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1 Introduction

For tokens representing assets, decentralized exchanges (DEXs) have become popular,
with trading volume reaching 462 billion USD.1 DEXs enable participants to buy and
sell tokens in bilateral markets through liquidity pools. On a DEX, participants can
serve as liquidity providers (LPs), supplying liquidity to both sides of a pool and earning
fees from token exchanges. The exchange rate, or relative price, is algorithmically set.
However, LPs commonly face a form of adverse selection, the so-called impermanent loss,
resulting from fluctuations in relative prices. Decentralized liquidity provision has been a
major driver of growth in Decentralized Finance, with market expansion from 500 million
USD to 44 billion USD in 2021 in total value locked (TVL).2 In this paper, we derive a
valuation for the primary risk in decentralized liquidity provision, impermanent loss, and
quantify it using traded option prices.

Recent studies argue that well-designed DEXs for token and equity trading could save
investors billions since they offer less price impact for liquidity takers (Lehar and Parlour
(2023)). On a DEX, LPs supply liquidity and earn fees from token exchanges, with the
exchange rate algorithmically determined by an automated market maker (AMM). It is
well known that LPs face impermanent loss (Heimbach et al. (2022), Capponi and Jia
(2024), Li et al. (2024), Milionis et al. (2024), Harvey et al. (2024)), a risk caused by price
changes due to token volatility impacting their positions: Initially, liquidity is provided
for a specific ratio of the two token. If the price of one token, for example, depreciates,
relative to the other, arbitrageurs will sell the depreciated token to the pool. By doing
so, they gradually adjust the pool’s ratio to match the new relative price. This allows
them to profit at the expense of LPs, who end up with a different ratio than they initially
deposited, leaving them worse off than if they had simply held the tokens, not providing
liquidity.3

In this article, we quantify the risk for decentralized liquidity provision, that is the
relative price’s variance, using a forward-looking risk measure derived from options traded
on a centralized exchange. The primary aim is to develop a model-free valuation of
impermanent loss based on these option prices. This valuation is a measurement that
filters investors’ beliefs about future price movements and allows us to quantify a risk

1Source: https://www.ccn.com/news/crypto/uniswap-dexes-reel-record-450b-volume/
2Source: https://news.anycoindirect.eu/dex-total-value-locked-at-highest-level-in-2-

years. TVL measures adoption by calculating the USD value of coins and tokens locked in a project’s
smart contracts.

3We provide a concrete numerical example of impermanent loss in Section 3.
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premium emerging from the difference of the implied and the realized impermanent loss.
Specifically, in this paper, we will study how the (option) implied impermanent loss (IIL)
is related to future risks and investment opportunities. We first show that IIL comprises
three (implied) key determinants—the individual volatilities of two tokens, and (third)
their correlation. IIL and its components negatively impact pool sizes, and we further
examine the risk-return relationship of liquidity provision by analyzing the explanatory
power of the IIL, its components, and their risk premia in both the time series and
cross-section of returns for LPs. We now discuss these findings in more detail.

We start with an AMM governing token prices in a liquidity pool using the constant
product rule. We derive and characterize impermanent loss as the primary risk, showing
it is -1/8 times the realized variance of the relative price. For a broad class of stochastic
volatility models, it depends on token volatilities and their correlation. We refer to these
volatilities and correlations as the “drivers” of impermanent loss. We derive an option-
implied valuation of impermanent loss, as done in Carr and Madan (1998) and Carr and
Wu (2009) for variance swaps. For equities, a variance swap is typically evaluated by
replicating the logarithm of the underlying’s price relative to the forward price (this is
the so-called log contract) plus the underlying’s total return. The log contract’s value can
be replicated using a portfolio of European call and put options with various strike prices
and the total return is valued by a zero-coupon bond yield. Two primary challenges arise
when the underlying is the tokens’ relative price: First, the relative price is not the price
of a traded asset, so there is no options market where the relative price is the underlying
asset. Instead, options are traded only on individual tokens. Second, since the relative
price is not a traded asset, a bond yield is not an appropriate proxy for the valuation of
the total return. To address these challenges, we first compute a multivariate distribution
of the two tokens derived from traded options, and second, utilize a change of numéraire.
In general, our methodology also applies for the simpler case when a stablecoin is the
numéraire, it applies for the valuation of impermanent loss in Uniswap V3 where LPs are
allowed to allocate tokens within specific price ranges and also applies to other measures
of adverse selection such as loss-versus-rebalancing (Milionis et al. (2024)).

We estimate an implied multivariate distribution by minimizing the Hansen and
Jagannathan (1991) (HJ) bound, a no-arbitrage approach that ensures market consist-
ency. Then, by choosing one token as the numéraire and constructing a new risk-neutral
measure, the relative price becomes a martingale and we apply the Carr and Madan
(1998) formula. Our framework enables us to value a spread option, which then permits
the computation of an option-implied correlation (IC) by inverting Margrabe (1978) for-
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mula on implied volatility (IV) from the individual token options. 4 Prior studies (e.g.,
Longin and Solnik (2001), Ang and Chen (2002), and Driessen et al. (2009)) suggest
that the average equity market correlation (such as IC) is an informative measurement of
systematic risk, diversification benefits, or tail risk. Our measure of (implied) correlation
transfers this concept to the market for decentralized liquidity provision.

We concentrate on deriving IIL and its drivers for the Bitcoin-Ethereum token pair
from options data, given the liquid cryptocurrency derivatives market for Bitcoin (BTC)
and Ethereum (ETH). While the IIL and the IC rely on the implied multivariate distri-
bution, the individual risk of tokens can be inferred from the (model-free) IV. Consistent
with our framework, we find that the IV of ETH and the IC between BTC and ETH ex-
plains more than 60% (and up to 95%) of the daily levels in the IIL. Intuitively, shocks to
one underlying increase the IV, and consequently raise IIL. Conversely, higher IC lowers
IIL as positive token comovement does not impact relative prices.

Our new implied measures also allow us to quantify an impermanent loss risk premia
(ILRP) and a correlation risk premia (CRP) which we calculate as ex-ante version
(defined as the difference between the respective quantity under the risk-neutral and
the real-world probability measures). We document that these risk premia vary over
time and are, on average, negative. For example, the average IIL of ´0.14 exceeds the
realized impermanent loss (RIL) of ´0.12 (both expressed in volatility terms). LPs fear
losing comovement because positive token comovement does not affect relative prices,
resulting in a lower IC than the realized correlation (RC) and hence in a negative CRP.
We show that the ILRP arises from the interplay between the variance risk premia (VRP)
of BTC and ETH and their CRP. In a last step we study the IIL, its drivers, and the
risk premia in distressed markets, noting sharp rises, particularly in the tokens’ IVs and
VRPs. On days when only one token drops sharply, IC falls significantly while the IIL
and the ILRP rise.

Lehar and Parlour (2023) show that equilibrium liquidity pool size balances fee revenue
against impermanent loss by adjusting pool size, not prices. If the risk of impermanent
loss is high, the equilibrium size of the pool is small because small pools have a higher
impact for the same order size. Mechanically, a smaller pool size increases the APR of
the pool (ceteris paribus). In line, we document that the high risk implied by the risk
measures coincides with smaller pool sizes. In the subsequent stage, we utilize IIL and

4Our framework enables IC calculation without IV from a cryptocurrency index. Driessen et al.
(2009) and Skinzi and Refenes (2005) introduced the average option-implied correlation, with the later
literature (Driessen et al. (2016), Buss et al. (2017), Schönleber (2023), Bondarenko and Bernard (2024))
referring to it as equicorrelation.
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its drivers as predictors, revealing that higher risks correspond to higher future APRs.
The results also hold out-of-sample.

In the last step, we assess the connection between returns for decentralized liquidity
provision and our constructed risk factors. Therefore, we empirically analyze a large
cross-section of liquidity pools, revealing an average return for LPs, calculated as an an-
nualized percentage rate (APR), of 15%, with peaks of 50%, alongside significant realized
impermanent losses averaging -10% and reaching as low as -40%. Overall, our studies sug-
gest impermanent loss as a key risk: A price change in one token alters the relative price,
prompting arbitrageurs to exploit the change, which creates impermanent loss for the
LP. However, greater risk is rewarded by a larger average return generated by increased
trading activity. Our analyses uncover a positive link between innovation (“shocks”)
in fundamentals measured by implied quantities and returns for LPs. The Fama and
MacBeth (1973) regressions confirm a positive, significant risk-return relationship for IIL
and its drivers in the cross-section of liquidity pools. In liquidity provision, while the
price of risk for IVs is positive, LPs favor high positive token correlations to mitigate
impermanent loss, resulting in a negative price of risk for IC. Our results are consistent
in a multivariate cross-sectional framework and when controlling for other pool-specific
factors.

2 Literature Review

Cousaert et al. (2022) study yield farming frameworks, focusing on protocols and
tokens used by aggregators, while Heimbach et al. (2022) analyze the risks and returns of
LPs in detail. A continuous-time framework of yield farming from the view of the LP is
developed in Li et al. (2024). Milionis et al. (2024) have identified loss-versus-rebalancing
as the primary risk for LPs. Cartea et al. (2024) introduce a new comprehensive metric
of predictable loss for LPs. Augustin et al. (2023) study LP token staking and the return
chasing behavior on PancakeSwap. Lehar and Parlour (2023) show that the equilibrium
size of a pool balances the fee revenue against the impermanent loss. We contribute
to this literature by developing a continuous-time framework replicating impermanent
loss under the risk-neutral measure and establishing a risk-return relationship explaining
cross-sectional returns in liquidity provision.

The literature on option-implied information for equity is extensive, see Christoffersen
et al. (2013) for an overview. In contrast, the literature on IV for cryptocurrencies is
still developing. Alexander and Imeraj (2021) construct a term structure of Bitcoin IV
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indices covering maturities from one week to three months. Option-implied information
predicting future equity returns is discussed in Driessen et al. (2005), Ang et al. (2006),
Bollerslev et al. (2009), Conrad et al. (2013), Bollerslev et al. (2015), Buss et al. (2017),
and Schönleber (2023). We contribute to the literature by developing a methodology to
apply established equity market metrics, like IC, to cryptocurrency markets, empirically
quantifying them, and using option-implied information from cryptocurrency options to
predict returns and risks in decentralized liquidity provision.

The literature concerning replicating impermanent loss is limited, with few exceptions.
Masaaki Fukasawa and Wunsch (2023) investigate the link between constant function
markets, variance swaps, and gamma swaps, and replicate the impermanent loss with a
weighted variance swap whenever the numéraire of the token pair is a stablecoin. A similar
assumption is made by Clark (2020) and Clark (2021) who argues that participating in
liquidity provision and encountering impermanent loss essentially involves taking a short
volatility position. We contribute to this literature by developing a methodology for
replicating impermanent loss, applicable even when both tokens are non-stablecoins, and
empirically quantifying it for the BTC-ETH token pair. This work therefore fills the gap
in the literature and connects more broadly the literature on option-implied information
to decentralized liquidity provision via the (centralized) derivatives market.

3 Mathematical Formulation for Impermanent Loss

In this section, we formulate the mathematical model of an LP. We start by assuming a
liquidity pool with a constant product AMM rule5 and assume that the underlying token
prices follow a stochastic volatility model. These assumptions lead to a characterization
of the impermanent loss in terms of the volatility of the relative price for tokens. Before
diving into the mathematical derivations, we first offer a high-level overview of how a
DEX operates and provide a specific example of impermanent loss.

On a DEX, liquidity takers trade at prices set by mathematical rules like the constant
product rule, ensuring the total liquidity of the pool stays constant. For two tokens, the
rule is L “

?
N1N2, where L is the total liquidity, and N1 and N2 represent the amounts

of tokens 1 and 2. As N1 increases, N2 must decrease, and vice versa. If a liquidity taker
5For the sake of simplicity, we do not consider pools with concentrated liquidity (CL), a concept that

is introduced by Uniswap V3, enabling LPs to consolidate their pool liquidity within a defined range and
earn fees when the spot price enters their specified active zone. For a detailed exploration of concentrated
liquidity, refer to Heimbach et al. (2022).
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wants to obtain 1 unit of token 2 from the pool, the AMM will require ∆1 units of token
1, where ∆1 satisfies

a

pN1 ` ∆1q pN2 ´ 1q “ L.
Next, we give an example of impermanent loss: Assume the price of token 1 is 100

USD, and token 2 is a stablecoin. Currently, the liquidity pool contains 900 token 1 and
90,000 token 2. An LP adds 10,000 token 2 and 100 token 1 to the pool, with a total
contribution value of 20,000 USD. The pool now contains 100,000 token 2 and 1,000 token
1, with a total pool value of 200,000 USD, of which the LP owns 10%. If the price of
token 1 increases in the wider market from 100 USD to 150 USD, traders enter the pool,
add token 2, and remove token 1 until the new ratio is 150:1. Because of x{y “ 150,
and x ˆ y “ 100, 000, 000, leading to 122,474.48 token 2 and 816.49 token 1 remaining
in the pool, because 122, 474.48 ˆ 816.49 “ 100, 000, 000 and 122, 474.48{816.49 “ 150.
Withdrawing the LP’s 10% share results in 12,247.4 token 2 and 81.6 token 1, totaling a
total value of approximately 24,500 USD. Had the LP simply held their assets (HODL),
they would have 10,000 USDT and 1,000 token 1 at 150 USD each, for a total value of
25,000 USD. This results in an impermanent loss of approximately 500 USD.

