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Abstract

Although an extensive and influential literature examines the effects of labor-displacing tech-
nologies on labor markets, very little is known about whether and how individuals alter their
human capital investments in response to these technological innovations. This paper pro-
vides detailed empirical evidence on this question by examining the consequences of the
unprecedented advance in robotics technology in the United States. Our research design
exploits variation in the penetration of robots across locations and in the timing of exposure
across birth cohorts in a cross-cohort identification strategy. Our results show that cohorts
differentially exposed to robots before or during the typical college-going ages are signifi-
cantly more likely to complete a Bachelor’s degree and experience an increase (or a smaller
decline) in their labor market earnings. Empirical tests suggest that changes in the college
premium and opportunity costs are the key mechanisms generating these effects. We then
estimate a structural model of human capital investments to evaluate mechanisms and the
importance of these effects for the earnings inequality. Mapping this model to the data, we
find that the skill premium is the single most important component of our results, accounting
for approximately two-thirds of the overall effect. Further simulations from the estimated
model indicate that the effect of robots on earnings inequality declines substantially over time
as younger worker generations with different educational choices enter the economy. These
findings have important implications for the role of skill investments for the adjustment of
the economy to technology in models of skill-biased technological change.

JEL codes: 121, J23, J24

Keywords: automation; industrial robots; skill acquisition; college attainment; labor market;
inequality

*Contact information: Branco: Department of Economics, Universidade Federal de Pernambuco, Av. Marielle
Franco, Caruaru- PE, 55014-900 (e-mail: danyelle.branco@ufpe.br).  Carrillo: Department of Economics, Uni-
versidade Federal de Pernambuco, AV. Prof. Moraes Rego, 1235 - Cidade Universitaria, Recife - PE, 50670-
420 (e-mail:  bladimir.carrillo@ufpe.br). Iglesias:  University of Nebraska-Lincoln, Lincoln, NE 68588 (e-mail:
wilman.iglesias@huskers.unl.edu). We are especially appreciative to Pascual Restrepo for detailed comments that greatly
improved the paper, particularly the structural analysis. We also thank Paulo Alvarate, Daniel Araujo, David Autor,
Martin Beraja, Diogo Britto, Carlos Charris, Bruno Ferman, Mathew Notowidigdo, Breno Sampaio, Bryan Stuart, Daniel
Tannenbaum and participants at various conferences and seminars for helpful comments and suggestions. We are grateful to
Bryan Stuart for kindly sharing his data on the exposure to the 1980-82 recession across counties. We are solely responsible
for this paper’s contents. This study was financed in part by the Universidade Federal de Pernambuco and Coordenagdo
de Aperfeicoamento de Pessoal de Nivel Superior —Brazil (CAPES) —Finance Code 001. The authors declare that they
have no relevant or material financial interests that relate to the research described in this paper.


https://sites.google.com/view/danyelle-branco
https://sites.google.com/view/bladimir-carrillo
https://sites.google.com/view/wilman-iglesias/home 
mailto:danyelle.branco@ufpe.br
mailto:bladimir.carrillo@ufpe.br
mailto:wilman.iglesias@huskers.unl.edu

1 Introduction

A long-standing question dating back to the times of Adam Smith concerns the effects of industrial
technologies on the economy. Despite the extensive and influential literature on the consequences of
labor-saving technologies for the demand for labor and wage rates, very little is known about whether
and how individuals alter their skill investments in response to these technological innovations. Answers
to these questions have significant implications for how we model skill-biased technological change, how
changes in technology affect the structure of earnings over the long run, and how the government should
guide the target of policies intended to reduce technology-driven inequalities by promoting education.

Skill-biased technologies potentially alter the incentives to make human capital investments. If high-
skill professional occupations requiring critical thinking, management, or other non-routine skills are
shielded from automation, then the premium to higher education should rise as technology advances.
This premium effect, together with declines in the opportunity cost of time, should increase the incentives
for individuals to invest in high-skill professions. In this paper, we offer evidence on the effects of a major
automation technology on individuals’ educational decisions, document in detail the mechanisms at work,
and estimate a structural model of educational choice to evaluate the importance of this endogenous
response for the dynamic of earnings inequality in the United States.

Though a large literature examines the effects of economic shocks on human capital, existing research
has largely focused on variations in economic conditions that primarily affect individuals at the bottom
of the skill distribution, such as changes in the construction sector (Charles et al., 2018), trade-induced
changes in low-skill labor demand (Atkin, 2016; Greenland and Lopresti, 2016) or shocks to the natural
resources and agricultural industries (Shah and Steinberg, 2017; Cascio and Narayan, 2015; Carrillo,
2020).!What is different about the recent advances in automation technologies is that they tend to
disproportionately affect routine-intensive occupations that are toward the middle range of the skill
distribution (Goos and Manning, 2007; Autor and Dorn, 2013). The extent to which these technological
changes induce skill acquisition in advanced economies depends on whether individuals on this margin
effectively transition to Bachelor-level college. It is not obvious that this will be the case: college
is an expensive, long-duration training investment that requires a more complex set of skills. Youths
forgoing college education may be just those who are credit-constrained (Lovenheim, 2011), too impatient
(Cadena and Keys, 2015; Lavecchia et al., 2016), or lack the foundational skills to succeed in college
(Goldin and Katz, 2009). Recent work by Athreya and Eberly (2021) concisely highlights the importance
of the latter:

“In the absence of improved college readiness .... the continuing long-standing trends in
skill-biased technological change can be expected primarily to increase earnings inequality

rather than college attainment.”

This paper provides detailed empirical evidence on this important question. Our focus is on industrial
robots, which are reprogrammable machines that can perform a variety of routine tasks, ranging from

painting and assembly to packaging, without requiring any human operator. With the incorporation

"Within the natural resource sector, the literature on agricultural shocks in developing countries is voluminous. For a
comprehensive review of these studies, see Ferreira and Schady (2009).



of sophisticated sensor and machine vision systems, robotics technology advanced dramatically in the
1990s. Following the substantial decline in the price of an industrial robot, there was a sharp and
discontinuous rise in robot adoption rates since 1993 in the United States, with an increase of 120
percent from 1992 to 1995 alone and 200 percent to the end of the 1990s (Figure 1). This was in
contrast to a relatively flat trend in adoption rates in previous years. Acemoglu and Restrepo (2020)
document that this unexpected, sudden, and salient technological shock had negative effects on the
earnings of routine-intensive workers. We investigate the consequences of this technological shock for
the college decisions of individuals growing up in impacted labor markets.

The paper proceeds in three steps. We first characterize the impacts of robots on college attainment.
Our research design exploits variation in the intensity of robot penetration across locations and the
timing of cohort exposure in a difference-in-differences empirical strategy. We construct a measure of
robot exposure intensity based on the interaction between the industry-specific robot penetration and
initial employment composition in each location, following the neat approach developed by Acemoglu
and Restrepo (2020). We assign individuals to robot exposure intensities based on their state of birth,
assuming that the state where an individual was born is the same as the one where she or he grew
up. We show that this assignment is reasonable and that there is a great deal of variation in exposure
intensities across states.? We then compare the outcomes of cohorts exposed before, during, and after
their critical college-going ages in states with varying robot penetration intensities. Under the common
trends assumption that more- and less-exposed areas would have followed similar trends over time across
birth cohorts in the absence of the robot shock, our estimates can be given a causal interpretation.

We find a visually clear and statistically significant increase in the likelihood of having a Bachelor’s
degree in areas housing the industries with greater robot penetration. Higher-versus-lower exposed areas
exhibit statistically similar trends among older cohorts exposed after the typical college-going ages, but
begin to diverge over time when new birth cohorts exposed before or during the critical timing of college
decisions enter the economy. Our estimates imply that early exposed cohorts from the state experiencing
the average robot penetration are 1.8 percent more likely to obtain a Bachelor’s degree compared to
late exposed cohorts. This effect comes entirely from individuals who otherwise would have completed
exactly high school or attended a two-year college, or those on the relevant margin in the middle of
the skill distribution. We document extensively that our estimates are very unlikely to be capturing
mean-reverting dynamics, differential trends in manufacturing employment driven by other factors, or
differences in trends related to a diverse set of initial socioeconomic characteristics. We also show that
our estimated effects are not confounded by other major shocks to the labor market, such as increased
import competition and the recession of the early 1980s, or by major social programs, such as school
finance reforms, war-on-poverty programs, and Medicaid. Together, these results demonstrate that the
adoption of routine-biased technologies such as industrial robots has important implications for the
accumulation of human capital.

