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Abstract

The aim of this paper is to propose a generalization of the local bootstrap
for periodogram statistics to the case when weakly stationary time series
are contaminated by additive outliers. In order to achieve robustness,
we suggest to replace the classical version of the periodogram with the
M-periodogram in the local bootstrap procedure. The robust bootstrap
periodogram is implemented in the Whittle estimator to obtain confi-
dence intervals for the parameters of a time series model. A finite sample
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2 Robust Local Bootstrap for Stationary Series with Additive Outliers

size investigation was conducted to compare the performance of the clas-
sical local bootstrap with the one proposed in this paper, to estimate 95%
confidence intervals for the parameters of autoregressive and of seasonal
autoregressive time series. The results have shown that the robust estima-
tor is resistant to additive outlier contamination and produces confidence
intervals with coverage percentage closer to 95% and with lower ampli-
tudes than the ones obtained with the classical estimator, even for small
percentages and magnitudes of outliers. It was also empirically demon-
strated that when the expected number of outliers is kept constant, the
coverage percentages of the confidence intervals of the robust estimators
tend to 95% as the sample size increases. An application to the daily
mean concentration of the particulate matter with diameter smaller than
10 µm (PM10) was considered to illustrate the methodologies in a real
data context. All the results presented here give strong motivation to
use the proposed robust methodology in practical situations in which
weakly stationary time series are contaminated by additive outliers.

Keywords: Bootstrap; Periodogram; Robust estimation; Whittle estimator;
PM10 pollutant.

1 Introduction

The bootstrap is a resampling technique that provides tools for statistical

analysis without requiring rigorous structural assumptions. It was initially

proposed by Efron (1979), but despite its efficiency for independent and iden-

tically distributed (i.i.d.) variables, it was shown by Singh (1981) that Efron’s

methodology is inadequate to the case of dependent data. Due to this fact, sev-

eral approaches to perform the bootstrap in time series have been proposed, as

addressed, for example in Lahiri (2003) and Kreiss and Paparoditis (2011). In

time series, the bootstrap approaches can be built in the time and frequency

domains.

As well-known, an important quantity for time series analysis in the

frequency domain is the spectral density function which can be estimated

classically by the periodogram, hence the bootstrap in this domain generates

periodogram replicates. In this context, the bootstrap in the frequency domain
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Robust Local Bootstrap for Stationary Series with Additive Outliers 3

has an advantage over the one in the time domain since, for weakly stationary

processes, the periodogram ordinates are nearly independent (a more precise

definition is that they are asymptotically independent). Thus, the classical

bootstrap approach of drawing with replacement of Efron (1979) can be poten-

tially applied to them. There are several bootstrap approaches in the frequency

domain, some examples are the multiplicative residual bootstrap of Franke

and Härdle (1992), the local bootstrap of Paparoditis and Politis (1999) and

the hybrid bootstrap of Kreiss and Paparoditis (2003).

The bootstrap methodologies in the frequency domain are useful to esti-

mate population quantities, such as the standard error and the quantiles of

some statistic of interest, based on the sampling distribution of estimators

that are functions of the periodogram. Among these approaches, a particu-

larly interesting one is the local bootstrap of Paparoditis and Politis (1999)

because of its simplicity to implement and its similarity to the approach of

Efron (1979). Due the fact that the distribution of each periodogram ordinate

is a function of its frequency, the resampling is performed locally, that is, by

choosing with replacement between periodogram ordinates corresponding to

frequencies which are near to the frequency of interest.

In order to use the local bootstrap to obtain confidence intervals of the

parameter vector φ of weakly stationary time series models, it is necessary

to estimate the values of these parameters as functionals of the periodogram

IN (λ) of a sample Y1, Y2 . . . , YN , as well as of the parametric spectral density

f(λ,φ) of the process {Yt}, t ∈ Z. This can be achieved by using an impor-

tant class of estimators that are obtained through the minimization of the

criterion
∫ π
−π

{
log f(λ,φ) + IN (λ)

f(λ,φ)

}
dλ, which are well-known as the Whittle

estimators and were initially proposed by Whittle (1953). The confidence in-

tervals of φ, computed by using local bootstrap, are obtained without having
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4 Robust Local Bootstrap for Stationary Series with Additive Outliers

to make parametric assumptions about the form of the underlying population

{Yt}. This makes the local bootstrap an interesting alternative to estimate

confidence intervals of the parameters of weakly stationary time series models.

It is important to recall that, since the periodogram is a classical estimator

of the spectral density function, it does not have the property of being re-

sistant to additive outlier contamination. Hence, the Whittle estimators have

their performance deteriorated when there is presence of this kind of obser-

vation. In this situation it is more appropriate to use a robust version of the

Whittle estimators which is obtained by replacing the periodogram IN (λ) in

the criterion
∫ π
−π

{
log f(λ,φ) + IN (λ)

f(λ,φ)

}
dλ by a robust counterpart of IN (λ).

In this context, there are some versions of the periodogram that are resistant

to additive outlier contamination such as the Qn-periodogram, see, for exam-

ple, Molinares et al (2009), and the M -periodogram, see, for instance, Reisen

et al (2017); Fajardo et al (2018). The latter has the advantage to provide an

autocovariance function which is positive semidefinite and this motivates the

use of the robust version of the Whittle estimators obtained by using it as the

estimator of the spectral density function. Since the methodology proposed

by Paparoditis and Politis (1999) is based in the resampling of the ordinates

of the classical periodogram IN (λ) to obtain via Whittle estimators the boot-

strap confidence intervals of the parameters of weakly stationary time series,

these intervals are shifted to the left when there is contamination by additive

outliers because of the sensitivity of IN (λ) to this type of outlying observation.

In this context, this paper proposes a robust alternative to the local boot-

strap of Paparoditis and Politis (1999) which is resistant to additive outlier

contamination since it generates confidence intervals of parameters of weakly

stationary time series with a significant reduction in the aforementioned effect

of left shift. The proposed robust local bootstrap is obtained by replacing the
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classical periodogram IN (λ) by the robust M -periodogram IN,ψ(λ) of Reisen

et al (2017). Hence, the bootstrap versions of the time series parameters are

obtained via the robust Whittle estimator that uses IN,ψ(λ). The finite sample

properties of the robust local bootstrap for series generated by the processes

AR(1) and SARMA(1, 0) × (1, 0)4 under scenarios with and without addi-

tive outlier contamination were investigated and compared to the ones of the

methodology of Paparoditis and Politis (1999) through a Monte Carlo study.