3.1 Tokens Dynamics Under the Constant Product Rule

Let N1 ptq and N2 ptq denote the amounts of two respective tokens that are paired for
trading in a liquidity pool, which we simply refer to as pool from now on. The constant
product rule for this pool is as follows:

L “
a

N1 ptqN2 ptq, (3.1)

where L ą 0 is a constant. From constant product rule (3.1) a relative price of token
emerges,

R ptq “
N2 ptq

N1 ptq
“ token 2 per token 1, (3.2)

from which we can deduce the amount of each token in the pool,

N1 ptq “
L

a

R ptq
, N2 ptq “ L

a

R ptq. (3.3)

We make the following assumption about the market prices and the relative price for
tokens in the pool.
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Assumption 3.1. The relative token price in a pool is equal to the ratio of the market
prices of tokens,

R ptq “
P1 ptq

P2 ptq
“

dollar per token 1
dollar per token 2

“ token 2 per token 1, (3.4)

where Pi ptq for i “ 1, 2 are the market prices of tokens outside of the pool.

The rationale for equation (3.4) is that if it were not true, then arbitrageurs would
enter the pool and exploit the price discrepancy until it corrected itself. Thus, arbit-
rageurs will ensure that the ratio of N1 ptq to N2 ptq in the pool maintains a relative price
equal to the relative price of the greater market external of the pool.

Our model takes token prices to be given by the following stochastic volatility model,

dPi ptq “ µiPi ptq dt ` σi ptqPi ptq dBi ptq , i “ 1, 2, (3.5)

where Bi ptq are two correlated standard Brownian motions (SBMs) defined on a filtered
probability space

`

Ω, F , pFtqtě0 , P
˘

, dB1 ptq dB2 ptq “ ρdt, ρ P r´1, 1s is the correlation
between them, and σiptq ą 0 is the Ft-adapted stochastic volatility process. We apply
Itô’s lemma to the ratio of P1 ptq and P2 ptq to get the stochastic differential equation
(SDE) for the relative price R ptq,

dR ptq “ d

ˆ

P1 ptq

P2 ptq

˙

“ µR ptqR ptq dt ` σR ptqR ptq dBR ptq , (3.6)

where µR ptq “ µ1 ´µ2 `σ2
2 ptq ´ρσ1 ptqσ2 ptq, σ2

R ptq “ σ2
1 ptq ´2ρσ1 ptqσ2 ptq `σ2

2 ptq, and
BR ptq “

σ1ptq
σRptq

B1 ptq ´
σ2ptq
σRptq

B2 ptq is a SBM under the physical probability measure P.

3.2 Impermanent Loss

Let Vstaked pt, sq denote the dollar value staked6 in the pool at time s P rt,8q, and let
Vheld pt, sq denote the value of an un-staked position that has an equal dollar amount as
time t; that is Vstaked pt, tq “ Vheld pt, tq. For a time increment ∆t ą 0, at time t ` ∆t

the impermanent loss is defined as follows.

Definition 3.1. For a time increment ∆t “ 1
n

where n is a positive integer, the imper-
manent loss from time t to time t ` ∆t is the staked value minus the held value, divided

6Depositing liquidity into a pool is called staking.
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by the held value:

∆ILn ptq :“
Vstaked pt, t ` ∆tq ´ Vheld pt, t ` ∆tq

Vheld pt, t ` ∆tq
. (3.7)

In discrete time it is straightforward to show that ∆ILn ptq ď 0, see Heimbach et al.
(2022), and in continuous time it is also true that impermanent loss is always nonpositive.
In terms of ∆ILn ptq, the total impermanent loss up to time t is the summation to time
t. Total impermanent loss in continuous time, which we denote as IL ptq, is obtained by
taking the limit as ∆t goes to zero.

Proposition 3.1. In continuous time, impermanent loss is the differential of total im-
permanent loss IL ptq is equal to negative one-eighth times the variance of the relative
price times the length of time increment,

dIL ptq “ ´
1

8
σ2
R ptq dt, (3.8)

where σR ptq “
a

σ2
1 ptq ´ 2ρσ1 ptqσ2 ptq ` σ2

2 ptq is the volatility of the relative price R ptq

seen in equation (3.6).

Proof. See Appendix A.1.

4 Model-Free Valuation

Within the stochastic volatility framework given in Section 3, the total impermanent
loss is negative one-eighth times the realized variance of the relative price R ptq given
in equation (3.6). As shown in Demeterfi et al. (1999), for the time window r0, T s the
realized variance is equal to twice the total returns plus the log contract,

ż T

0

σ2
R ptq dt “ 2

ż T

0

dR ptq

R ptq
´ 2 ln

ˆ

R pT q

R p0q

˙

, (4.1)

where ´2 ln
´

RpT q

Rp0q

¯

is the so-called log contract with the underlying being R pT q, see Carr
and Lee (2008). From equation (4.1), we can observe that the valuation of impermanent
loss is equivalent to the valuation of a variance swap.
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4.1 Risk-Neutral Formulation

Let us consider a risk-neutral probability measure Q that is equivalent to the physical
probability measure P used in Section 3 (see details in Appendix A.2). Under Q, similar
to equation (3.5), over some finite time interval t P r0, T s, the SDEs for token prices
become

dPi ptq “ rPi ptq dt ` σi ptqPi ptq dBQ
i ptq , i “ 1, 2, (4.2)

where BQ
1 ptq and BQ

2 ptq are SBMs under Q with correlation dBQ
1 ptq dBQ

2 ptq “ ρdt, and
r is the risk-free interest rate. Analogous to SDE (3.6), by applying Itô’s lemma, the
relative price R ptq under the same risk-neutral measure has the following SDE:

dR ptq “ µQ
R ptqR ptq dt ` σR ptqR ptq dBQ

R ptq , (4.3)

where µQ
R ptq “ σ2

2 ptq ´ ρσ1 ptqσ2 ptq, and BQ
R ptq “

σ1ptq
σRptq

BQ
1 ptq ´

σ2ptq
σRptq

BQ
2 ptq is an SBM

under Q. Equation (4.3) demonstrates that R ptq is not a martingale under Q. From here
forward, we denote by EQ the expectation operator under Q.

Ideally, the Q-measure expected value of equation (4.1) can be computed with a model-
free method, giving a purely market-driven prediction of variance. In many pricing prob-
lems, the expected total return EQ

”

şT

0
dRptq
Rptq

ı

is equivalent to a short-term zero-coupon
bond yield. For the log contract, the formula proposed in Carr and Madan (1998) gives
the valuation in terms of a portfolio of European options on R pT q; the same valuation
can be obtained using the risk-neutral density of R pT q given by the formula proposed
in Breeden and Litzenberger (1978). However, there are two main difficulties when per-
forming this model-free valuation for token pairs. The first is that there are not options
on the relative prices of tokens. The second is that the relative price is not a martingale
under Q, which means that the expected rate of return for R ptq cannot be equated to
the short-term interest rate. To manage the first difficulty we compute a joint density
from existing options on the separate tokens. To manage the second we employ a change
of numéraire.

4.2 Optimal Joint Density

Centralized exchanges offer European options on individual tokens, such as BTC and
ETH, which are cash-settled and have margins settled in their respective underlying.
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Using the risk-neutral density formula proposed in Breeden and Litzenberger (1978),
options with a fixed maturity date and a continuum of strikes provide the risk-neutral
distribution (RND) on the future states of the underlying token. For a token pair, the
risk-neutral density formula provides the two marginal densities and then a further step
must be taken to estimate the dependency structure for their joint RND. This joint
distribution is exactly what we would need to value the log contract on R pT q.

Let Calli pT, Kq denote European call option prices of tokens on their prices Pi pT q

with maturity T and strike price of K. The marginal densities under Q are

fi pT, Kq “ erT
B2

BK2
Calli pT, Kq , for i “ 1, 2. (4.4)

We can combine the marginal densities f1 pT, Kq and f2 pT, Kq to compute a joint RND
for P1 pT q and P2 pT q under Q. We assume we are given the joint density under P. Then
we estimate the joint pricing kernel (or stochastic discount factor) using an optimization
objective based on arbitrage theory. In particular, this estimation must respect the law
of one price by preserving market prices, matching marginal densities f1 and f2, and
avoiding inter-market arbitrage. A financially meaningful objective is to minimize the
HJ upper bound, which states that the Sharpe ratio of a portfolio cannot exceed the
standard deviation of any pricing kernel. This is expressed as

sup
Π :stdpΠ qą0

E rΠ s

std pΠ q
ď inf

MPMpµ,νq
std pMq (4.5)

where Π is the excess return a portfolio, M pµ, νq is the family of pricing kernels for
marginal distributions µ and ν, and std p¨q represents the standard deviation. The left-
hand side of equation (4.5) represents a portfolio optimization, our primal problem, while
the right-hand side represents an optimal pricing problem, our dual problem. If there
are Π and M such that ErΠ s

stdpΠ q
“ std pMq, then there is no duality gap. Equation (4.5)

is derived from the Cauchy-Schwartz inequality for the covariance, denoted by cov p¨q,
between Π and M , cov pΠ , Mq ě ´std pΠ q std pMq. The Cauchy-Schwartz is an equality
if and only if Π is a scalar (deterministic) multiple of M . For complete markets, M pµ, νq

is a singleton set with a unique M that is replicated by a portfolio of Arrow-Debreu
securities, and hence there is no duality gap. For incomplete markets, there is no duality
gap if the optimal M is in the span of investible portfolios, which is in general not the
case, but when the individual assets each have a complete set of options then the pricing
kernel can be replicated, and thus there is no duality gap.
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Let q px, yq be a joint density under Q such that M px, yq “
qpx, yq

ppx, yq
is a pricing kernel.

Computing the HJ upper bound is a quadratic programming problem:

minimize
q:q„p

ż ż
ˆ

q px, yq

p px, yq

˙2

p px, yq dxdy, (4.6)

subject to
ż

q px, yq dy “ f1 pT, xq ,
ż

q px, yq dx “ f2 pT, yq ,

where p px, yq is the joint density under P, and q „ p denotes the set of joint densities such
that q px, yq ą 0 if and only if p px, yq ą 0 for all px, yq. The existence and uniqueness
of solutions of a Sharpe-optimal portfolio are proven in Guasoni and Mayerhofer (2020).
Trivially, there always exists a solution to equation (4.6) because M pµ, νq always has at
least one element, namely the product measure f1 pT, xq f2 pT, yq under which the two
tokens are independent. In general, the problem is convex and an approach to solving is
to use the method of Lagrange multipliers,

L “

ż ż

q2 px, yq

p px, yq
dxdy ´

ż

λ1 pxq

ˆ
ż

q px, yq dy ´ f1 pT, xq

˙

dx (4.7)

´

ż

λ2 pyq

ˆ
ż

q px, yq dx ´ f2 pT, yq

˙

dy,

where λ1 pxq and λ2 pyq are Lagrange multiplier functions. From equation (4.7), the unique
non-negative solution to (4.6) is expressed as q px, yq “ 1

2
pλ1 pxq ` λ2 pyqq p px, yq, and

the optimal pricing kernel is

M px, yq “
1

2
pλ1 pxq ` λ2 pyqq . (4.8)

Assuming that every point px, yq has a positive physical probability of occurring, then
the pricing kernel given by equation (4.8) is arbitrage-free if and only if λ1 pxq ` λ2 pyq

is strictly positive. The Lagrangian given by equation (4.7) is written without a non-
negativity constraint because the avoidance of arbitrage requires a solution to be in the
interior, in which case this additional constraint would be inactive. It can also be shown
that there is replicability of the Lagrange multiplier functions λ1 pxq and λ2 pxq using
a portfolio of European call and put options, forward contracts, and cash. The formal
statements for these results are given in Appendix B.

Using Proposition I.2, we can construct a portfolio that is a (negative) scalar multiple
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of the pricing kernel and therefore has a Sharpe ratio equal to the the right-hand side of
equation (4.6). That is, with cash, forward contracts, and European call and put options,
we construct a portfolio Π whose excess returns are

Π px, yq “ ´
1

2
pλ1 pxq ` λ2 pxqq “ ´M px, yq .