We then look at the childhood-exposure effects on labor market earnings. The data indicate that

cohorts exposed to robots at the beginning of the life cycle experienced an increase (or a smaller decline)

2As we discuss in Section 2 in more detail, approximately 80 percent of individuals reside in the same state as the one
where they were born during their college going ages.



in their incomes relative to late exposed cohorts. The driving force behind this effect is education.
When we account for the relationship between robots and college attainment, the relative income effect
disappears entirely and if anything becomes slightly negative. It is important to note that these results
do not imply that automation is good on net for younger cohorts. The introduction of robots had
negative labor market impacts on all individuals, but this effect has been smaller for younger cohorts
who could alter their educational decisions.?

In the second part of the paper, we provide evidence on the mechanisms underpinning our findings.
We estimate that labor markets with greater exposure to robots saw a sizeable rise in the premium
from having a Bachelor’s degree relative to a high school diploma or two-year college degree. This
premium effect has been paralleled fairly closely by a meaningful decline in the opportunity cost of
college-going, as proxied by the average labor market earnings a young adult without college training
receives. Counterbalancing these market incentive mechanisms, we find a significant and negative effect
on parental income. These results suggest that the market incentive effects combined are large enough to
outweigh the negative family income effect. We rule out alternative explanations related to the supply-
side of education and local government responses, including changes in the net cost of colleges, college
revenues from public appropriation, or government expenditures in education.?

We also examine changes in the sorting pattern to the major fields of study to provide further
evidence on the skill premium channel. We exploit the fact that some individuals with a Bachelor’s
level training could still end up mismatched into routine-intensive jobs directly affected by robots, and
the extent to which this occurs differs substantially across majors. The premium channel predicts that
exposed cohorts should be less likely to major in subjects where this occupation-education mismatch
is more common, as the returns to such occupations and thus majors became relatively lower. This is
exactly what we find. Cohorts exposed to robots in childhood are more likely to sort into fields with
a lower prevalence of routine-intensive occupations. They are more likely to avoid fields with a higher
prevalence of machine operators, assemblers, inspectors, and precision-production occupations, exactly
the occupations that experienced the bulk of the displacement consequences created by robots.

In the final part of the paper, we estimate a structural model of human capital investments to evaluate
mechanisms and quantify the importance of these effects for the dynamics of earnings inequality. The
model is parsimonious enough to be tractably estimated yet rich enough to capture the mechanisms
discussed above. The model generates estimates of key parameters, such as the coefficient of risk aversion,
within the range of existing estimates in the literature. Moreover, the model-based and reduced-form
estimates of the effects of robots on college attainment are fairly comparable, and the model performs
quite well in replicating other features of the data such as the age-specific pattern in enrollment rates.

Remarkably, the model produces an elasticity of Bachelor’s attainment with respect to parental income

3Late cohorts were the ones feeling the bulk of the displacement effects created by robots. This raises the concern that
our results may be driven by biases due to older cohorts experiencing the scarring effects from job losses they incurred
during their earlier working life. As we shall see, our results hold (and become stronger) even when we compare adults
in the labor market but that grew up in places with varying degrees of exposure to robots, suggesting that biases due to
scarring effects are unlikely to be a major issue.

4These results, however, do not rule out the possibility that policymakers did respond to the adoption of robotics
technologies but at the national level, an effect that would be not identified by our cross-location empirical strategy. But
this does not necessarily affect the interpretation of our results and parameter of interest.



that is extremely similar to the one estimated by recent work using exogenous variation in family income
generated by lottery wins (Bulman et al., 2021).

Counterfactual simulations suggest that the college premium channel is the single most important
component behind the human capital response to robots. It accounts for approximately two-thirds of
the overall effect, with most of the rest accounted for by the opportunity cost mechanism. Using the
structural estimates of the model, we also estimate key elasticities. The elasticity of college with respect
to the college premium is 0.60, whereas that with respect to the opportunity cost of college going is
-0.18. The fact that the premium elasticity is larger than the opportunity cost elasticity is consistent
with early work suggesting that lifetime future earnings is more important than initial earnings for
individuals deciding whether or not to go to college (Berger, 1988). We perform further simulation
exercises to explore the role of policy, finding that a government subsidy that covers 50 percent of the
tuition costs for all students would enhance the college response to robots significantly.

To explore the implications of these results for the dynamics of earnings inequality, we extend the
model to include an aggregate version of the production function introduced in Acemoglu and Autor
(2011) where robots compete against labor in the production of tasks. Our analysis suggests that the
effects of robots on high-skill earnings become increasingly negative over time as younger generations
enter the market and generate an outward shift in the supply of high-skilled workers. By contrast, the
effect on low-skill earnings declines over time due to the mechanical inward-shift effect on the supply of
low-skilled workers. As a consequence, the technological-induced increase in earnings inequality becomes
lower. These effects are quantitatively important. In the absence of the market incentive mechanisms,
the long-run effect of robots on earnings inequality would be as much as 75 percent larger, holding all
else equal.

These results naturally raise the question of why there has been little progress in the aggregate trends
of college attainment for cohorts entering the labor market after the 1980s despite the rapid increase in
the college premium. We close the paper with a discussion of this question and believe that the most
plausible explanation is that there have been changes in other important factors offsetting the premium
effect. This point has already been highlighted by Goldin and Katz (2009) and quantitatively analyzed
by Castro and Coen-Pirani (2016), who demonstrate that the sharp rise in tuition costs faced by recent
cohorts can explain a substantial portion of the slowdown in aggregate college attainment.’Note that this
does not imply that the human capital response to technology has not been important. Our analysis
suggests that college attainment would have likely increased at a slower rate or even declined in the
absence of the market incentives generated by changes in technology.

Our findings contribute to a vast literature on the impacts of technology. This literature has docu-
mented extensively that the routine-biased technologies affect the demand for labor, displacing workers
specialized in routine tasks and increasing earnings inequality (see Jaimovich and Siu (2019) for an

overview of the literature).°We contribute by providing evidence on whether, how, and why these tech-

®The important role of rising tuition costs is consistent with recent experimental evidence documenting that financial
aid, which reduces the costs of college attendance, has a fairly large causal effect on bachelor’s degree attainment (Angrist
et al., Forthcoming). Castro and Coen-Pirani (2016) also explore the role of declining learning ability and find that it also
accounts for an important fraction of the slowdown in college attainment. Other studies employing an analogous approach
reach similar conclusions (Jones and Yang, 2016; Donovan and Herrington, 2019).

SPioneering studies in this literature include Katz and Murphy (1992), Krueger (1993), and Autor et al. (1998). Subse-



nologies induce skill acquisition. While changes in the relative supply of high-skill workers have often
been emphasized as an important force stabilizing the technological-induced gap between rich and poor
(Katz and Murphy, 1992; Goldin and Katz, 2009), there has been little effort to estimate the key param-
eters governing this endogenous response. The parameters we estimate can serve as inputs to discipline
models of the economy that consider changes in skill-biased technologies and endogenize education.”
Our study is also related to the recent work by Dauth et al. (2021), who show that the share
of young workers without college education declines in firms potentially adopting industrial robots in
Germany. This result could be driven by younger cohorts altering their skill investments, but also by
employers altering their hiring decisions. Particularly related to our study is Berger and Engzell (2020),
who examine the effects of robots on social mobility across US commuting zones. They document that
robots have negative effects on social mobility in high-exposure areas. Our study differs from this paper
since we study the impact of robots on individuals rather than on places. These effects are not necessarily
the same, as the effects on places may reflect in part compositional effects due to endogenous migration
responses of displaced workers. This is important in view of the evidence of workers sorting across local
labor markets in response to the implementation of industrial robots (Acemoglu and Restrepo, 2020).8
This paper is organized as follows. Section 2 presents the data and empirical strategy. Section 3
reports the basic findings, documents their robustness, and provides empirical evidence on mechanisms.
Section 4 identifies and structurally estimates a model of human capital investments to evaluate the
quantitative importance of mechanisms and explore the implications of our findings for the long-run
evolution of earnings inequality. Section 5 discusses the implications of our findings for the aggregate

trends in college attainment, and section 6 concludes.