Furthermore, the daily mean concentration of the atmospheric pollutant PM10

(particulate matter with diameter smaller than 10 µm) in the Great Vitória

Region, in the Brazilian state of Esṕırito Santo, was used to illustrate the

bootstrap methodologies in a real air quality area application, because it may

present observations with high levels of pollutant concentrations which can be

modeled as additive outliers.

The rest of the paper is organized as follows: Section 2 summarizes the

well-known local bootstrap of Paparoditis and Politis (1999) and shows how

to compute the classical periodogram based on a regression equation, it also

discusses the robust M -periodogram of Reisen et al (2017) and its asymp-

totic properties; Section 3 introduces the proposed robust local bootstrap and

discusses the Whittle estimator and its robust counterpart that uses IN,ψ(λ);

Section 4 presents the results of the Monte Carlo simulation experiment;

Section 5 shows the results of the application of the bootstrap methodologies

to PM10 concentrations; Section 6 concludes the paper.
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6 Robust Local Bootstrap for Stationary Series with Additive Outliers

2 The Model, Assumptions, the Local

Bootstrap and Spectral Estimators

Let {Yt}, t ∈ Z, be a real valued weakly stationary linear process, i.e., it

satisfies the difference equation

Yt =

∞∑
j=−∞

ψjϵt−j , (1)

where {ϵt}, t ∈ Z, is a sequence of i.i.d. random variables with E(ϵt) = 0,

E(ϵ2t ) = σ2 and E(ϵ4t ) < ∞. Moreover, {ψj}, j ∈ Z, is a sequence of constants

such that ψ0 = 1 and
∑∞

j=−∞ |ψj | <∞.

Since the robust local bootstrap approach proposed in this paper is based

on the local bootstrap method suggested in Paparoditis and Politis (1999),

some of their assumptions are also considered here.

Let Y1, Y2, . . . , YN , be a sample from the process {Yt} and λj = 2πj/N ,

j = 0, 1, 2, . . . , N ′, be the Fourier frequencies with N ′ = [N/2], where [x]

is the integer part of x. A classical non-parametric spectral estimator is the

periodogram function which is given by

IN (λj) =
1

2πN

∣∣∣∣∣
N∑
t=1

Yt exp(−iλjt)

∣∣∣∣∣
2

. (2)

This definition can be extended for any λ ∈ [−π, π], if we let IN (λ) =

IN{r(N,λ)}, where for λ ∈ [0, π] we have that r(N,λ) is the multiple of 2π/N

closest to λ (the smaller one if there are two), and for λ ∈ [−π, 0) we set

r(N,λ) = r(N,−λ).

The local bootstrap procedure relies on the asymptotic independence of

the periodogram ordinates as well as in the smoothness of the spectral density
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function. To achieve these necessary properties, f(λ) has to fulfill the following

conditions.

Remark 1 If the spectral density of Yt in (1), obtained by f(λ) =

σ2(2π)−1
∣∣∣∑∞

j=−∞ ψj exp(−ijλ)
∣∣∣2, satisfies f(λ) > 0 for all λ ∈ [−π, π], and if 0 <

λ1 < · · · < λm < π, then the random vector (IN (λ1), . . . , IN (λm))′ converges in dis-

tribution to a vector of independent and exponentially distributed random variables,

the ith component of which has mean f(ωi), i = 1, . . . ,m. Under the additional as-

sumption of
∑∞
j=−∞ |j|1/2

∣∣ψj∣∣ <∞, we have that Cov(IN (λj), IN (λk)) = O(N−1),

if λj ̸= λk. In order to ensure the smoothness of the spectral density we assume that

f(λ) is continuously differentiable with bounded derivative in [−π, π].

The asymptotic results in Remark 1 show that the periodogram, although

is an unbiased estimator of the spectral density, it is not a consistent estima-

tor, i.e, its variance Var(IN (λj)) = O(1) (as N → ∞). However, for any two

neighboring frequencies, λ1, λ2, Cov(IN (λ1), IN (λ2)) decreases as N increases.

With the assumptions that the errors {ϵt} are Gaussian white noise processes

and
∑∞

j=−∞ |ψj | < ∞, we have that asymptotically the set of random vari-

ables {2IN (λj)/f(λj)}, j = 0, 1, . . . , N ′, are independently distributed, and

for j ̸= 0, N/2 (N even), each is asymptotically distributed as a χ2
(2).

The local bootstrap scheme for the periodogram is summarized as follows

(for more details, see Paparoditis and Politis (1999)).

(i) Choose a resampling width kN where kN = k(N) ∈ N and kN ≤ [N ′/2].

(ii) Define i.i.d. discrete random variables J1, J2, . . . , JN ′ ,

that assume values in the set {−kN ,

−kN + 1, . . . , kN} with probability P(Ji = s) = pkN ,s for

s = 0,±1, . . . ,±kN .
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8 Robust Local Bootstrap for Stationary Series with Additive Outliers

(iii) The bootstrap periodogram can be defined by I∗N (λj) = IN (λJj+j) for

j = 1, 2, . . . , N ′, I∗N (λj) = I∗N (−λj) for λj < 0 and for λj = 0 we have

I∗N (λj) = 0.

Conditionally on the sample Y1, Y2, . . . , YN , the expected value and vari-

ance of the bootstrap periodogram are, respectively, given by

E{I∗N (λ)|Y1, Y2, . . . , YN} =

kN∑
s=−kN

pkN ,sIN{r(N,λ) + λs} ≡ f̃(λ) (3)

and

Var{I∗N (λ|Y1, Y2, . . . , YN )} =

kN∑
s=−kN

pkN ,sI
2
N{r(N,λ) + λs} − f̃2(λ). (4)

As can be seen from Equations 3 and 4, f̃(λ) and
∑kN

s=−kN pkN ,sI
2
N{r(N,λ) +

λs} can be thought of as kernel estimators of f(λ) and E{I2N (λ)} = {2 +

η(λ)}f2(λ) + o(1), respectively, where

η(λ) =


1, if λ = 0 (modπ) ,

0, otherwise.

Thus, in order to ensure the convergence of I∗N (λ), we need to let kN → ∞

as N → ∞ such that kN = o(N), and the sequence {pkN ,s : −kN ≤ s ≤ kN}

has to satisfy
∑kN

s=−kN pkN ,s = 1, pkN ,s = pkN ,−s and
∑kN

s=−kN p
2
kN ,s

→ 0 as

kN → ∞.

