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Abstract

Difference-in-differences (DID) has long been a staple in estimating treatment

effects in applied econometrics, with recent advancements relaxing traditional as-

sumptions to explore heterogeneous and spillover effects. While heterogeneous ef-

fects analysis examines causal impacts across diverse groups and periods, spillover

effects analysis delves into the influence of treatments on neighboring units. In-

corporating spatial dependence within the DID framework, Spatial Difference-in-

Differences (SDID) models have emerged as a powerful tool for analyzing such

effects, particularly in settings where observations represent fixed geographical

units. This study contributes to the literature by explicitly formalizing under-

lying assumptions and employing an SDID model to analyze the impact of Brazil’s

Priority Municipalities List on deforestation in the Amazon region. Utilizing both
∗Corresponding Author: achagas@usp.br
†luiza.c.andrade@gmail.com
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traditional DID and SDID methodologies, we uncover significant reductions in de-

forestation odds ratios within listed municipalities and neighboring unlisted mu-

nicipalities. Furthermore, we introduce an event study approach linked with SDID

to explore the policy’s anticipatory effects. Our findings underscore the effective-

ness of the Priority Municipalities List in curbing deforestation and highlight the

importance of spatially explicit methodologies in environmental policy evaluation.

This article advances methodological discussions surrounding SDID estimation and

provides empirical insights into the efficacy of targeted environmental policies in

combating deforestation in sensitive ecosystems like the Amazon.

Keywords: Spatial diff-in-diff, spillover effects, spatial event study, causal infer-

ence, deforestation, Brazilian Amazon

JEL Code: C21, C23, K32, Q5, R11

1 Introduction

Difference-in-differences (DID) stands as a cornerstone quasi-experimental method within

applied econometrics, widely employed to estimate treatment effects (Ashenfelter and

Card, 1985; Card, 1990; Card and Krueger, 1994; Meyer et al., 1995; Angrist and Krueger,

2000; Bertrand et al., 2004; Angrist and Pischke, 2008; Athey and Imbens, 2006; Lechner

et al., 2011). However, recent advancements in econometric techniques have brought

about a critical shift, relaxing traditional assumptions underlying DID analyses. Key

among these is the recognition that real-world scenarios often exhibit heterogeneous and

spillover effects stemming from treatments.

In acknowledging heterogeneous effects, scholars such as Callaway and Sant’Anna

(2021); De Chaisemartin and d’Haultfoeuille (2023); Wing et al. (2024) have introduced

staggered treatment effect analysis, enabling the examination of causal effects across

distinct groups and time periods. Similarly, with regards to spillover effects, researchers

like Dubé et al. (2014); Delgado and Florax (2015); Chagas et al. (2016) have integrated

spatial dependence within the DID framework, focusing on the transmission of treatment

effects onto neighboring units. This becomes particularly pertinent when dealing with

2



spatially fixed observations, where spatial correlation in treatments and responses can

manifest.

It is noteworthy that while DID assumes the Stable Unit Treatment Value Assump-

tion (SUTVA), scenarios exist where this assumption needs to be relaxed, especially in

the presence of spatial spillovers or network effects. For instance, Dubé et al. (2014) and

Delgado and Florax (2015) consider cases where SUTVA may hold for outcome variables

but not for treatment variables, leading to biased treatment effect estimates (Kolak and

Anselin, 2020). These studies underscore the necessity of accounting for spatial inter-

dependence, as overlooking it can result in significant biases, as demonstrated through

simulations by Delgado and Florax (2015).

Further complicating matters are scenarios where spillovers occur within a network,

such as in social networks or supply chains. In such cases, the assumption of no inter-

ference between units may not hold, necessitating a flexible approach to treatment effect

estimation. By embracing spatial diff-in-diff methodologies, researchers can better cap-

ture these complex interactions, thereby advancing our understanding of how treatments

diffuse through spatial and networked systems.

In this study, we build upon these advancements by explicitly formalizing the un-

derlying assumptions and employing a spatial diff-in-diff model. We conducted a Monte

Carlo Simulation to further assess the performance of the proposed estimator in identify-

ing spillover effects on treated and untreated regions. The simulation results reveal that

our estimator outperforms alternative methods in accurately capturing and quantifying

spillover effects in treated and untreated areas. By systematically varying parameters and

scenarios, we could robustly evaluate the estimator’s performance across various condi-

tions, providing confidence in its effectiveness for capturing the complexities of spatial

diffusion processes. We also apply this model to analyze the impact of the Brazilian

Amazon’s Priority Municipalities List on deforestation, incorporating an event study ap-

proach to explore anticipatory effects. Through our empirical analysis, we contribute

to the growing body of literature on spatial diff-in-diff, shedding light on the spatial

dynamics of treatment effects and their implications for policy and decision-making.
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The Monte Calo simulation and the application validate our findings, reinforcing the

reliability and applicability of our spatial diff-in-diff approach to uncovering the nuanced

dynamics of treatment effects in spatially interconnected environments.

This article is structured as follows: Section 2 describes the spatial difference-in-

differences estimator and the established conditions for effect identification. Section 3

presents an application of the method, including an event study and spatial event study

analysis. The final section concludes.

2 Treatment and Spillover

Consider a model with two time periods, t = 1, 2. Units indexed by i are drawn from

one of two populations. Units of the treated population (Di = 1) receive a treatment

of interest between period t = 1 and t = 2, whereas units of the untreated population

(comparison or control) (Di = 1) remain untreated in both periods.

The treatment effect spills over to regions close to the treated regions. For simplicity,

consider the situation in that the region has only one neighbor, j. Let Yi,t(Di = 0, Dj = 0)

denote unit i’s potential outcome in t if i and their neighbor j remain untreated in both

periods. Similarly, Yi,t(Di = 1, Dj = 0) denotes unit i’s potential outcome in t if i is

exposed to treatment by the second period and their neighbor j is untreated in both

periods. Let Yi,t(Di = 0, Dj = 1) denote unit i’s potential outcome in t if i remains

untreated in both periods and their neighbor j is untreated in the first period but exposed

to treatment by the second period. Finally, Yi,t(Di = 1, Dj = 1) denotes unit i’s potential

outcome in period t if i and their neighbor j is untreated in the first period but exposed

to treatment by the second period.

For notation simplicity, we denote these situations, respectively, by Yi,t(00), Yi,t(10), Yi,t(01),

and Yi,t(11).

Let Di a dummy variable identifying if i region is treated and Dj a dummy variable
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identifying if j neighbor region j is treated. The observed outcome is given by

Yi,t = DiDjYi,t(11) +Di(1−Dj)Yi,t(10) + (1−Di)DjYi,t(01) + (1−Di)(1−Dj)Yi,t(00)

(1)

We are interested in the average treatment effect on the treated (ATET) in period

t = 2. There is a direct treatment effect on i, given that the neighbor j is untreated

compared to the situation where both are untreated

ATET : τ10 = E[Yi,2(10)− Yi,2(00)Di = 1, Dj = 0] (2)

There is also an average spillover effect on the untreated (ASENT), i.e., the spillover

effect on i when j is treated compared to the situation where both are untreated

ASENT : τ01 = E[Yi,2(01)− Yi,2(00)Di = 0, Dj = 1] (3)

And there is a composed effect, direct and indirect, when both regions are treated

compared to the situation where both are untreated

τ11 = E[Yi,2(11)− Yi,2(00)Di = 1, Dj = 1] (4)

We define the Average Spillover Effect on Treated (ASET) as the difference between

the composed effect (τ11) and the ATET effect (τ10), then

ASET : τ̃11 = τ11 − τ10 (5)

We must change the usual hypothesis of the classical diff-in-diff approach to identify

the three effects. The identification of the treatment effect, in general, assumes three

assumptions: (i) homogeneity and no interference, (ii) parallel trend, and (iii) no antici-

patory effects. Assumption (i) is usually called Stable Unit Treatment Value Assumption

(SUTVA). We need to relax the SUTVA to identify spillover effects, specifically the no
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interference assumption.