2 Data and Research Design
In this section, we provide an overview of the data sources, present the robot exposure variable, and

describe the baseline specification.

2.1 Data Sources, Samples and Variable Definitions

Our basic analysis uses data from the American Community Survey (ACS) and data on robots from

Acemoglu and Restrepo (2020). We also use other data sources that are described throughout the paper.

quent work provides more detailed evidence on the role of computers (Burstein et al., 2019), information and communication
technologies (Michaels et al., 2014; Akerman et al., 2015; Hjort and Poulsen, 2019), industrial robots (Graetz and Michaels,
2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021) and artificial intelligence and machine learning technologies (Babina
et al., 2020; Acemoglu et al., 2020).

"Examples include Galor and Moav (2000), Addo et al. (2020), Caselli and Manning (2019), Hémous and Olsen (2022),
and Guerreiro et al. (2022).

8Since we assign individuals to robot adoption intensities based on their place of birth (determined before the robot
shock), biases from selective migration are not an issue. Importantly, the data reveal that almost 80 percent of individuals
reside in their state of residence during the critical ages when college decisions are formed (i.e., around 18). This high
correspondence between birth and childhood residence state reduces the risk of measurement error in our assignment of
childhood exposure due to migration, which is most likely common in more granular geographic divisions such as counties
or commuting zones. We discuss our assignment of cohort exposure in Section 2.2.A.



ACS microdata. We use data on the ACS for the years 2001 to 2019, a nationally representative sample
of the population conducted annually by the US Census Bureau. The ACS provides rich demographic
characteristics (including gender, age, race, and state of birth) as well as basic socioeconomic information
(such as education and earnings). A compelling feature of these data relative to other population surveys
is their enormous sample sizes, covering on average between 1.5 and 3 million individuals per year.” Our
analysis compares cohorts exposed and unexposed to the dramatic advance in robotics during the 1990s
and 2000s, which depends on when and where they were born. Our main outcome of interest is an
indicator for whether an individual has a Bachelor’s degree or higher, the level of education that is less

prone to experience the displacement consequences created by robots.

Robot data. We use the measure of robot exposure built by Acemoglu and Restrepo (2020) at the
state level, a level of aggregation discussed in detail later in Section 2.2. For each state, we compute
the robot exposure as the adjusted change in the stock of robots in that state’s industries, weighted by
each industry share in the state’s baseline employment:
Industry share
Robot penetration, = Zfzj\ (AMj — %)
Jex

Ly 7Ly (1)

Robot Penetration

where /;, is the initial employment share of industry j in state s, which we calculate using the census
conducted in 1970 to capture the long-term industrial composition that was prevailing before the major
advance in automation. The variable AM; = M;, — Mj; is the change in the number of robots in each
industry between the base year b and final year 7, normalized by the number of workers Lj,. In the
model of automation developed by Acemoglu and Restrepo (2020), the labor market effects are related to
the change in the number of robots per thousand workers after adjusting for the growth rate of output
Aj of each industry (captured by the expression A;M;,/Lj,). For consistency with their conceptual
framework and ease of comparison, we keep this adjustment term.!® Data on robots come originally
from the International Federation of Robotics (IFR), which is consistently available since 1993 for all
industries aggregated into 19 consistent categories across 50 countries. We use the 1993 to 2007 period
to measure the adjusted penetration of robots, a period that corresponds to the intense adoption of
robots in the United States and the timing of college decisions of the “exposed” cohorts in our sample.

A concern with using realized penetration of robots in the United States is potential reverse cau-
sation!! and unobservable shocks that simultaneously affect industrial robot usage and human capital
investments. Following Acemoglu and Restrepo (2020), we construct the robot penetration variable in

equation (1) using data of average robot adoption in the top 5 non-US countries with greater advances

9The number of people sampled changed sharply in 2005 and onward, going from 1.1 to more than 2.8 million individuals.
This discontinuity is visible in our estimation sample (see Appendix Figure A1l). We have no reason to believe it has
important implications for our identification strategy. The results are essentially the same if we exclude the ACS conducted
before 2005.

Data on the growth rate of output of each industry and baseline employment level in each industry are originally
obtained from the Euro KLEMS database (Jager, 2016). See Section A.2 of the Appendix for further details.

1Tn particular, local skills may themselves influence firm decisions on robot adoption across regions. For example, the
adoption of robotics technologies complementing high-skill workers may be more likely if there is an abundant supply of
high-skill workers when such technologies become available.



in robotics (Denmark, Finland, France, Italy, and Sweden).?Much of the robotics advances occurred
first in these countries, so their industrial robot usage trends are a powerful predictor of that in the
US, with a correlation coefficient of 0.95 (see Figure 2). At the same time, the extent of robot adoption
in these countries is unlikely to be directly related to individuals’ education across regions within the
United States. Therefore, focusing on this measure of robot penetration allows us to isolate a source
of variation plausibly independent of individuals’ schooling decisions. Our baseline exposure variable
focuses on this measure of European-based robot penetration, but we also present results where the

observed US robot penetration.

Main analysis sample. The enormous sample sizes in the ACS allow us to focus the analysis on
the specific cohorts of interest while retaining a sufficient sample size. We focus on the 1966-83 birth
cohorts, which include individuals who made their college decisions before and during the advance in
robotics and are not too young or old to observe their outcomes consistently in the 2000s and 2010s.
Our analytical sample restricts to adults born in the mainland of the United States and above age 30 at
the survey time."*We exclude individuals residing in institutional group quarters to increase consistency
between the different rounds of the ACS, a restriction that results in dropping about 3 percent of the
sample.'*We pool all of the ACS rounds into a single file to increase the precision of our estimated

results.!> Our basic sample consists of approximately 7.1 million observations.

2.2 Research Design

Our analysis exploits geographic and time variation in robot adoption in a difference-in-differences
research design. The first difference is over time across birth cohorts, as some individuals were exposed
to the global advance in robotics before, during, or after their college-going ages depending on when
they were born. The second difference is across locations, as robot adoption differs substantially across
regions depending on their industrial composition. Thus, our analysis compares individuals who were
younger and older during the advance in robotics in more and less exposed areas. The key difference
between this approach and the standard two-group/two-period difference-in-differences is that we use
a continuous measure of “treatment” intensities given by the Bartik-like variable of robot exposure
described above.

In this section, we discuss the unit of analysis and present the definition of cohort exposure and the

12This group excludes Germany, which is well ahead of the United States and thus is less relevant for robot adoption
trends in the latter. We will examine the robustness of our results to alternative constructions of the exposure to robots,
which consider expanding the top 5 to include Germany and other countries.

13This restriction excludes individuals from Hawaii and Alaska, so the resulting sample includes all individuals born in
one of the remaining 48 states or the District of Columbia. In the ACS, the District of Columbia is considered a separate
state. This sample restriction also excludes immigrants (about 10 percent of the observations), as it is not possible to infer
whether or not they were exposed to automation technologies in the United States.

The first rounds of the ACS conducted between 2001 and 2005 did not cover persons in group quarters. Hence, by
excluding individuals in institutional group quarters in subsequent ACS rounds, we increase the consistency between ACS
years.

15Since we have a fixed number of birth cohorts in our sample, the composition of these birth cohorts in the sample
varies with the survey-year. Younger cohorts are mechanically more likely to be observed in more recent survey years (see
Appendix Figure A3). In Section 3.1, we show that the results are essentially the same if we restrict the estimation sample
to the 2015-19 survey years where all birth cohorts of interest are observed.



basic estimating equation.

2.2.A The Geography of the Exposure to Robots

We assign robot exposure intensity to individuals assuming that the place where they were born is the
same as the one where they grew up, so our analysis is an intent-to-treat design. This requires that
we choose the geographical level of the robot exposure measure. In principle, one would measure robot
exposure at the county level. However, information on birthplace is only available at the state level
in the ACS microdata and thus we are unable to match individuals with a measure of robot exposure
at smaller geographies than a state. Therefore, we construct our measure of robot exposure at the
state-of-birth level.'