Under the above assumption, it follows that, in probability,

E{I∗N (λ)|Y1, Y2, . . . , YN} → f(λ) and Var{I∗N (λ|Y1, Y2, . . . , YN )} →

(1+ η(λ))f2(λ). These show that, for a fixed j and for N → ∞, the bootstrap
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periodogram I∗N (λj) has the same mean and variance of IN (λj). The authors

also established that I∗N (λj) → IN (λj) in distribution.

In practical situations, pkN ,s is chosen based on

pkN ,s =
W (πsk−1

N )∑kN
s=−kN W (πsk−1

N )
, (5)

where W (·) is a sequence of weight functions satisfying, for all λ, W (λ) =

W (−λ), W (λ) ≥ 0, and
∫ π
−πW (λ)dλ = 1,

∫ π
−πW

2(λ)dλ < ∞. W (·) is well-

known as a kernel function, and is widely used to obtain a consistent spectral

estimator, i.e, the smoothed periodogram. Classical examples of W (·) are:

Parzen kernel, Daniell kernel, Bartlett-Priestley kernel, among others (see, for

instance, Taniguchi and Kakizawa (2000); Priestley (1981) for further details).

Alternatively, when comparing the results of the local bootstrap applied to

samples with different sizes it may be more convenient to fix constants ν > 0

and α ∈ (0, 1) in order to define a resampling bandwidth bN = νN−α as

a function of N and calculate the corresponding resampling width as kN =

[NbN/2]. This yields an alternative version of (5) which is given by

pbN ,s =
W{2πs(NbN )−1}∑kN

s=−kN W{2πs(NbN )−1}
.

As addressed, for example, in Reisen et al (2017); Fajardo et al (2018), the

periodogram in (2) can also be computed based on the following regression

equation

Yi = c′Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R2 , (6)
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where β = (β(1), β(2)) and εi denotes the deviation of Yi from c′Niβ. Thus, the

periodogram IN (λj) is calculated from

IN (λj) =
N

8π
∥β̂

LS

N (λj)∥2 =
N

8π

(
(β̂

LS,(1)
N (λj))

2 + (β̂
LS,(2)
N (λj))

2
)
=: ILSN (λj),

(7)

where ∥ · ∥ denotes the classical Euclidian norm and β̂
LS

N (λj) =

(β̂
LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′ is the least-square estimator of β = (β(1), β(2)) in

the linear regression model given in (6) computed from

β̂
LS

N (λj) = argmin
β(λj)∈R2

N∑
i=1

(Yi − c′N,i(λj)β(λj))
2, (8)

where

c′N,i(λj) = (cos(iλj) sin(iλj)) . (9)

2.1 The M -periodogram Spectral Estimator

As it is well-known, M -estimation is an alternative robust procedure to the

least-square estimation approach. Thus, based on the regression equation in

(6), the M -regression estimator is used here to estimate the vector β =

(β(1), β(2)) by β̂N,ψ(λj) = (β̂
(1)
N,ψ(λj), β̂

(2)
N,ψ(λj)), which is the solution of

N∑
i=1

cN,i(λj)ψ(Yi − c′N,i(λj)β̂N,ψ(λj)) = 0, (10)

where ψ(·) was chosen as the Huber (1964) function,

ψ(x) = ψδ(x) =


x, if |x| ≤ δ,

sign(x)δ, if |x| > δ.

(11)

By analogy to (7), the robust periodogram IN,ψ(λj) is defined by
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IN,ψ(λj) =
N

8π
∥β̂N,ψ(λj)∥2 =

N

8π

[
(β̂

(1)
N,ψ(λj))

2 + (β̂
(2)
N,ψ(λj))

2
]
. (12)

Similarly to IN (λ), this definition can also be extended for any λ ∈ [−π, π],

if we let IN,ψ(λ) = IN,ψ{r(N,λ)} for λ ∈ [0, π] and for λ ∈ [−π, 0) we set

r(N,λ) = r(N,−λ).

Remark 2 The Huber function is chosen here because it satisfies assumptions (A1)-

(A4) of Reisen et al (2019). These authors establish that, for any fixed j and under

the additional assumption that εi =
∑∞
j=0 ajηi−j , where {ηj}, j ∈ Z, is a sequence of

i.i.d. standard Gaussian random variables as well as that aj is a sequence of constants

such that a0 = 1 and
∑∞
j=0|aj | <∞, we have

IN,ψ(λj)
d−→ X2 + Y 2

4π(F (c)− F (−c))2
, as N → ∞, (13)

where c is a positive constant, F (·) is the cumulative distribution function of ε1,

X ∼ N

0,
∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)

 , Y ∼ N

0,
∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)


(14)

and

Cov(X,Y ) =
∑
k∈Z

E{ψ(ε0)ψ(εk)} sin(kλj). (15)

As well-addressed in the recent literature, the M -periodogram IN,ψ(·) be-

comes an alternative spectral estimator for linear time series, with short- and

long-memory correlation structures, such as ARMA and ARFIMA processes,

respectively. An overview of robust spectral estimators for these classes of time

series is addressed in Reisen et al (2019). In addition to its elegant asymp-

totic properties, IN,ψ(·) has the interesting empirical property of being robust
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against outliers, while the classical periodogram IN (·) of (7) is fully affected

by this type of observations.

3 The Local Bootstrap and Whittle Estimator

Using IN,ψ(·)

We now introduce the local bootstrap using IN,ψ(·), denoted by I∗N,ψ(·). This

approach follows similar guidelines of the local bootstrap scheme discussed

previously where kN , bN , W , {pkN ,s : −kN ≤ s ≤ kN}, {pbN ,s : −kN ≤ s ≤

kN}, {IN (λj) : 0 ≤ j ≤ N ′}, and {I∗N (λj) : 0 ≤ j ≤ N ′} are replaced by kN,ψ,

bN,ψ, Wψ, {pkN,ψ,s′ : −kN,ψ ≤ s′ ≤ kN,ψ}, {pbN,ψ,s′ : −kN,ψ ≤ s′ ≤ kN,ψ},

{IN,ψ(λj) : 0 ≤ j ≤ N ′}, and {I∗N,ψ(λj) : 0 ≤ j ≤ N ′}, respectively. The

assumptions for kN,ψ, Wψ, and {pkN,ψ,s′ : −kN,ψ ≤ s′ ≤ kN,ψ} are kept

the same as of kN , W , and {pkN ,s : −kN ≤ s ≤ kN}, sequentially. Without

loss of generality, we assume here that kN,ψ = kN , bN,ψ = bN , Wψ = W ,

{pkN,ψ,s′ : −kN,ψ ≤ s′ ≤ kN,ψ} = {pkN ,s : −kN ≤ s ≤ kN}, and {pbN,ψ,s′ :

−kN,ψ ≤ s′ ≤ kN,ψ} = {pbN ,s : −kN ≤ s ≤ kN}.