For this Π we have ErΠ s

stdpΠ q
“ std pMq, confirming that there is no duality gap in equation

(4.5). For implementation details, Appendix B shows a sparse quadratic program when
f1 pT, Kq∆K and f2 pT, Kq∆K are the inputs.

After optimizing the HJ bound, the obtained density can price European options on
R pT q “

P1pT q

P2pT q
. These prices can be inserted into the formula of Carr and Madan (1998) for

valuing the log contract. Hence, we have addressed the issue highlighted before, namely,
the absence of options prices on R pT q.

4.3 Change of Numéraire

The relative price R ptq is a marginal rate of substitution for a pool, and so unless the
base token is pegged to the local currency it is not accurate to say that R ptq grows at the
risk-free rate. Specifically, it is difficult to calculate the expectation of the total-return
term

şT

0
dRptq
Rptq

of equation (4.1). A change of numéraire resolves this issue and simplifies
the computation for the swap valuation. This change of numéraire should be carried out
with the base token, which in our case is P2 ptq. For example, we could make a change of
numéraire to ETH.

We consider a probability measure rQ that is equivalent to the risk-neutral probability
measure Q used in equation (4.2), which is defined through a Radon–Nikodym density:

drQ
dQ

ˇ

ˇ

ˇ

ˇ

ˇ

T

:“
P2 pT q

EQ rP2 pT qs
“

P2 pT q

erTP2 p0q
. (4.9)

By the change of numéraire and Girsanov theorem explained in Appendix A.2, under
this new probability measure rQ, rBQ

1 ptq :“ BQ
1 ptq ´ ρ

şt

0
σ2 psq ds and rBQ

2 ptq :“ BQ
2 ptq ´

şt

0
σ2 psq ds are SBMs. Then by implementing Itô’s quotient formula, we get the SDE for

the relative price under rQ,

dR ptq “ R ptq
´

σ1 ptq d rBQ
1 ptq ´ σ2 ptq d rBQ

2 ptq
¯

. (4.10)
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From (4.10) it is obvious that R ptq is a martingale under rQ. From here forward, we
denote by rEQ the expectation operator under rQ with P2 ptq as the numéraire.

Proposition 4.1. Under the probability measure rQ defined by equation (4.9), the valu-
ation of the variance swap with underlying being the relative price R ptq given by equa-
tion (4.3), is equal to the expectation of the log contract on R ptq, rEQ

”

şT

0
σ2
R ptq dt

ı

“

rEQ
”

´2 ln
´

RpT q

Rp0q

¯ı

. Consequently, under the same probability measure, the expectation
for the impermanent loss given by equation (3.8) is equal to ´1

8
times the expectation of

the log contract:
rEQ

rIL pT qs “
1

4
rEQ

„

ln

ˆ

R pT q

R p0q

˙ȷ

. (4.11)

Proof. See Appendix A.3.

For the valuation of variance swap on R ptq under rQ, the individual components for
the formula proposed in Carr and Madan (1998) or Breeden and Litzenberger (1978) are
the following European call and put options on R ptq,

rEQ
“

pR pT q ´ Kq
`

‰

“
e´rT

P2 p0q

ż ż

y

ˆ

x

y
´ K

˙`

q px, yq dxdy, (4.12)

rEQ
“

pK ´ R pT qq
`

‰

“
e´rT

P2 p0q

ż ż

y

ˆ

K ´
x

y

˙`

q px, yq dxdy.

By using equation (4.12), we can write the expectation of equation (4.11) as follows:

rEQ
rIL pT qs “ ´

ż 8

Rp0q

1

4K2
rEQ

“

pR pT q ´ Kq
`

‰

dK ´

ż Rp0q

0

1

4K2
rEQ

“

pK ´ R pT qq
`

‰

dK.

Our methodology also applies to the valuation of impermanent loss if one (or both)
of the tokens is a stablecoin, in Uniswap V3 and other adverse selection metrics, such as
loss-versus-rebalancing (LVR) (Milionis et al. (2024)). We outline the details below and
refer to the Appendix C for more details.

4.4 Implied Impermanent Loss with a Stablecoin as Numéraire

If one of the tokens is a stablecoin then the valuation of impermanent loss can be
significantly simplified. The simplest case is when the base token P2 ptq is pegged to
a currency that is also the currency unit for risk-neutral prices under Q. In this case,
if interest rate r is constant then P2 ptq “ ertP2 p0q with zero volatility, our valuation
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of impermanent loss reduces to the standard variance swap formula for a non-dividend-
paying-asset, and there is no need to use a change of numéraire. Another case is when the
base token is a non-stablecoin (e.g., ETH) and P1 ptq is a stablecoin for a currency other
than the currency under Q. In this case, there is not much simplification because P1 ptq

is the (risky) exchange rate. Hence, the change of numéraire identified in Section 4.3 is
still the best way to value impermanent loss. If both tokens are stablecoins in a currency
different from Q, the volatilities σ1ptq and σ2ptq will be small but non-zero. In this case,
we again use the change of numéraire from Section 4.3. Hence, our approach has flexibility
for the types of token pairs traded. Finally, if interest rates are stochastic—meaning the
risk-neutral measure includes a stochastic short-term interest rate process rptq adapted
to Ft—calculating variance swaps becomes significantly more complex.

4.5 Implied Impermanent Loss for V3 and Implied Loss-Versus-

Rebalancing

Under the Uniswap V3 protocol, LPs allocate tokens within a specific price band.
For a given band Ci, if R ptq P Ci then the LP earns a reward but is also exposed to
impermanent loss. In particular, we show in Appendix C that the pool-wide impermanent
loss is a weighted sum of individual corridor variance swaps, with weights proportional
to the TVL in each band.

Our framework can also be used to assess loss-versus-rebalancing (LVR), with the
advantage of valuing LVR under Q introduced in Section 4. Using the weighted variance
swap framework of Lee (2010b), we show that the implied LVR can be computed using
the estimated RND obtained by minimizing the HJ bound, as proposed in Section 4.2.

5 Data Description

This section provides a general description of data sources, the construction of the
option-implied variables, and the variables for pools.

5.1 Option Data and Risk-Neutral Moments

We obtain option data through amberdata7, encompassing hourly implied volatility
surfaces for a standardized maturity of 30 days and different moneyness levels. The data is

7https://www.amberdata.io/
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collected from Deribit, which is the largest exchange for trading cryptocurrency options.8

On Deribit options are cash-settled and quoted directly in the respective cryptocurrency
and not in USD. We consider BTC and ETH as underlying assets. The surface data
consists of five moneyness levels (measured by delta) per call and put option.

We interpolate across moneyness to obtain a smooth surface which allows us to ex-
tract the RND for each underlying following equation (4.4) proposed in Breeden and
Litzenberger (1978).

fi pT, K; θq “ erT
B2

BK2
CallBS

i pT, K, pσi pT, K; θqq , for i “ 1, 2,

where pσi pT, K; θq is a function with parameter θ that is fitted to the IV smile of quoted
options, and where CallBS

i pT, K, pσiq is the Black-Scholes European call option price on
PipT q with IV pσi. It is shown in Figlewski (2018) that improved estimation of the risk-
neutral density is obtained by parametrically fitting the IV smile and then differentiating
the option price. In particular, a polynomial of degree four or five is usually sufficient
for fitting quoted IVs, and some type of heavy-tailed parametric distribution is used to
extrapolate into the tail. Figure 5.1 shows the 4th-order polynomial fitted to the quoted
BTC IVs with T “ 30 days on the 18th of May 2023 at the beginning of the day in UTC;
the tails are extrapolated with a log-normal density with volatility parameter taken to be
the very last quoted IV. The 4th-order polynomial fit is convenient because the implied
density follows from a simple application of the chain rule when computing the second
K partial derivative of CallBS

i pT, K, pσi pT, K; θqq.

5.1.1 Implied Impermanent Loss

As shown in Section 4.3, we can construct a new measure as drQ
dQ

ˇ

ˇ

ˇ

T
“

P2pT q

EQrP2pT qs
“

P2pT q

erTP2p0q

to obtain a valuation of the impermanent loss by using equation (4.11),

rEQ
rIL pT qs “

1

4
rEQ

„

ln

ˆ

R pT q

R p0q

˙ȷ

“
1

4

ż

ln

ˆ

x

yR p0q

˙

rqT px, yq dxdy,

where rqT px, yq is the optimal joint density at time t “ T as described in Section 4.2, com-
puted with options of maturity date T . For a discrete mesh

!

pxi, yjqi,j

)

with increments
∆x and ∆y between mesh points, upon which we have a mass function rqi,j “ yj ˆ qi,j{Fy

where qi,j « qT pxi, yjq∆x∆y and Fy “
ř

i,j yjqi,j is the forward price on P2 ptq. Then

8The options trading volume across different exchanges is displayed in Figure D.1.
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(a) BTC – Implied Volatility
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(b) BTC – Risk-Neutral Density
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(c) BTC and ETH – Risk-Neutral Joint Density
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Figure 5.1: BTC Implied Volatility and Risk-Neutral Joint Densities. Panel (a)
shows the implied volatility surface for BTC. Panel (b) shows the RND for BTC. The quoted
volatilities are fitted with a fourth-order polynomial, and extrapolation of the tail densities uses
a log-normal density. Panel (c) shows the risk-neutral joint density for BTC and ETH, which is
obtained as described in Section 4.2. The date is the 18th of May 2023.

there is the following estimate of the implied impermanent loss,

rEQ
rIL pT qs «

1

4

ÿ

i

ÿ

j

rqi,j ln

ˆ

xi

yjR p0q

˙

. (5.1)

We take the square root of the result calculated by equation (5.1) to express this quantity
in terms of volatility and annualize it by multiplying it by

a

365{30. In the empirical
analysis, we denote (the absolute value of) the annualized implied impermanent loss of

the BTC-ETH token pair in volatility terms as IIL “

b

365
30

rEQ rIL pT qs.
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5.1.2 Implied Variances

We calculate the implied variances for each underlying for a maturity of T “ 30 days
following Martin (2016) (for the gross return) as

IV 2
ptq “

2p1 ` rptqq

pT ´ tqP 2 ptq

«

ż 8

F ptq

Call pt, K; T q dK `

ż F ptq

0

Put pt, K; T q dK

ff

.

where P ptq is the current token price, rptq the risk-free rate and F ptq “ EQ rP pT qs “

erTP ptq is its forward price. In the computations, we discretize the integral via the
trapezoidal rule. Finally, we take the square root to get the IV .

5.1.3 Implied Correlation

By using the our optimal joint density rqT px, yq, we calculate the implied correlation
(IC) between BTC and ETH for a maturity of T “ 30 days simply as the Pearson
correlation coefficient:

IC “
Covpx, yq

σxσy

5.2 Realized Quantities

We compute the annualized realized volatilities (RV ) for BTC and ETH as their
annualized standard deviations using hourly return data from CryptoCompare, employing
a rolling window approach over 30 calendar days. We repeat the procedure for calculating
the realized correlation (RC), as the Pearson correlation coefficient, for BTC and ETH.
The calculation of the RIL is outlined in equation (5.3).

5.3 Risk Premia

We calculate the (ex-ante) risk premia defined as the difference between the respect-
ive quantity under the risk-neutral (implied) and the real-world (realized) probability
measures. Hence the variance risk premium for BTC (V RPBTC) is calculated as IVBTC -
RVBTC . The same calculation is made for ETH. Note that we consider the volatilities and
not the variance in the calculations, hence the V RP strictly speaking represents a volatil-
ity risk premium. The CRP is calculated as the IC-RC. Since we defined both IIL and
RIL in positive terms, but they are per definition negative quantities, the impermanent
loss risk premia (ILRP ) is defined as ILRP “ ´IIL ´ p´RILq.
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5.4 Liquidity Pool Data

We analyze daily data from Uniswap V3, the third version of the Uniswap DEX. We
source data using The Graph, a protocol that enables access to Ethereum blockchain
data via a query language called GraphQL. We only consider pools where at least one
of the tokens is either BTC or ETH. We filter out pools with an average TVL lower
than 1,000,000 and fewer than 100 days of daily observations, leaving us with 167 pools.
We focus on the prices of both tokens in the pool, the accumulated fees collected from
the liquidity takers earned by LPs, and the TVL in the pool. We then calculate the
impermanent loss and historical annual percentage rates (APRs) for each pool from May
2021 to February 2025.

For the calculation of the daily realized impermanent loss we follow the equation given
in Heimbach et al. (2022):

IL ptq :“
VPool ptq ´ VHold ptq

VHold ptq
“

2
b

Rptq
Rpt´∆tq

1 `
Rptq

Rpt´∆tq

´ 1, (5.2)

where VHold ptq is the value of the LP’s assets when the relative price is R pt ´ ∆tq at the
initial time t ´ ∆t, and VPool ptq is the value of the LP’s assets after the relative price
changes to R ptq at the later time t. Equation (5.2) is equivalent to the definition of
impermanent loss given in equation (3.7), see Li et al. (2024).