While state divisions are relatively large geographic units, they have important strengths when study-
ing the effects of robots on educational choices. Because mobility between states is much less frequent
than between other smaller geographies,'” the state of birth provides a more reasonable approximation
of the place where individuals were residing during their childhood and college-going years. This reduces
noise in our assignment of childhood exposure due to migration. Consistent with this notion we find
that approximately 80 percent of the birth cohorts in our sample were still residing in their state of birth
when they were between ages 15 to 18, the critical ages when college decisions are formed.'®

Importantly, there is a great deal of variation in the intensity of robot exposure across states, as
shown in Figures A7 and A6. The difference between the 25 and 75th percentiles in the robot exposure
intensity distribution is approximately 55 percent, and the difference between the 10 and 90 percentiles

is more than 230 percent.

2.2.B Timing of Exposure

The research design compares cohorts exposed before or during the robot shock to those who were
“too” old when the same shock became particularly salient. Figure 1 provides compelling evidence that
robot adoption rose sharply and discontinuously in the early 1990s. In this subsection, we show that
this sudden and large increase in robot adoption had immediate and first-order consequences on labor
markets. Armed with this evidence, we then define the approximate date from which the effects of
robots became particularly salient to implement our cross-cohort identification strategy.

To implement the dynamic effects of robots on labor markets, we use high-precision data on em-

ployment from the Bureau of Labor Statistics Quarterly Census of Wages and Employment (QCEW) at

16 An alternative possibility would be to assign robot exposure intensities based on an individual’s place of residence at
survey time rather than that of birth. This would allow us to explore variation in robot exposure at a fine geographic scale.
We do not pursue this approach because, unlike the birthplace which is determined prior to future technological advances,
the actual location of residence may reflect endogenous responses to contemporaneous trends in robot adoption.

"For example, according to the 2000 Census, only 7 percent of individuals declared they moved between states during
the last previous five years. By contrast, about 30 percent moved between administrative divisions that are smaller than
a state. Between-state mobility accounts for less than 20 percent of the overall internal migration.

18We use the censuses conducted in 1980, 1990, and 2000 to track birth cohorts’ place of residence at different moments
in time. By its decennial nature, the population census does not allow us to observe all cohorts when they were ages 15
to 18. We find similar figures when we track cohorts using the Current Population Survey, a representative sample that is
collected annually since the 1960s.



the state-year level. These data are derived from administrative tax reports submitted to state employ-
ment security agencies by all employers covered by unemployment insurance laws, accounting for about
95 percent of total administrative employment records. With these data, we estimate the following

first-difference equation:

(emp/pop)s+—(emp/pop)s 1989 = ¢ + ~:Robot penetration, + Z.Q0 + oy (2)

where emp/pop is the employment-to-population ratio in each state s at time t € {1981, 1984...,2007}.
The regression includes a basic set of baseline characteristics computed from the 1990 census to account
for differences in trends related to baseline conditions. The parameter of interest is v, which measures
the impact of robots in different moments in time. The path of these year-specific coefficients provides
a detailed depiction of the dynamic effects of robots on employment. Standard errors are adjusted to
account for arbitrary heteroskedasticity.

In Figure 3, Panel A plots the set of coefficients 4 from equation (2) for each year, along with 95
percent confidence intervals. The figure shows that the intensity in robot exposure is not associated with
statistically meaningful changes in employment prior to 1990. These estimated coefficients are small in
magnitude and statistically indistinguishable from zero. After 1990, the coefficients begin to be negative
and statistically significant. By the mid-1990s, the estimated relationship becomes sizeable and rapidly
increasing in magnitude. Panel B of Figure 3 presents a trend-break analysis on the estimated coefficients
and confirms this visual impression: the location of the structural break occurs around 1995. This is
consistent with the view that the adoption of industrial robots spread significantly by the mid-1990s

with the technological advances in robotics.

Definition of post-robot cohorts. These results help to motivate our basic specification measuring
the impact of robots on educational attainment. The employment effects of robots become particularly
salient around 1995, so we choose this date as an approximate benchmark. Individuals born after 1972
were exposed to this major episode before and during their transition ages to college. If there exists a
causal link between robots and human capital, one would expect robot penetration to make a difference
for many individuals in these birth cohorts. On the other hand, the cohorts born before 1972 were above
age 23 by the mid-1990s, and thus they had largely completed their schooling decisions before the onset
of rapid advances in robotics.'*To provide a convenient means of summarizing magnitudes in tables and
subjecting the estimates to sensitivity checks, we define the post-robot cohort group as those individuals
born in 1977 or later. This definition does not consider the partially exposed cohorts born between 1973
and 1976 to account for the possibility that the effects of robot penetration on human capital may not

occur instantaneously.

9For the constant sample of birth cohorts born between 1966 and 1972, about 80 percent of individuals had completed
their schooling decisions by age 23. See Appendix Figure A4.



2.2.C Basic Specification

To estimate the effects of robots on human capital, we use a baseline specification that takes the form:
Sist = @ + [ Robot penetrationg x Post,
+ XL,Q + Zcﬁz(z x FE;) + FE;+ FE; + &5 (3)
z2€Z

where S;4 is the outcome of interest for individual ¢ born in state s and birth cohort ¢t. The term
Robot penetration, is our time-invariant measure of robot exposure intensity defined in equation (1).
Post; is an indicator for the post-robot cohorts born after 1976. The key independent variable of interest
is given by the interaction between these two variables. All models include fixed effects for state-of-birth
(FE;) and birth-cohort (FE;). Since we are using all of the ACS rounds pooled into a single file, we
include a detailed set of survey-year fixed effects. The vector X/, includes a set of basic demographic
characteristics such as gender and race. The term ) _, ®.(z x FE;) controls for interactions between
birth-cohort fixed effects and a full set of 1990 initial state characteristics Z, including baseline levels of
educational attainment. These controls help account for potential mean-reverting dynamics in college
attainment spuriously correlated with the exposure to robots. The residual term, &4, is clustered at

the state-of-birth level to allow for serial correlation across birth cohorts.

Identification. The validity of any estimate of the impact of robots based on equation (3) rests
crucially on the assumption that the outcomes of individuals from areas that experienced different robot
penetration intensities would have followed similar trends over time across cohorts in the absence of
the global advance in robotics. Note that the identifying assumption does not require that low and
high exposed areas are similar in observable or unobservable factors, but requires that such factors
evolve similarly over time across birth cohorts. By conditioning on state and birth-year fixed effects, the
parameter of interest is identified from within-state differences between cohorts that were exposed earlier
and later to robotics advances after partialling out shocks common to all states. The interaction of a
wide range of pretreatment state characteristics with birth-cohort trends reduces the risk of differential
trends driven by other factors. More importantly, we will show that states disproportionately exposed
to robots were on similar cross-cohort trends in educational and other socioeconomic outcomes prior to
the technological advances in automation. After presenting the basic findings, we discuss specific threats
to internal validity and provide a variety of evidence suggesting that the identification condition is likely

to hold in our setting.

3 Results

3.1 Impacts on College Attainment

Visual evidence. We begin by presenting results from estimating a fully flexible version of equation
(3) that replaces the Post; dummy with birth-cohort indicators. This specification allows the estimates
for 8 to vary over time across birth cohorts and examine timing of impacts. Figure 4 plots the estimated

coefficients of 8; and corresponding 95 percent confidence intervals for each birth cohort. We separate the
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birth cohorts into three groups, denoted by the vertical bars: “pre-robot cohorts”= birth-year < 1972,
“partially exposed” =birth-year € {1973,1976} and “post-robot cohorts”= > 1977. Since individuals
born prior to 1972 were over age 23 in the mid-1990s and thus had largely completed their schooling
decisions before the dramatic advance in robot adoption, there is no reason to expect higher- versus
lower-exposure states to have differential trends before the 1972 cohort. Thus, the path of the pre-robot
coefficients allows us to inspect the plausibility of the identifying assumption.