The homogeneity assumption refers to the potential homogeneity of the effect over

different regions. In other words, the potential effect of the treatment is the same, re-

gardless of the region where the treatment is applied. This assumption is important to

identify the average treatment effect from observed sample means.

Assumption 1 (Homogeneity). For each unit, there are no different forms or versions

of each treatment level, which leads to different potential outcomes.

E[Yi,t(D)|Di = D] = E[Yj,t(D)|Dj = D], for all (i, j) (6)

That is, the potential Y value for a region in the treated group is the same for all

regions, and the same occurs for the untreated group.

To identify the causal spillover effects, we assume an adapted version of the parallel

trend assumption because now we assume that treatment on one region can impact the

neighbor, as follows:

Assumption 2 (Parallel trend with spillover).

E[Yi,2(00)− Yi,1(00)|Di = 1, Dj = 1] = E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0] (7a)

E[Yi,2(00)− Yi,1(00)|Di = 1, Dj = 0] = E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0] (7b)

E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 1] = E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0] (7c)

The parallel trend with spillover assumption preserves the same idea of the classical

approach. It requires that the difference between the treated and untread groups is

constant over time; in the absence of treatment, it does not matter if the neighbor is or

is not treated.

Assumption 3 (No anticipatory effects with spillover).

Yi,1(00) = Yi,1(01) = Yi,1(10) = Yi,1(11), for all i and j. (8)
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The no-anticipation assumption states that the treatment has no causal effect before

its implementation. This is important for the identification of τ10, τ01 or τ11, since oth-

erwise, the changes in the outcome for the treated group between period 1 and 2 could

reflect not just the causal effect in period t = 2 but also the anticipatory effect in period

t = 1 (Abbring and van den Berg, 2003; Malani and Reif, 2015).

Proposition 1. Under the assumption 1-3, the ATET (τ10), ASENT (τ01) and the

spillover effect on treated, ASET (τ̃11) in period 2 are idenfied.

Proof. The proof is in the appendix A.

Things are more complicated when we consider the (more realistic) situation in which

regions have more than one neighbor. We still consider that the treatment effect spills

over to regions close to the treated regions and extends to regions with two or more

neighbors.

Consider a case with two neighbors, j and k, to present the notation. Let Yi,t(Di =

0, Dj = 0, Dk = 0) denote unit i’s potential outcome in period t if i and their neighbors j

and k remains untreated in both periods. For short, Yi,t(Di = 0, Dj = 0, Dk = 0). We can

generalize the notation for more than two neighbors considering Yi,t(0, Dij) denote unit

i’s potential outcome in period t if i is untreated, and Dij now representing the indicator

if neighbors of i are treated or untreated in the second period. Then, Dij = 0 when the

j-th neighbor is untreated, and Dij = 1 when it is treated. In the same way, Yi,t(1, Dij

denotes unit i’s potential outcome in period t if i is untreated in the first period but

exposed to treatment and Dij the indicator if their neighbors are treated or untreated in

the second period.

We must introduce additional assumptions to identify the causal effect in this more

general context. The first assumption to introduce now considers if it makes a difference

in the neighbor’s position in the network. It is not a huge problem if the network is

knowledge. The research eventually wants to test the causal effect considering a given

neighborhood structure, like a hierarchical system of cities or a given spatial position. It

is the assumption under the spatial difference-in-difference models (Delgado and Florax,

2015; Chagas et al., 2016; Yan et al., 2022).
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In a situation with two neighbors, we consider the case where the spillover effect is

the same if one or another neighbor is treated. It is the homogeneity assumption in the

case of spillover in a network system. We called this isopotropic assumption.

Assumption 4 (Isotropic Assumption). The spillover effect is independent of the direc-

tion:

Yi,t(110) = Yi,t(101) (9)

Yi,t(010) = Yi,t(001) (10)

This assumption can be extended to the situation with more than two neighbors.

Yi,t(1, Dij) = Yi,t(1, Dik) (11)

Yi,t(0, Dij) = Yi,t(0, Dik) (12)

where Dij and Dik represent different arrangement of i’s region neighbors.

The isotropic assumption allows estimating the indirect effect for an untreated region,

for instance, with two neighboring regions, one treated and the other not, compared to

the situation in which none of the regions are treated: τ010 = τ001 or τ110 = τ101. However,

this effect is not necessarily the same as if a different number of neighboring regions are

treated. In some situations, exposure to the treatment is enough to guarantee some effect,

but in others, the intensity of exposure matters. This may also be true for spillovers.

Regions with more treated neighbors may have more impact than regions with only one

treated neighbor. We consider that spillover treatment effect has an additive component

effect, that is,

Assumption 5 (Aditivity). The spillover effect is additive. Then, a region with more

neighbors treated has at least the same indirect impact as a region with fewer neighbors:

τ011 ≥ τ001 (13)

τ111 ≥ τ101 (14)
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As a consequence of assumption 5, we can decompose the spillover effect into each

treated neighbor’s effect. When a region has more than one treated neighbor, the result

of the spillover may be decomposed in the effect of each neighbor treated, plus a com-

bined effect, which amplifies or reduces the intensity of the spillover effect. Consider the

situation in which only two neighbors exist for each region, and both are treated for a

given region. Then

τ011 = τ000 + τ010 + τ001 + τ000τ010 + τ000τ001 + τ010τ001 (15)

In other words, the spillover effect is given by the sum of the effects in which none of

the neighbors are treated (τ000), the effects in which only one of the neighbors is treated

(τ010 and τ001), plus all possible interactions between these effects. Where the region itself

is not treated, τ000 represents the counterfactual situation of absence of any treatment

and spillover, and, therefore, this effect is null, as are their interactions. Consequently,

τ011 = τ010 + τ001 + τ010τ001 (16)

In the situation where the region itself is also treated, the decomposition becomes

τ111 = τ100 + τ010 + τ001 + τ100τ010 + τ100τ001 + τ010τ001 (17)

The interaction effect can be of interest. It can be the case where the spillover effect

is non-linear behavior and may depend on the intensity of the treated neighbors. Specific

work can be done in the future, considering this situation. In the present case, we will

consider the situation where the interaction effect is negligible. In that case, regions with

some neighbors not treated would receive a smaller spillover effect. How this spillover

effect decays with the number of untreated neighbors can vary from case to case and can

be an empirical question. Consider, for instance, the situation with two neighbors. If
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both are treated, the spillover effect can be higher than if just one is treated; that is,

τ010 = λ(η)τ011 (18)

Where 0 ≤ λ(η) ≤ 1 is a function of η, the proportion of treated neighbors. For each

region, ηi =
∑

j
1[Dij=1]

Ni
,with Ni the total number of neighbors in that region i.