We annualize the daily realized impermanent loss by raising p1 ` IL ptqq to the power
of 365. Given that this quantity is subject to noise, we then apply a 30-day moving
average. To compare with the implied impermanent loss, we take the square root of the
annualized realized impermanent loss to express it as volatility. For the BTC-ETH token
pair, we denote this annualized realized impermanent loss by RIL:

RIL ptq “

b

r1 ` IL ptqs
365. (5.3)

The estimated daily returns for liquidity provision are quoted in terms of APRs, which
denote the annualized fraction of fees collected from the liquidity takers (fees ptq) over
some period divided by the total volume of the pool, with the latter being measured in
TVL. Hence, we calculate the APR as follows:

APR ptq “
fees ptq

TV L ptq
. (5.4)
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6 Empirical Analysis

In this section, we first compare the IIL and its components for the BTC-ETH token
pair using options data, with realized counterparts from historical data. Next, we analyze
the IIL and its components, finding that higher IV s increase IIL, while higher IC

decreases it due to the reduced impact of positive token comovement on relative prices.
We find that the ILRP becomes more negative as the CRP decreases and the VRPs
increase. Using a large cross-section of liquidity pools where either Bitcoin or Ethereum
is one of the tokens of the respective token pair, we show that our measures are negatively
related to the pool sizes. Hence a high level of risk corresponds to a low pool size. In
line, we show that our implied variables positively predict future aggregated APRs in the
time series. We investigate liquidity provision returns in the cross-section, emphasizing
impermanent loss as a critical risk factor shaping the risk-return relationship. Token
price changes lead to increased trading activity resulting in higher APR for LPs but
also trigger impermanent loss. The Fama and MacBeth (1973) cross-sectional regressions
confirm the significance of the IIL and its drivers with consistent results in a multivariate
setting. LPs favor high positive correlations among tokens to mitigate impermanent loss,
resulting in a negative price of risk for IC.

6.1 Implied Impermanent Loss and Its Drivers

Figure 6.1 displays the (absolute) implied variables together with their realized coun-
terparts. From Panel (a) it is visible that the IIL co-moves with RIL, which is a noisy
time series if not smoothed.9 IV and RV for BTC in Panel (b) and ETH in Panel (c)
display a strong comovement. Panel (d) depicts the dynamics of IC together with the
RC. IC, being a bounded variable, displays (relatively) smaller fluctuations than the
IV s.

Table 6.4 reports summary statistics for the implied variables. The IIL is about 0.135.
The second and third columns represent IVBTC and IVETH with mean values of 0.648
and 0.756 and standard deviations of 0.161 and 0.223, respectively. The average value
of 0.818 for the IC, suggests a strong average correlation between the price movements
of BTC and ETH as perceived by the derivatives market. For the realized variables the
RIL is approximately 0.123. In terms of realized volatility, the mean values for RVBTC

and RVETH in the fifth and sixth columns are 0.555 and 0.692. Notably, RC exhibits
9The RIL smoothed with only 7 or 2 days is displayed in Figure D.2. As visible, the RIL can be

substantially larger than the IIL.
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Figure 6.1: Implied and Realized Variables – BTC and ETH. The figure shows the
IIL and RIL for BTC and ETH in Panel (a), the IV and RV for BTC and ETH in Panel (b)
and Panel (c), and the IC and RC for BTC and ETH in Panel (d). The implied quantities are
calculated by the equations in Section 5.1. The realized quantities are calculated as discussed
in Section 5.2. The data is sampled daily, and the sample period is from 2021-05 to 2025-02.

an average of 0.854 for BTC and ETH, as measured from realized data. In summary,
there are differences in the mean values derived from options data or realized data for
the impermanent loss, volatilities, and correlation.

Table 6.2 presents the time-series correlation of the various variables in levels. The
correlation between the IIL and RIL is about 0.913. Calculating the RIL using a
shorter moving average, such as 7 or 2 days, reduces the correlation to 0.615 or 0.402,
respectively. Naturally, there exists a strong comovement between the IV s and the RV s
(the correlation ranges from 0.75 ´ 0.80). The correlation between IC and RC is 0.655.
Interestingly, the correlations between the IC and the IV s are negative; for example, the
correlation with IVBTC is ´0.172 and similar for IVETH ´0.212; the correlation with IIL

is ´0.772. The correlation between the IV s and the IIL is 0.665 (0.751) for BTC (ETH).
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IIL IVBTC IVETH IC RIL RVBTC RVETH RC

Mean 0.135 0.648 0.756 0.818 0.123 0.555 0.692 0.854
Std 0.048 0.161 0.223 0.069 0.044 0.174 0.261 0.061
Per 10 0.075 0.456 0.465 0.729 0.065 0.361 0.403 0.762
Median 0.136 0.608 0.712 0.828 0.122 0.545 0.657 0.873
Per 90 0.194 0.879 1.069 0.899 0.176 0.727 0.984 0.905

Table 6.1: Summary Statistics – Implied and Realized Variables. The table reports the
summary of the statistics time-series mean, median, standard deviation, and the 10% and 90%
percentiles of the measures. The implied quantities are calculated by the equations in Section
5.1. The realized quantities are calculated as discussed in Section 5.2. The sample period is
from 2021-05 to 2025-02.

The pronounced interplay of positive and negative relationships among the components,
with the IIL, highlights the importance of factoring in the univariate and multivariate
distribution of individual tokens during the estimation process.

IIL IVBTC IVETH IC RIL RVBTC RVETH RC

IIL 1.000 0.665 0.751 -0.772 0.913 0.789 0.852 -0.238
IVBTC 0.665 1.000 0.938 -0.172 0.687 0.773 0.761 0.227
IVETH 0.751 0.938 1.000 -0.212 0.758 0.749 0.802 0.201
IC -0.772 -0.172 -0.212 1.000 -0.661 -0.448 -0.480 0.641
RIL 0.913 0.687 0.758 -0.661 1.000 0.735 0.793 -0.238
RVBTC 0.789 0.773 0.749 -0.448 0.735 1.000 0.958 0.262
RVETH 0.852 0.761 0.802 -0.480 0.793 0.958 1.000 0.214
RC -0.238 0.227 0.201 0.641 -0.238 0.262 0.214 1.000

Table 6.2: Contemporaneous Correlations. The table reports the correlation coefficients
for the measures. The implied quantities are calculated by the equations in Section 5.1. The
realized quantities are calculated as discussed in Section 5.2. The sample period is from 2021-05
to 2025-02.

In our empirical evaluation of the impact of the drivers on IIL, we employ straight-
forward regressions using daily levels of IIL and corresponding levels on its drivers. To
underscore the individual contributions of each component, we initially isolate the most
crucial variable, followed by the second and third most influential variable, and the most
influential pairs of variables. Given the strong correlation between IVETH and IVBTC ,
we refrain from including these variables together. The outcomes of these analyses are
presented in Table 6.3: The majority of IIL is accounted for by IVETH , exhibiting R2

values of nearly 70% while IVBTC only explains 59%. When examining the outcomes
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with two regressors, the inclusion of IC increases the R2 by approximately 25% (30%)
compared to the univariate regression results for IVETH (IVBTC). Following our stylized
framework, IVETH and the IC have opposing effects on the IIL.10

(1) (2) (3) (4) (5)

Intercept -0.018 -0.021 0.706 0.414 0.440
0.000 0.000 0.000 0.000 0.000

IVBTC – 0.254 – – 0.171
– 0.000 – – 0.000

IVETH 0.215 – – 0.151 –
0.000 – – 0.000 –

IC – – -0.692 -0.478 -0.507
– – 0.000 0.000 0.000

R2 68.743 59.962 67.524 94.865 89.835

Table 6.3: Drivers of the Implied Impermanent Loss. The table reports the results of
slope, p-value, and the R2 of the described regression procedure. We report the specifications
with one ((1)-(3)) and two ((4)-(5)) independent variables. The implied quantities are calculated
by the equations in Section 5.1. The data is sampled daily from 2021-05 to 2025-02.

6.2 Risk Premia

We investigate the risk premia of our measures, which we calculate ex-ante as the
implied minus the realized quantity following Section 5.3. Table 6.4 reports summary
statistics and Figure 6.2 displays the risk premia over time. The ILRP is on average
´0.012 with a 10% quantile value of ´0.04 and an absolute minima of ´0.08.11 The
average V RPBTC (V RPETH) is 0.09 (0.06), with a low 10% quantile value of ´0.052

(´0.111). The absolute minima of both V RPBTC and V RPETH can reach up to ´0.80.
The CRP is on average ´0.037 with a 10% quantile value of ´0.120. The LP favors
a strong token correlation and is concerned about its decline, contrary to an equity
investor. Consequently, the CRP tends to be negative on average, as the IC derived
from option prices is lower than RC, signaling greater risk. As visible from Figure 6.2,
the sharp declines in the ILRP and V RP s often occur simultaneously. However, there

10We have carried out the same exercise for changes in the IIL and its components. Doing so leads
to comparable results but with worse explanatory power.

11When not applying a 30-day rolling window on the RIL the ILRP decreases to ´0.042 and a 10%
percentile of ´0.14. When calculating the risk premia as the difference between implied variance and
realized variance, and then expressing this difference in volatility terms, the risk premia increase. In this
case, the ILRP is nearly 0.06, while the VRP for BTC and ETH is approximately 0.3.
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are instances where drops in the ILRP do not align with those in the V RP s, and vice
versa. In addition, the ILRP and the CRP comove, especially in the second half of the
sample.12

ILRP V RPBTC V RPETH CRP

Mean -0.012 0.090 0.060 -0.037
Std 0.019 0.115 0.159 0.057
Per 10 -0.038 -0.052 -0.111 -0.120
Median -0.010 0.091 0.065 -0.025
Per 90 0.011 0.238 0.249 0.030

Table 6.4: Summary Statistics – Risk Premia. The table reports the summary of the
statistics time-series mean, median, standard deviation, and the 10% and 90% percentiles of
the risk premia. The implied quantities are calculated by the equations in Section 5.1. The
realized quantities are calculated as discussed in Section 5.2. The sample period is from 2021-05
to 2025-02.

Next, we investigate which drivers’ risk premia influence ILRP . To do so, we repeat
the method conducted in Section 6.1 by running simple regressions using daily ILRP

values and the corresponding risk premia of the drivers (V RPs and CRP ). To under-
score the individual contributions of each component, we initially isolate the most crucial
variable, followed by the second and third most influential variable. The outcomes of
these analyses are presented in Table 6.5: The majority of ILRP is accounted for by
the CRP , exhibiting R2 values of nearly 20% while V RPBTC and V RPBTC only explain
6%. Focusing on the multivariate regressions (4) and (5): The coefficient for the CRP
loads positively on the ILRP . Hence, an increase in RC (for a fixed IC) decreases the
CRP and coincides with a decrease in the ILRP (a more negative IIL as opposed to the
RIL). The coefficients for the VRPs are negative: A larger VRP (more risk) decreases
the ILRP .

6.3 Bear and Bull Markets and Implied Variables

Next, we investigate the dynamics of our measures in bear and bull markets. We start
with the bear markets, the two worst days for BTC and ETH over our sample were on
the 14th of July 2022 and the 10th of November 2022 when BTC (ETH) experienced a

12For equities, see Carr and Wu (2009) and Bollerslev et al. (2009) for evidence on the VRP, and refer
to Driessen et al. (2009) and Buraschi et al. (2014), Bondarenko and Bernard (2024) for evidence on the
CRP.
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Figure 6.2: Ex-Ante Risk Premia. The figure shows the ex-ante risk premia for the imper-
manent loss (ILRP ), the V RP s for BTC and ETH, and the CRP . The implied quantities are
calculated by the equations in Section 5.1. The realized quantities are calculated as discussed
in Section 5.2. The data is sampled daily, and the sample period is from 2021-05 to 2025-02.

(1) (2) (3) (4) (5)

Intercept -0.007 -0.015 -0.017 -0.006 -0.007
0.000 0.000 0.000 0.000 0.000

V RPBTC – – 0.048 – -0.006
– – 0.000 – 0.323

V RPETH – 0.037 – -0.009 –
– 0.000 – 0.070 –

CRP 0.162 – – 0.176 0.168
0.000 – – 0.000 0.000

R2 19.912 6.784 6.514 20.059 19.903

Table 6.5: Drivers of the Implied Impermanent Loss Risk Premia. The table reports
the results of slope, p-value, and the R2 of the described regression procedure. We report the
specifications with one ((1)-(3)) and two ((4)-(5)) independent variables. The risk premia are
calculated following Section 5.3. The data is sampled daily from 2021-10 to 2025-02.
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negative return of ´0.16 (´0.18) and ´0.14 (´0.17). Figure 6.3 displays the measures
around these days. Comparing Panel (a) and Panel (e) it turns out that the IIL steeply
increased on the second event while it did react delayed on the first event. For the IVBTC

a rapid increase is visible in both Panel (b) and Panel (f) and the same is true and even
more pronounced for IVETH , as depicted in Panel (c) and Panel (g). Lastly, as shown in
Panel (d) and Panel (h), the strong negative return in both tokens increases the IC.