Figure 4 shows that the robot exposure intensity is unrelated to changes in college attainment before
the 1972 robot cohort. The pre-robot coefficients are very close to zero and statistically insignificant.
Notably, there is not any clear tendency toward improving or deteriorating college attainment during the
pre-robot period. Indeed, the pre-robot coefficients display a flat trend and fluctuate randomly around
zero. These results provide strong evidence in support of the identifying assumption that higher-versus-
lower-exposed areas would have experienced similar trends in the absence of the robot shock.

After the 1972 cohort, more-versus-less exposed areas begin to diverge gradually, a pattern that
remains persistently increasingly from the 1976 cohort. Post-robot cohorts from states with greater
exposure to robots are significantly more likely to have at least a bachelor’s degree. The persistent
increase in the effects of robots after the 1976 cohort is natural as later cohorts spent more childhood
years exposed to robots, and given the increasing adoption of robots over time. The estimated coefficient
for the youngest post-cohort is approximately 0.006. It implies that cohorts from states experiencing
the average exposure to robots see 1.2 percentage points larger increase in the likelihood of obtaining a
bachelor’s degree or higher (0.006 x 2 = 1.2). This represents an increase of about 3.3 percent relative

to the sample mean outcome.

Baseline estimates. The flexible specification provides visually clear evidence that the advance in
robotics taking place since the mid-1990s has had significant impacts on college attainment. We now
focus on the parametric, parsimonious model (3) to summarize magnitudes in tables and perform spec-
ification checks.

These results are reported in Table 1. Column (1) presents results from a specification that in-
corporate only birth-cohort and state-of-birth fixed effects as well as indicators for gender, race, and
survey year. The coefficient of interest is estimated at 0.0027 with a standard error of 0.0015 and signif-
icant at the 10 percent level. Column (2) adds interactions between 1990 college attainment levels and
birth-cohort fixed effects, which control for any possible mean reversion in college attainment spuriously
correlated with the exposure to robots. While the inclusion of these interactions leaves the coefficient
B virtually unchanged at 0.0027, it makes the point estimate much more precise. Indeed, the stan-
dard error falls by a factor of 2.5, from 0.0015 to 0.0006, and the estimated coefficient becomes highly
significant at less than 1 percent. This suggests that the mean-reversion controls make a good job in
reducing noise and increasing precision, and that our results are not simply an artifact of some possible
convergence effect across more and less exposed states.

Column (3) presents results from our preferred specification, which incorporates the full set of ad-
ditional baseline socioeconomic characteristics, as measured in 1990, interacted with birth-cohort fixed

effects. The relationship is quite similar and somewhat larger with these controls. The coefficient
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now stands at 0.0034 and is slightly more precise, with a standard error of 0.0005. Quantitatively, this
coefficient estimate implies that early exposed cohorts from the states such as Connecticut, which expe-
rienced the average penetration of robots, are 0.7 percentage points more likely to obtain a Bachelor’s
degree or higher relative to later exposed cohorts. Relative to the sample mean, this effect represents an
increase of approximately 1.8 percent. While this effect might seem small, note that it is based on the
average exposure to robots and hence this effect is significantly larger in states experiencing a greater
exposure to robots. The same calculations for states at the 75 and 90th percentiles of the exposure to
robots reveal effects of 2.1 and 3.7 percent respectively.

In our main analysis, we use all rounds of the ACS pooled into a single file to increase power. An
advantage of this approach beyond the gains in precision is that it reduces biases due to mortality
attrition in the older cohorts, as individuals are included in the sample only if they are alive at the time
of the survey.? However, by construction, younger cohorts are disproportionately underrepresented
in the estimation sample.?! As a robustness check, we rerun the baseline specification but restrict the
estimation sample to the ACS conducted between 2015 and 2019 where all the birth cohorts are observed
with nearly equal likelihood. This restriction reduces sample size by approximately 60 percent, yet both
the point estimate and standard error are not appreciably affected (column 4, Table 1).

As shown in Appendix Table A2, the penetration of robots was, in general, much higher in manufac-
turing than in nonmanufacturing industries. This raises the concern that our results may be capturing
the post-1990 decline in manufacturing employment due to factors unrelated to robotics technology. We
address this issue in Appendix Table A3 by including interactions between birth-cohort fixed effects
and 1990 baseline manufacturing share in each state, which proxies for the post-1990 declining trends
in manufacturing employment. This is a very demanding specification because these controls may me-
chanically absorb part of the underlying variation we use to identify the effects of robots —recall that
the robot exposure variable is a function of the baseline employment share of each industry. Still, the
coefficient of interest remains very similar to the baseline and highly significant. As a further check, we
directly control for interactions between birth-cohort fixed effects and 1990 level of employment rates or

average wages. Once again, this has very little impact on the coefficient of interest.

2SLS estimates. We next present two-stage least squares (2SLS) estimates where our baseline,
Furopean-based robot penetration measured is used as an instrumental variable for the observed US
robot penetration. These results are presented in Appendix Table A4. Column (1) documents a powerful
first-stage relationship, as had already been noted in Figure 2, with the F-statistics well above the con-
ventional weak instrument threshold of 10. The 2LS estimate is comparable to our baseline reduced-form

coefficient and corresponding OLS estimates, both in magnitude and statistical significance.

Additional robustness checks. We perform several additional sensitivity tests, all of which are

20For example, if more educated individuals in the older birth cohorts are more likely to survive at the time they are
observed in the survey (as previous studies suggest (Lleras-Muney, 2005)), then it may change the composition of the
sample. This issue is largely absent when including all rounds of the ACS, beginning since 2001, because we observe the
outcomes of the older cohorts at younger ages when mortality risk is relatively low and because education changes very
little with age after formal schooling is completed.

2!This is illustrated in Figure A1, which plots the share of each birth cohort in the estimation sample.
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presented in the Online Appendix to save space. We examine the robustness of the basic results to:
i) alternative forms of constructing the robot penetration measure (Appendix Table A5); ii) excluding
outlier observations based on regression residuals as well as on leverage and Cook’s distance measures
(Appendix Table A6); iii) excluding industries with the largest Rotemberg weights (Appendix Table
A7), as recommended by Goldsmith-Pinkham et al. (2020); and 4v) alternative inference procedures
(Appendix Table A8), including standard errors that account for spatial correlation across areas with
similar sectoral shares (Borusyak et al., 2022; Adao et al., 2019).

The distribution of education. We next investigate the source of the gains in college completion.
Since individuals in the middle of the skill distribution were the ones displaced by industrial robots, one
would expect that the increase in college attainment comes primarily from this part of the education
distribution if changes in the college premium and opportunity costs are the key mechanisms generating
this relationship. To shed light on this hypothesis, we estimate the baseline specification (3) for different
education categories: less than high school, high school, two-year college degree, and Bachelor’s degree
or higher. As shown in Figure 5, the robot-induced increase in Bachelor’s degree attainment is driven
by reductions in the probabilities of having high school and a two-year college degree. The effect on the
likelihood of having less than high school, though significant, is much smaller in magnitude and of the
opposite sign.??> These results confirm that the improvement in Bachelor’s degree attainment comes from
individuals in the middle of the skill distribution, for whom the adoption of robots differentially altered
the incentives to invest in Bachelor’s-level college. From a causal perspective, we take this pattern in the
data as an indication that our findings are unlikely to be the product of unobservable factors affecting
all individuals in the bottom and middle of the skill distribution similarly. To save space, we focus on
four-year attainment in the remaining analyses.

Overall, the results of this section show that growing up in robot-exposed markets leads to a signifi-
cant improvement in Bachelor’s degree attainment. This interpretation of the results depends critically
on the assumption that there were no major differential trends in college attainment across more- and
less-exposed areas driven by other factors. We critically evaluate assess potential threats to the identi-

fication strategy.

3.2 Threats to Internal Validity

In this subsection, we investigate potential threats to the validity of our findings, including possible
mean reversion and other shocks coinciding with the advances in robotics.
3.2.A Preexisting Trends and Mean Reversion

While the magnitude of our results is virtually unchanged when we flexibly control for differences in

trends correlated with baseline college attainment levels, and while the comparison of pre-robot cohort

22This result suggests heterogeneity among individuals within the middle of the education distribution. If the adoption
of robots reduces the returns to middle education, then forward-looking individuals who are unable to go to college or lack
college-ready skills could find optimal to reduce their educational investments and dropping out of the school at earlier
ages.
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trends does not suggest significant differences, one might still be worried about the possibility that our
estimates are capturing some pre-existing convergence or catchup effect in human capital across states.

