilibrium for 

the sequential auctions, and calculates the auctioneer's expected revenue for two 

possible implementations of the competitive advantage mechanism. Section 3 also 

discusses the relative advantages of the proposed mechanism. Finally, Section 4 

presents concluding remarks along with proposals for extensions of the proposed model. 

2. THE BASIC MODELS AND THEIR CLASSIC SOLUTIONS 

This section describes the two basic auction models that will be compared with our 

proposed mechanism There are 𝑛 risk neutral agents (players, auction participants or 

bidders) who wish to acquire as many units as possible of a homogeneous good. In total, 

two units are sold in two consecutive auctions. The value that agent 𝑖 = 1, … , 𝑛 assigns 

to the good is a random variable 𝑣𝑖 that is distributed in the interval [0,1] according to the 

same probability distribution 𝐹(𝑣𝑖) and is realized at each new auction. The agents' 

values are private, symmetric and independent in each auction and across different 

periods. The objects sold have no value to the auctioneer, who derives all their utility 

from the sales. For the sake of simplicity, we suppose agents do not discount the future. 
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2.1. Two consecutive and independents auctions 

Suppose two independent auctions are conducted, one after the other, without any 

link between them. Then, from an ex-ante perspective, the solution will be the same for 

each auction. According to the Revenue Equivalence Theorem (Myerson, 1981), the 

auctioneer's revenue will be the same regardless of the format chosen from the four 

traditional formats: first price sealed-bid, second price sealed-bid (Vickrey, 1961), 

ascending open, and descending open auctions. Consider the commonly used first-price 

sealed-bid auction. In this auction, each player submits a bid in a sealed envelope to the 

auctioneer, who opens them and selects the highest bid as the winner. The winner pays 

his bid. Let us name ℳ1 this basic model. 

Definition 1. Model ℳ1: two sequential first price sealed-bid auctions without a reserve 

price. 

The following proposition presents the symmetric Bayesian Nash equilibrium 

strategies of the game as well as the expected revenue of the auctioneer. 

PROPOSITION 1. In model ℳ1 the symmetric Bayesian Nash equilibrium strategies of 

the players in each auction are:  

𝛽𝑡𝑘(𝑣) = 𝑣 −
1

𝐹(𝑣)𝑛−1
∫ 𝐹(𝑥)𝑛−1𝑑𝑥

𝑣

0

,      𝑡 = 1,2;  𝑘 = 1, … , 𝑛 

Where 𝑡 = 1,2 corresponds to the first (𝑡 = 1) or second (𝑡 = 2) auction and 𝑘 

corresponds to the player. Furthermore, the expected revenue of the auctioneer in this 

sequential auction is: 

𝑅1(𝑛) = 2𝑅11(𝑛) = 2 ∫ 𝑛(𝑛 − 1)𝑥𝐹(𝑥)𝑛−2[1 − 𝐹(𝑥)]𝑓(𝑥)𝑑𝑥
1

0

 

In particular, when the values of the bidders are uniformly distributed in [0,1], i.e., 𝐹(𝑣) =

𝑣, the corresponding bid function and expected revenue are, respectively: 

𝛽𝑡𝑘(𝑣) =
𝑛 − 1

𝑛
𝑣,    𝑡 = 1,2;  𝑘 = 1, … , 𝑛;        𝑅1(𝑛) = 2𝑅11(𝑛) = 2

𝑛 − 1

𝑛 + 1
 

Where 𝑅11(𝑛) =
𝑛−1

𝑛+1
  is the expected revenue in each one of the two identical auctions. 

Proof: See Krishna (2002, chapter 2) or Menezes and Monteiro (2004, chapter 3). 

 

2.2. Using a reserve price 

Now, suppose two independent first-price auctions are conducted, one after the other, 
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but the auctioneer sets a reserve price 𝑟, below which the item will not be sold. In this 

case, by choosing the reserve price optimally, the auctioneer can increase their expected 

revenue in each auction (Krishna, 2002; Ausubel & Cramton, 2004). Let us name ℳ2(𝑟) 

this model. 

Definition 2. Model ℳ2(𝑟): two sequential first price sealed-bid auctions with reserve 

price 𝑟 > 0. 

Proposition 2 presents the symmetric Bayesian Nash equilibrium strategies of the game 

with reserve prices, as well as the expected revenue of the auctioneer. 

PROPOSITION 2. In model ℳ2(𝑟) the symmetric Bayesian Nash equilibrium strategies 

of the players in each auction are:  

𝛽𝑡𝑗(𝑣; 𝑟) = 𝑣 −
1

𝐹(𝑣)𝑛−1
∫ 𝐹(𝑥)𝑛−1𝑑𝑥

𝑣

𝑟

  𝑖𝑓  𝑣 ≥ 𝑟 

𝛽𝑡𝑗(𝑣; 𝑟) ∈ [0, 𝑟)  𝑖𝑓  𝑣 < 𝑟 

Where 𝑡 = 1,2 corresponds to the first (𝑡 = 1) or second (𝑡 = 2) auction and 𝑗 = 1, … , 𝑛 

corresponds to the player. Furthermore, the expected revenue of the auctioneer in this 

sequential auction is: 

𝑅2(𝑟; 𝑛) = 2𝑅21(𝑟; 𝑛)

= 2𝑛𝑟(1 − 𝐹(𝑟))𝐹(𝑟)𝑛−1 + 2𝑛(𝑛 − 1) ∫ 𝑥(1 − 𝐹(𝑥))𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥
1

𝑟

 

In particular, when the values of the bidders are uniformly distributed in [0,1], i.e., 𝐹(𝑣) =

𝑣, the corresponding bid function and expected revenue are, respectively: 

𝛽𝑡𝑘(𝑣; 𝑟) =
𝑛 − 1

𝑛
𝑣 +

𝑟𝑛

𝑣𝑛−1
  𝑖𝑓  𝑣 ≥ 𝑟  

𝛽𝑡𝑘(𝑣; 𝑟) ∈ [0, 𝑟)  𝑖𝑓  𝑣 < 𝑟 

𝑅2(𝑟; 𝑛) = 2𝑅21(𝑟; 𝑛) = 2
𝑛 − 1

𝑛 + 1
+ 2𝑟𝑛 − 4

𝑛

𝑛 + 1
𝑟𝑛+1 

Where 𝑅21(𝑟; 𝑛) =
𝑛−1

𝑛+1
+ 𝑟𝑛 − 2

𝑛

𝑛+1
𝑟𝑛+1  is the expected revenue in each one of the two 

identical auctions. 

Proof: See Krishna (2002, chapter 2) or Menezes and Monteiro (2004, chapter 3). 

 

The following results is a direct consequence of maximizing the revenue 𝑅2(𝑟). 

Corollary 1. The reservation price that maximizes the expected revenue of the seller 
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does not depend on the number of participants and is given by the implicit solution of 

the following equation: 

𝑟∗ =
1 − 𝐹(𝑟∗)

𝑓(𝑟∗)
 

In particular, if the values of the bidders are uniformly distributed in [0,1]: 

𝑟∗ =
1

2
 

And the corresponding maximized expected seller’s revenue is: 

𝑅2 (
1

2
; 𝑛) = 2

𝑛 − 1

𝑛 + 1
+

1

2𝑛−1

1

𝑛 + 1
= 2 (𝑅11(𝑛) +

1

2𝑛

1

𝑛 + 1
) 

Proof: See Krishna (2002, chapter 2) or Menezes and Monteiro (2004, chapter 3). 

When comparing the result obtained with the optimal reserve price to that from 

the standard uniform distribution model, it becomes apparent that the auctioneer’s 

expected revenue has increased by 1/6, corresponding to a significant gain of 25% over 

the previous revenue, when there are only two players. But this benefit reduces 

drastically as the number of players increases, reaching a mere 2% with four players. 