We then investigate the dynamics of our measures for days when one token experiences
a large decline while the other does not. For example, BTC experienced a large drawdown
on the 5th of December 2021 with a negative return of ´0.08 while ETH only experienced
a small drawdown of ´0.02. Adding to that, on the 16th of September 2022, ETH
experienced a large negative drawdown of ´0.10 while BTC only experienced ´0.02.
Panel (a)-(d) of Figure 6.4 displays the IIL and the IC on these two days for BTC
and ETH: As visible, the IIL increases before and during the drawdown. The effect is
stronger for the second event (Panel (b)). In line with the intuition, the IC drops sharply
in both events (Panel (c) and Panel (d)).

Whenever there is a shift in the relative price between the assets, the LP incurs
impermanent loss, even if both underlying assets generate positive returns. And hence.
even though both underlying assets may experience positive returns, this does not shield
the LP from impermanent loss. We examine a day when both underlying assets rose in
price, with one increasing more than the other. For example, on the 19th of July 2022,
BTC realized a gain of almost 0.04 and ETH of over 0.11. The results are presented in
Panel (e)-(h) of Figure 6.4: As shown, while IVETH increases (leading to higher IIL), IC
also rises (reducing IIL), but this still results in a net increase in IIL around the event.

6.4 Risk Premia

Next, we analyze the behavior of the risk premia for some of the previously mentioned
events. The dynamics of the risk premia at the worst day for BTC and ETH are displayed
in Figure 6.5 (Panel (a) - Panel(d)). Both tokens decreased, which led to a smaller change
in the RIL (as compared to the IIL) and hence the ILRP overall decreased to ´0.04. As
both tokens experience a drawdown, the VRPs first increase due to the increase in IV and
decrease after the drawdown (due to the increase in RV ). The CRP was negative before
the event, indicating that the IC was lower than the RC. However, as the drawdown
approached, IC increased.

For a more comprehensive view of risk premia dynamics, Figure 6.5 (Panel (e) -
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Figure 6.3: Implied Variables and Worst Days of both Underlyings. The figure displays
the implied variables around the worst days of the underlying in our sample, which was 2022-06-
14 (Panel (a)-(d)) and 2022-11-10 (Panel (e)-(h)) where BTC experienced a drawdown of ´0.16
and ´0.14, and ETH ´0.18 and ´0.17 respectively. The return of the respective underlying is
plotted on the right y-axis. The implied quantities are calculated by the equations in Section
5.1. 26



Panel(h)) illustrates the behavior of risk premia on September 16, 2022, when ETH un-
derwent a significant negative drawdown of ´0.10, whereas BTC experienced only ´0.02.
As visible, the ILRP does not decrease but rather increases, meaning that the RIL

increased stronger than the IIL. Since ETH experienced a large drawdown, V RPETH

decreases, falling from a high level. The CRP decreases, meaning that RC increased
stronger than IC.
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Figure 6.4: Implied Variables and Bad and Good Days for each Underlying . Panel
(a) - Panel (d) of the figure displays the IIL and IC around the worst days of each underlying
while the other underlying did not experience its worst day, which was 2021-12-05 for BTC
(´0.08) and ETH (´0.02) and 2021-09-16 for ETH (´0.10) and BTC (´0.02). Panel (e) - Panel
(h) displays the implied variables around one of the best days of ETH, which was 2022-07-19
where ETH experienced an increase of 0.11, and BTC 0.04 respectively. The return of the
respective underlying is plotted on the right y-axis. The implied quantities are calculated by
the equations in Section 5.1. 28
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Figure 6.5: Risk Premia and Good Days of both Underlyings. The figure displays the
risk premia around the worst day of the underlying in our sample (Panel (a) - Panel (d)), which
was 2022-06-14 where BTC experienced a drawdown of ´0.16, and ETH ´0.18 respectively.
Panel (e) - Panel (h) displays the risk premia around the worst day of ETH, while BTC did not
experience its worst day, which was 2021-09-16 for ETH (-0.10) and BTC (-0.02). The return of
the respective underlying is plotted on the right y-axis. The risk premia are calculated by the
equations in Section 5.3.
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6.5 Implied Impermanent Loss and Liquidity Pool Size

Lehar and Parlour (2023) demonstrate that equilibrium pool size balances fee revenue
against impermanent loss. This equilibrium is reached by adjusting pool size rather than
prices, as larger pools have a smaller price impact. High impermanent loss risk results
in smaller equilibrium pool sizes due to the greater price impact on small pools. We
test this hypothesis by examining the contemporaneous correlation between the implied
(Panel (a)) and realized (Panel (b)) measures and the aggregated pool size measured as
TVL. As shown in Figure 6.6 the correlation is negative (in the first half of the sample
and the last year of the sample) for IIL and both IV s since an increase in risk translates
into a lower aggregated pool size. Consistently, for IC the correlation is positive since a
decrease in risk (stronger comovement) is accompanied by a larger pool size.
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Figure 6.6: Contemporaneous Correlations – Implied Measures and Aggregated
Pool Size (TVL). The plots report the correlation coefficients calculated for each year separ-
ately between the implied quantities, and the TV L which is calculated as the aggregate TVL
of all pools. The implied quantities are calculated by the equations in Section 5.1. The sample
period is from 2021-05 to 2025-02.

6.6 Uniswap - Risks and Rewards

To obtain an overview, some summary statistics are presented first. The realized
impermanent loss given by equation (5.3) (but without taking the square root) represented
as a time-series average for a cross-section of pools, is visually presented in Figure 6.7. The
annualized realized impermanent loss across the pools is on average at around ´8.89%,
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with extreme values up to ´40%.

Histogram of the Realized Impermanent Loss – Uniswap Pools
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Figure 6.7: Cross-Section: Realized Impermanent Loss – Uniswap Pools. The figure
shows the histogram of the (average) realized impermanent loss (annualized) in variance terms
of the Uniswap pools. The dotted line represents the average impermanent loss. The data is
sampled daily, and the sample period ranges from 2021-05 to 2025-02. The data is winzorized
at the 5% quantile.

Next, we present the average APRs calculated by equation (5.4) for the cross-section
of pools. Figure 6.8 showcases the histogram of the time-series average gross APRs
in Panel (a) and net APRs in Panel (b); net APR is calculated as gross APR minus
individual impermanent loss. The average gross APR is approximately 15%, however,
due to substantial impermanent loss, the average net APR decreases to only 3%, and
there are instances of notably negative net APRs, extending to as low as ´37%.
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(b) Uniswap: Net APRs
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Figure 6.8: Histogram: Uniswap Pool APRs. The figure shows the histogram of the
(average) APRs of the Uniswap pools. In Panel (a) the gross APRs are displayed, and in Panel
(b), the net APRs. The dotted line represents the average. The data is sampled daily, and the
sample period is from 2021-05 to 2025-02. The data is winzorized at the 5% quantile.

In Figure 6.9, the gross and net APRs for the Uniswap pools, calculated as the cross-
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sectional average across individual pools, are depicted over time. The graph illustrates
the volatility of both gross and net APRs. Notably, the gross APR has exhibited a
consistent decline, whereas the net APR has remained relatively stable, hovering around
5-10% since 2023.
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(b) Uniswap: Net APRs

Jan
2022

Jan
2023

Jan
2024

Jan
2025

Jul Jul Jul Jul

date

0.1

0.0

0.1

0.2

0.3

AP
R

Uniswap Net APR

Figure 6.9: Uniswap Pool APRs. The figure shows the cross-sectional average of the APRs
of the Uniswap pools (Ūniswap). Panel (a) displays the gross APRs, and Panel (b) displays the
net APRs. The dotted line represents the average. The data is sampled daily, and the sample
period is from 2021-05 to 2025-02. The data is winzorized at the 5% quantile. In the plots, the
five-day moving average is depicted.

6.7 APR Predictability

For the next empirical analysis, we leverage the information content of the IIL and its
drivers as forward-looking measures to illustrate their predictive relationship with future
APRs by estimating the following time-series regression:

APRtÑt`τ “ α ` β0IIL ptq ` β1IIL pt ´ 1q ` εt (6.1)

where APRtÑt`τ denotes the cumulative aggregated APR for all pools where at least one
of the tokens of the token pair is either BTC or ETH from the period from t to t`τ . The
values for time horizon τ are set to be 1, 2, 3, 5, 7, 10, 14, and 30 days. Standard errors are
corrected for autocorrelation due to overlapping APR observations, following the method
outlined in Newey and West (1987).

6.7.1 In-Sample APR Predictability

We first perform an in-sample analysis using equation (6.1). The results are displayed
in Figure 6.10 for the IIL (Panel (a) and Panel (b)) which displays a positive significant
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sign for both coefficients over the full predictive time horizon of 30 days. We repeat the
regression analysis for the drivers of the IIL in Panel (c) - Panel (h). For the IV s (Panel
(c) - Panel (f)), the betas are positive. For IVETH , the betas of the lagged values become
significant for a time horizon of ten days and larger. For IC (Panel (g)) the betas are as
expected negative but not significant. Increased correlation (less risk for the LP) lowers
the future return. Overall, a larger level of risk corresponds to a larger future return.
Again, realized quantities barely predict future APRs, as discussed in the Robustness
Section 7.

6.7.2 Out-of-Sample APR Predictability

We document the out-of-sample (OOS) performance of the implied measures for the
APRs. As in most studies, the forecasting performance of a specific model s is compared
to that of a model based on the historical mean of the respective return (s “ 0). Therefore,
the OOS R2 is calculated as

R2
s,τ “ 1 ´

MSEs,τ

MSE0,τ

, (6.2)

where MSEs,τ “ 1
N

řN e2s,τ denotes the mean-squared error of model s computed from
the prediction errors es,τ for time horizon τ . A particular model, s, outperforms the
benchmark model (s “ 0), which is based on the average historical return if the OOS R2

s,τ

is significantly positive. OOS predictions are derived from a rolling window estimation
of the predictive in-sample regression (6.1). This includes a time-specific intercept but
excludes lagged values of IIL. The estimated coefficient βILL,t and the current value of
IILt are then used to generate the OOS return forecast APRtÑt`τ . Note that at date t,
one uses only observations from the past to avoid any look-ahead bias.

Figure 6.11 presents the OOS R2 for the predictions related to the APRs based on
an initial 180-day estimation period where each day we predict the APR over a time
horizon of 1 to 30 days. As visible, the OOS R2s are positive but decreasing for longer
prediction time horizons: For example, the OOS R2s for the IIL peaks at 5% at the
1-day predictive time horizon. The IV s for BTC and ETH perform better than the IIL

with OOS R2s ranging from 18%-6%, while the IC performs similar to the IIL with
a maximum R2 of 4%. Similar to previous findings, realized quantities predict APRs
less accurately OOS. In addition, we use the results of the linear regression model as a
benchmark and implement various machine-learning models for comparison. The findings
are discussed in the Robustness Section 7.

The OOS results using risk premia as a predictor are presented in Figure 6.12. Qual-
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Figure 6.10: Predictive – Future APRs – Implied Measures. The plots report the
β coefficients and their t-statistic for the time-series regression described by equation (6.1).
Standard errors are computed with Newey and West (1987). As explanatory variables, IIL and
its drivers IVBTC , IVETH , IC, and their lagged values are considered. The implied quantities
are calculated by the equations in Section 5.1. The sample period is from 2021-05 to 2025-02.

34



(a) IIL: R2

1 2 3 5 7 10 14 30
Horizon

0.02

0.01

0.00

0.01

0.02

0.03

0.04

R
2

(b) IVBTC : R2

1 2 3 5 7 10 14 30
Horizon

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
2

(c) IVETH : R2

1 2 3 5 7 10 14 30
Horizon

0.06

0.08

0.10

0.12

0.14

0.16

R
2

(d) IC: R2

1 2 3 5 7 10 14 30
Horizon

0.04

0.02

0.00

0.02

0.04

R
2

Figure 6.11: Out-of-Sample Predictions – Implied Measures. The plots report the OOS
R2 calculated by equation (6.2) for predictions based on a 180-day rolling estimation window.
The implied quantities are calculated by the equations in Section 5.1. The sample period is from
2021-05 to 2025-02.

itatively, these results align with those obtained using only the implied variables, though
the OOS R2 has improved.