We perform several additional exercises to address this issue in Table 2.

Mean reversion. Our baseline specification includes interactions between college attainment levels in
1990 and birth-cohort fixed effects. Thus, this model accounts to a great extent for any possible mean-
reverting dynamics in college attainment taking place around the onset of recent advances in robotics
technology. As an additional check, we also include interactions between birth-cohort fixed effects
and 1960, 1970 and 1980 college attainment levels. Columns (2) of Table 2 shows that the coefficient
of interest remains almost unchanged with these additional controls, going from 0.34 to 0.36. And
although the relationship is estimated with less precision, it continues to be highly significant. Column
(3) goes a step further and controls rather for the 1960-1990 change in college attainment interacted
with birth-cohort fixed effects. The results remain extremely similar to the baseline, providing further

evidence that mean reversion is unlikely to explain the post-1972 cohort changes in college attainment.

State-specific pretrends. Another way to investigate whether pre-existing mean-reverting dynamics
could explain our findings is to directly control for pre-robot state-specific linear trends. To do so, we
first estimate state-specific linear trends using data covering the pre-robot cohorts, which leads us to
estimate a slope coefficient %, for each state. We then extrapolate the pre-robot trends in our baseline
specification using the following augmented specification:

state-specific pre-trends

Sist = @ + [ Robot penetrationg x Post; + Z Rsllv=s]-t
SEO (4)

+ XiyQ + ) ®.(2 x FEy) + FE, + FE; + &
z€Z

By including state-specific pre-trends, we account for underlying linear time trends in college attainment
potentially correlated with the intensity in robot exposure across states.?>As shown in column (4) of
Table 2, the inclusion of these pretrends has virtually no impact on our results, with both the coefficients

and standard errors nearly identical to the baseline.

Within-region variation. While the results above are very reassuring, one could still be concerned
that our results are simply capturing that on average northern states are more exposed to robots and
that the north diverged from the rest of the United States for other reasons. As a robustness check, we
incorporate a rich set of region-of-birth x birth-cohort fixed effects (column 5, Table 2). With this more
demanding specification, the impact of robots is identified not from comparisons between northern states
and other regions but rather from differences between states within the same region. Therefore, we can
rule out any form of mean-reverting dynamics or differences in trends across regions. While the inclusion

of this detailed set of fixed effects reduces the variation in the data, which is natural as there are fewer

23 An alternative approach is to control for the interaction between a cohort trend and state-of-birth dummies. We do
not consider this approach because these trends may mechanically bias our estimates in the presence of varying treatment
effects across cohorts (Lee and Solon, 2011; Wolfers, 2006).
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states within each region, the results are strikingly similar to the baseline. The coefficient of interest is
somewhat larger in magnitude, and while its standard error increases, the estimated relationship remains

significant at the conventional levels of significance.

3.2.B Other Coincident Shocks

The results from the previous subsections are striking and support a causal interpretation of our es-
timates. However, the identification condition could still be violated if there were other important
changes coinciding with the recent advances in robotic technology. We now consider several important
contemporary shocks and provide direct evidence that they are unlikely to generate the specific pattern

of exposure effects we document.

Chinese import competition. The first obvious source of bias is the unprecedented rising Chinese
import competition since the 1990s, which occurred in parallel with the recent advances in robotics
technologies and had important implications for manufacturing employment (Autor et al., 2013; Ace-
moglu et al., 2016). It is important to note, however, that the states more affected by increased Chinese
imports are far from being the same as those states housing industries with greater adoption of robots.
Indeed, the correlation between the exposure to robots and Chinese import penetration, as measured in
(Autor et al., 2013), is only 0.06 and statistically insignificant. Consistent with this lack of correlation,
controlling for a full set of interactions between the intensity in Chinese import competition across states

and birth-cohort fixed effects does not appreciably change the point estimate (column 2, Table 3).

1980-82 recession. Many of the post-robot cohorts were in their early childhood years during the
recession between 1980 and 1982, whose severity varied substantially across regions. The illuminating
work of Stuart (2022) shows that exposure to this recession in the first years of life led to poorer adult
outcomes later in life, including reduced educational attainment. In light of this evidence, for the
recession to be a threat to our identification strategy, it would need to have differentially affected states
that were less exposed to robots. In practice, the correlation between robot exposure and recession
severity as a measure in Stuart (2022) is fairly weak (0.08) and if anything, the recession was slightly
more severe in states with greater exposure to robots. Not surprisingly, considering this pattern in the
data, the inclusion of the recession severity measure interacted with birth-cohort effects yields coeflicients

of 5 very close to the baseline (column 3, Table 3).

Social reforms. A final consideration is the adoption of major reforms and safety net programs during
the second half of the 20th century, many of which have been shown to have important implications
for educational attainment. A major change in educational policy was the school finance reforms across
states that began in the early 1970s and accelerated in the 1980s, which led to a substantial increase
in K-12 education spending and improvements in educational attainment (Jackson et al., 2016). Other
important social reforms include the war on poverty programs implemented during the late-1960s and
1970s, including Head Start, Food Stamp, and Community Health Centers.?*During this period, Medi-

24 Johnson and Jackson (2019) and Hoynes et al. (2016) document that Head Start and Food Stamp respectively lead to
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caid was also introduced for the first time in some states and Goodman-Bacon (2021) documents that
it had important long-run consequences for human capital.

While the adoption of these programs differed across states and affected many of the cohorts in our
estimation sample,?®> Appendix Table A9 documents that if anything the post-robot cohorts from states
with greater robot penetration are less likely to have been exposed to these programs in childhood.
This suggests that these programs cannot explain the gains in college attainment we report in Table
1. Consistent with this notion, controlling for the childhood-exposure probability to these programs
has very little impact on our estimates (columns 4-6, Table 3). In Appendix Table A10, we control for
the influence of these programs in a more flexible fashion by including program-year x birth-cohort fixed

effects. Once again, these controls do not materially affect our results.

3.3 Impacts on Labor Market Earnings

An important question is whether robots affected the path of income of cohorts exposed to them in
childhood. Answers to this question may shed light on whether and by how much college education
mitigates the displacement effects of robots. We examine this question systematically in Table 4 using
several income measures as dependent variables. Note that since robots have overall negative impacts on
earnings in areas with greater robot penetration, positive values of 8 in our estimation of (3) imply that
cohorts exposed to robots in childhood experienced a smaller negative impact on their labor market
income relative to those cohorts exposed later in the life-cycle when their educational decisions had
finalized.

Columns (1)-(2) look at the log total personal income from all sources in the previous year. Columns
(3) and (4) focus on log earned income, which includes the income earned from wages or a person’s
own business in the previous year. Columns (5) and (6) present results with the log income wages as
the dependent variable, which is each respondent’s total pre-tax wage and salary income received as an
employee in the previous year. The odd-numbered columns include the baseline controls used previously.
As one can infer from the table, cohorts exposed to robots in childhood see an increase (or a smaller
decline) in their labor market income relative to older cohorts exposed later in the life cycle. Early-
exposed cohorts from the state witnessing the average robot penetration experience a relative increase

of 0.44 to 0.62 percent depending on the income measure being considered.

Role of education. It is inherently interesting to understand to what extent education shapes the
income effects we find. In principle, education is the most plausible explanation behind these results
but they could also have arisen in the absence of an educational response if for example reallocation
to less robot-exposed sectors is easier for individuals in the early stage of their labor market careers.
To explore the role of education in driving the income effects, we perform a mediation-style analysis

by controlling for a Bachelor’s degree indicator in the income regressions and establishing the extent to

improvements in long-run adult outcomes. Bailey and Goodman-Bacon (2015) provide evidence that Community Health
Centers of improvements in health outcomes, particularly of the elderly, but they do not examine other socioeconomic
outcomes such as education or labor market outcomes.