Furthermore, this benefit does not come without cost. Indeed, when 𝑟 =
1

2
, the 

object is not sold with probability (
1

2
)

𝑛
. When there are only two players this corresponds 

to one fourth of the times. This property of Pareto inefficiency of auctions with reserve 

prices is particularly troubling when considering their application in situations where the 

public sector is determined to ensure the auction's success, i.e., ensuring that the item 

(such as a public company) is necessarily sold. For instance, in the case of the uniform 

distribution, if the cost of the auction failure is 0.2, them if there are at least 4 players the 

accrued revenue with the optimal reservation price does not compensate for the 

expected cost of not selling the good4. Next, we propose a mechanism that has the 

potential to increase the expected revenue of the auctioneer while, most importantly, 

ensuring that the object is sold. 

3. INTRODUCING ENDOGENOUS ASYMMETRY AMONG THE PLAYERS 

Consider now the two original sequential auctions without a reserve price, where the first 

auction is a standard first-price auction but include in the mechanism an asymmetry-

 
4 The accrued expected revenue in one auction is 

1

2𝑛

1

𝑛+1
 whereas the expected cost of failure is 

1

2𝑛 𝑐 

where 𝑐 is the actual cost of failure.  



8 
 

creation rule to be specified later, valid for the second auction. 

The asymmetry-creation rule gives a competitive advantage in the second 

auction to the winner of the first auction. Such competitive advantage, in turn yields a 

higher expected payoff off in the second auction to the winner of the first auction, in 

comparison to a loser of the first auction. 

Let 𝑢𝑤(𝑛) = 𝑢𝑤(𝑛, 𝛽2) be the ex-ante expected utility in the second auction of the 

winner of the first auction, i.e. before that player observes his value in the second auction, 

given the predicted Perfect Bayesian equilibrium 𝛽2 of the second auction. Similarly, be 

𝑢𝑙(𝑛) = 𝑢𝑙(𝑛, 𝛽2) be the ex-ante expected utility in the second auction of a loser of the 

first auction, given the second auction predicted Perfect Bayesian equilibrium 𝛽2. For 

simplicity, we drop the reference to the equilibrium 𝛽2. 

By construction, 𝑢𝑤(𝑛) > 𝑢𝑙(𝑛). Let Δ(𝑛) = 𝑢𝑤(𝑛) − 𝑢𝑙(𝑛). Then, Δ(𝑛) is the 

expected additional return in the second auction to a winner of the first auction. Call this 

expected additional return the “competitive advantage” of the winner. Denote by ℳ3 the 

corresponding selling mechanism with competitive advantage. 

Definition 3. Model ℳ3: two sequential sealed-bid auctions without a reserve price, the 

first auction is a first price sealed bid auction. The second auction includes an 

asymmetry-creation rule that yields a competitive advantage 𝛥(𝑛) to the winner of the 

first auction, where 𝑛 is the number of players. 

Note that the previous definition is purposefully not explicit about the specific 

format of the second auction. The following proposition shows that only the competitive 

advantage Δ(𝑛) matters for the first auction equilibrium and that the auctioneer receives 

the entire competitive advantage in terms of increased revenue in the first auction. 

PROPOSITION 3. (Symmetric Bayesian Nash Equilibrium in the First Auction with 

Competitive Advantage) In model ℳ3, the symmetric Bayesian Nash equilibrium in the 

first period is given by: 

𝛽1𝑖(𝑣) = 𝑣 + Δ(𝑛) −
1

𝐹(𝑣)𝑛−1
∫ 𝐹(𝑥)𝑛−1𝑑𝑥

𝑣

0

, 𝑖 = 1, … , 𝑛 

Therefore, the auctioneer’s expected revenue in the first period is: 

𝑅31(𝑛) = 𝑅11(𝑛) + Δ(𝑛) = ∫ 𝑛(𝑛 − 1)𝑥𝐹(𝑥)𝑛−2[1 − 𝐹(𝑥)]𝑓(𝑥)𝑑𝑥
1

0

+ Δ(𝑛) 

In particular, when the values of the bidders are uniformly distributed on [0,1], the 

corresponding linear bid functions are: 
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𝛽1𝑖(𝑣) =
𝑛 − 1

𝑛
𝑣 + Δ(𝑛), 𝑖 = 1, … , 𝑛 

In addition, the expected revenue of the auctioneer in this first auction is:  

𝑅31(𝑛) =
𝑛 − 1

𝑛 + 1
+ Δ(𝑛) 

Therefore, the total revenue of the auctioneer with the mechanism (model) ℳ3 is: 

𝑅3(𝑛) = 𝑅31(𝑛) + 𝑅32(𝑛) 

Where 𝑅32(𝑛) is the expected revenue of the auctioneer in the second period auction.  

Proof: See Appendix. 

 Let 𝛽0(𝑣) be the solution to the typical first-price auction. Then, we can write: 

𝛽0(𝑣) = 𝑣 −
1

𝐹(𝑣)𝑛−1 ∫ 𝐹(𝑥)𝑛−1𝑑𝑥
𝑣

0
  and  𝛽(𝑣) = 𝛽0(𝑣) + Δ(𝑛). 

Therefore, the competitor acts as if the value of the object in this auction was 

augmented by Δ(𝑛). And this is, in fact, the case, since Δ(𝑛) is indeed the additional 

expected net benefit accrued to his utility when he wins this first auction. Note that, given 

the expected benefit (in the second auction) of winning the first auction, the bid may 

exceed the players’ value. 

Hence, the asymmetry-creation rule increases the expected revenue of the 

auctioneer in the first auction. Conversely, since the mechanism gives a competitive 

advantage in the second auction to the first-auction winner, we may expect that the 

second auction will be less competitive, reducing the auctioneer’s payoff in that auction.  

Therefore, the biggest challenge for the mechanism designer is to design the 

competitive advantage in the second auction in such a way that the auctioneer's 

aggregated expected return in the two auctions increase.  

In what follows, we analyze two possible implementations of the rule for creating 

asymmetry and compare the payoffs for the case of a uniform distribution. Both 

implementations are based on the following competitive advantage rule. 

Definition 4. The Matching-price asymmetry-creation competitive-advantage rule. 

The winner of the first auction can guarantee winning the second auction by matching its 

equilibrium price.  

 Therefore, the asymmetry-creation rule allows the winner of the first auction to 

win the second auction after its equilibrium price has been determined, by matching that 

equilibrium price. Hence, regardless of the specific selling mechanism chosen for the 

second auction, that player has a dominant strategy, which is to bid 𝛽2𝑤(𝑣) = 0 for any  
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value 𝑣, and then, after the auction concludes, match the equilibrium price 𝑝 if and only 

if 𝑣 ≥ 𝑝. But then, for the losers of the first auction, the second auction is equivalent to 

an auction with 𝑛 − 1 players and a secret reserve price. The secret reserve price is the 

value of the winner of the first auction, which distribution is 𝐹. The following corollary 

summarizes the dominant strategy in the second auction of a winner of the first auction 

under the above asymmetric creation rule. 

Corollary 2. Dominant strategy of a winner of the first auction in the second 

auction under the matching price rule. Suppose the Matching-price asymmetry-

creation rule is applied to the second auction. Then, the winner of the first auction’s 

dominant strategy is to bid zero in the bidding stage of the second auction and then 

match the equilibrium price if and only if her value is at least that equilibrium price. 

Proof: Trivial. 

 

3.1. The second price selling mechanism for the second auction 

Suppose, first, that the second object is sold using a second price auction. Name 

that model ℳ31, the first implementation of the model ℳ3. 

Definition 4. Model ℳ31: two sequential sealed-bid auctions without a reserve price. The 

first auction is a first price sealed bid auction, the second auction is a second price sealed 

bid, and includes the Matching-price asymmetry-creation rule. 

We look for a Bayesian Nash Equilibrium (BNE) (𝛽21(. ), … , 𝛽2𝑛(. )) where 𝛽2𝑖(⋅), 𝑖 =

1, … , 𝑛 are linear and non-decreasing functions from [0,1] to [0,1] satisfying 0 ≤ 𝛽2𝑖(𝑣𝑖) ≤

𝑣𝑖, for all 𝑣𝑖 ∈ [0,1], 𝑖 = 1, … , 𝑛.  