6.8 Cross-Sectional Implications for Liquidity Provision

To establish a risk-return relationship between the impermanent loss and the returns
of the liquidity provision, we perform a two-stage Fama and MacBeth (1973) regression,
where changes in the IIL and its drivers described in Section 5.1 are considered risk
factors. As test assets, the pools’ APRs are utilized, where their betas are estimated over
a one-year rolling estimation window. Hence in the first stage, the APRs are regressed
on a constant and the changes in the implied variables. In the second stage, the expected
APRs are regressed on these betas from the first stage. Expected APRs are proxied as
the realized APRs over the next 1, 2, 3, 5, 7, 10, and 14 days. The coefficients from the
second stage regression (γ) represent the average risk premia of the risk factors.
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Figure 6.12: Out-of-Sample Predictions – Risk Premia. The plots report the OOS R2

calculated by equation (6.2) for predictions based on a 180-day rolling estimation window. The
risk premia are calculated following Section 5.3. The sample period is from 2021-05 to 2025-02.

6.8.1 Univariate Analysis

As visible from Figure 6.13 Panel (a) and Panel (b), the price of risk for the IIL

is positive and displays significance for up to 14 days. The results for the drivers are
displayed in Figure 6.13: The IVBTC is positively priced and significant for up to 10 days
(see Panel (c), and Panel (d)). The same holds for IVETH , where the significance is given
for up to 14 days (see Panel (e), and Panel (f)). For IC, the regression coefficient is
negative and statistically significant up to 7 days (Panel (g) and Panel (h)). In liquidity
provision, LPs prefer tokens with high positive correlations to minimize impermanent
loss. As a result, the price of risk, with IC as a factor, is negative. The cross-sectional
findings for the RIL and RV s demonstrate qualitative similarity, whereas the RC lacks
significance, as detailed in the Robustness Section 7.
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Figure 6.13: Cross-Section – Implied Measures. The table reports the γ coefficient and
its t-statistic for the Fama and MacBeth (1973) two-stage cross-sectional regression. As risk
factors, the drivers of IIL are considered, namely the changes in IVBTC , IVETH , and IC. The
implied quantities are calculated by the equations in Section 5.1. In each regression we control
for the changes in the individual realized impermanent loss. The sample period is from 2021-05
to 2025-02. 37



6.8.2 Multivariate Analysis

We repeat the procedure for a multivariate setting where we simultaneously estim-
ate the betas for more than one factor. Figure 6.14 displays the γ and its t-statistic
over the predictive time horizons. In line with the univariate regressions, the volatilities
(correlation) carry a positive (negative) price of risk.
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Figure 6.14: Cross-Section – Multivariate – Drivers of the IIL. This figure reports
the γ coefficient and its t-statistic for the multivariate Fama and MacBeth (1973) two-stage
cross-sectional regression. As risk factors, the drivers of IIL are considered, namely changes in
IVBTC , IVETH , and IC. The implied quantities are calculated by the equations in Section 5.1.
In each regression we control for the changes in the individual realized impermanent loss. The
sample period is from 2021-05 to 2025-02.

7 Robustness

To verify the robustness of the analysis to various specifications, a series of tests are
carried out and reported in this section, Appendix D, and Internet Appendix II.

7.1 Non-Overlapping Predictions

To avoid autocorrelation caused by overlapping observations, the APRs are sampled
in a non-overlapping fashion. In Figure D.3, the average slope and t-statistic for the APR
predictability for each maturity are displayed. As visible, the signs of the coefficients align
with the main results even though the coefficients are less significant: For example, the
IIL is only significant up to 2 days. The results for IVBTC , and IVETH are similar with
significance given up to 5 ´ 7 days.
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7.2 OOS Predictions using Machine Learning Models

Taking the results of this linear regression (LR) model as a benchmark, we imple-
ment various machine learning models: linear regression with elastic net regularisation
and Huber loss (LRENH), gradient boosted regression tree (GBRT), random forest re-
gression (RFR), long short-term memory neural network (LSTM), and 1D convolutional
neural network (CNN1D). The model settings are the same as described in Section 6.7.2,
except for the two neural networks LSTM and CNN1D, we include the lagged values
of the independent variables. Furthermore, besides testing the univariate models as the
benchmark model, we also test multivariate models for all implied and realized variables.
For training the models, we perform a grid search for the model hyperparameters, and
we set ten percent of the data for model validations. The results are displayed in Figure
D.4 and D.5 indicate that some machine learning models outperform linear regression
in predictive accuracy measured by OOS R2 and that implied variables exhibit greater
predictive power compared to their realized counterparts.

7.3 Misspecification and Tradable Factor Risk Premia

The methodology proposed by Fama and MacBeth (1973) has been demonstrated to
yield unreliable results, particularly when an asset pricing model may be misspecified
or a candidate risk factor is only weakly correlated with returns, which are studied in
Gospodinov et al. (2014), Kan et al. (2013), and Quaini et al. (2023).

We follow Quaini et al. (2023) and estimate the i) misspecification-robust stochastic
discount factor (SDF) coefficients following Gospodinov et al. (2014) (GKR estimator),
and ii) tradable factor risk premium following Kan et al. (2013) (KRS–FRP estimator)
and Quaini et al. (2023) (TFRP and O–TFRP estimators), which is defined by the
negative factor covariance with the projection of any SDF on the space of asset returns.
The results are presented in Figure D.6. The left panels (a), (c), (e), and (g) display the
misspecification-robust GKR estimator. The right panels (b), (d), (f), and (h) display the
tradable factor risk premia calculated by the KRS–FRP, the TFRP, and the O–TFRP
estimators. As visible, the coefficient and the risk premia are positive and significant for
IIL, IVBTC , and IVETH . For IC they are as expected negative but not significant.
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7.4 Realized Quantities

Similar to the empirical analyses in Sections 6.5, 6.7, and 6.8 for the implied quantities,
we repeat these analyses for the realized quantities from Section 5.2.

7.4.1 Realized Impermanent Loss and Liquditiy Pool Size

Figure II.1 displays the correlation coefficient of the realized measures and the aggreg-
ated TVL. The correlation behaves similarly as for implied variables (Figure 6.6), with
the difference that the RC often displays a large negative value in the early sample.

7.4.2 In-Sample APR Predictability

For the APR in-sample prediction, we repeat the regression analysis described by
equation (6.1) using the realized quantities RIL, RVBTC , RVETH , and RC defined in
Section 5.2. The results are displayed in Figure II.2. The RIL predicts the future APRs
for a time horizon of three days. None of the other realized quantities display significance.

7.4.3 Out-of-Sample APR Predictability

For the APR OOS prediction, we repeat the procedures described in Section 6.7.2
using the realized quantities RIL, RVBTC , RVETH , and RC defined in Section 5.2. The
OOS R2 is calculated by equation (6.2). The results are displayed in Figure II.3. The
RV s predicts the future APRs OOS only for a time horizon of one day.

7.4.4 Cross-Sectional Prediction – Realized Variables

We repeat the cross-sectional tests described in Section 6.8 for realized variables. The
results are displayed in Figure II.4 and are qualitatively similar to those for the implied
variables, except for RC which does not show any significance. In addition, we repeat
the ability to price the cross-section of pools using the changes in the individual daily
realized impermanent loss (RILind) of the respective pool (and not always the RIL for
BTC-ETH). As displayed in Figure II.5 Panel (b) the associated t-statistic of the second-
stage regression coefficient is only significant for the next two days.
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8 Conclusion

The IIL reflects the risk of a disparity in relative token prices as implied by option
prices. This article quantifies this risk, investigates its fundamental economic drivers,
and delves deeper into its predictive capabilities.

We assess the impermanent loss from a risk-neutral standpoint. Impermanent loss
equates to one-eighth of the volatility of the relative price and can be computed by evalu-
ating the log contract proposed by Carr and Madan (1998) using a portfolio of European
options on the relative price. To tackle the primary challenges—namely, the lack of an
options market for the relative price and the relative price not being a martingale—we
take a two-step approach. First, we compute a joint density, minimizing the Hansen and
Jagannathan (1991) bounds, from existing options on separate tokens. Second, we employ
a change of numéraire. Our methodology integrates existing replication approaches that
assume one of the tokens is a stablecoin, thereby offering methodological contributions
as well.

We present empirical findings indicating that the IIL and its drivers are related to
the pool size and subsequent pool returns. The predictability of IIL stems from its three
primary components: implied individual token variances and their implied correlation.
These components individually account for the variation in pool returns across different
tokens.
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Appendix A Mathematics for Impermanent Loss

A.1 Proof of Proposition 3.1

By the relative price that is defined in equation (3.2) and Assumption 3.1, we have
N2ptq
N1ptq

“ R ptq “
P1ptq
P2ptq

. Based on equations (3.3), (3.5), and (3.6), using Itô’s lemma we
can show that

d pN1 ptqP1 ptq ` N2 ptqP2 ptqq ´ pN1 ptq dP1 ptq ` N2 ptq dP2 ptqq (A.1)
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“ ´
σ2
R ptq

4
N1 ptqP1 ptq dt.

Equation (A.1) shows that the numerator in equation (3.7) has only a dt term, and so
we take the limit in the denominator of equation (3.7) as ∆t goes to zero, giving us

dIL ptq “ ´
σ2
R ptqN1 ptqP1 ptq dt

4 pN1 ptqP1 ptq ` N2 ptqP2 ptqq
(A.2)

Then again, from equation (3.2) and Assumption 3.1, we have N2ptqP2ptq
N1ptqP1ptq

“ 1, consequently
equation (A.2) reduces to equation (3.8).

A.2 Change of Numéraire and Girsanov Theorem

Let us consider a risk-neutral probability measure Q that is equivalent to the physical
probability measure P used in Section 3 over some finite time interval t P r0, T s. Suppose
r is the risk-free interest rate. The SDEs for the token price dynamics under Q are

dPi ptq “ rPi ptq dt ` σi ptqPi ptq dBQ
i ptq i “ 1, 2, (A.3)

where dBQ
i ptq “ dBiptq`

µi´r
σiptq

dt is a SBM under Q, and dBQ
1 ptq dBQ

2 ptq “ ρdt. The change
of measure also alters the probabilities for the volatilities σiptq, but these processes remain
Ft-adapted. Details on measure changes for stochastic volatility models can be found in
Chapter 2 of Fouque et al. (2011). It is straightforward to observe that the discounted
token prices given by equation (3.5) are martingales under Q. By utilizing Itô’s lemma
on lnPi ptq, their solutions are

Pi ptq “ Pi p0q exp

ˆ
ż t

0

ˆ

r ´
1

2
σ2
i psq

˙

ds `

ż t

0

σi psq dBQ
i psq

˙

. (A.4)

Then, by implementing Itô’s lemma on equation (A.3) we can derive the risk-neutral SDE
for the relative price under the same Q,

dR ptq “ d

ˆ

P1 ptq

P2 ptq

˙

“ µQ
R ptqR ptq dt ` σR ptqR ptqR ptqBQ

R ptq ,

where is µQ
R ptq “ σ2

2 ptq ´ ρσ1 ptqσ2 ptq, σ2
R ptq “ σ2

1 ptq ` σ2
2 ptq ´ 2ρσ1 ptqσ2 ptq, and

BQ
R ptq “

σ1ptq
σRptq

BQ
1 ptq ´

σ2ptq
σRptq

BQ
2 ptq is a SBM under Q. Please notice that R ptq is not a

martingale under Q. The details of constructing a risk-neutral probability measure can
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be found in Shreve (2004).
To convert the relative price R ptq to a martingale, we can apply the technique of

change of numéraire. We choose the token P2 ptq as the numéraire, and define a new
probability measure rQ by the following Radon-Nikodym density:

drQ
dQ

ˇ

ˇ

ˇ

ˇ

ˇ

T

:“
P2 pT q

EQ rP2 pT qs
“

P2 pT q

erTP2 p0q
. (A.5)

We can show that the relative price R ptq defined by equation (3.4) in Assumption 3.1 is
a martingale under rQ defined by equation (A.5):

rEQ
rR pT qs “ EQ

„

P2 pT q

erTP2 p0q

P1 pT q

P2 pT q

ȷ

“ EQ

„

P1 pT q

erTP2 p0q

ȷ

“
erTP1 p0q

erTP2 p0q
“ R p0q .

Also, given the density of equation (A.5), we can derive the spread option formulas given
by equation (??),

Callsp pT, Kq “ e´rTEQ
“

pP1 pT q ´ KP2 pT qq
`

‰

,

“ P2 p0qEQ

„

P2 pT q

erTP2 p0q
pR pT q ´ Kq

`

ȷ

,

“ P2 p0q rEQ
“

pR pT q ´ Kq
`

‰

,

Putsp pT, Kq “ P2 p0q rEQ
“

pK ´ R pT qq
`

‰

.

Next, let us assume that X ptq is a stochastic process defined as follows:

X ptq “

ż t

0

σ2 psq dBQ
2 psq .