Analogously to the local bootstrap for the classical periodogram, the first

two conditional moments of the robust bootstrap periodogram I∗N,ψ(λ) are,

respectively, given by

E{I∗N,ψ(λ)|Y1, Y2, . . . , YN} =

kN,ψ∑
s′=−kN,ψ

pkN,ψ,s′IN,ψ{r(N,λ) + λs′} ≡ f̃ψ(λ)

(16)

and

Var{I∗N,ψ(λ|Y1, Y2, . . . , YN )} =

kN,ψ∑
s′=−kN,ψ

pkN,ψ,s′I
2
N,ψ{r(N,λ) + λs′} − f̃2ψ(λ).

(17)
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It is important to emphasize that f̃ψ(λ) and
∑kN,ψ

s′=−kN,ψ pkN,ψ,s′I
2
N,ψ{r(N,λ)+

λs′} can be thought of as robust kernel estimators of f(λ) and E{I2N (λ)},

respectively.

3.1 Whittle Estimators

To estimate the parameters of the model satisfying Equation 1, we consider

the Whittle estimator initially proposed by Whittle (1953) and widely used in

the literature of time series. Let φ be the parameter vector of the process {Yt}

with parametric spectral density f(λ,φ). The estimates of φ, denoted by φ̂W ,

are obtained by minimizing

∫ π

−π

{
log f(λ,φ) +

IN (λ)

f(λ,φ)

}
dλ, (18)

where the notation log refers to the natural logarithm and IN (λ) is the

periodogram function defined previously and computed from the sample

Y1, . . . , YN , of the process {Yt}. Equivalently, the Whittle estimator φ̂W can

be obtained by minimizing

σ̄2
N (φ) =

1

N

∑
j

IN (λj)

g(λj ,φ)
(19)

where g(λ,φ) = 2πf(λ,φ)/σ2 and the sum is taken over all frequencies λj =

2πj/N ∈ (−π, π].

The classical weakly stationary and invertible Autoregressive Moving Av-

erage (ARMA(p,q)) model Yt − ϕ1Yt−1 − · · · − ϕpYt−p = ϵt − θ1ϵt−1 − · · · −

θqϵt−q, {ϵt} ∼ IID(0, σ2) and E(ϵ4t ) < ∞, where ϕ(z) = 1 − ϕ1z − · · · − ϕpz
p

and θ(z) = 1 − θ1z − · · · − θqz
q have no common zeroes, is a particular

time series model satisfying Equation 1. For this model, we have g(λ,φ) =∣∣θ(e−iλ)∣∣2 / ∣∣ϕ(e−iλ)∣∣2.
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Remark 3 Let φ = (ϕ1, . . . , ϕp, θ1, . . . , θq)
′ and denote by C the parameter set,

C = {φ ∈ Rp+q : ϕ(z)θ(z) ̸= 0 for |z| ≤ 1, ϕp ̸= 0, θq ̸= 0, and ϕ(·), θ(·) have no

common zeroes}. Let φ̄N be the estimator in C that minimizes σ̄2N (φ) for an ARMA

process {Yt} with true parameter values φ0 ∈ C and σ20 > 0. Then,

(i) φ̄N
as−→ φ0 and σ̄N (φ̄N )

as−→ σ20 , as N → ∞, where
as−→ denotes almost sure

convergence.

(ii) φ̄N
d−→ N (φ0, N

−1V −1(φ0)), as N → ∞, where

V (φ0) =
1

4π

∫ π

−π

[
∂ log g(λ,φ0)

∂φ

] [
∂ log g(λ,φ0)

∂φ

]′
dλ,

with
d−→ denoting convergence in distribution.

The results of items (i) and (ii) are stated in Theorems 10.8.1 and 10.8.2 of

Brockwell and Davis (1991), respectively.

(iii) Replacing IN (λj) by IN,ψ(λj) in Equation 19, it is possible to obtain the

Whittle estimator of φ using M-periodogram, i.e, φ̂W,ψ, by minimizing

σ̄2N,ψ(φ) =
1

N

∑
j

IN,ψ(λj)

g(λj ,φ)
, (20)

where the sum is also taken over all frequencies λj = 2πj/N ∈ (−π, π].

(iv) It can be shown that

φ̂W,ψ
p−→ φ0, as N → ∞, (21)

where
p−→ denotes convergence in probability. The proof of the above result

follows similar arguments of Theorem 10.8.1 in Brockwell and Davis (1991).

Regarding the local bootstrap estimators discussed here, φ̂∗
W is obtained

by replacing IN (λj) by I∗N (λj) in (19), while one can get φ̂∗
W,ψ by re-

placing IN,ψ(λj) by I∗N,ψ(λj) in (20). Whereas concerning the conditional

expected values of these estimators, φ̃W = E(φ̂∗
W |Y1, Y2, . . . , YN ) can be cal-

culated by replacing IN (λj) by f̃(λj) in (19) while one can obtain φ̃W,ψ =

E(φ̂∗
W,ψ|Y1, Y2, . . . , YN ) by replacing IN,ψ(λj) by f̃ψ(λj) in (20). The empirical

properties of these estimators are discussed in the next section.
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4 Monte Carlo Study

In order to investigate the impact of atypical observations on the estimates

obtained from the methods discussed previously, series of weakly stationary

linear processes were generated with and without outliers. Let {Zt} be defined

as follows

Zt = Yt + ωVt (22)

where {Yt} is a weakly stationary linear process that satisfies Equation 1,

additionally, {Vt} is a sequence of independent random variables with P(Vt =

−1) = P(Vt = 1) = ξ/2 and P(Vt = 0) = 1 − ξ, ξ ∈ (0, 1). Moreover, for all t

and s, {Yt} and {Vs} are independent variables and ω is the magnitude of the

outlier.