Let 1 be the winner of the first auction. Recall that 1 has a dominating strategy to bid 

𝛽21(𝑣) = 0, and then to match the highest bid of the other players, if his value is not lower 

than that highest bid. 

𝛽21(𝑣) = 0; if 𝑣1 ≥ 𝑦 = max
𝑗>1

𝛽2𝑗(𝑣𝑗), then match bid y and win the object. 

Also recall that the 𝑛 − 1 losers of the first auction play a (𝑛 − 1)-player auction 

with a secret reserve price 𝑟, which distribution is 𝐹(𝑟). In the present implementation, 

they play a second-price auction where the secret reserve price is player 1’s value. 

Hence, all losers of the first auction have a weakly dominating strategy, namely to bid 

their own values. Therefore, in equilibrium, 

𝛽2𝑗(𝑣𝑗) = 𝑣𝑗, 𝑗 = 2, … 𝑛 
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The next proposition summarizes the second period equilibrium. 

PROPOSITION 4. Bayesian Nash Equilibrium in the Second Auction with 

Competitive Advantage. In model ℳ31 with a second-price second auction, the 

Bayesian Nash equilibrium in the second period auction, when player 1 is the winner of 

the first auction, and all losers of the first auction play identical strategies is given by: 

Player 1’s strategy: 

𝛽21(𝑣1) = 0 

𝐼𝑓 𝑣1 ≥ 𝑦 = max
𝑗>1

𝑣𝑗   𝑡ℎ𝑒𝑛 𝑚𝑎𝑡𝑐ℎ 𝑏𝑖𝑑 𝑦 𝑎𝑛𝑑 𝑤𝑖𝑛 𝑡ℎ𝑒 𝑔𝑜𝑜𝑑. 

Player 𝑗’s strategy, 𝑗 ≥ 2: 

𝛽2𝑗(𝑣𝑗) = 𝑣𝑗 

Proof: Immediate. 

Note that, from the point of view of the auctioneer, the second auction is 

equivalent to a second-price auction with 𝑛 − 1 players instead of 𝑛 players. Therefore, 

the competitive advantage mechanism induces a reduction in competition in the second 

auction. This is the cost to the auctioneer of designing a mechanism to induce asymmetry 

among the players. The following proposition presents the expected revenue of the 

auctioneer in the second auction, the expected (ex-ante) utilities in the second auction 

of the winner and of a loser of the first auction, and the corresponding competitive 

advantage. 

PROPOSITION 5. Auctioneer’s revenue in the Bayesian Nash Equilibrium in the 

Second Auction with Competitive Advantage. In the asymmetry-creating model ℳ31 

with a second-price second auction, the expected revenue of the seller in the second 

auction given the dominant strategy profile presented in Proposition 4 is:  

𝑅32(𝑛) = 1 − (𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

+ (𝑛 − 2) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

= 𝑅11(𝑛 − 1) 

In the particular case of the uniform distribution, that expression reduces to: 

𝑅32(𝑛) =
𝑛 − 2

𝑛
= 𝑅11(𝑛 − 1)  

The expected utility in the second auction of a winner of the first auction is: 

𝑢𝑤(𝑛) = ∫ ∫ (𝑣1 − 𝑦)𝑓2(𝑦)𝑑𝑦
𝑣1

0

𝑓(𝑣1)𝑑𝑣1

1

0

 

The expected utility in the second auction of a loser of the first auction is: 
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𝑢𝑙(𝑛) = ∫ ∫ (𝑣2 − 𝑦)𝐹(𝑦)𝑓2(𝑦)𝑑𝑦
𝑣2

0

𝑓(𝑣2)𝑑𝑣2

1

0

 

Where 𝑓2(𝑦) = (𝑛 − 1)(𝑛 − 2)𝑓(𝑦)𝐹(𝑦)𝑛−3(1 − 𝐹(𝑦))  is the probability density function 

of the second highest value among the values of the 𝑛 − 1  losers. 

Furthermore, the competitive advantage is: 

Δ(𝑛) = (𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

− (3𝑛 − 5) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+
(3𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛𝑑𝑦

1

0

−
(𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛+1𝑑𝑦

1

0

 

In particular, if the values of all players are uniformly distributed on [0,1], then: 

Δ(𝑛) =
12

𝑛(𝑛 + 1)(𝑛 + 2)
 

Proof: See Appendix. 

In the first auction, the expected revenue of the auctioneer is the expected 

revenue of a standard first price auction with 𝑛-participants, plus the term Δ(𝑛). 

Therefore,  𝑅31(𝑛) = 𝑅11(𝑛) + Δ(𝑛). Thus, the aggregated expected revenue of 

the auctioneer in both auctions is: 

𝑅3(𝑛) = 𝑅11(𝑛) + Δ(𝑛) + 𝑅11(𝑛 − 1) 

Hence, the expected revenue of the auctioneer in the competitive advantage 

model is higher than the typical, no-reservation-price, first price auction if and only if: 

𝑅3(𝑛) = 𝑅11(𝑛) + Δ(𝑛) + 𝑅11(𝑛 − 1) > 2𝑅11(𝑛) = 𝑅1(𝑛) ⇔ Δ(𝑛) > 𝑅11(𝑛) − 𝑅11(𝑛 − 1)  

 The following proposition explicates this comparison. 

PROPOSITION 6. Condition for the revenue dominance of the asymmetry-creation 

mechanism. In the asymmetry-creation model ℳ31 with a second-price second auction 

and 𝑛 ≥ 3 players, the new mechanism yields a higher payoff to the auctioneer than the 

traditional first price auction with no reservation price if and only if: 

(2𝑛2 − 6𝑛 + 2) ∫ 𝐹(𝑦)𝑛𝑑𝑦
1

0

> (𝑛 − 3)𝑛 ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+ (𝑛 − 1)(𝑛 − 2) ∫ 𝐹(𝑦)𝑛+1𝑑𝑦
1

0

 

In particular, if the values of all players are uniformly distributed in [0,1], then that 

condition if satisfied only if there are exactly 𝑛 = 3 players. If there are 4 participants, the 

expected revenue is the same and it is reduced if there are at least 5 participants. 

Proof. See Appendix. 
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3.2. The first price selling mechanism for the second auction 

Suppose now that the second object is sold using a first price auction. Name that 

mechanism ℳ32, the second implementation of model ℳ3. 

Definition 5. Model ℳ32: two sequential sealed-bid auctions without a reserve price. The 

first auction is a first price sealed bid auction, the second auction is a first price sealed 

bid, and includes the Matching-price asymmetry-creation rule. 

We look again for a Bayesian Nash Equilibrium (BNE) (𝛽21(. ), 𝛽22(. ), 𝛽2𝑛(. )) 

where 𝛽2𝑖(⋅), 𝑖 = 1, … , 𝑛 are linear and non-decreasing functions from [0,1] to [0,1] 

satisfying 0 ≤ 𝛽2𝑖(𝑣𝑖) ≤ 𝑣𝑖, for all 𝑣𝑖 ∈ [0,1], 𝑖 = 1, … , 𝑛, where player 1 is the winner of 

the first auction and the other players are the losers of the first auction. 

Recall that 1 has a dominating strategy to bid 𝛽21(𝑣) = 0, and then to match the 

highest bid of the other players, as long as his value is not lower than that highest bid. 

𝛽21(𝑣) = 0 

𝐼𝑓 𝑣1 ≥ 𝑦 = max
𝑗>1

𝛽2𝑗(𝑣𝑗),   𝑡ℎ𝑒𝑛 𝑚𝑎𝑡𝑐ℎ 𝑏𝑖𝑑 𝑦 𝑎𝑛𝑑 𝑤𝑖𝑛 𝑡ℎ𝑒 𝑔𝑜𝑜𝑑. 

Also recall that the 𝑛 − 1 losers of the first auction play a (𝑛 − 1)-player first-price 

auction with a secret reserve price 𝑟, which distribution is 𝐹(𝑟). The secret reserve price 

is player 1’s value.  