Assumption 6 (Decomposition). The spillover effect can be decomposed into the effects

of each treated neighbor. The interaction effect is negligible.

Assumption 7 (Proportionality). The spillover effects are proportional to the number

of neighbors treated, i.e.,

τ0,Dj
=

∑
j

λDjτ(0,1) (19)

τ1,Dj
=

∑
j

λDjτ(1,1) (20)

where 1 represents the situation where Dj = 1 for all j.

Proposition 2. Under assumptions 1-7, a two-way fixed effect with spatial controls, as

in

Yi,t = βdDi,t × t+ βt
∑
j

λiDi,tDj,t × t+ βu
∑
j

λi(1−Dit)Dj,t × t+ µi + δt + ui,t (21)

can identify the treatment effect as

• a) ATET (Average Treatment Effect Direct on Treated): τ1,0 = βd

• b) ASET (Average Spillover Effect on Treated): ˜τ1,1 = βt

• c) ASENT (Average Spillover Effect on Untreated): τ0,1 = βu

Proof. The proof is in the appendix A.

Let wNS
ij , ∀i, j ∈ N be the neighborhood relationship between region i and region j,

and let WNS be the matrix that relates each region under study to all the rest. We will
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follow the usual assumptions related to spatial models. For each j ̸= i, we can define if it is

or not a neighbor of i for some criteria. Different criteria will result in different neighbor

relationships. The most common neighborhood criteria include contiguity, k nearest

neighbors, inverse distance, etc. Neighborhood relationships must be linked with the

expected spillover effects for the causal inference proposal. Usual classification in a non-

spatial approach includes any kind of clusters, like classmates and workplaces. We can use

an indicator to assign a determined region j to their neighbors, i. This assignment could

not ensure asymptotic convergence once neighbors increased like the sample. Then, the

neighborhood matrix used to be standardized. The most usual standardization attending

assumption 8 b) is the row standardization, wij =
(wNS

ij )∑
j w

NS
ij

=
wNS

ij

Ni

Assumption 8 (Neighborhood matrix). The neighborhood matrix is

i A region is not a neighbor of itself, i.e., wNS
ii = 0.

ii The row and column sums of the standardized matrices W are bounded uniformly in

absolute value. More specifically, this restriction means that the sum of all neighbor-

hood weights for a given region equals 1, that is,
∑

j wij = 1.

In a standard application, λi,tDj,t can be defined as

λi,tDj,t =
∑
j

wijDj,t (22)

And then,

Proposition 3. Under assumptions 1-8, the spillover effect can be estimated using a

spatial two-way fixed effect model

Yi,t = βdDi,t + βtDi,t

∑
j

wijDj,t + βu(1−Di,t)
∑
j

wijDj,t + µi + δt + εi,t (23)

Proof. The proof is a consequence of proposition 2 and (22).

Equation (23) is similar to the spatial diff-in-diff model by Chagas et al. (2016),

referred for them as the unrestricted model. They also proposed a restricted version that

11



coincides with the estimator by Delgado and Florax (2015), as follows:

Yi,t = βdDi,t + βr
∑
j

wijDj,t + µi + δt + εi,t (24)

In this case, the spillover effects on treated and untreated neighbors are jointly esti-

mated (hence the term restricted effect).

Event study in the context of difference-in-differences is widely used to analyze the

impact of specific events on a particular variable of interest in economics, finance, and

other fields. It is especially useful for assessing the dynamic effects of the treatment,

exploring eventual anticipatory behavior, or reinforcing results over a long time, The

relevance of event study with diff-in-diff lies in its ability to provide empirically solid

evidence on the effects of specific events. There is no harm to identification in (23) and

(24) with the introduction of lagged and anticipated effects, as is common in event study

specifications. However, the spatial dimension also allows us to analyze the spatial lag

and lead, considering the eventual anticipatory effect (lag) or reinforcement effect (lead).

Thus,

Yi,t =

q∑
k=−p

βdkDi,t−k +

q∑
k=−p

βtkDi,t−k

∑
j

wijDj,t−k+

q∑
k=−p

βuk(1−Di,t−k)
∑
j

wijDj,t−k + µi + δt + εi,t (25)

Yi,t =

q∑
k=−p

βdkDi,t−k +

q∑
k=−p

βrk
∑
j

wijDj,t−kµi + δt + εi,t (26)

In these equations,
∑q

k=−p β
dkDi,t−k captures the dynamic effects of lag and leads of

the treatment. βdk , when j = 0, represents the treatment effect βd in equations (23) and

(24). When j > 0, βj is interpreted as lagged trend measures, whereas for j < 0, βdk

represents future effects on deforestation. In the same way, βtk , βuk and βrk represent the

spillover effects under the unrestricted or restricted SDID specification.

Another literature that has grown in recent years concerns the identification of het-

erogeneous effects related to different treated groups at different points in time and/or for
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different periods (Callaway and Sant’Anna, 2021; De Chaisemartin and d’Haultfoeuille,

2023; Wing et al., 2024). This is a very active field, and its interactions with space can

be explored in the future.

2.1 Monte Carlo Simulation

We run Monte Carlo experiments to study the finite sample performance of the proposed

SDID estimator. The true data-generating process is given by

yit = α0 + α1xit + α2Dit + α3Dit

∑
j

wijDjt + α4(1−Dij)
∑
j

wijDjt + µi + τt + εit

(27)

where x1t was drawn from a standard normal distribution and, to accommodate a common

trend factor, like in Delgado and Florax (2015), xi,t = 1.02xi−1,t for i ≥ 2. For t < dt,

Di,t = 0 for all region i. For t ≥ dt, the proportion p = {.1, .2, .5, .8, .9} of the regions

are randomly selected for the treatment following a discrete uniform distribution. We

ensure that at least two neighbors also receive the treatment. dt is fixed as the half of

the period, with t = {5, 10}, and n = {30, 50, 100}. The regions are selected once and

are treated since t ≥ dt until the end. We construct the spatial weight matrix following a

circular world (Baltagi and Liu, 2011) in this way: for i = 1, ..., n/10 and i = 2n/10, ..., n

the i-th row has non-zero elements in positions i − 1 and i − 1; for i = n/10, ..., 2n/10,

the i-th row has non-zero elements in positions {i − 3, ...i − 1, i + 1, ..., i + 3} if n ≤ 50

and {i − 5, ...i − 1, i + 1, ..., i + 5} if n > 50. After, the matrix was row normalized.

The fixed effects µi and τt come from a standard normal, in the same way εit, so that,

µi ∼ N(0, 1), τt ∼ N(0, 1) and εit ∼ N(0, 1). For the parameters, α0 = α1 = α2 = 1,

α3 = 1 and α4 = {−1, 1}. For each experiment, we perform 10,000 replications. For

each replication, we estimate the treatment and the spillover effect, according to the

case, using the classical DID, the restricted DID of Delgado and Florax (2015), and the

unrestricted SDID. Following Kelejian and Prucha (1999) and Baltagi and Liu (2011),

we define bias as the difference between the median and the true parameter value and
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RMSE is defined as [bias2 + (IQ/1.35)2]
1/2 where IQ is the interquantile range, that is,

IQ = c1−c3, with c1 and c3 the 0.75 and 0.25 quantile, respectively. Kelejian and Prucha

(1999) argue that these statistics are closely related to the standard measures of bias and

root mean squared error (RMSE) but, unlike these measures, are guaranteed to exist.