The simulation study was carried out via the generation of series of au-

toregressive and seasonal autoregressive processes with and without additive

outliers. More specifically, the time series chosen were of AR(1) Yt = ϕYt−1+ϵt

with ϕ = 0.2, 0.5, and 0.8, as well as of SARMA(1, 0) × (1, 0)S processes

Yt = ϕYt−1 + ΦYt−S − ϕΦYt−S−1 + ϵt with S = 4, ϕ = 0.5, and Φ = 0.2, 0.5,

and 0.7. The series {Yt} of both processes were contaminated by additive out-

liers according to Equation 22 with prout = ξ = 0.005 and 0.01, and ω = 0,

4, and 7, generating the processes {Zt}. The parameter values were chosen

to achieve stationarity and low, moderate and strong correlation dependency.

The sample sizes were taken as small (N = 200) and large (N = 400), which

are common sample sizes in practical situations, and for the series of both

processes the random variables ϵt were generated independently and N (0, 1)

distributed. It is important to highlight that the value prout = 0.01 was used

for both N = 200 and N = 400, while the value prout = 0.005 was used only
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for N = 400, being these choices considered to compare the results maintain-

ing the probability and the expected number of outliers constant when the

sample size increases. For the robust estimator we have chosen δ = 1.345 in

the Huber function (Equation 11) as a compromise between robustness and

efficiency. Additionally, we have set bN,ψ = bN = νN−α, where ν = 0.15 and

α = 0.45, being bN the ‘resampling bandwidth’ of IN (λj), bN,ψ the ‘robust re-

sampling bandwidth’ of IN,ψ(λj), these quantities were used to obtain the sets

of probabilities of choosing the periodogram ordinates in the bootstrap proce-

dure. The choice of a SARMA(1, 0)× (1, 0)S process was due to the fact that

one of the real data time series analyzed in the Section 5 follows a seasonal

time series model. Another motivation to simulate a SARMA(1, 0) × (1, 0)S

process is the fact that all the theory given in Section 3.1 for an ARMA process

is also valid for a SARMA process.

As a means to evaluate if the bootstrap estimates were able to mimic some

features of the distributions of interest, we have calculated the estimates for

the mean values x = E(x), the standard deviation SD(x) =
√

Var(x), the

asymmetry coefficient γ1(x) = E([{x − x}/SD(x)]3), and the 95% confidence

interval CI95%(y) together with its amplitude A(y) and coverage percentage

P(y). The value of x is ϕ̂∗ for the AR(1) model and can be ϕ̂∗ or Φ̂∗ for

the SARMA(1, 0) × (1, 0)S model, while y has the value ϕ̂∗ for the AR(1)

model and can be ϕ̂
∗
or Φ̂

∗
for the SARMA(1, 0) × (1, 0)S model. The re-

sults of the bootstrap estimates for the parameters are shown in Tables 1-9,

for the AR(1) series, and in Tables 10-18 for the SARMA(1, 0) × (1, 0)S se-

ries. In the following, if a table has the column IN or I∗N it is to show the

type of periodogram used: C denotes the classical and M designates the ro-

bust. For both models, the Bartlett-Priestley kernel was used to calculate the

set of probabilities of the bootstrap. The bootstrap estimates were obtained
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thorough the generation of REPMC = 1000 Monte Carlo replicates of {Zt}

and, for each of them, B = 5000 bootstrap replicates of the periodogram

were generated, with their related estimated parameters being denoted by

ϕ̂∗
(1)
, ϕ̂∗

(2)
, . . . , ϕ̂∗

(B)
or by Φ̂∗(1), Φ̂∗(2), . . . , Φ̂∗(B)

, these quantities were used

to estimate the aforementioned characteristics of the distributions of interest.

It is important to highlight that to avoid taking average of confidence inter-

vals in the bootstrap procedure, which would be necessary due to the fact that

each Monte Carlo replicate generates a confidence interval CI95%(x), where

x takes the values of ϕ̂∗ or Φ̂∗, it was preferred to estimate the bootstrap

confidence interval through the quantiles of the empirical distribution of the

mean values ϕ̂∗ =
∑B

i=1 ϕ̂
∗(i)/B or Φ̂∗ =

∑B
i=1 Φ̂

∗(i)/B. For each Monte Carlo

replicate these intervals were denoted by CI95%(ϕ̂∗) with amplitude A(ϕ̂∗)

and coverage percentage P(ϕ̂∗), or by CI95%(Φ̂∗) with amplitude A(Φ̂∗) and

coverage percentage P(Φ̂∗). The choice of this methodology to estimate the

bootstrap confidence interval is due to the fact that the average of intervals

of certain confidence level usually does not maintain the same confidence level

of the intervals of which the average is taken. In this context, we have to em-

phasize that Tables 1-18, which display the results of the bootstrap estimates,

have the average values for all the calculated estimates (that in the case of the

confidence interval as well as of its amplitude and coverage percentage were

calculated based on a single value), and between parentheses are the standard

deviations only of the estimates of the mean values, of the standard devia-

tions, and of the asymmetries of the parameters. For the bootstrap confidence

intervals, the coverage percentage P(x) was calculated as the percentage of

times in which the true value of the bootstrap estimates, calculated for the

uncontaminated series {Yt} (that can be the component referring to x of φ̃W
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or φ̃W,ψ), is contained in the confidence interval of the bootstrap procedure

CI95%(x) where x takes the values of ϕ̂∗ or Φ̂∗.

Tables 1-18 show that the bootstrap estimates for both the classical and the

robust methodology have coverage percentages close to 95% in the scenarios

without contamination, which demonstrates the efficient of both methodolo-

gies in this scenario. However, when there is data contamination by additive

outliers, only the robust methodologies are able to maintain coverage percent-

ages close to 95%, while the classical methodologies perform worse and worse

when compared to the robust ones as the value of prout or of ω increases.