The following proposition summarizes the second period equilibrium. 

PROPOSITION 7. Bayesian Nash Equilibrium in the Second Auction with 

Competitive Advantage. In model ℳ31, the Bayesian Nash equilibrium in the second 

period first-price auction, when player 1 is the winner of the first auction, and all losers 

of the first auction play identical strategies is given implicitly by: 

Player 1’s strategy: 

𝛽21(𝑣1) = 0 

𝐼𝑓 𝑣1 ≥ 𝑦 = max
𝑗>1

𝑣𝑗   𝑡ℎ𝑒𝑛 𝑚𝑎𝑡𝑐ℎ 𝑏𝑖𝑑 𝑦 𝑎𝑛𝑑 𝑤𝑖𝑛 𝑡ℎ𝑒 𝑔𝑜𝑜𝑑. 

Player 𝑗’s strategy, 𝑗 ≥ 2: 

𝛽2𝑗(𝑣𝑗) = 𝑣𝑗 −
1

𝐹 (𝛽2𝑗(𝑣𝑗)) 𝐹(𝑣𝑗)
𝑛−2 ∫ 𝐹 (𝛽2𝑗(𝑣)) 𝐹(𝑣)𝑛−2𝑑𝑣

𝑣2

0

 

In particular, when the values of the bidders are uniformly distributed on [0,1], i.e., 𝐹(𝑣) =

𝑣, the corresponding linear bid equilibrium is: 
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𝛽2𝑗(𝑣𝑗) =
𝑛 − 1

𝑛
𝑣𝑗 ≔ 𝛽2(𝑣𝑗),    𝑗 = 2, … 𝑛 (1) 

In that case, the expected utility of the winner of the first auction is: 

𝑢𝑤(𝑛) =
1

2
[1 −

1

𝑛2

𝑛 − 1

𝑛 + 1
(𝑛 − 1)(𝑛 + 3)] 

And the expected utility of a loser 𝑗 of the first auction is: 

𝑢𝑙(𝑛) =
1

𝑛2

𝑛 − 1

𝑛 + 1
 

Therefore, the competitive advantage is: 

Δ(𝑛) =
1

2

3𝑛 − 1

𝑛2(𝑛 + 1)
 

Proof: See Appendix. 

Note that (1) is also the solution of a regular 𝑛-players auction without distinction 

among the players. Therefore, in the uniform distribution case, the 𝑛 − 1 losers in the 

first auction behave as if no one had competitive advantage over the others. 

It is also noteworthy that regardless of who gets the object, whether the winner 

or a loser of the first auction, the auctioneer receives the highest of the bids. If 𝛽2(𝑣𝑗) is 

a nondecreasing function, the auctioneer’s expected revenue in the second auction is: 

𝑅32(𝑛) = 𝐸 [max
𝑗≥2

𝛽2(𝑣𝑗)] = 𝐸 [𝛽2 (max
𝑗≥2

𝑣𝑗)] = ∫ 𝛽2(𝑥)𝑑𝐹(𝑥)𝑛−1
1

0

 

𝑅32(𝑛) = (𝑛 − 1) ∫ 𝛽2(𝑥)𝐹(𝑥)𝑛−2𝑓(𝑥)𝑑𝑥
1

0

= (
𝑛 − 1

𝑛
)

2

 

Comparing the expected revenue in the second period of the basic first-price auction we 

have: 

𝑅12(𝑛) =
𝑛

𝑛 + 1
> (

𝑛 − 1

𝑛
)

2

= 𝑅32(𝑛) 

Therefore,  

𝑅22(𝑛) > 𝑅12(𝑛) > 𝑅32(𝑛): 

Thus, the competitive advantage model yields the lowest expected revenue in the 

second auction among the three formats studied here. This is precisely what makes 

winning in the first auction more attractive to the players, which yields higher bids in that 

first auction. It is the cost the auctioneer has to bear in order to create the endogenous 
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asymmetry. It will become clear in this paper that it is worthwhile bearing that cost, as 

the aggregated, two-period expected revenue is the highest when this model is used. 

Note that: 

𝑢𝑤(𝑛)

𝑢𝑙(𝑛)
=

1

2

1

𝑛 − 1
[5𝑛 − 3] =

5𝑛 − 3

2𝑛 − 2
⇒ lim

𝑛→∞

𝐸𝑈1(𝑛)

𝐸𝑈2(𝑛)
=

5

2
. 

Hence, the victorious player in the first auction maintains a utility that is over twice 

the one of a looser in the second auction as the number of players increases. This shows 

that the strategic advantage remains important, even when competition expands.  

The following proposition shows that if the values are uniformly distributed in [0,1], 

then the model with the competitive advantage rule and the first price selling mechanism 

for the second auction yields a higher payoff for the seller than the traditional first price 

auction without reservation price for any number of players (𝑛 ≥ 2) and that it yields a 

higher payoff than the traditional first price auction with optimal reservation price if there 

are at least 𝑛 = 4 players. 

PROPOSITION 8. Superiority of the Asymmetry-creation mechanism in the 

uniform distribution case. In the asymmetry-creating model ℳ32 with a first-price 

second auction and identical and independent uniform distributions for the players’ 

values, the new mechanism yields a higher payoff to the auctioneer than the traditional 

first price auction with no reservation price. Furthermore, it yields a higher payoff than 

the traditional first price auction with optimally chosen reservation price if there are at 

least 𝑛 = 4 players. 

Proof: See Appendix. 

 

3.3. Discussion on the advantages of the mechanism that generates 

asymmetry vis-à-vis the traditional mechanisms 

Proposition 8 has shown that the model with competitive advantage and first price 

second auction yields a higher payoff than the traditional models, both with or without 

reservation price, if there are at least four players. Therefore, by strategically using the 

recurrent characteristics of certain auctions, the auctioneer may increase its expected 

payoff. This revenue increasing property of the proposed model makes it quite attractive 

for all sorts of applications, particularly those involving recurrent public purchases. Table 

1 presents the corresponding revenues when there are 3 to 15 players. 

Table 1. Auctioneer’s expected revenue comparison for three possible 

sequential auction formats: traditional second price model (𝑹𝟏), second 
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price model with optimally chosen reserve price (𝑹𝟐), and the competitive 

advantage model (𝑹𝟑𝟐), for number of participants 𝒏 from 3 to 15. 

𝑛 𝑅1(𝑛) 𝑅2(𝑛) 𝑅32(𝑛) 
𝑅32(𝑛) − 𝑅1(𝑛)

𝑅1(𝑛)
 

𝑅32(𝑛) − 𝑅2(𝑛)

𝑅2(𝑛)
 

𝑅2(𝑛) − 𝑅1(𝑛)

𝑅1(𝑛)
 

3 1.00000 1.06250 1.05556 0.05556 -0.00654 0.0625000 

4 1.20000 1.22500 1.23125 0.02604 0.00510 0.0208333 

5 1.33333 1.34375 1.35333 0.01500 0.00713 0.0078125 

6 1.42857 1.43304 1.44246 0.00972 0.00658 0.0031250 

7 1.50000 1.50195 1.51020 0.00680 0.00549 0.0013021 

8 1.55556 1.55642 1.56337 0.00502 0.00446 0.0005580 

9 1.60000 1.60039 1.60617 0.00386 0.00361 0.0002441 

10 1.63636 1.63654 1.64136 0.00306 0.00295 0.0001085 

11 1.66667 1.66675 1.67080 0.00248 0.00243 0.0000488 

12 1.69231 1.69235 1.69578 0.00205 0.00203 0.0000222 

13 1.71429 1.71430 1.71724 0.00173 0.00172 0.0000102 

14 1.73333 1.73334 1.73588 0.00147 0.00147 0.0000047 

15 1.75000 1.75000 1.75222 0.00127 0.00127 0.0000022 
The first column is the number of participants. Columns 2, 3 and 4 present the corresponding 
expected seller’s revenue for the traditional first or second price model without reservation price 
(column 2), first price auction with optimally chosen reservation price (column 3) and new competitive 
advantage model (column 4). The next columns compare the expected revenue of the three models: 
ℳ4 with ℳ1 (column 5), ℳ4 with ℳ2 (column 6) and ℳ2 with ℳ1 (column 7). 
Source: Authors’ calculations. 