The three estimators have about a good performance in estimating the ATET effect

when the treatment and the spillover effect are equal, that is, α3 = α3 = α = 4. However,

the classic diff-in-diff and the Spatial DID restricted underperform when the spillover

effect on the neighbor untreated is different (α3 = 1 and α4 = −1). In that situation,

SDID unrestricted better estimates the ATET effect. The result is the same if the sample

is small, n = 30 and t = 5 or higher, n = 100 and t = 10.

The classical DID does not estimate the spillover effect, so the values in panels B and

C for this estimator are not reported. The SDID restricted does not differentiate the

spillover effect on neighbors treated or untreated; for this, the estimated values are the

same in panels B and C for this estimator. Only SDID unrestricted considers different

effects on neighbors treated and neighbors untreated. As before, the two estimators have

similar performance when the spillover effects are equal, but SDID restricted has a bigger

bias and RMSE when α3 ̸= α4. Once again, SDID unrestricted better estimates the

ASET and ASETNT effects in the small (n = 30 and t = 5) or big sample (n = 100 and

t = 10).

3 Empirical Application

Between 2005 and 2012, deforestation in the Brazilian Amazon decreased by 75% due to

significant changes in environmental policy. A growing body of literature examining the

new measures implemented since 2004 suggests that the primary drivers of this reduction

were stricter enforcement and command-and-control policies (Assunção et al., 2013a,b;

Maia et al., 2011; Hargrave and Kis-Katos, 2013; Burgess et al., 2016; Souza-Rodrigues,

2019).

Land cover in the Amazon region has been monitored via satellite since 2004, with
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Table 1: Bias and RMSE of DID, SDID restricted and SDID unrestricted

DID SDID restricted SDID unrestricted
n t True value Bias RMSE Bias RMSE Bias RMSE
Panel A: ATET estimator

30 5 α2 = α3 0.0543 0.3189 −0.0002 0.2738 0.0104 0.5361
30 5 α2 ̸= α3 1.0420 1.3348 1.0617 1.3669 0.0386 0.5130
30 10 α2 = α3 0.0157 0.2628 −0.0010 0.2355 0.0114 0.4468
30 10 α2 ̸= α3 1.0432 1.3389 1.0580 1.3671 0.0304 0.4539
50 5 α2 = α3 0.0706 0.3241 0.0001 0.2790 0.0078 0.5545
50 5 α2 ̸= α3 1.0387 1.3020 1.0723 1.3353 0.0477 0.5497
50 10 α2 = α3 0.0603 0.3097 −0.0002 0.2669 0.0088 0.5433
50 10 α2 ̸= α3 1.0456 1.3130 1.0909 1.3616 0.0562 0.5349
100 5 α2 = α3 −0.0004 0.2111 −0.0010 0.2017 −0.0167 0.3608
100 5 α2 ̸= α3 1.0145 1.3647 1.0127 1.3881 0.0000 0.4033
100 10 α2 = α3 −0.0422 0.1765 −0.0011 0.1694 −0.0272 0.2864
100 10 α2 ̸= α3 1.0192 1.3797 1.0247 1.4074 −0.0017 0.3528
Panel B: ASET estimator

30 5 α2 = α3 0.0000 0.4106 −0.0016 0.6280
30 5 α2 ̸= α3 −0.9203 1.2626 −0.0020 0.5913
30 10 α2 = α3 0.0013 0.3491 −0.0011 0.5315
30 10 α2 ̸= α3 −0.9059 1.2215 −0.0002 0.5024
50 5 α2 = α3 −0.0003 0.4184 −0.0020 0.6365
50 5 α2 ̸= α3 −0.9421 1.2482 −0.0020 0.6058
50 10 α2 = α3 −0.0002 0.4000 −0.0017 0.6030
50 10 α2 ̸= α3 −0.9046 1.2186 −0.0017 0.5650
100 5 α2 = α3 0.0007 0.2963 −0.0010 0.4510
100 5 α2 ̸= α3 −1.0121 1.3800 −0.0011 0.4599
100 10 α2 = α3 0.0014 0.2458 0.0005 0.3825
100 10 α2 ̸= α3 −1.0218 1.4032 −0.0002 0.3812
Panel C: ASENT estimator

30 5 α2 = α3 0.0000 0.4106 0.0153 0.5880
30 5 α2 ̸= α3 −0.9203 1.2626 0.0315 0.6081
30 10 α2 = α3 0.0013 0.3491 0.0186 0.4942
30 10 α2 ̸= α3 −0.9059 1.2215 0.0299 0.5459
50 5 α2 = α3 −0.0003 0.4184 0.0094 0.6150
50 5 α2 ̸= α3 −0.9421 1.2482 0.0469 0.6393
50 10 α2 = α3 −0.0002 0.4000 0.0112 0.5986
50 10 α2 ̸= α3 −0.9046 1.2186 0.0554 0.6228
100 5 α2 = α3 0.0007 0.2963 −0.0318 0.4297
100 5 α2 ̸= α3 −1.0121 1.3800 0.0008 0.4855
100 10 α2 = α3 0.0014 0.2458 −0.0550 0.3489
100 10 α2 ̸= α3 −1.0218 1.4032 −0.0013 0.4268

DID refers to the classical two-way diff-in-diff estimator.
SDID restricted refers to the Delgado and Florax (2015) spatial diff-in-diff estimation.
SDID unrestricted compute different spillover effects on neighbors treated and neighbors untreated.
Classical DID does not compute the spillover effect; for this, values in panels B and C for this estimator are not
reported.
SDID restricted does not differentiate the spillover effect on neighbors treated or untreated. Then, the estimated values
are the same in panels B and C.
bias is the difference between the median and the true parameter value, RMSE =

[
bias2 + (IQ/1.35)2

]1/2, where IQ
is the interquartile range. (Kelejian and Prucha, 1999)
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real-time deforestation alerts indicating the location of new clearings to environmental

authorities. However, due to dispersed urban centers and the need for more infrastruc-

ture in the Amazon, accessing some regions and inspecting identified hot spots is only

sometimes feasible. Consequently, policy targeting strategies were developed to enhance

the effectiveness of inspection procedures.

Several studies have assessed the effectiveness of the prioritized municipalities list.

Arima et al. (2014); Cisneros et al. (2013); Harding et al. (2018); Koch et al. (2019);

Cisneros et al. (2015), and Assunção and Rocha (2019) observed significant reductions in

deforestation in the listed municipalities. While Assunção and Rocha (2019) identified

command-and-control instruments as the main driver of the reduction, Cisneros et al.

(2015) argue that other institutional and reputational pressures were decisive.