In this context, it is important to emphasize that the confidence intervals of

the robust approaches had coverage percentages tending to 95% as the sam-

ple size increases while the expected number of outliers is kept constant, i.e.,

when we go from the scenario with N = 200 and prout = 0.01 to the one with

N = 400 and prout = 0.005, as in this case the outlier effect is diluted with

the increase of N . Moreover, it should be noted that for the scenarios with

contamination, the robust methodologies generated confidence intervals that,

when compared to the classical methodologies, in addition to presenting cov-

erage percentages closer to 95%, they also presented lower amplitudes. This

gives empirical evidence that the robust local bootstrap is a good alternative

to estimate confidence intervals of parameters of weakly stationary time series

for which there is suspect of contamination by additive outliers. When com-

pared to the local bootstrap of Paparoditis and Politis (1999), it has similar

performance when there is no outlier contamination and it generates intervals

with better performance in terms of both amplitude and coverage percentage

in the presence of additive outliers in the data.
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Table 1: Bootstrap Estimates for ϕ = 0.2 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 200.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.1816(0.0709) 0.0533(0.0076) -0.1001(0.0743) (0.0471,0.3160) 0.2689 0.9490
M 0.1716(0.0713) 0.0534(0.0077) -0.0964(0.0750) (0.0350,0.3103) 0.2753 0.9470

4
C 0.1566(0.0724) 0.0544(0.0079) -0.0897(0.0737) (0.0123,0.2955) 0.2832 0.9390
M 0.1652(0.0694) 0.0541(0.0077) -0.0902(0.0715) (0.0266,0.2926) 0.2660 0.9430

7
C 0.1282(0.0792) 0.0535(0.0073) -0.0766(0.0751) (-0.0157,0.2843) 0.3000 0.9140
M 0.1662(0.0732) 0.0540(0.0076) -0.0933(0.0730) (0.0153,0.3074) 0.2921 0.9420

Table 2: Bootstrap Estimates for ϕ = 0.2 with REPMC = 1000, B = 5000,
prout = 0.005 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.1929(0.0490) 0.0400(0.0043) -0.0749(0.0481) (0.0976,0.2910) 0.1934 0.9480
M 0.1837(0.0496) 0.0401(0.0043) -0.0716(0.0498) (0.0844,0.2827) 0.1983 0.9490

4
C 0.1808(0.0489) 0.0401(0.0041) -0.0673(0.0482) (0.0852,0.2776) 0.1924 0.9400
M 0.1814(0.0490) 0.0400(0.0041) -0.0673(0.0471) (0.0851,0.2740) 0.1889 0.9460

7
C 0.1540(0.0543) 0.0402(0.0041) -0.0615(0.0480) (0.0448,0.2587) 0.2139 0.9290
M 0.1757(0.0485) 0.0401(0.0044) -0.0665(0.0468) (0.0765,0.2712) 0.1947 0.9450

Table 3: Bootstrap Estimates for ϕ = 0.2 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

4
C 0.1638(0.0497) 0.0402(0.0042) -0.0641(0.0478) (0.0665,0.2581) 0.1916 0.9120
M 0.1737(0.0487) 0.0401(0.0042) -0.0675(0.0492) (0.0825,0.2694) 0.1869 0.9450

7
C 0.1325(0.0550) 0.0402(0.0040) -0.0535(0.0492) (0.0243,0.2400) 0.2157 0.8220
M 0.1761(0.0501) 0.0401(0.0041) -0.0685(0.0483) (0.0772,0.2696) 0.1924 0.9400

Table 4: Bootstrap Estimates for ϕ = 0.5 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 200.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.4745(0.0631) 0.0481(0.0091) -0.2818(0.0989) (0.3438,0.5873) 0.2435 0.9430
M 0.4546(0.0667) 0.0488(0.0090) -0.2690(0.0976) (0.3170,0.5756) 0.2586 0.9470

4
C 0.4184(0.0748) 0.0515(0.0090) -0.2548(0.0987) (0.2660,0.5645) 0.2985 0.9140
M 0.4354(0.0685) 0.0506(0.0088) -0.2651(0.1028) (0.2934,0.5700) 0.2766 0.9380

7
C 0.3568(0.0980) 0.0526(0.0092) -0.2181(0.0993) (0.1688,0.5425) 0.3737 0.8100
M 0.4412(0.0681) 0.0499(0.0090) -0.2616(0.0984) (0.2996,0.5647) 0.2651 0.9360

5 An Application to the Air Quality Area

The application is based on a data set (air pollutant variables) collected at Au-

tomatic Air Quality Monitoring Network (RAMQAr) in the Greater Vitória



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Springer Nature 2021 LATEX template

20 Robust Local Bootstrap for Stationary Series with Additive Outliers

Table 5: Bootstrap Estimates for ϕ = 0.5 with REPMC = 1000, B = 5000,
prout = 0.005 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.4889(0.0438) 0.0356(0.0048) -0.2078(0.0635) (0.4012,0.5747) 0.1735 0.9460
M 0.4689(0.0461) 0.0363(0.0049) -0.1988(0.0606) (0.3732,0.5593) 0.1861 0.9460

4
C 0.4597(0.0482) 0.0367(0.0049) -0.1989(0.0613) (0.3567,0.5509) 0.1942 0.9210
M 0.4587(0.0448) 0.0368(0.0049) -0.1962(0.0598) (0.3708,0.5429) 0.1721 0.9430

7
C 0.4169(0.0644) 0.0381(0.0053) -0.1788(0.0606) (0.2917,0.5369) 0.2452 0.8610
M 0.4590(0.0457) 0.0367(0.0049) -0.1935(0.0602) (0.3690,0.5461) 0.1771 0.9420

Table 6: Bootstrap Estimates for ϕ = 0.5 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

4
C 0.4347(0.0499) 0.0374(0.0047) -0.1882(0.0595) (0.3328,0.5251) 0.1923 0.7890
M 0.4497(0.0465) 0.0369(0.0046) -0.1934(0.0596) (0.3568,0.5408) 0.1840 0.9380

7
C 0.3580(0.0661) 0.0396(0.0050) -0.1518(0.0589) (0.2284,0.4792) 0.2508 0.3910
M 0.4497(0.0456) 0.0371(0.0049) -0.1924(0.0578) (0.3595,0.5370) 0.1775 0.9300

Table 7: Bootstrap Estimates for ϕ = 0.8 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 200.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.7677(0.0435) 0.0360(0.0102) -0.6529(0.2035) (0.6731,0.8410) 0.1679 0.9330
M 0.7494(0.0479) 0.0377(0.0105) -0.6260(0.1950) (0.6410,0.8311) 0.1901 0.9400

4
C 0.7216(0.0622) 0.0420(0.0118) -0.6117(0.2024) (0.5812,0.8246) 0.2434 0.8470
M 0.7259(0.0575) 0.0408(0.0114) -0.6037(0.1934) (0.5985,0.8275) 0.2290 0.9260

7
C 0.6509(0.0944) 0.0480(0.0144) -0.5452(0.1932) (0.4562,0.8127) 0.3565 0.7610
M 0.7236(0.0569) 0.0406(0.0115) -0.6007(0.1968) (0.6020,0.8261) 0.2241 0.9100