 

The table shows the significant revenue advantage of the new model. When there 

are 4 players the competitive advantage design yields an increase of 2.6% in the 

auctioneer’s revenue while preserving the property of always selling the object. 

Note that the well know result regarding the revenue-dominance of the reserve 

price auction design in comparison with the traditional model without reservation price, 

is significant only when there are very few participants. With 7 participants that gain 

reduces to about 0.1 percentage point (column 7), in line with Klemperer (2002), which 

asserts the importance of competition in auction design. In comparison, the competitive 

advantage model yields a fivefold percentage benefit in the case of seven players 

(column 5). 

Furthermore, it is worth noting that, according to Engelbrecht-Wiggans (1987), 

when there is an endogenous decision to participate in the auction and a sunk 

participation cost, including a reserve price can reduce the number of participants, 

thereby reducing competition which, in turn, reduces the auctioneer’s return. From this 

perspective, the comparison should be made precisely with the model without a strategic 
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reserve price, model ℳ1, which generates a clearly inferior return compared to the 

proposed model, ℳ32 even when only three players compete. 

Most importantly, the item is always sold in the proposed auction format, even 

though possibly at lower prices in the second auction. That makes this mechanism 

effective, unlike the one that includes a strategically chosen reserve price. Note, 

however, that just like in the mechanism with optimally chosen reserve price, the 

proposed mechanism is not efficient, albeit for different reasons. While in the traditional 

mechanism, inefficiency results arise from the possibility of the item not being sold when 

it should be (Myerson 1981; Riley & Samuelson, 1981), in the proposed mechanism, the 

item is always sold, but in the second auction, it might be sold to a participant (winner of 

the first auction) who values it less than her competitor (a loser of the first auction). 

The fact that the proposed mechanism always sells the objects is especially 

relevant in applications to the public sector, where a failed auction, one in which the item 

is not sold, brings about a wide range of additional costs, from the cost of organizing 

another bidding process to reputational costs, for example (Casady et al., 2023). Faced 

with these costs, the literature even finds situations where the public manager may distort 

his behavior to favor cartel formation (Tanaka & Hayashi, 2016). This type of concern 

disappears when using the competitive advantage mechanism. 

Another advantage, especially relevant for the public sector, is that in the real 

world the public manager does not have discretion in the strategic choice of the reserve 

price to be used in the auction. In fact, this price is typically determined based on 

accounting studies that seek to assess the value of the good being sold (a company 

being privatized, for example, or a good being procured). Now, Auction Theory 

convincingly shows that, at least in the context of independent private values5, the 

optimal reserve price is strictly above the item's value for the auctioneer (Myerson, 1981; 

Riley & Samuelson, 1981), and this difference can be substantial. For example, in the 

parameterization studied in this article, the item's value for the auctioneer was zero while 

the reserve price was ½, which is the expected value that any participant assigns to the 

item. By replacing the discussion regarding the reserve price with a discussion about the 

competitive advantage, the public manager solves the nightmare of auction failure. 

Furthermore, the literature is not consensual with respect to the use and 

properties of the optimal reserve price when the number of participants varies. Menicucci 

 
5 When there is correlated information, as in the case of the common value model or the affiliated 
private value model, Levin & Smith (1996) show that the seller's optimal reservation price converges to 
his true value, as the number of bidders increases. 
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(2021) shows that when the virtual valuation function (Myerson 1981) is not monotonic, 

the optimal reserve price weakly increases with the number of participants. Conversely, 

when participation is endogenous and costly, Engelbrecht-Wiggans (1987) shows that if 

potential participants only learn the value of the object when they incur the participation 

cost, then a null reservation price may yield higher expected returns to the auctioneer, 

because positive reserve prices reduce participation. These results reinforce support for 

an alternative model to the strategically chosen reserve price model. 

Additionally, by creating a competitive advantage for the winner of an auction, the 

mechanism establishes a dynamic link between this player and the auctioneer, causing 

the player to have an interest in behaving appropriately to maintain the privilege 

guaranteed by the victory until the next auction. Suppose, for example, that what is being 

auctioned is a public-private partnership (PPP). The literature on the subject finds, both 

theoretically and empirically (Laffont 2005, p.245; Bugarin & Ribeiro 2021; Estache & 

Quesada, 2001; Gagnepain et al. 2013; Guasch et al. 2006, 2007, 2008), ample 

evidence of non-compliance with contractual commitments throughout the concession, 

leading to costly renegotiation processes. The competitive advantage mechanism can 

become another incentive for compliance with commitments, by including the possibility 

of losing the competitive advantage in the next PPP auction if the winner fails to fulfill the 

contractual commitments in the current partnership. 

Finally, the competitive advantage also has the potential to reduce the chances 

of adventurers who do not intend to fulfill contractual commitments from winning the 

bidding processes, both in the first auction, as they know they will lose the advantage in 

the second if they win and fail to meet the conditions, and in the second auction, as the 

serious winner will have an advantage over them. 

4. CONCLUSIONS 

This article begins by observing that many economic transactions conducted 

through auctions are recurring, such as the purchase of office supplies for public 

services, the hiring of maintenance services for public parks, and the organization of 

annual fairs. 

Building on this idea, the present research aims to leverage the repeated 

interactions between the auctioneer and the participants to create a mechanism that 

enhances competition and increases the auctioneer’s expected revenue. The proposed 

mechanism involves a novel approach to repeated auctions: the first auction is 

conducted as a standard first-price auction. However, in the second auction, a 

modification is introduced that deviates from the standard format. This modification, 
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known as the "asymmetry creation rule" or the "competitive advantage mechanism," 

allows the winner of the first auction to match the equilibrium bid in the second auction, 

thereby securing the item. 

The article demonstrates that in the context of symmetric independent private 

values, identically distributed according to the uniform distribution, the competitive 

advantage mechanism generates an expected return well above that of simply applying 

two standard consecutive auctions without a reserve price. If we compare to the auction 

using the optimal reserve price that maximizes the auctioneer's expected return, the 

mechanism generates higher expected revenue than this mechanism if there are at least 

4 participants, without incurring the risk of auction failure (not selling the object). 

Although it does not reach the auctioneer's expected revenue when the optimal 

reserve price is used, if there are only two or three participants, the competitive 

advantage mechanism has several properties that make it particularly desirable in 

practical applications, especially in the public sector. 

One of the most significant benefits is that it ensures that there will always be 

sales of the items, which cannot be ensured in the case of using a reserve price. This 

property is especially relevant when considering the different organizational and 

reputational costs associated with a "failed auction”, where the item is not sold. 

In real-world implementations in the public sector, reserve prices are typically 

determined by an accounting assessment of the auctioned item's value. This estimate of 

the item's value for the auctioneer is unlikely to coincide with the optimal value that 

maximizes the auctioneer's revenue. Indeed, Myerson (1981) and Riley & Samuelson 

(1981) show that the optimal reserve price is higher than the auctioneer's reservation 

value in the risk-neutral independent-private-values (IPV) auction model that we study 

here. Thus, the competitive advantage mechanism may, in practice, generate expected 

revenue for the auctioneer higher than the mechanism with a reserve price equal to the 

item's value for the auctioneer for any number of participants. 

Finally, by creating a dynamic bond between the auctioneer and the winner, the 

proposed mechanism incentivizes the winner to fulfill all commitments made in the first 

auction to avoid losing the strategic advantage in the subsequent auction. This provides 

greater control by the public sector over the auction winner, a recurring concern in 

mechanism design applied to the public sector. 