Because BQ
2 ptq is a martingale under Q, therefore, it is obvious that X ptq is a martingale

under Q as well. The Doléans-Dade exponential of X ptq at time t “ T is

drQ
dQ

ˇ

ˇ

ˇ

T
“ E pX pT qq “ exp

ˆ

X pT q ´
1

2

ż T

0

σ2
2 ptq dt

˙

“
P2 pT q

erTP2 p0q
.

Girsanov theorem states that given WQ ptq a SBM under Q, we define the following
stochastic process:

ĂWQ
ptq :“ WQ

ptq ´
@

WQ, X
D

ptq , (A.6)

where
@

WQ, X
D

denotes the quadratic variation of these two stochastic processes, and
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then ĂWQ ptq is a SBM under rQ. Consequently, rBQ
2 ptq “ BQ

2 ptq ´
şt

0
σ2 psq ds is a SBM

under rQ. Suppose that the two Brownian motions WQ ptq and BQ
2 ptq are correlated

dB2 ptq dWQ ptq “ ρdt. Then by the Girsanov theorem, equation (A.6) becomes

ĂWQ
ptq “ WQ

ptq ´
@

WQ, X
D

ptq “ WQ
ptq ´ ρ

ż t

0

σ2 psq ds. (A.7)

Therefore, ĂWQ ptq given by equation (A.7) is SBM under rQ. Consequently, rBQ
1 ptq “

BQ
1 ptq ´ ρ

şt

0
σ2 psq ds is a SBM under rQ.

By applying the above results to the token prices given by equation (A.3), under rQ
defined by equation (A.5) we have

dP1 ptq “ rP1 ptq dt ` σ1 ptqP1 ptq
´

dBQ
1 ptq ´ ρσ2 ptq dt ` ρσ2 ptq dt

¯

, (A.8)

“ pr ` ρσ1 ptqσ2 ptqqP1 ptq dt ` σ1 ptqP1 ptq d rBQ
1 ptq ,

dP2 ptq “ rP2 ptq dt ` σ2 ptqP2 ptq
´

dBQ
2 ptq ´ σ2 ptq dt ` σ2 ptq dt

¯

,

“
`

r ` σ2
2 ptq

˘

P2 ptq dt ` σ2 ptqP2 ptq d rBQ
2 ptq .

Please notice that ert

P2ptq
is a martingale under rQ, in other words, the discounted price of

the base token is a martingale under this new measure. Finally, by utilizing Itô’s lemma
and equation (A.8) we have

dR ptq “ d

ˆ

P1 ptq

P2 ptq

˙

“ R ptq
´

σ1 ptq d rBQ
1 ptq ´ σ2 ptq d rBQ

2 ptq
¯

.

A.3 Variance Swap and Impermanent Loss

Assuming constant risk-free interest rate and zero dividend yield, as shown in Carr
and Madan (1998), Demeterfi et al. (1999), Carr and Wu (2009), and Bakshi et al. (2015),
the valuation of variance swap under the risk-neutral probability measure Q is

EQ

„
ż T

0

σ2
i ptq dt

ȷ

“ 2EQ

„
ż T

0

dPi ptq

Pi ptq

ȷ

´ 2EQ

„

ln

ˆ

Pi pT q

Pi p0q

˙ȷ

, (A.9)

“ ´2EQ

„

ln

ˆ

Pi pT q

erTPi p0q

˙ȷ

,
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because by equation (A.3) we have EQ
”

şT

0
dPiptq
Piptq

ı

“ rT . Consequently, by using equation

(A.4), the second line of equation (A.9) with respect to token price P1 pT q under rQ is

rEQ

„

ln

ˆ

P1 pT q

erTP1 p0q

˙ȷ

“ rEQ

„

´

ż T

0

1

2
σ2
1 ptq dt `

ż T

0

σ1 ptq dBQ
1 ptq

ȷ

. (A.10)

As shown through the change of measure in Appendix A.2, we have rBQ
1 ptq “ BQ

1 ptq ´

ρ
şt

0
σ2 psq ds, therefore by using the property E rQ

”

şT

0
σ1 ptq dB

rQ
1 ptq

ı

“ 0, and substituting

BQ
1 ptq with rBQ

1 ptq, equation (A.10) becomes

rEQ

„

ln

ˆ

P1 pT q

erTP1 p0q

˙ȷ

“ rEQ

„
ż T

0

ˆ

ρσ1 ptqσ2 ptq ´
1

2
σ2
1 ptq

˙

dt

ȷ

. (A.11)

Similarly, the change of measure in Appendix A.2 also shows that rBQ
2 ptq “ BQ

2 ptq ´
şt

0
σ2 psq ds, hence by using equation (A.4), the property E rQ

”

şT

0
σ2 ptq dB

rQ
2 ptq

ı

“ 0, and

replacing BQ
2 ptq with rBQ

2 ptq, the second line of equation (A.9) with respect to token price
P2 pT q under rQ is

rEQ

„

ln

ˆ

P2 pT q

erTP2 p0q

˙ȷ

“ rEQ

„
ż T

0

1

2
σ2
2 ptq dt

ȷ

. (A.12)

Furthermore, after subtracting equation (A.12) from equation (A.11) on the left-hand
and right-hand sides respectively, we can get

rEQ

„

ln

ˆ

R pT q

R p0q

˙ȷ

“ ´
1

2
rEQ

„
ż T

0

`

σ2
1 ptq ´ 2ρσ1 ptqσ2 ptq ` σ2

2 ptq
˘

dt

ȷ

, (A.13)

“ ´
1

2
rEQ

„
ż T

0

σ2
R ptq dt

ȷ

.

Eventually, by following equation (3.8) in Proposition 3.1, we can obtain the expect-
ation of the impermanent loss under rQ using equation (A.13):

rEQ
rIL pT qs “ ´

1

8
rEQ

„
ż T

0

σ2
R ptq dt

ȷ

“
1

4
rEQ

„

ln

ˆ

R pT q

R p0q

˙ȷ

,

where R ptq is the relative price defined by equation (3.6), σ2
R ptq “ σ2

1 ptq´2ρσ1 ptqσ2 ptq`

σ2
2 ptq is the variance of the relative price.
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A.4 Margrabe Formula

As we can observe from equation (3.8), one of the key components is the correlation
ρ between the token prices P1 ptq and P2 ptq. To calculate ρ, we first determine the IV of
the spread option using the formula provided by Margrabe (1978) for pricing European
spread call and put options. The IV of a European spread option with maturity T at
strike price K is pv pT, Kq such that

Callmk
sp pT, Kq “ P1 p0qΦ pd1q ´ KP2 p0qΦ pd2q ,

Putmk
sp pT, Kq “ KP2 p0qΦ p´d2q ´ P1 p0qΦ p´d1q ,

where Callmk
sp pT, Kq and Putmk

sp pT, Kq are the spread option prices given by the market
data, Φ p¨q denotes the standard normal cumulative distribution function, d1 and d2 are
given by

d1 “
ln P1p0q

P2p0q
` 1

2
pv2 pT, KqT

pv pT, Kq
?
T

, d2 “ d1 ´ pv pT, Kq
?
T .

Appendix B Computation of the Joint Density

As in Section 4.2, let Π denote the excess return on a portfolio. Suppose that pX, Y q P

R2 are the two state variables, which are random variables X P tx1, x2, ¨ ¨ ¨ , xmu and Y P

ty1, y2, ¨ ¨ ¨ , ynu on a probability space pΩ, F , Pq. Their joint probability distribution
under this physical probability measure P is

pij “ P pX “ xi, Y “ yjq . (B.1)

Suppose that their joint probability distribution under an equivalent risk-neutral prob-
ability measure Q is

qij “ Q pX “ xi, Y “ yjq . (B.2)

By using equations (B.1) and (B.2), we then have a pricing kernel M px “ xi, y “ yjq P R2

such that
Mij “

qij
pij

,

We assume that the interest rate is zero such that E rM s “ 1. Because we know that
cov pM, Π q “ E rMΠ s ´ E rM sE rΠ s, then by utilizing the Cauchy–Schwarz inequality
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we have
ˇ

ˇcov pM, Π q
ˇ

ˇ

2
ď std2

pMq std2
pΠ q. Therefore, for any Π , p and M , we have

0 “ E rMΠ s “ cov pM, Π q ` E rΠ s ě ´std pMq std pΠ q ` E rΠ s ,

where E is the expectation operator under P, std p¨q is the standard deviation, and cov p¨q

is the covariance. This yields the HJ bound in terms of Sharpe ratio ErΠ s

stdpΠ q
,

sup
Π :stdpΠ qą0

E rΠ s

std pΠ q
ď inf

MPM
std pMq (B.3)

where M denotes the family of pricing kernels. The right-hand side of equation (B.3)
motivates us to find a pricing kernel that minimizes the HJ bound.

B.1 The Unconstrained Case

We start from an unconstrained case of quadratic programming (QP) problem. For
the joint probability distributions given by equations (B.1) and (B.2), define ϕij :“

qij
?
pij

,
therefore we have pij “

ř

i,j ϕ
2
ij ´1 and the variance, denote by var p¨q, of M is var pMq “

ř

i,j

´

qij
pij

´ 1
¯2

. We then construct an unconstrained QP problem for the HJ bound
defined by equation (B.3):

minimize
ϕ:ϕiją0

ÿ

i,j

ϕ2
ij, (B.4)

subject to
ÿ

i,j

ϕij
?
pij “ 1

There exists a solution to the QP problem (B.4). We can rewrite the problem in a matrix
form as

minimize
ϕ

ϕJϕ, (B.5)

subject to ϕJ?
p “ 1,

ϕi ą 0 @i ď mn,

where ϕ stacks all the columns of matrix rΦsij “ ϕij into an mn ˆ 1 vector as follows:

ϕ “

”

ϕ11 ϕ21 ¨ ¨ ¨ ϕm1 ϕ12 ¨ ¨ ¨ ϕm2 ¨ ¨ ¨ ϕ1n ϕ2n ¨ ¨ ¨ ϕmn

ıJ

,
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and p stacks all the columns of matrix rP sij “ pij into an m ˆ n vector as follows:

p “

”

p11 p21 ¨ ¨ ¨ pm1 p12 ¨ ¨ ¨ pm2 ¨ ¨ ¨ p1n p2n ¨ ¨ ¨ pmn

ıJ

,

and
?
p denotes that the square root function is applied on every entry of vector p, in

other words,
“?

p
‰

ij
“

?
pij. This matrix form given by equation (B.5) of the QP (B.4)

can be solved with standard software packages such as SciPy, CVXPY, and MATLAB.13

B.2 Constrained Case for Marginals

Suppose that marginal probability distributions under Q are given as follows
ř

j qij “

µi and
ř

i qij “ νj. We then construct a constrained QP problem for the HJ bound given
by equation (B.3):

minimize
ϕ:ϕiją0

ÿ

i,j

ϕ2
ij, (B.6)

subject to
ÿ

j

ϕij
?
pij “ µi,

ÿ

i

ϕij
?
pij “ νj.

For each i ď m and each j ď n, we define the following two matrices:

Ai “ Inˆn b
`

eie
J
i

˘

, Bj “ diag pejq b Imˆm, (B.7)

where Iaˆb is the identity matrix with dimension a ˆ b, ei P Rm and ej P Rn are the ith

and jth canonical (or standard) basis vectors respectively, and b denotes the Kronecker
product. To gain a sense for the operations performed by matrices Ai and Bj defined by
equation (B.7), please take a look at the following matrix multiplications as examples:

Aiϕ “ diag
´”

eie
J
i ¨ ¨ ¨ eie

J
i ¨ ¨ ¨ eie

J
i

ı¯

ϕ, (B.8)

“

”

0 ¨ ¨ ¨ 0 ϕi1 0 ¨ ¨ ¨ 0 ϕi2 0 ¨ ¨ ¨ 0 ϕin 0 ¨ ¨ ¨ 0
ıJ

, @i ď m,

Biϕ “ diag
´”

0mˆm ¨ ¨ ¨ Imˆm ¨ ¨ ¨ 0mˆm

ı¯

ϕ,

“

”

0 ¨ ¨ ¨ 0 ϕ1j ϕ2j ¨ ¨ ¨ ϕmj 0 ¨ ¨ ¨ 0
ıJ

, @j ď n,

13See https://docs.scipy.org/doc/scipy/tutorial/optimize.html, https://www.cvxpy.org/, and ht-
tps://www.mathworks.com/.
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where diag p¨q denotes a diagonal matrix, 0mˆm is a zero matrix with dimension m ˆ m,
the dimension of matrix Ai and Bi is pmnq ˆ pmnq.