25The shares of the population exposed in the relevant childhood years of individuals in our sample are 30, 81, 91, 97
and 38 percent for community health centers, head start, food stamp, Medicaid and school finance reforms, respectively.
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which the estimated coefficient of interest is reduced. The results from this exercise are presented in the
even-numbered columns of Table 4. Once the association between robots and education is accounted
for, the magnitude of the income effects drops massively and loses all of its statistical significance. In
fact, the estimated coefficient of 3 becomes opposite signed in some cases. While this exercise must
be interpreted with caution since education is a “bad control” affected by the exposure to robots, the

picture is striking and suggests that education is likely the most important driver of the income effects.

Are these effects driven by scarring effects? A complication when interpreting these results is that
increased use of industrial robots also affected older adult workers. As such, late cohorts were the ones
feeling the bulk of the displacement effects created by robots and they might still be experiencing the
scarring effects from job losses they incurred during their earlier working life. In this case, our estimates
would be biased towards finding an improvement in the labor market incomes of younger cohorts even in
the absence of a causal relationship. To mitigate this concern, we repeat the baseline specification but
include a detailed set of state-of-residence x birth-cohort fixed effects. Now the coefficient of interest
is identified from the comparison between individuals within the same labor market but that grew up
in different places during their education years. This is a very narrow source of variation as most
individuals work in the same place where they lived during their childhood years. Still, we continue to
observe meaningful and highly significant income effects using this more demanding specification (see
Appendix Table A11). This suggests that biases from scarring effects are unlikely to be a major issue.

In summary, cohorts exposed to robots at the beginning of the life-cycle experienced an increase
in their incomes relative to late exposed cohorts. We reiterate that these results do not imply that
automation is good on net for younger cohorts. The introduction of robots had negative impacts on the
labor market income of everyone, but this negative effect is smaller for younger cohorts who could alter

their educational decisions.

3.4 Mechanisms

This section provides evidence on the likely mechanisms generating the basic picture documented so far.
Our analysis suggests that changes in the college premium and opportunity cost of college are the key

drivers of our findings.

3.4.A Market Incentives

The adoption of industrial robots may alter the incentives to attend college by altering their opportunity
costs and expected labor market premium. Robots may reduce the opportunity costs of attending college
by reducing the average earnings a young unskilled person would receive in the market. At the same time,
since the effects of skill-replacing technological changes are persistent over time and felt heterogeneously
across the skill distribution, it has the potential to affect the college premium and thus the attractiveness
of college attendance.

To investigate these hypotheses, we measure log-changes in earnings and college premium using the
census for 1990 and the ACS pooled across the years 2006-2008. We refer to the time window in the
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pooled data simply as 2008. We follow Charles et al. (2018) and assume that individuals attending college
in a given year forgo immediate income gains equivalent to the average earnings of individuals aged 18-25
without any college training. We measure the college premium as the earnings gap between older working
adults (ages 25-65) with and without college training. We compute the average of these labor market
measures within about 220,000 cells defined by demographic x state groups. The demographic groups
are defined by gender (x2), age (x48), race (x9), and place-of-birth (x52).26 For a given outcome y of

demographic group ¢ in state s, we estimate the following first-difference specification:
Alnygs 90—0s = a + yRobot penetration, + Z.Q + oy + &gs (5)

where Alnygs90—0s is the log-change in the labor market measure between 1990 and 2008. The «y
represents a detailed set of demographic group fixed effects, which help reduce concerns about possible
compositional changes. Standard errors are clustered at the state level, and all regressions are weighted
by the 1990 cell size.

The results from estimating (5) are presented in Table 5. Column (1) shows that states experiencing
greater exposure to robots have seen a decline in the average earnings of young workers. The magnitude
of this effect suggests a sizeable decline in the opportunity cost of attending college. The point estimate
of -0.030 implies that the average increase in the stock of robots is associated with a decline of 6 percent
in the labor market income a young adult worker receives.

Columns (2) to (4) also document a decline in the average earnings of older adult workers across all
education groups, but these effects are much smaller for individuals with a Bachelor’s degree. Columns
(5) and (6) show that these differences in the estimated effects of robots between individuals with and
without a Bachelor’s degree are highly significant. In the state experiencing the average penetration
of robots, the earnings premium from having a Bachelor’s degree rose by 2.3 percent relative to a
high school or less and by 1.7 relative to a two-year college degree. On the other hand, there are no
statistically meaningful effects on the premium from having a two-year college degree relative to high
school or less was (column 7). These findings show that investing in Bachelor’s-level type of college
became more appealing than two-year college attendance. This pattern in the data is broadly consistent
with our findings in Figure 5 showing that part of the increase in Bachelor’s degree attainment stems
from individuals who would rather have gone to a tow-year college in the absence of the robot shock.
This suggests that the skill premium is likely the single most important driver of our findings: if the
opportunity cost channel were the dominant mechanism, we would have observed an increase in a two-
year degree attainment, as the average earnings an individual must forego to acquire a two-year college
degree became significantly lower.

Taken together, the evidence strongly supports the hypothesis that the adoption of industrial robots
altered the market incentives to invest in Bachelor’s-level training by rising its relative returns and
reducing its opportunity cost. The fact that we observe a significant decline even in the earnings of
individuals with a Bachelor’s degree (though to a much lesser degree than other education groups) sug-

gests that college education is not completely protective against the displacement consequences created

26The place of birth corresponds to state for US-born individuals and to country for foreign-born people. We group the
place of birth within a same category for individuals born outside of the United States.
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by robots. This could occur because there exists education-job mismatching and even individuals with
Bachelor’s-level training could end up in less-skilled jobs being directly affected by robots. We will
return to this point in Section 3.5 and exploit heterogeneity in the education-job mismatching across

majors to develop an additional test of the college premium channel.

3.4.B Parental Resources

Since the widespread adoption of robots led to a sizable decline in average income, it is natural to ask
if this shock was large enough to translate into lower parental income. A decline in parental resources
may limit the ability of credit-constrained parents to finance college, generating an effect that must work
against the observed increase in college attainment we document. To explore the empirical importance of
this effect, we estimate equation (5) using the log-change in parental income as the dependent variable.
We define parental income as the household heads’ and their spouses’ incomes from all sources. We
focus on household heads over age 40, as they are more likely to have children of college-going ages. We
collapse the log-total income in 1990 and 2008 in each state by education categories in addition to the
demographic cells defined in the previous subsection. We then control for the full set of demographic-cell
fixed effects in our estimation.

The results are shown in column (8) of Table 5. As one can see, there is a highly significant decline in
parental income in areas housing industries with greater exposure to robots. While precisely estimated,
the magnitude of this result is smaller than the effects on the opportunity cost and college premium
measures. The point estimate implies that the average increase in the stock of robots is associated with
a 0.57 percent decline in parental income. This result suggests that we most likely would have observed

a larger positive college response to the penetration of robots in the absence of this income effect.

3.4.C Supply-Side Responses

We next explore the possibility that our results may reflect supply-side responses of colleges and uni-
versities. For example, institutions that award Bachelor’s degrees may have responded to changing
labor market conditions by altering tuition costs. Additionally, local and state governments may help
facilitate access to college in response to a growing mass of young adults failing to find a job. State
administrations may increase their investments in education and training programs or directly provide
grants to students.

To explore these possibilities, we use state-level data on college tuition and fees as well as data on
revenue from state and local appropriations available in the Integrated Postsecondary Education Data
System. We also use data on government expenditure on education and training assistance programs
from the Regional Economic Information System. With these data, we estimate the effects of robots on
tuition, revenue, and expenditure using a state-level first difference version of model (5). As can be seen
from Appendix Table A12, there is no systematic evidence of statistically meaningful effects on these
variables. We conclude that there is limited support for the interpretation that supply-side responses

play an important role in explaining the improvements in college attainment.
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3.5 The Premium Channel and Sorting Pattern to Fields of Study

Most high-skill jobs that cannot be performed by industrial robots require college education. However,
some individuals with college training may even end up in routine-intensive occupations being directly
replaced by robots, and this education-to-job mismatching likely explains in part why we observe a
decline in the earnings of college-educated workers. This mismatching could happen either because
some majors are oriented toward routine-intensive occupations in some way or due to the existence
of frictions in the labor market. Remarkably, the prevalence of this mismatching varies substantially
across fields. The likelihood of engaging in routine-related occupations such as machinists, assemblers
and material handlers is particularly high in fields such as electrical and mechanic repair technologies (25
percent) and mechanical engineering-related technologies (10 percent).?” By contrast, this rate is less
than 1 percent in fields such as actuarial science, elementary education, and environmental engineering.