Naturally, there are questions that can be raised regarding the implementation of 

the proposed mechanism. 
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One concern is that the mechanism violates the principle of equality, as one 

participant has an advantage over the others in the second auction. This characteristic 

suggests that some participants (losers in the first auction) may challenge the asymmetry 

creation rule in the second auction in Court. For this reason, great effort must be put into 

convincing society, and especially the Judiciary, of the advantages of the mechanism 

before implementation. 

Furthermore, and associated with the above questioning, although the proposed 

mechanism ensures that the item will always be sold, it does not guarantee that the item 

will be sold to the participant who values it the most, i.e., the mechanism is not efficient, 

just like the mechanism with the optimal reserve price, albeit for different reasons. 

This article makes an original contribution to the literature on repeated auctions 

by shifting the focus from issues related to discouraging collusion among participants to 

the search for practical alternative mechanisms that can expand the auctioneer's 

expected revenue. This research can be extended in multiple directions, some of which 

are presented below as suggestions for future research. 

The model presented here assumes that the auctioneer assigns zero value to the 

item. Therefore, the most natural comparison is indeed with the traditional model with a 

zero reserve price, a comparison that is strongly favorable to the proposed model. 

Considering that in the public sector, the reserve value is the value of the item for the 

auctioneer, the proposed model should also be compared with an implementation 

including a reserve value identical to the value of the item for the auctioneer, and the two 

possible implementations should be compared.  

Given that sequential public tenders usually take significant periods of time to 

complete, intertemporal discounting between the two auctions is another path for 

extension. It is also necessary to understand how the results found here are affected by 

the number of participants when this number is endogenous. Additionally, a model with 

more than two consecutive auctions or where the objects to be sold have some degree 

of complementarity or substitutability should be considered. 

Additionally, the model should be extended to more general probability 

distributions of participants' values in the symmetric independent private values model, 

and its applicability to situations where values are possibly affiliated should be analyzed.  

Finally, this research has shown that in the competitive advantage model 

designing the second auction as a second price or as a first price yield different expected 

revenues to the auctioneer. Therefore, future research should explore alternative forms 

for the second and possibly the first auction.   
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PROOF OF PROPOSITION 3.  

We look for a symmetric, differentiable, strictly increasing equilibrium 𝛽(𝑣).  

The expected utility of a bidder of value 𝑣 who bids 𝑏 is: 

𝐸𝑈(𝑏; 𝑣) = (𝑣 − 𝑏 + 𝑢𝑤(𝑛))𝐹(𝛽−1(𝑏))
𝑛−1

+ 𝑢𝑙(𝑛) (1 − 𝐹(𝛽−1(𝑏))
𝑛−1

) 

𝐸𝑈(𝑏; 𝑣) = (𝑣 − 𝑏 + Δ(𝑛))𝐹(𝛽−1(𝑏))
𝑛−1

+ 𝑢𝑙(𝑛) 

The corresponding FOC is: 

−𝐹(𝛽−1(𝑏))
𝑛−1

+ (𝑛 − 1)(𝑣 − 𝑏 + Δ(𝑛))𝐹(𝛽−1(𝑏))
𝑛−2

𝑓(𝛽−1(𝑏))[(𝛽−1)′(𝑏)] = 0 

In equilibrium, 𝑏 = 𝛽(𝑣) ⇒ 𝑣 = 𝛽−1(𝑏). Furthermore, (𝛽−1)′(𝑏) = (𝛽′(𝑣))
−1

. 

Thus, the FOC rewrites as: 

(𝑣 + Δ(𝑛))(𝑛 − 1)𝑓(𝑣)𝐹(𝑣)𝑛−2 = 𝛽(𝑣)(𝑛 − 1)𝑓(𝑣)𝐹(𝑣)𝑛−2+𝛽′(𝑣)𝐹(𝑣)𝑛−1 

Therefore, by the Fundamental Theorem of Calculus, 

𝛽(𝑣)𝐹(𝑣)𝑛−1 = ∫ (𝑥 + Δ(𝑛))(𝑛 − 1)𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥
𝑣

0

 

Hence the solution: 

𝛽(𝑣) =
1

𝐹(𝑣)𝑛−1
∫ (𝑥 + Δ(𝑛))(𝑛 − 1)𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥

𝑣

0

 

=
1

𝐹(𝑣)𝑛−1
∫ 𝑥(𝑛 − 1)𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥

𝑣

0

+
Δ(𝑛)

𝐹(𝑣)𝑛−1
∫ (𝑛 − 1)𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥

𝑣

0

 

𝛽(𝑣) = 𝑣 + Δ(𝑛) −
1

𝐹(𝑣)𝑛−1
∫ 𝐹(𝑥)𝑛−1𝑑𝑥

𝑣

0

 

Recall that the distribution of the maximum of value the 𝑛 competitors is 𝐹(𝑣)𝑛 and its 

density is 𝑑𝐹(𝑣)𝑛 = 𝑛𝑓(𝑣)𝐹(𝑣)𝑛−1𝑑𝑣. Therefore, the seller’s expected revenue is: 

𝑅31(𝑛) = ∫ 𝛽(𝑣)𝑑𝐹(𝑣)𝑛 =
1

0

𝑛 ∫ [𝑣 −
1

𝐹(𝑣)𝑛−1
∫ 𝐹(𝑥)𝑛−1𝑑𝑥

𝑣

0

] 𝑓(𝑣)𝐹(𝑣)𝑛−1𝑑𝑣 + Δ(𝑛)
1

0

 

= 𝑛 ∫ 𝛽0(𝑣)𝑓(𝑣)𝐹(𝑣)𝑛−1𝑑𝑣 + Δ(𝑛)
1

0

= 𝑅11(𝑛) + Δ(𝑛) 

Where 𝛽0(𝑣) = 𝑣 −
1

𝐹(𝑣)𝑛−1 ∫ 𝐹(𝑥)𝑛−1𝑑𝑥
𝑣

0
 is the solution to the standard first price auction 

without reservation price. 

In the specific uniform distribution case, we have 𝐹(𝑥) = 𝑥, 𝑓(𝑥) = 1 and the equilibrium 
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becomes: 

𝛽(𝑣) =
1

𝑣𝑛−1
∫ (𝑥 + Δ(𝑛))(𝑛 − 1)𝑥𝑛−2𝑑𝑥

𝑣

0

=
𝑛 − 1

𝑛
𝑣 + Δ(𝑛) 

Since 𝑅11(𝑛) =
𝑛−1

𝑛+1
, it follows that  𝑅31(𝑛) =

𝑛−1

𝑛+1
+ Δ(𝑛). 

 

PROOF OF PROPOSITION 5. 

Let 𝑌2 be the second highest value among all losers in the second auction. Then, the 

distribution of 𝑌2 is6:   𝐹2(𝑦) = 𝐹(𝑦)𝑛−1 + (𝑛 − 1)(1 − 𝐹(𝑦))𝐹(𝑦)𝑛−2 

The corresponding density is:   𝑓2(𝑦) = (𝑛 − 1)(𝑛 − 2)𝑓(𝑦)𝐹(𝑦)𝑛−3(1 − 𝐹(𝑦)) 

Therefore, the expected revenue of the second period auction to the auctioneer is: 

𝑅32(𝑛) = ∫ 𝑦𝑓2(𝑦)𝑑𝑦
1

0

= (𝑛 − 1)(𝑛 − 2) [∫ 𝑦𝑓(𝑦)𝐹(𝑦)𝑛−3𝑑𝑦
1

0

− ∫ 𝑦𝑓(𝑦)𝐹(𝑦)𝑛−2𝑑𝑦
1

0

] 

𝑅32(𝑛) = 1 − (𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

+ (𝑛 − 2) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

= 𝑅11(𝑛 − 1) 

In the particular case of the uniform distribution, that expression reduces to: 

𝑅32(𝑛) =
𝑛 − 2

𝑛
= 𝑅11(𝑛 − 1)  

Player 1, winner of the first auction, wins if his value is higher than the second highest 

value of the losers. 