Based on established literature modeling criminal activity (Becker, 1968; Stigler, 1970)

and environmental monitoring (Polinsky and Shavell, 2007; Russell et al., 1986; Gray

and Shimshack, 2011), the study hypothesizes that command-and-control policies affect

deforestation by altering the expected value of engaging in criminal activities. However,

suppose the gains from deforestation are relatively high. In that case, it may be profitable

for closely monitored producers to relocate their activities to less-watched municipalities,

resulting in increased deforestation in unmonitored neighbors. Hence, while reductions

in deforestation are expected in listed municipalities, the effect on their neighbors is

uncertain. Failure to consider spillover effects in studies may underestimate the policy’s

effectiveness. Conversely, not considering these effects may overestimate the policy’s

impact and reduce its responsibility to address deforestation in neighboring regions.

3.1 The Prevention and Control Plan for Deforestation in the

Legal Amazon (PPCDAm)

Between 1998 and 2004, deforestation rates soared, prompting international pressure and

domestic activism. In response, Brazil launched the PPCDAm, a comprehensive initia-

tive to combat deforestation and foster sustainable development in the Amazon region.

The plan, built on four pillars—land and territorial planning, environmental monitoring
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and control, promoting sustainable, productive activities, and economic and normative

instruments—marked a turning point in Brazil’s environmental policy landscape.

During the 2000s, a notable shift in deforestation patterns emerged, characterized by

small deforested polygons replacing large clearings. This shift coincided with the im-

plementation of the PPCDAm, indicating its impact on altering deforestation dynamics.

Studies by Rosa et al. (2012) and Michalski et al. (2010) underscore the role of property

size as a key determinant in regional deforestation patterns, highlighting the differential

impact of the plan across various property sizes.

The PPCDAm garnered significant success in forest conservation, with Pereira (2015)

reporting the preservation of 8.36 thousand square kilometers annually across 760 mu-

nicipalities in the Legal Amazon from 2005 to 2015. Moreover, the plan facilitated a

reduction in forest conversion for agriculture and livestock purposes, signaling a decou-

pling of agricultural expansion from deforestation (Gollnow et al., 2018; Amaral et al.,

2021).

A pivotal innovation under the PPCDAm was implementing the Real-Time Defor-

estation Detection (DETER) system in 2004, enabling real-time monitoring of deforested

areas using satellite imagery. Assunção et al. (2013b) demonstrated the effectiveness of

DETER-based monitoring in reducing deforestation rates by 60% compared to a scenario

without policy changes from 2007 to 2011.

In 2008, Decree 6.5514/2008 introduced a new federal administrative procedure for

investigating environmental offenses and imposing administrative sanctions, enhancing

enforcement capabilities. As a result of these concerted efforts, the PPCDAm witnessed

a 53% reduction in deforestation during its first phase (2004-2008) and a further 65%

reduction during its second phase (2008-2012), underscoring the plan’s effectiveness in

curbing deforestation.

3.2 The List of Priority Municipalities

Command-and-control policies have been considered the most effective in combating de-

forestation. Until 2004, the Brazilian Institute of the Environment and Renewable Nat-
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ural Resources (IBAMA), acting as environmental police, based its inspection efforts on

anonymous reports. That year, the National Institute for Space Research (INPE) devel-

oped the satellite monitoring system DETER. INPE has been measuring deforestation in

Brazil by satellite since 1988 as part of the PRODES project (Deforestation Calculation

Program for the Amazon). DETER, in turn, produces more frequent images of the Ama-

zon and issues deforestation alerts every two weeks. Through the coordinated action of

IBAMA and INPE, it is possible to quickly identify new deforestation areas and monitor

the region more efficiently, as evidenced by the fines imposed by IBAMA.

In late 2007, through Decree No. 6,321 of December 21, 2007, the Federal Government

created a list of priority municipalities and established the Ministry of the Environment

(MMA) to list the municipalities. The list is named because municipalities are priori-

tized for reinforcing PPCDAm policies such as integrating and improving monitoring and

control actions by federal agencies, land, and territorial planning, and encouraging envi-

ronmentally sustainable economic activities. These municipalities are subject to stricter

environmental regulations. According to the decree, the listed municipalities are part of

the Amazon biome chosen according to three criteria: (i) the total deforested area in the

municipality, (ii) the deforested area in the three previous years, and (iii) an increase in

the deforestation rate in at least three of the five previous years.

Once on the list, municipalities are monitored and supported by the Federal Govern-

ment in implementing measures to reduce deforestation rates and promote sustainable

activities. Rural properties in priority municipalities must register with INCRA, which

may require georeferencing and verification of land titles. The issuance of authorizations

for soil clearing on medium and large properties in these municipalities would also be sub-

ject to georeferencing through the Rural Environmental Registry, and agricultural credit

granting would be subject to compliance with environmental standards on properties.

However, the most important aspect of this policy is that IBAMA teams now pay special

attention to listed municipalities, meaning that DETER alerts in these municipalities

receive more attention (Assunção et al., 2013b). Thus, a municipality on the priority list

is subject to more rigorous environmental inspections.

18



Each year, MMA published the List of Priority Municipalities and announced the

criteria for leaving the list, including (i) having eighty percent of the municipality’s pri-

vate rural lands monitored and under INCRA’s technical criteria and (ii) keeping the

deforestation rate at least 30% below the maximum deforestation rate observed in the

municipality over the past five years, under the same parameter conditions. These con-

ditions must be met simultaneously for the municipality to leave the list.

3.3 Evaluating the Effectiveness of the List of Priority Munici-

palities

Several studies have investigated the impact of the list of priority municipalities on de-

forestation rates in the Amazon region. Arima et al. (2014) found that deforestation

rates in priority municipalities decreased by 35% compared to non-priority municipali-

ties. Similarly, Assunção et al. (2013b) observed a 25% reduction in deforestation rates

in priority municipalities compared to non-priority ones. Furthermore, Assunção and

Rocha (2019) attributed a significant portion of the overall reduction in deforestation

rates to including municipalities on the priority list. These findings suggest that the list

of priority municipalities has effectively curbed deforestation in the Amazon region.

However, some studies have also highlighted potential unintended consequences of the

policy. For example, Harding et al. (2018) found evidence of deforestation spillovers from

priority municipalities to neighboring areas that were not on the list. Similarly, Koch

et al. (2019) observed an increase in deforestation rates in neighboring municipalities

following the implementation of the policy. These findings suggest that while the list of

priority municipalities may have successfully reduced deforestation in designated areas,

it may have displaced deforestation to neighboring regions.

In addition to its direct impact on deforestation rates, the list of priority municipalities

may have influenced land use and land cover change in the Amazon region. For example,

Cisneros et al. (2013) found that the policy led to changes in land use patterns, shifting

towards less intensive land uses such as pasture and agroforestry. Similarly, Cisneros

et al. (2015) observed changes in land cover, with a decrease in the proportion of land
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devoted to agriculture following the implementation of the policy.

Overall, the evidence suggests that the list of priority municipalities has effectively

reduced deforestation rates in the Amazon region. However, the policy may have also

had unintended consequences, such as deforestation spillovers to neighboring areas and

changes in land use patterns. These findings highlight the importance of carefully evalu-

ating the effectiveness of environmental policies and considering their potential impacts

on broader socio-ecological systems.