Table 8: Bootstrap Estimates for ϕ = 0.8 with REPMC = 1000, B = 5000,
prout = 0.005 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

0
C 0.7822(0.0324) 0.0257(0.0058) -0.4800(0.1221) (0.7154,0.8388) 0.1234 0.9430
M 0.7664(0.0358) 0.0269(0.0060) -0.4590(0.1165) (0.6925,0.8298) 0.1373 0.9410

4
C 0.7624(0.0374) 0.0274(0.0062) -0.4627(0.1220) (0.6818,0.8284) 0.1466 0.9110
M 0.7559(0.0368) 0.0276(0.0059) -0.4498(0.1207) (0.6793,0.8250) 0.1457 0.9350

7
C 0.7190(0.0584) 0.0316(0.0076) -0.4377(0.1168) (0.5982,0.8176) 0.2194 0.8160
M 0.7515(0.0370) 0.0284(0.0063) -0.4490(0.1138) (0.6768,0.8206) 0.1438 0.9320

Region (GVR) in the Brazilian state of Esṕırito Santo, which is composed

by nine monitoring stations placed in strategic locations and accounts for the

measuring of several atmospheric pollutants and meteorological variables in



921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

Springer Nature 2021 LATEX template

Robust Local Bootstrap for Stationary Series with Additive Outliers 21

Table 9: Bootstrap Estimates for ϕ = 0.8 with REPMC = 1000, B = 5000,
prout = 0.01 and N = 400.

ω I∗N ϕ̂∗ SD(ϕ̂∗) γ1(ϕ̂∗) CI95%(ϕ̂∗) A(ϕ̂∗) P(ϕ̂∗)

4
C 0.7372(0.0439) 0.0303(0.0071) -0.4451(0.1184) (0.6446,0.8134) 0.1688 0.7790
M 0.7410(0.0393) 0.0296(0.0068) -0.4437(0.1187) (0.6588,0.8131) 0.1543 0.9020

7
C 0.6658(0.0677) 0.0356(0.0079) -0.3945(0.1150) (0.5231,0.7824) 0.2593 0.3940
M 0.7379(0.0401) 0.0295(0.0063) -0.4320(0.1134) (0.6500,0.8113) 0.1613 0.8720

the area. GVR is comprised of seven cities with a population of approximately

2 million inhabitants in an area of 2319 km2. The region is situated along the

South Atlantic coast of Brazil (latitude 20◦19′15′′S, longitude 40◦20′10′′W)

and has a tropical humid climate, with average temperatures ranging from

24 ◦C to 30 ◦C. The data sets considered in this paper are of the pollutant Par-

ticulate Matter with diameter smaller than 10 µm (PM10), measured hourly, in

µg/m3, collected at the stations located in Downtown Vila Velha and Jardim

Camburi areas.

We will denote the PM10 concentrations in the stations of Downtown Vila

Velha and Jardim Camburi by PMVV
10 and PMJC

10 , respectively. These data sets

include daily average concentrations from January 1, 2018 to September 22,

2019, which keep a sample size, N = 630, multiple of the natural choice to the

seasonality S = 7 and it is equivalent to 90 full weeks. Due to skewness and

some evidences of time varying variance, the natural logarithm transformation

(log) was used and the plots of the log(PMVV
10 ) and log(PMJC

10 ) are displayed

in Figures 1 and 2, respectively. From these figures, one can see large peaks of

PM10 concentration which may be viewed here as outliers and, these high lev-

els can provoke serious damage to some statistics, such as the mean and the

standard deviation and, therefore, may affect the sample correlation structure

as well as the periodogram of the series, causing misleading results. The exis-

tence of any outlier’s effect and the presence of deterministic trends must be

firstly removed from log(PMVV
10 ) and log(PMJC

10 ) before further analysis. This
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will be discussed in the sequence, where a linear model with errors following an

AR(p) process is fitted to log(PMVV
10 ) and a linear model with errors following

a SARMA(p̃, 0)× (P, 0)S process is fitted to log(PMJC
10 ).

0 100 200 300 400 500 600

2.
0

2.
5

3.
0

3.
5

Day

lo
g(

P
M

10V
V
)

Figure 1: Plot of the log(PMVV
10 ) time series.
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Figure 2: Plot of the log(PMJC
10 ) time series.

From the analysis of Figures 1 and 2, it can be concluded that both time

series under study have a linear trend and a more complex trend that can

be modeled by cubic b-splines basis functions B3
k(t) with df = 8 and d̃f = 7

degrees of freedom, for the series log(PMVV
10 ) and log(PMJC

10 ), respectively.

Hence, the following model is suggested here to fit the PM10 concentrations of
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Downtown Vila Velha

log(PMVV
10,t) = µ+ αt+

df∑
k=1

B3
k(t)βk + Yt; (23)

ϕp(B)Yt = ϵt, (24)

where B is the backshift operator that satisfies Bjxt = xt−j , additionally, we

have that ϕp(B) = 1−ϕ1B−ϕ2B2−· · ·−ϕpBp. While for the Jardim Camburi

data we propose the use of

log(PMJC
10,t) = µ̃+ α̃t+

d̃f∑
k=1

B3
k(t)β̃k + Ỹt; (25)

ΦP (B
S)ϕ̃p̃(B)Ỹt = ϵ̃t, (26)

where B is the backshift operator, ϕ̃p̃(B) = 1 − ϕ̃1B − ϕ̃2B
2 − · · · − ϕ̃p̃B

p̃,

ΦP (B
S) = 1−Φ1B

S−Φ2B
2S−· · ·−ΦPB

PS , and the superscript˜was used to

differentiate the parameters of the linear model and of the time series related

to Jardim Camburi from the ones regarding Downtown Vila Velha.

The model in Equations 23 and 24 as well as the one of Equations 25 and

26 were fitted based on following two steps procedure: (i) the linear models in

(23) and (25) are estimated through the ordinary least squares procedure; and

(ii) the AR(p) model in (24) and the SARMA(p̃, 0)× (P, 0)S model in (26) are

fitted to the residuals of their respective linear model in step (i), where the AR

with order p as well as the AR with order p̃, and the seasonal AR with order

P , are identified through the Schwartz Information Criterion (BIC) proposed

by Schwarz (1978).