Therefore, 1’s expected utility in the second auction is: 

𝑢𝑤(𝑛) = ∫ ∫ (𝑣1 − 𝑦)𝑓2(𝑦)𝑑𝑦
𝑣1

0

𝑓(𝑣1)𝑑𝑣1

1

0

 

Similarly, Player 2, a loser of the first auction, wins if: 

(i) His value is the highest value of all the losers’ values. 

(ii) The second highest value among the losers is higher than the value of the winner of 

the first auction. 

Therefore, 2’s expected utility in the second auction is: 

 
6 The first summand is the probability that all 𝑛 − 1 values are smaller than 𝑦, whereas the second 
summand is the probability that one of the values is higher than 𝑦, and the other ones are smaller. 
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𝑢2(𝑛) = ∫ ∫ (𝑣2 − 𝑦)𝐹(𝑦)𝑓2(𝑦)𝑑𝑦
𝑣2

0

𝑓(𝑣2)𝑑𝑣2

1

0

 

The additional factor 𝐹(𝑦) in the above expression expresses the fact that 2 only wins 

when, in addition from having the highest value realization among all losers, the value 

realization of the winner is lower than the second highest value among the losers. 

Therefore, the expected advantage in the second auction of winning the first, due to the 

competitive advantage mechanism, is: 

Δ(𝑛) = 𝑢1(𝑛) − 𝑢2(𝑛) = ∫ ∫ (𝑣 − 𝑦)(1 − 𝐹(𝑦))𝑓2(𝑦)𝑑𝑦
𝑣

0

𝑓(𝑣)𝑑𝑣
1

0

 

Δ(𝑛) = (𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

− (3𝑛 − 5) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+
(3𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛𝑑𝑦

1

0

−
(𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛+1𝑑𝑦

1

0

 

In the uniform distribution case: 

Δ(𝑛) = 1 −
3𝑛 − 5

𝑛
+

(3𝑛 − 1)(𝑛 − 2)

𝑛(𝑛 + 1)
−

(𝑛 − 1)(𝑛 − 2)

𝑛(𝑛 + 2)
=

12

𝑛(𝑛 + 1)(𝑛 + 2)
 

 

PROOF OF PROPOSITION 6. 

In the first auction, the expected revenue of the auctioneer is the expected revenue of 

standard first-price (or second-price) auction with 𝑛-participants, plus the term Δ(𝑛). 

Therefore, the expected revenue of the auctioneer in both auctions is: 

𝑅4(𝑛) = 𝑅11(𝑛) + Δ(𝑛) + 𝑅11(𝑛 − 1) 

Therefore, the expected revenue of the auctioneer in the competitive advantage model 

is higher than the typical, no-reservation-price, first-price auction if and only if: 

𝑅4(𝑛) = 𝑅11(𝑛) + Δ(𝑛) + 𝑅11(𝑛 − 1) > 2𝑅11(𝑛) = 𝑅1(𝑛) ⇔ Δ(𝑛) > 𝑅11(𝑛) − 𝑅11(𝑛 − 1)  

This is equivalent to: 

(𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

− (3𝑛 − 5) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+
(3𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛𝑑𝑦

1

0

−
(𝑛 − 1)(𝑛 − 2)

𝑛
∫ 𝐹(𝑦)𝑛+1𝑑𝑦

1

0

> 

1 − 𝑛 ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+ (𝑛 − 1) ∫ 𝐹(𝑦)𝑛𝑑𝑦
1

0
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− (1 − (𝑛 − 1) ∫ 𝐹(𝑦)𝑛−2𝑑𝑦
1

0

+ (𝑛 − 2) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

) 

⇔ (2𝑛2 − 6𝑛 + 2) ∫ 𝐹(𝑦)𝑛𝑑𝑦
1

0

> (𝑛 − 3)𝑛 ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
1

0

+ (𝑛 − 1)(𝑛 − 2) ∫ 𝐹(𝑦)𝑛+1𝑑𝑦
1

0

 

For the uniform case, 

2𝑛2 − 6𝑛 + 2

𝑛 + 1
> (𝑛 − 3) +

(𝑛 − 1)(𝑛 − 2)

𝑛 + 2
⇔ 𝑛 < 4. 

 

PROOF OF PROPOSITION 7. 

Let 1 be the winner of the first auction and let 2 be a generic loser of the first auction. 

Then, it is easy to see that 1 has a dominant strategy:  

Bid 𝛽1(𝑣1) = 0, and, if the winning bid 𝑏𝑣 is smaller than 𝑣1, match that bid and win the 

object. 

Suppose 2 bids 𝑏2.  

Then 2 wins the object if the following two conditions are satisfied: 

(i) 𝑏2 is greater than the highest bid made by the other losers:  

𝑏2 > 𝛽𝑗(𝑣𝑗), 𝑗 = 3,4, … , 𝑛 ⇔ 𝑣𝑗 < 𝛽𝑗
−1(𝑏2) 

(ii) 𝑏2  is higher than 𝑣1: 

𝑏2 > 𝑣1 ⇔ 𝑣1 < 𝑏2 

Condition (i) occurs with probability ∏ 𝐹(𝛽𝑗
−1(𝑏2))𝑛

𝑗=3 . 

Condition (ii) occurs with probability 𝐹(𝑏2) 

Therefore, the expected utility of 2 when her value is 𝑣2 and she bids 𝑏2 is: 

𝐸𝑈2(𝑏2; 𝑣2) = (𝑣2 − 𝑏2)𝐹(𝑏2) ∏ 𝐹 (𝛽𝑗
−1(𝑏2))

𝑛

𝑗=3

 

To easy the calculation of the first order condition, let us take the logarithm: 

ln(𝐸𝑈2(𝑏2; 𝑣2)) = ln(𝑣2 − 𝑏2) + ln(𝐹(𝑏2)) + ∑ ln (𝐹(𝛽𝑗
−1(𝑏2))

𝑛

𝑗=3

 

The corresponding first order condition is: 



28 
 

−
1

𝑣2 − 𝑏2
+

𝑓(𝑏2)

𝐹(𝑏2)
+ ∑

𝑓 (𝛽𝑗
−1(𝑏2))

𝐹 (𝛽𝑗
−1(𝑏2))

×
1

𝛽𝑗
′ (𝛽𝑗

−1(𝑏2))

𝑛

𝑗=3

= 0 

We look for a “symmetric” equilibrium where all losers in the first auction follow the same 

strategy 𝛽𝑗 ≡ 𝛽, 𝑏2 = 𝛽𝑗(𝑣2) = 𝛽(𝑣2) for 𝑗 = 2,3, ⋯ , 𝑛. Since 𝛽−1(𝑏2) = 𝑣2, 

−
1

𝑣2 − 𝛽(𝑣2)
+

𝑓(𝛽(𝑣2))

𝐹(𝛽(𝑣2))
+ ∑

𝑓(𝑣2)

𝐹(𝑣2)
×

1

𝛽′(𝑣2)

𝑛

𝑗=3

= −
1

𝑣2 − 𝛽(𝑣2)
+

𝑓(𝛽(𝑣2))

𝐹(𝛽(𝑣2))
+ (𝑛 − 2)

𝑓(𝑣2)

𝐹(𝑣2)
×

1

𝛽′(𝑣2)
= 0 

The FOC may be written as: 

(𝑣2 − 𝛽(𝑣2))[𝑓(𝛽(𝑣2))𝛽′(𝑣2)𝐹(𝑣2)𝑛−2 + (𝑛 − 2)𝑓(𝑣2)𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−3]

+ (1 − 𝛽′(𝑣2))𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2 = 𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2 

The left-hand side of above equation is:  

𝑑

𝑑𝑣2
[(𝑣2 − 𝛽(𝑣2))𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2] 

Therefore, from the Fundamental Theorem of Calculus,  

(𝑣2 − 𝛽(𝑣2))𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2 = ∫ 𝐹(𝛽(𝑣))𝐹(𝑣)𝑛−2𝑑𝑣
𝑣2

0

 

Hence, for 𝑣2 > 0, 

𝑣2 − 𝛽(𝑣2) =
1

𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2
∫ 𝐹(𝛽(𝑣))𝐹(𝑣)𝑛−2𝑑𝑣

𝑣2

0

 

Thus, the symmetric strategy 𝛽(𝑣2) in the second auction of the players who lost the 

first auction is the implicit solution of the following equation: 

𝛽(𝑣2) = 𝑣2 −
1

𝐹(𝛽(𝑣2))𝐹(𝑣2)𝑛−2
∫ 𝐹(𝛽(𝑣))𝐹(𝑣)𝑛−2𝑑𝑣

𝑣2

0

 

Note that in this equilibrium the losers play as if they are the only participants in the 

second auction with a secret reservation price whose distribution is the same as their 

own valuation distribution. See, for example, Elyakime et al. (1994). 