3.4 Data

We consider treated municipalities listed in some period. Moreover, we consider poten-

tially treated municipalities that can receive treatment spillover, not listed but neighbors

of listed. The control group comprises municipalities that are not listed and without

listed neighbors (Figure 1).

Figure 1: Treatment, neighbors, and control groups

The dependent variable is constructed considering the ratio of deforested areas in a

given year to the remaining forest area in the previous year, calculated from INPE data.

The remaining forest area is the difference between the total area of the municipality and

the sum of accumulated deforestation, non-forest area, and water area. This variable,

thus constructed, is preferable to using forest area obtained directly from data from
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the National Institute for Space Research (INPE) due to the large number of missing

observations.

A relative deforestation measure is necessary to ensure comparability between groups.

As the criteria for entering the list depend on absolute deforestation values, listed mu-

nicipalities are among those that naturally deforest the most. Considerable variation

between municipality areas must also be considered when using municipal-level data.

The relative variable is transformed using a logistic transformation, as is common in

the literature (Pffaf, 1999; Assunção et al., 2021), as follows:

yit = log

(
Yit

1− Yit

)
(28)

where Yit is one of the three mentioned relative measures.

(a) deforested area - km2 (b) %imputed area

(c) % mun area

Figure 2: Average deforested by group - listed, neighbor and control municipalities

Figure 2 shows the trajectories of different deforestation measures for the three analy-
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sis groups. It makes it clear that priority municipalities are among the highest deforesters

in absolute terms, with an average exceeding 300 km2 in 2004 - the year of the imple-

mentation of PPCDAm. Non-treated neighboring municipalities deforested an average

of about 50 km2 in the same year, and other municipalities less than 25 km2. In rela-

tive terms, considering the forest area, priority municipalities deforested nearly half of

all existing forests around 2004. Municipalities in the other groups never reached such

a mark. However, non-treated neighboring municipalities stand out, for which the pro-

portion of deforested areas was about 5%, on average, throughout the period. However,

when considering the area of the municipalities, it is noticed that these municipalities

(non-treated neighbors) are the ones that deforest the most as a proportion of their ter-

ritory, confirming that the list prioritizes municipalities that deforest the most, as they

are larger.

In any case, for all groups, it is noted that deforestation did not increase and certainly

decreased for the main groups (treated) - which suggests that the policy’s spillover effect

also aims to curb deforestation in nearby areas.

The database consists of a panel covering municipalities in the Amazon biome from

2001 to 2018. The PPCDAm was launched in March 2004, so 2005 was the first year it

was active for the entire period. The Brazilian Legal Amazon covered 771 municipalities

in 9 states during the analyzed period. Spatial references come from IBGE maps on

municipal borders in 2007. The final sample comprises 502 municipalities that have more

than 40% of their area within the Amazon biome.

The annual deforestation data is from PRODES, calculated and disclosed by INPE.

As deforestation occurs during the dry season, most satellite images from which the

data is derived were taken between July and September. Annual deforestation rates are

calculated with August 1 as the reference date1. Land use is identified from the satellite

image as having the best visibility (minimum cloud cover). According to the soil image

fraction, shadow, and vegetation, it is classified as forest, non-forest, deforested, water,

and cloud. PRODES can identify deforested areas larger than 6.25 ha. PRODES also
1As PRODES defines the year from August of t − 1 to July of t, this period was used to define the

year for control variables, whenever possible.
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calculates the total accumulated deforestation, which could be an important control since

municipalities with a small remaining forest area should have lower deforestation rates.

Other variables from this same database are the unseen area and the area covered by

clouds in the final satellite images. As discussed by Butler and Moser (2007), they are

relevant as controls for measurement errors.

The value of rural credit granted to each municipality in a given year is available in the

ESTBAN database (Banking Statistics) from the Central Bank of Brazil (BACEN) for the

period 2000-2012. Pffaf (1999) argues that credit supply is endogenous, as deforestation

attracts new bank branches and increases demand for credit. As a solution, the value

of credit from the previous year is used in the estimates, which is also consistent with

deforestation dynamics. Since BACEN only publishes annualized data, credit information

could not be transformed into the PRODES annual period.

Data on environmental fines were made available by IBAMA upon request. The

database contains information on all fines imposed by IBAMA from 2000 to 2020, in-

cluding the offender’s name, type of infraction, process status, and fine amount. Georef-

erenced data containing the type of conservation unit, responsible authority, and year of

creation are provided by MMA. Georeferenced data on indigenous lands, including date

of creation, area, and ethnicity, are available on the National Indian Foundation (FU-

NAI) website. Information on Bolsa Verde beneficiaries was compiled by do Nascimento

and Chagas (2021). Population and GDP data come from IBGE’s regional accounts

system. The cultivated area was obtained from IBGE’s survey of municipal agricultural

production (PAM) and includes both temporary and permanent crops. Monetary data

were deflated by the IPCA (National Consumer Price Index).

3.5 Results

The results of the regression model 23 are shown in Panel A of Table 2. They indicate that,

on average, being a municipality on the priority list reduces the odds ratio of deforestation

by almost 57% when considering the classical diff-in-dif approach without any controls

(model 1). This percentage remains statistically similar when introducing controls for
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Table 2: Results of the classic and spatial diff-in-diff models

Dependent Variable:
Deforestation Ratio by Remaining Forest Area (Imputed)

Variables (1) (2) (3) (4) (5) (6) (7)
Panel A - classic diff-in-diff model

Priority −0.5698*** −0.5573*** −0.5827*** −0.5753*** −0.5737*** −0.5651*** −0.5706***

(0.0612) (0.0592) (0.0591) (0.0592) (0.0592) (0.059) (0.0592)
Adj-R2 0.7424 0.7509 0.7523 0.7527 0.7529 0.7553 0.7555
AIC 4.6318 4.6907 4.7007 4.7025 4.7032 4.7200 4.7205
Panel B - restricted spatial diff-in-diff model

Priority −0.5507*** −0.5345*** −0.5623*** −0.5556*** −0.5535*** −0.5439*** −0.5652***

(0.0606) (0.0589) (0.059) (0.0591) (0.059) (0.0587) (0.0584)
Neighbors −0.2099** −0.2566*** −0.2240*** −0.2160*** −0.2217*** −0.2554*** −0.8606***

(0.0836) (0.081) (0.0815) (0.0813) (0.0815) (0.083) (0.1756)
Adj-R2 0.7425 0.7512 0.7525 0.7528 0.7530 0.7556 0.7565
AIC 4.6327 4.6923 4.7019 4.7036 4.7044 4.7215 4.7278
Panel C - unrestricted spatial diff-in-diff model

Priority −0.4291*** −0.4402*** −0.4790*** −0.4742*** −0.4698*** −0.4647*** −0.5614***

(0.0769) (0.0765) (0.0765) (0.0766) (0.0765) (0.0761) (0.0585)
Treated Neighbors −0.8389*** −0.7451*** −0.6532** −0.6360** −0.6531** −0.6597** −1.2209***

(0.2975) (0.2846) (0.2851) (0.2858) (0.285) (0.2827) (0.319)
Untreated Neighbors −0.0857 −0.1600** −0.1397* −0.1337* −0.1368* −0.1737** −0.7766***