The estimated coefficients of the linear models in Equations 23 and 25, fit-

ted in the first step, are shown in Tables 19 and 20, respectively. The residuals
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of the linear models did not results in rejecting the null hypothesis of level

stationarity of the KPSS test, with a p-value > 0.05. In order to appropri-

ately select the model to fit these residuals, it is important to analyze their

corresponding ACFs which are displayed in Figures 3 and 4, respectively. The

ACF of Figure 3 shows that the residuals may follow an autoregressive model

because it tails off as exponential decay, while the ACF of Figure 4 resembles

the one of a seasonal model with S = 7 because it has peaks of autocorrelation

for lags multiple of seven. These are the reasons that motivated the choices of

fitting an AR(p) model and a SARMA(p̃, 0)×(P, 0)S model in the second step.

Table 19: Estimated coefficients of the linear model for the log(PMVV
10 ) time

series.

Parameter µ α β1 β2 β3 β4 β5 β6 β7 β8

Estimate 2.9350 0.0003 -0.4426 -0.0755 -0.4514 -0.1064 -0.2772 0.0034 -0.1925 -0.1756

Table 20: Estimated coefficients of the linear model for the log(PMJC
10 ) time

series.

Parameter µ̃ α̃ β̃1 β̃2 β̃3 β̃4 β̃5 β̃6 β̃7

Estimate 2.7880 0.0003 -0.3985 0.0454 -0.4135 -0.1085 -0.1351 -0.1177 -0.2572
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Figure 3: ACF of the residuals of the linear model for the log(PMVV
10 ) time

series.
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Figure 4: ACF of the residuals of the linear model for the log(PMJC
10 ) time

series.

The BIC criterion was used to identify the orders of the models and the

results are displayed in Tables 21 and 22. In order to keep consistency with the

simulation study, δ = 1.345 was fixed in the Huber function (Equation 11).

Table 21: Selected AR orders using the BIC for the log(PMVV
10 ) time series.

IN BIC p
C -1696.445 1
M -1695.562 1

Table 22: Selected AR orders and seasonal AR orders using the BIC for the
log(PMJC

10 ) time series.

IN BIC p̃ P
C -1935.253 1 1
M -1934.989 1 1

The exact estimates of the AR(p) coefficients are displayed in Table 23

while the SARMA(p̃, 0) × (P, 0)S coefficients are shown in Table 24. Based

on these results, it is clear that the robust methods always provided higher

coefficient estimates. In this context, we have that for the AR(p) model the

robust estimate of ϕ1 was 10.4% bigger than its classical counterpart, while

for the SARMA(p̃, 0) × (P, 0)S model we have that, for instance, the robust
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estimate of Φ1 was 13.5% bigger than the classical one. This indicates that

the high levels of the pollutant PM10 presented the effects of additive outliers

in both the log(PMVV
10 ) and the log(PMJC

10 ) series since the classical estimates

suffered from memory loss while their robust counterparts were resistant to

outlier contamination.

Table 23: Exact estimates of the AR(p) coefficients for the log(PMVV
10 ) time

series.

IN ϕ̂1

C 0.3642
M 0.4021

Table 24: Exact estimates of the SARMA(p, 0) × (P, 0)S coefficients for the
log(PMJC

10 ) time series.

IN
ˆ̃
ϕ1 Φ̂1

C 0.4181 0.1451
M 0.4203 0.1647

The classical ACF of the residuals of each estimated model is shown in

Figure 5 for the log(PMVV
10 ) series, and in Figure 6 for the log(PMJC

10 ) series.

It can be seen that for both series all the models were able to fully explain the

correlation structure of the data, despite the eventual outliers effect. Based

on the ACF of the residuals, the two estimation methods for both the AR(p)

and the SARMA(p̃, 0)× (P, 0)S models are comparable since all the estimated

residuals look like a white noise process.

The bootstrap estimates of the confidence intervals of the estimated coef-

ficients for B = 5000 are given in Table 25 for the AR(p) coefficients, and in

Table 26 for the SARMA(p̃, 0) × (P, 0)S coefficients. It is important to high-

light that, similarly to the Monte Carlo experiment, we have chosen for both

models bN,ψ = bN = 0.15N−0.45 to obtain the set of probabilities to choose
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Figure 5: ACF of the residuals of the AR(p) fit for the log(PMVV
10 ) time series.
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Figure 6: ACF of the residuals of the SARMA(p̃, 0) × (P, 0)S fit for the
log(PMJC

10 ) time series.

the periodogram ordinates in the bootstrap procedure. Based on these results,

it is possible to see that the confidence intervals of the classical method have a

left shift in their lower limits when compared to the ones of its robust counter-

part. This is also evidence that both the log(PMVV
10 ) and the log(PMJC

10 ) time

series suffered from the effects of additive outliers contamination.

Table 25: Bootstrap estimates of the 95% confidence interval of the AR(p)
coefficients for the log(PMVV

10 ) time series.

I∗N CI95%(ϕ̂∗
1)

C (0.3015, 0.4259)
M (0.3402, 0.4635)

Table 26: Bootstrap estimates of the 95% confidence interval of the
SARMA(p̃, 0)× (P, 0)S coefficients for the log(PMJC

10 ) time series.

I∗N CI95%(
ˆ̃
ϕ∗
1) CI95%(Φ̂∗

1)
C (0.3505, 0.4692) (0.0034, 0.2378)
M (0.3520, 0.4720) (0.0195, 0.2464)
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6 Conclusions

The robust version of the local bootstrap in the periodogram, presented in this

paper, had its finite sample performance compared to the one of the classical

bootstrap, through a Monte Carlo experiment. This empirical investigation

showed that both the robust and the classical versions of the bootstrap per-

formed well when the time series did not have outliers. However, when there

was contamination by additive outliers, the classical bootstrap had its perfor-

mance completely affected, while the robust one proved to be very resistant

to the contamination, maintaining the coverage percentages of the confidence

intervals close to 95% and presenting lower amplitudes than the classical boot-

strap. The daily mean concentrations of the PM10 collected in the stations of

Downtown Vila Velha and Jardim Camburi, in the Brazilian state of Esṕırito

Santo, were analyzed as an application of the methodologies studied in this

paper. This analysis led to the conclusion that the memory loss occurred in

the classical bootstrap caused it to generate confidence intervals dislocated to

the left when compared to the ones obtained by the robust bootstrap. Based

on these investigations, it is possible to conclude that the robust version of the

local bootstrap in the periodogram proved to be an alternative for estimating

confidence intervals of parameters of models of weakly stationary time series

contaminated by additive outliers.
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