For the uniform distribution case, substituting 𝑣 = 𝑣2, 𝑓(𝑥) = 1 and 𝐹(𝑥) = 𝑥 in the 

FOC yields: 

1

𝛽(𝑣)
+

(𝑛 − 2)

𝑣 𝛽′(𝑣)
=

1

𝑣 − 𝛽(𝑣)
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⇒ 𝑣 𝛽′(𝑣) (𝑣 − 𝛽(𝑣)) + (𝑛 − 2)𝛽(𝑣) (𝑣 − 𝛽(𝑣)) = 𝑣𝛽(𝑣)𝛽′(𝑣) 

Let us find a linear solution 𝛽(𝑣) = 𝐴𝑣 + 𝐵, then: 

𝐴𝑣(𝑣 − 𝐴𝑣 − 𝐵) + (𝑛 − 2)(𝐴𝑣 + 𝐵)(𝑣 − 𝐴𝑣 − 𝐵) = 𝑣(𝐴𝑣 + 𝐵)𝐴 

That is a polynomial equation that must hold for every value of 𝑣. Therefore, making 

𝑣 → 0 it results: 

(𝑛 − 2)(−𝐵2) = 0 ⇒ 𝐵 = 0 

Substituting in the previous equation: 

𝐴(1 − 𝐴)𝑣2 + (𝑛 − 2)𝐴(1 − 𝐴)𝑣2 = 𝐴2𝑣2 ⇒ (1 − 𝐴) + (𝑛 − 2)(1 − 𝐴) = 𝐴 

⇒ 𝐴 =
𝑛 − 1

𝑛
 

Hence, the equilibrium bid for a loser of the first auction is: 

𝛽(𝑣) =
𝑛 − 1

𝑛
𝑣 

Let us know calculate the expected utilities in the second auction of the winner and of 

the losers of the first auction. 

Player 1 will win if 𝑣1 > 𝛽(𝑣𝑗), 𝑗 = 2, … , 𝑛 ⇔ 𝑣1 >
𝑛−1

𝑛
𝑣𝑗, 𝑗 = 2, … , 𝑛 ⇔ 𝑣𝑗 <

𝑛

𝑛−1
𝑣1.  

In particular, if 𝑣1 >
𝑛−1

𝑛
, he will win for sure. 

Let 𝐺(𝑥) = 𝐹(𝑥)𝑛−1 be the distribution of the maximum of the realizations of the values 

of the other 𝑛 − 1 players. Then, 𝑑𝐺(𝑥) = (𝑛 − 1)𝑓(𝑥)𝐹(𝑥)𝑛−2𝑑𝑥 = (𝑛 − 1)𝑥𝑛−2𝑑𝑥. 

Therefore, player 1’s expected utility is: 

𝐸𝑈1(𝑛) = ∫ ∫ (𝑣1 −
𝑛 − 1

𝑛
𝑥)𝑑𝐺(𝑥)

𝑛
𝑛−1

𝑣1

0

𝑛−1
𝑛

0

𝑑𝑣1 + ∫ ∫ (𝑣1 −
𝑛 − 1

𝑛
𝑥)𝑑𝐺(𝑥)

1

0

1

𝑛−1
𝑛

𝑑𝑣1 

𝑢𝑤(𝑛) = [
(𝑛 − 1)2

𝑛3 [
1

𝑛 + 1
−

1

2
(𝑛 + 2)] +

1

2
] =

1

2
[1 −

1

𝑛2

𝑛 − 1

𝑛 + 1
(𝑛 − 1)(𝑛 + 3)] 

Similarly, player 2 wins if 𝑣1 <
𝑛−1

𝑛
𝑣2    and 𝑣2 > 𝑣𝑗, 𝑗 = 3, … , 𝑛. 

Let 𝐻(𝑥) = 𝐹(𝑥)𝑛−2 be the distribution of the maximum of the realizations of the values 

of the other 𝑛 − 2 players who lost the first auction. Then, the probability that 2 wins is: 

𝐹 (
𝑛−1

𝑛
𝑣2) 𝐻(𝑣2) = 𝐹 (

𝑛−1

𝑛
𝑣2) 𝐹(𝑣2)𝑛−2 =

𝑛−1

𝑛
𝑣2

𝑛−1.  

When 2 wins his utility is: 𝑣2 −
𝑛−1

𝑛
𝑣2 =

1

𝑛
𝑣2. Therefore, player 2’s expected utility is: 
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𝑢𝑙(𝑛) = ∫
1

𝑛
𝑣2

1

0

𝑛 − 1

𝑛
𝑣2

𝑛−1𝑑𝑣2 =
𝑛 − 1

𝑛2
∫ 𝑣2

𝑛
1

0

𝑑𝑣2 =
1

𝑛2

𝑛 − 1

𝑛 + 1
 

Hence, 

Δ(𝑛) =
1

2
[1 −

1

𝑛2

𝑛 − 1

𝑛 + 1
(𝑛 − 1)(𝑛 + 3)] −

1

𝑛2

𝑛 − 1

𝑛 + 1
=

1

2

3𝑛 − 1

𝑛2(𝑛 + 1)
 

 

PROOF OF PROPOSITION 8. 

Note that in the second auction the object is always sold for the highest bid among the 

𝑛 − 1 losers in the first auction. Therefore, the expected revenue of the seller in this 

second auction is: 

𝑅32(𝑛) = ∫ 𝛽(𝑥)𝑑𝐹(𝑥)𝑛−1
1

0

= ∫
𝑛 − 1

𝑛
𝑥(𝑛 − 1)𝑥𝑛−2𝑑𝑥

1

0

= (
𝑛 − 1

𝑛
)

2

 

Hence, the new proposed model yields higher expected payoffs for the auctioneer than 

to typical first price auction without reservation price (model ℳ1) if and only if: 

𝑅3(𝑛) > 𝑅1(𝑛) 

𝑅11(𝑛) + Δ(𝑛) + 𝑅32(𝑛) > 2𝑅11(𝑛) 

Δ(𝑛) > 𝑅11(𝑛) − 𝑅32(𝑛) 

⇔
1

2

3𝑛 − 1

𝑛2(𝑛 + 1)
>

𝑛 − 1

𝑛 + 1
− (

𝑛 − 1

𝑛
)

2

⇔ 𝑛 > −1 

Therefore, the Competitive advantage mechanism is always superior to the first price 

model without reservation price. 

Similarly, the newly proposed model yields higher expected payoffs for the auctioneer 

compared to a typical first-price auction with optimal reservation price (model ℳ2), if and 

only if: 

𝑅3(𝑛) > 𝑅2(𝑛) 

𝑅11(𝑛) + Δ(𝑛) + 𝑅32(𝑛) > 2𝑅21(𝑛) 

Δ(𝑛) > 2𝑅21(𝑛) − 𝑅11(𝑛) − 𝑅32(𝑛) 

⇔
1

2

3𝑛 − 1

𝑛2(𝑛 + 1)
> 2 (

𝑛 − 1

𝑛 + 1
+

1

2𝑛

1

𝑛 + 1
) −

𝑛 − 1

𝑛 + 1
− (

𝑛 − 1

𝑛
)

2

⇔ 𝑛 > 3 

Therefore, the Competitive advantage mechanism is always superior to the first price 

model with optimal reservation price, as long as 𝑛 ≥ 4. 