(0.0779) (0.0761) (0.0764) (0.0761) (0.0761) (0.0772) (0.166)
Adj-R2 0.7428 0.7514 0.7527 0.7530 0.7532 0.7557 0.7566
AIC 4.6348 4.6936 4.7029 4.7046 4.7054 4.7224 4.7285
Observations 9,036
Controls
Geographical area ✓ ✓ ✓ ✓ ✓ ✓
Procted area ✓ ✓ ✓ ✓ ✓
Economic Activity ✓ ✓ ✓ ✓
IBAMA action ✓ ✓ ✓
Spatial Lag on X ✓ ✓
Neighbors × IBAMA ✓
The dependent variable is the odds ratio of the deforestation rate increment in t relative to the remaining forest area of t− 1, given
by yit = log(Yit/(1− Yit), where Yit is the value of the mentioned ratio.
The remaining forest area is the difference between the total area of the municipality and the sum of accumulated deforestation,
non-forest area, and water area.
Geographical area controls include data on the stock fo deforestation and the agricultural area. Data on deforestation increment,
forest area, and accumulated deforestation are obtained from INPE.
Protected area controls include legal and indigenous reserves. The Ministery of Enviromental and FUNAI provide data.
Economic activity controls include information on income transfer (Bolsa Verde), credit, GDP per capita, share of agricultural on
GDP and populations density. Bolsa Verde data was compiled by do Nascimento and Chagas (2021). Credit information came from
the Central Bank.
IBAMA action controls include information on quantity and values of fine applied by IBAMA.
Robust standard errors in parentheses.
Significance levels: *** 0.1%, **1%, *5%.

accumulated deforestation areas (model 2), protected area (model 3), economic activity

(model 4), IBAMA action (model 5), neighborhood controls (model 6) or the interaction

between IBAMA action and neighborhood of the treated.

Panel B on Table 2 considers the same previous models but now adds the variable of

untreated neighbors of treated municipalities. The definition of neighborhood considered

a criterion of k-nearest neighbors, where the number of neighbors (k) was obtained using

an information criterion2.

The result suggests a spillover effect that increases the beneficial impact of the policy

in 20% to 25% when all the neighbors are treated. The direct effect on the treated re-

mains similar to the one verified in the previous Panel. The noteworthy point now is an

additional effect of deforestation reduction due to the spillover to neighboring municipal-
2The Akaike criterion was used, as suggested in Stakhovych and Bijmolt (2009).
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ities. The magnitude of the impact is significant, representing almost half of the direct

effect on the treated.

Finally, it is possible to investigate more carefully how this spillover effect behaves

between treated and untreated municipalities (neighbors of other treated units). Panel

C on Table 2 reports this exercise.

Also, in this case, the direct effect of treatment on treated municipalities is in the same

order of magnitude. The significant difference lies in the spillover effect. In this case,

the differentiation of groups allows us to verify that the effect on the group of treated

neighbors of the treated is significantly greater than in the situation where the average

effect is considered (restricted models). Compared to the previous model, the impact is

about two times larger (more negative) for treated municipalities with treated neighbors.

The untreated municipalities’ neighbors who are treated also benefit from the treat-

ment if more neighbors are treated. The effect is about 1/4 to 1/3 of the impact on

treated municipalities. For both set of spatial models, restricted and unrestricted, the

last model (model 7) presents a significant difference compared to the others specification.

It occurs when we include an additional interaction between the IBAMA’s action and the

neighbor on the treated variable. The negative effect on the spillover variable stems

from the perception of a higher enforcement risk in neighboring municipalities. In both

situations, the spillover effect increased, suggesting that the action of the environmental

policy is an important channel to the success of the spillover.

3.5.1 Event Study

In this section, we present a spatial event study analysis focusing on the effect of the

Priority List on the deforestation of treated and neighbors of the treated municipalities.

As usual in this literature, we report the graphs with the coefficient and the confidence

interval, including lags and leads.

Confirming the previous result, we can reject the hypothesis of a treatment or spillover

dynamic effect for more than two periods, suggesting that the policy has effect immedi-

ately, or at a maximum, one year after. Figure 3a shows a negative and significant effect
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(a) Treatment on treated (b) Treatment on neighbors

(c) Treatment on neighbors treated (d) Treatment on neighbors untreated

Figure 3: Spatial Event Study Analysis

one period ahead. All the other periods are insignificant, with the same lag periods -

which is interpreted as confirming the nonanticipatory assumption.

Figure 3a also confirms the negative effect on neighbors (treated or untreated), but

the effect in this case is contemporaneous. There is a significant and positive anticipatory

effect six periods before, which seems to have little relationship with the policy itself and

does not persist when detailing the spillover effect on treated and untreated neighbors

(Figures 3c and 3d). Furthermore, this positive signal is smaller in magnitude than the

negative and significant spillover effect in the first period after treatment.

As mentioned, figure 3c and 3d detailed the event study considering the spillover

effect on neighbors treated and untreated. Here, it is interesting to note that both

groups’ temporal impact seems different. The effect on neighbors treated is similar to

the treated group, with the impact occurring one period ahead, while for neighboring

municipalities not treated, the effect is contemporaneous. In both cases, there is no

evidence of anticipatory or staggered effects after one period ahead, similar to the case

of direct effects on the treated (Figure 3a).
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The findings of these studies have important implications for environmental policy in

the Amazon region. First, they suggest that command-and-control policies, such as the

list of priority municipalities, can effectively reduce deforestation rates. However, poli-

cymakers must be mindful of unintended consequences, such as deforestation spillovers

to neighboring areas. Future research should continue to explore these unintended con-

sequences and identify strategies for mitigating them.

Second, the studies highlight the importance of monitoring and enforcement mecha-

nisms in environmental policy. The success of the list of priority municipalities is at least

partially attributable to increased monitoring and enforcement efforts in designated ar-

eas. As such, policymakers should prioritize investments in monitoring and enforcement

infrastructure to support the implementation of environmental policies.

Finally, the findings underscore the need for a holistic approach to environmental

policy in the Amazon region. While command-and-control policies like the list of priority

municipalities can effectively reduce deforestation rates, they must be complemented by

efforts to promote sustainable land use practices and address the underlying drivers of

deforestation. Future research should continue to explore integrated approaches to envi-

ronmental policy that address both the proximate and underlying causes of deforestation

in the Amazon region.

In conclusion, the list of priority municipalities has been an important tool in Brazil’s

efforts to combat deforestation in the Amazon region. While the policy has effectively

reduced deforestation rates in designated areas, it has also had unintended consequences,

such as deforestation spillovers to neighboring regions. Moving forward, policymakers

should continue to refine and adapt environmental policies to address these challenges

and promote sustainable development in the Amazon region.

4 Final Considerations

Introducing spatial diff-in-diff techniques has enriched empirical analyses by allowing re-

searchers to account for spatial heterogeneity and spillover effects when assessing the
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causal impact of interventions or events. In this paper, we explicitly explain the as-

sumptions underlying this estimator in a way that was not done in previous works. The

underlying assumptions make clear the regular conditions of the spillover effect in the

space, which need to be considered by the research applied in this work.