By observing equation (B.8), we can easily see that matrices Ai and Bj are symmetric
Ai “ AJ

i and Bj “ BJ
j , and are also idempotent A2

i “ Ai and B2
j “ Bj. Thus, we can

use equation (B.7) to construct the constraints of the QP problem (B.6) as follows:

ϕJAi

?
p “

ÿ

j

ϕij
?
pij “ µi, ϕJBj

?
p “

ÿ

i

ϕij
?
pij “ νj.

Furthermore, let us define two sparse vectors ui “ Ai
?
p P Rmn and vj “ Bj

?
p P Rmn,

then similar to equation (B.5), we can then rewrite the QP problem (B.6) in a matrix
form as follows:

minimize
ϕ

ϕJϕ, (B.9)

subject to uJ
i ϕ “ µi @i ď m,

vJ
j ϕ “ νj @j ď n,

ϕk ą 0 @k ď mn.

These sparse vectors ui and vj can be further integrated into a single constraint matrix
C P Rpm`nqˆpmnq as follows:

C “

”

uJ
1 uJ

2 ¨ ¨ ¨ uJ
m vJ

1 vJ
2 ¨ ¨ ¨ vJ

n

ıJ

. (B.10)

It is easy to check that matrix C is 2mn-sparse. By using equation (B.10), equation
(B.9) can be rewritten succinctly as

minimize
ϕ

ϕJϕ, (B.11)

subject to Cϕ “
“

µ ν
‰J
,

ϕk ą 0 @k ď mn,

where rµsi “ µi and rνsj “ νj are vectors of marginal probability distributions under Q.
For the implementation in solving the QP problem (B.11), the entries of matrix C

can be loaded before running the optimization. A software package is required to solve
QP problems with pm ` nq sparse constraints. For instance, with m “ n “ 100, the
problem involves 200 constraints and 10000 ˆ 10000 sparse matrices. Suitable options
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include SciPy, CVXPY, and MATLAB.
The Lagrange multipliers of the optimization problem are discussed in Internet Ap-

pendix I.

Appendix C Implied Impermanent Loss for Uniswap

V3 and Implied Loss-Versus-Rebalancing

In the following, we briefly outline the application of our methodology, which is
broadly applicable, for the valuation of impermanent loss in Uniswap V3—where liquidity
providers can allocate tokens within specified price ranges—and to other adverse selection
metrics, such as loss-versus-rebalancing (LVR), as discussed by Milionis et al. (2024).

C.1 Implied Impermanent Loss for Uniswap V3

The valuation formula in Proposition 4.1 applies to the V2 protocol, but many pools
now operate under the V3 protocol, where LPs allocate tokens within a specific price
range. Consider the ticks priqi“1, 2, ..., m where ri`1 “ ri ˆ 1.0001, and let Ci “ rri, ri`1q

denote the band. If R ptq P Ci then the LP earns a reward but is also exposed to
impermanent loss, in particular, it can be shown that the V3 analog to equation (3.8) is

dILi ptq “ ´
σ2
R ptq

a

R ptq

4
´

2
a

R ptq ´
?
ri ´

Rptq
?
ri`1

¯1tRptqPCiudt.

This increment of impermanent loss can be derived using Itô’s lemma as done in de-
riving equation (3.8). Integrating over time yields the total impermanent loss, which is
equivalent to a corridor variance swap (Lee (2010a,b)),

rEQ
rILi pT qs “ ´

1

4
rEQ

»

–

ż T

0

σ2
R ptq

a

R ptq

2
a

R ptq ´
?
ri ´

Rptq
?
ri`1

1tRptqPCiu ptq dt

fi

fl , (C.1)

“ ´
1

2

ż

KPCi

rEQ
“

pK ´ R pT qq
`

‰

1tKăRp0qu ` rEQ
“

pR pT q ´ Kq
`

‰

1tKěRp0qu

?
K3

´

2
?
K ´

?
ri ´ K

?
ri`1

¯ dK.

The pool-wide impermanent loss is a weighted sum of individual corridor variance swaps,
with weights proportional to the TVL in each band,

ř

i TVLi
rEQ rILi pT qs {

ř

i TVLi, where
TVLi is the TVL in band i.
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C.2 Implied Loss-Versus-Rebalancing

Our framework can be used to assess loss-versus-rebalancing (LVR) Milionis et al.
(2024), with the advantage of valuing LVR under Q introduced in Section 4.

Denote the TVL of a liquidity pool as V ptq :“ N1 ptqP1 ptq ` N2 ptqP2 ptq. In our
continuous-time framework, an increment of LVR in the V2 protocol is

dLV R ptq “
1

8
V ptqσ2

R ptq dt,

where Ni ptq and Pi ptq for i “ 1, 2 are the notation from Section 3.1 for number of
tokens in the pool and the market prices. Consider the constant product rule as given in
equation (3.1), where the parameter L remains constant. We can express the Ni in terms
of L and R ptq, namely, N1 ptq “ L?

Rptq
and N2 ptq “ L

a

R ptq, and from Assumption 3.1

it follows that
V ptq “ 2L

a

P1 ptqP2 ptq.

Then the valuation of LVR under Q is computed using the change of numéraire introduced
in Section 4.3,

EQ
rLV R pT qs “

erTLP2 p0q

4

ż T

0

rEQ
”

a

R ptqσ2
R ptq

ı

dt.

Using the weighted variance swap framework of Lee (2010b), it follows that

EQ
rLV R pT qs “ ´2L

´

EQ
a

P1 pT qP2 pT q ´ erT
a

P1 p0qP2 p0q

¯

(C.2)

Equation (C.2) can be computed using the estimated RND obtained by minimizing the
HJ bound, as proposed in Section 4.2.

Implied LVR for non-constant L can be managed under assumptions such as L be-
ing uncorrelated with R ptq and behaving as a martingale. In V3, implied LVR can be
computed as a portfolio of options, similar to equation (C.1) for IL. Like V2 LVR, the
implied V3 LVR is expressed in units of the original numéraire.
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Appendix D Additional Figures

(a) BTC Options (b) ETH Options

Figure D.1: Option Volumes across Exchanges. The figure reports the BTC and ETH
options trading volume, in dollar terms, across cryptocurrency exchanges. The data is obtained
from The Block.
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(b) IIL and RIL 2 days MA: BTC and ETH
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Figure D.2: IIL and RIL – BTC and ETH. The figure shows different moving averages for
IIL and RIL of BTC and ETH. The implied quantity is calculated by the equation in Section
5.1. The realized quantity is calculated by the approach in Section 5.2. The data is sampled
daily, and the sample period is from 2021-05 to 2023-11.
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(a) IIL: β
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(b) IIL: t-statistic
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(c) IVBTC : β
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(d) IVBTC : t-statistic
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(e) IVETH : β
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(f) IVETH : t-statistic
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(g) IC: β
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(h) IC: t-statistic
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Figure D.3: Predictive – Non-Overlapping – Future APRs – Implied Measures and
Lagged Values. The plots report the average β coefficients and their average t-statistic for the
time-series regression as outlined in equation (6.1). The data is sampled at a frequency equal
to the predictive time horizon (i.e., non-overlapping). As explanatory variables, IIL and its
drivers IVBTC , IVETH , IC, and their lagged values are considered. The implied quantities are
calculated by the equations in Section 5.1. The sample period is from 2021-05 to 2025-02.
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Figure D.4: Out-of-Sample Predictions – Machine Learning Models. The plots report
the OOS R2 obtained from predictions using the machine learning models for each predictor,
calculated by equation (6.2) for predictions based on a 180-day rolling estimation window. We de-
ploy the linear regression (LR) model, linear regression with elastic net regularisation and Huber
loss (LRENH), gradient-boosted regression tree (GBRT), random forest regression (RFR), long
short-term memory neural network (LSTM), and 1D convolutional neural network (CNN1D).
The implied and realized quantities are calculated by the equations in Section 5. The sample
period is from 2021-05 to 2023-11.
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Figure D.5: Out-of-Sample Predictions – Machine Learning Models – Implied vs.
Realized. The plots report the OOS R2 obtained from predictions using the machine learn-
ing models, calculated by equation (6.2) for predictions based on a 180-day rolling estimation
window. The OOS R2 of the implied and realized counterparts are displayed in each panel.
We deploy the linear regression (LR) model, linear regression with elastic net regularisation
and Huber loss (LRENH), gradient-boosted regression tree (GBRT), random forest regression
(RFR), long short-term memory neural network (LSTM), and 1D convolutional neural network
(CNN1D). The implied and realized quantities are calculated by the equations in Section 5. The
sample period is from 2021-05 to 2023-11.
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Figure D.6: Cross-Section – Univariate – Tradable Risk Premia. The figure presents
the results of the SDF procedure described in Section 7.3. The left figures report the SDF
coefficient and its standard error bars calculated using the GKR estimator. The right figures
display the tradable risk premia calculated using the KRS–FRP, the TFRP, and the O-TFRP
estimators. As risk factors, the levels of IIL and its drivers are considered, namely IVBTC ,
IVETH , and IC. The implied quantities are calculated by the equations in Section 5.1. The
sample period is from 2021-05 to 2023-11.
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Internet Appendix

I Lagrange Multipliers

Proposition I.1. Assume under the physical probability measure P, the joint density is
p px, yq ą 0 for all px, yq. Then, the optimal pricing kernel given by equation (4.8) from
the HJ upper bound in equation (4.6) is arbitrage-free if and only if λ1 pxq ` λ2 pyq ą 0

for all px, yq.

It is not necessary to demonstrate a proof for Proposition I.1 because it is a direct
invocation of the fundamental theorem of asset pricing.

Proposition I.2. Given optimal Lagrange multipliers λ1 pxq and λ2 pyq in equation (4.7)
from the minimization of the HJ upper bound in equation (4.6), λ1 pxq can be replicated by
a portfolio of European call and put options on P1 pT q, forward contracts on P1 pT q, and
cash. Similarly, λ2 pyq can be replicated by a portfolio of European call and put options
on P2 pT q, forward contracts on P2 pT q, and cash.

Proof. Regularity of the Lagrange multiplier functions as proved in Guasoni and Mayer-
hofer (2020), where if µ and ν are sufficiently differentiable then so is the solution to the
dual problem. Given this regularity, the formula of Carr and Madan (1998) is used to
replicate the Lagrange multipliers,

λ1 pxq “ λ1 px0q ` λ1
1 px0q px ´ x0q `

ż x0

0

λ2
1 pKq pK ´ xq

` dK `

ż 8

x0

λ2
1 pKq pK ´ xq

` dK,

λ2 pyq “ λ2 py0q ` λ1
2 py0q py ´ y0q `

ż y0

0

λ2
2 pKq pK ´ yq

` dK `

ż 8

y0

λ2
2 pKq pK ´ yq

` dK,

where x0 and y0 are the chosen reference points, usually the forward prices of P1 pT q

and P2 pT q, respectively. For x, λ1 px0q is a position in cash, λ1
1 px0q px ´ x0q is the net

position in λ1
1 px0q many forward contracts, and the integrals are portfolios of out-of-the-

money European call and put options; the same breakdown applies for y and λ2 pyq.
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II Realized Measures

(a) Realized Measures and Aggregated TVL
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Figure II.1: Contemporaneous Correlations – Realized Measures and Aggregated
Pool Size (TVL). The plots report the correlation coefficients calculated for each year separ-
ately between the realized quantities, and the TV L which is calculated as the aggregate TVL of
all pools. The realized quantities are calculated as discussed in Section 5.2. The sample period
is from 2021-05 to 2025-02.
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Figure II.2: Predictive – Future APRs – Realized Measures. The table reports the β
coefficient and its t-statistic for the time-series regression described by equation (6.1). Standard
errors are computed with Newey and West (1987). As explanatory variables, RIL, RVBTC ,
RVETH , RC and their lagged values are considered. The realized quantities are calculated by
the approaches in Section 5.2. The sample period is from 2021-05 to 2023-11.
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Figure II.3: Out-of-Sample Predictions – Realized Measures. The plots report the OOS
R2 calculated by equation (6.2) for predictions based on a 180-day rolling estimation window.
The realized quantities are calculated by the approaches in Section 5.2. The sample period is
from 2021-05 to 2023-11.
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Figure II.4: Cross-Section – Univariate – Realized Measures. The table reports the
γ coefficient and its t-statistic for the univariate Fama and MacBeth (1973) two-stage cross-
sectional regression. As risk factors, the drivers of RIL are considered, namely the changes
in RVBTC , RVETH , and RC. In each regression we control for the changes in the individual
realized impermanent loss. The realized quantities are calculated by the approaches in Section
5.2. The sample period is from 2021-05 to 2025-02.
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Figure II.5: Cross-Section – Univariate – Realized Individual Impermanent Loss.
The table reports the γ coefficient and its t-statistic for the univariate Fama and MacBeth (1973)
two-stage cross-sectional regression. As risk factors, changes in the individual daily RILind given
by equation (5.3) are considered. The sample period is from 2021-05 to 2025-02.
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