We also have explored the intersection of spatial difference-in-differences methodology

and event study analysis, shedding light on the nuanced dynamics of spatially localized

effects of significant events. By extending this approach to event study analysis, we

have discerned the direct effects of events on treated units and the spatially dispersed

impacts on neighboring areas. In the spatial context, event studies serve as a valuable

tool for understanding the localized effects of events, such as policy changes, natural

disasters, infrastructure projects, or social interventions, on geographic regions or spa-

tially defined entities. By employing spatial analysis techniques alongside event study

methodologies, researchers can uncover nuanced patterns of spatial heterogeneity in the

response to events, providing insights into spatially differentiated impacts and the un-

derlying mechanisms driving them. Our investigation has underscored the importance

of integrating spatial considerations into traditional event study frameworks, offering a

more comprehensive understanding of the spatial dimensions of economic phenomena and

policy impacts.

The empirical application presented in this paper has demonstrated the utility of spa-

tial event study analysis in uncovering the spatial dynamics of policy interventions or

other significant events. By examining spillover effects on treated and untreated neigh-

bors, we have elucidated spatial diffusion’s temporal patterns and magnitude, providing

valuable insights for policymakers and stakeholders.

The results suggest that the Priority Municipality List affects the listed municipalities,

reducing the odds ratio of the annual deforestation of the remaining forest by around 50%.

This result may be even higher in the case of treated municipalities that have also treated

neighbors. The effect of the list on non-listed municipalities could be positive or negative.

The negative coefficients observed in the presented estimates indicate that the incentive

for deforestation reduction, caused by the higher probability of punishment, is greater
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than the incentive for agricultural activity expansion in neighboring municipalities. The

results indicate that the list caused a more than 70% reduction in deforestation in non-

listed neighbors of listed municipalities. This results from an untreated municipality if

all its neighbors are treated. The result is lower with fewer treated neighbors.

Explicitly, the assumptions underlying the spatial diff-in-diff method and integrating

spatial diff-in-diff and event study methodologies hold great promise for advancing our

understanding of spatially differentiated impacts and guiding evidence-based decision-

making in various fields, from urban planning and regional development to environmen-

tal policy and beyond. By embracing a spatially informed approach to event analysis,

researchers can better capture the complex interplay between events, geography, and

socio-economic outcomes, paving the way for more effective policy interventions and tar-

geted interventions in spatially diverse contexts.
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A Proof to propositions

Proposition 1: Consider the average treatment effect on the treated (ATET),

τ10 = E[Yi,2(10)− Yi,2(00)Di = 1, Dj = 0].

Of course, E[Yi,2(00)Di = 1, Dj = 0] is non-observable. Using (7b):

E[Yi,2(00)Di = 1, Dj = 0] = E[Yi,1(00)Di = 1, Dj = 0] + E[Yi,2(00)− Yi,1(00)Di = 0, Dj = 0]

From assumption 3 (equation (8)),

E[Yi,1(00)Di = 1, Dj = 0] = E[Yi,1(10)Di = 1, Dj = 0] (29)

Then

τ10 = E[Yi,2(10)− Yi,2(00)Di = 1, Dj = 0]

= E[Yi,2(10)− Yi,1(00)|Di = 1, Dj = 0]− E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]

= E[Yi,2(10)− Yi,1(10)|Di = 1, Dj = 0]︸ ︷︷ ︸
Change for Di = 1, Dj = 0

−E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]︸ ︷︷ ︸
Change for Di = 0, Dj = 0

Consider the average spillover effect on the untreated (ASENT),

τ01 = E[Yi,2(01)− Yi,2(00)Di = 0, Dj = 1].

As E[Yi,2(00)Di = 0, Dj = 1] is non-observable, we use (7c):

E[Yi,2(00)Di = 0, Dj = 1] = E[Yi,1(00)Di = 0, Dj = 1] + E[Yi,2(00)− Y(i, 1)(00)Di = 0, Dj = 0]
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Again, from assumption 3 (equation (8)),

E[Yi,1(00)Di = 0, Dj = 1] = E[Yi,1(01)Di = 0, Dj = 1]

Then

τ01 = E[Yi,2(01)− Yi,2(00)Di = 0, Dj = 1]

= E[Yi,2(01)− Yi,1(00)|Di = 0, Dj = 1]− E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]

= E[Yi,2(01)− Yi,1(01)|Di = 0, Dj = 1]︸ ︷︷ ︸
Change for Di = 0, Dj = 1

−E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]︸ ︷︷ ︸
Change for Di = 0, Dj = 0

Finally, we can consider the composed spillover effect on the region treated and neighbor

treated. In this situation, there is a composed spillover effect, direct and indirect (ASET):

τ11 = E[Yi,2(11)− Yi,2(00)Di = 1, Dj = 1].

Again, the non-observable term E[Yi,2(00)Di = 1, Dj = 1] is substituted using (7a):

E[Yi,2(00)Di = 1, Dj = 1] = E[Yi,1(00)Di = 1, Dj = 1] + E[Yi,2(00)− Y(i, 1)(00)Di = 0, Dj = 0]

From non-anticipatory assumption (equation (8)),

E[Yi,1(00)Di = 1, Dj = 1] = E[Yi,1(11)Di = 1, Dj = 1]

Then

τ11 = E[Yi,2(11)− Yi,2(00)Di = 1, Dj = 1]

= E[Yi,2(11)− Yi,1(00)|Di = 1, Dj = 1]− E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]

= E[Yi,2(11)− Yi,1(11)|Di = 1, Dj = 1]︸ ︷︷ ︸
Change for Di = 1, Dj = 1

−E[Yi,2(00)− Yi,1(00)|Di = 0, Dj = 0]︸ ︷︷ ︸
Change for Di = 0, Dj = 0
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Proposition 2: Considering (21), E[Yi,2(1,0)] = βd+µ+δ2, E[Yi,1(1,0)] = µ+δ1, E[Yi,2(0,0)] =

µ+ δ2 and E[Yi,1(0,0)] = µ+ δ1, then

τ1,0 = E[Yi,2(1,0)− Yi,1(1,0)|Di = 1,D = 0]− E[Yi,2(0,0)− Yi,1(0,0)|Di = 1,D = 0]

= (βd + µ+ δ2)− (µ+ δ1)− (µ+ δ2) + (µ+ δ1) = βd

In the same way, E[Yi,2(1,1)] = βd+βt+µ+δ2, E[Yi,1(1,1)] = µ+δ1, E[Yi,2(0,0)] = µ+δ2

and E[Yi,1(0,0)] = µ+ δ1. Consequently,

τ1,1 = E[Yi,2(1,1)− Yi,1(1,1)|Di = 1,D = 1]− E[Yi,2(0,0)− Yi,1(0,0)|Di = 1,D = 0]

= βd + βt.

And then, τ̃1,1 = τ1,1 − τ1,0 = βt.

Finally, still considering (21), E[Yi,2(0,0)] = βu+µ+δ2, E[Yi,1(0,0)] = µ+δ1, E[Yi,2(0,0)] =

µ+ δ2 and E[Yi,1(0,0)] = µ+ δ1. Then,

τ0,1 = E[Yi,2(0,0)− Yi,1(0,0)|Di = 1,D = 0]− E[Yi,2(0,0)− Yi,1(0,0)|Di = 1,D = 0]

= (βu + µ+ δ2)− (µ+ δ1)− (µ+ δ2) + (µ+ δ1) = βu
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