These differences suggest a simple test of the college premium channel. This channel implies that
exposed cohorts should be less likely to major in subjects with a greater prevalence of routine-related
occupations, as the returns to such occupations (and thus fields) became relatively lower with the
widespread adoption of robots. Other mechanisms, in particular the opportunity cost of college atten-
dance, are unlikely to generate such sharp predictions on the specific major field of study. Therefore,
estimating how the exposure to robots affected the sorting pattern to fields of study serves as a cleaner
examination of the skill premium channel.

To explore this hypothesis, we construct measures of the extent to which a field of study is susceptible
to the displacement effects of robots. We do this in a two-step procedure. In the first step, we match
occupational-task scores from Autor and Dorn (2013) to all 330 time-consistent occupation categories
in the ACS data. These scores indicate the extent to which a given occupation is intensive in routine,
manual and abstract tasks, measured on a zero to ten scale in a non-mutually exclusive manner.?*For
each occupation k, we then compute the routinization index developed in the seminal work of Autor et
al. (2003):

Tk

Routine Task Share;, = 100 x —
Tk + Mg + ag

(6)

where the r, m and a are respectively the routine, manual, and abstract task scores standardized with
equal mean and variance. This index varies between 0 and 100 and captures the extent to which a
given occupation is intensive in routine task inputs relative to other task inputs. In the second step,
we use data from the ACS on all individuals with a Bachelor’s degree to match this routinization index
to each major-occupation pair. The resulting index is then aggregated at the major level by taking the
employment-weighted average across all occupations within each major.

Column (1) of Table 6 presents the results from estimating the baseline model (3) using the average

routinization index in each major as the dependent variable.?? In line with the college premium channel,

2TWe create this prevalence of routine-intensive occupations in each field of study using the 2010-19 rounds of the ACS.
Information on the field of study is available in the ACS since 2009. However, the codes for the field of degree changed
between 2009 and 2010, so we use the ACS conducted since 2010 to maintain consistency.

28Indeed, these scores allow occupations to be intensive at different degrees in multiple tasks. The correlation between
these task-intensity measures is far from perfect. The raw correlation between these task scores ranges from 0.002 to -0.32.
The partial correlation between these indexes after controlling for the measure of manual tasks is -0.33.

29Gince the exposure to robots is associated with significant gains in college attainment, any estimates of the exposure
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we find that exposed cohorts sort into fields with lower shares of routine-intensive occupations. The
coefficient estimate is negative and highly significant. In columns (2) to (6), we consider the prevalence
of specific occupations in each field of study rather than the routinization index (6), focusing on those
directly affected by robots such as machine operators, assemblers, inspectors, mechanics, and repairers.
Once again, the evidence is broadly consistent with the premium hypothesis. We estimate negative and
highly significant coefficients in all cases. The advance in robotics technology reduced the returns to
routine-related occupations, and individuals responded by pursuing fields where such occupations are

less commonplace, or equivalently, those fields where the returns became relatively higher.

4 Structural Analysis

The results presented so far are consistent with changes in market incentives driving the college response
to robots. Without more structure, however, it is not possible to say what part of the effect is due to
the college premium versus opportunity cost channels or whether these market incentive effects are large
or small relative the parental income effects. To investigate these questions, we propose and estimate a
simple partial equilibrium model of college choice. The model is parsimonious enough to be tractably

estimated yet rich enough to capture the mechanisms discussed above.

4.1 A Model of College Choice
4.1.A Setup

There is a continuum of individuals born in cohort ¢ that live for J periods. The first period (j = 0)
corresponds to the first year of adult life when individuals are aged 19 and have just completed high
school. Each period in the model corresponds to a year and there are 46 periods as a whole, matching
the typical working life cycle. In the first period, individuals choose either to attend college for four
years or enter the labor force. They are allowed to delay entry to college every year up to the age
of 23 (the timing of enrollment in the data), a point from which their educational decisions become
irreversible. While delaying their entry into college, individuals are participating in the labor market.
An agent who never enrolls in college enters the labor force since age 19 uninterruptedly. Individuals
are credit-constrained and can only borrow to finance college costs. We also assume that there is no

saving, so consumption is equal to income in each period.?"

Preferences. The utility is intertemporally separable and depends on consumption and preferences for

college education. Individuals discount the future at rate 5 = 1/(1 + p), with a discount factor of p.

effects on changes in college majors can be driven by individuals who otherwise would have not enrolled in college (extensive
margin), by changes in the type of fields of individuals who would have enrolled in college independently of the robot shock
(intensive margin), or by a combination of both margins. While we cannot identify the importance of both margins
separately, they most likely go in the same direction.

39With savings, the model becomes greatly complicated and intractable to be estimated. Yet, the assumption of no
saving is unlikely to significantly affect our quantitative analysis, as we are studying an “once-for-all” decision that is made
at the beginning of the life cycle, when individuals rarely save. This assumption is fairly standard in the literature whose
focus is to understand educational decisions, including the prominent studies by Arcidiacono et al. (2012) and Wiswall and
Zafar (2015).
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During the study stage, the utility of being in college is v, which varies with the period k of enrollment.
Without loss of generality, the disutility of work is normalized to zero. Let s equal to one if an individual
attends college and zero otherwise. The instantaneous utility in period j takes the form:

l1—0o
Cy

U(Cj) = U(Cj) — ey, = — Leypys (7)

where ¢; is consumption, and I, an indicator function that takes the value of one during the study phase

1—0

and zero otherwise. Remember that an individual who delayed college entry until age 23 completes her
degree at age 26, so the study phase goes from period 0 to 8. The utility function over consumption is
CRRA and o is the curvature parameter that determines the degree of relative risk aversion. Attending
college generates utility or disutility. To the extent that individuals face a psych cost of learning to
complete a college degree, ¢ will be positive and attending college generates disutility. If individuals
enjoy the social life during college (e.g., meeting friends, participating in clubs and sports), or do not
want to disappoint parents, 1, will be less positive. Note that the subscript k is equivalent to an
individual’s age at enrollment, so delaying entry alters the utility of college attendance. If the costs of
learning become significantly more important as people age and remain out of a regular study routine,

then 1 will be increasing in the age of enrollment.

Earnings process. The earnings y; for an individual at period j with education s is the product
between the price of an effective unit of labor w® and her accumulated human capital stock h;(s,&°),

where:
logh;(s, &) = ¢°(Z) + ¢ + &5 (8)
logw® = w; R; (9)

where ¢°(+) is an education-specific function measuring the importance of demographic and background
characteristics, ¢ ]s an education-specific age component, jt a cohort-specific stochastic shock, and R is
the demand for robots in the market. The subscript a € {young,old} denotes young and old workers,
corresponding to ages 19 to 25 and over 25 respectively. Therefore, we allow the semi-elasticity of wages
with respect to robots, w;, to differ between college- and non-college persons and between young and old
workers. This captures the possibility that skilled workers who are less prone to engage in routine-related
jobs or those with more experience are less susceptible to the displacement consequences of industrial

robots.

Government subsidy and education costs. The government pays a subsidy G for each period spent
in college. Therefore, the net price of college p is equal to the difference between the tuition costs F' and

government grants. Both government grants and tuition costs are exogenously determined.

Students loans. Since there are borrowing constraints, students can only borrow up to a fraction ay of
the annual college cost net of grants. We assume that the constraint is binding, and all students borrow
app with ap < 1. The interest rate r is constant during the entire life of the loan. Interest accumulates
during college, so the total debt owed at the end of college is D :abpzzlzl(l + 7). An individual starts
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repaying the loan from the first period after graduation under a plan with equal payments that last N
periods. The amount paid each year n after graduation until period N is:
r(147)N

aeny -1 )

Payment, = D

Parental support. The parents cover the remaining fraction (1 — o) of the out-pocket costs of college
that is not financed with borrowing. In addition, while attending college, students receive an income
transfer from the parents that is equal to a fraction A\ of the parental income I net of the out-of-pocket
costs of college. Thus, the consumption for college-goers during the study stage will be:

income parental

transfer pmonnty  contribution o pet DA
~ =N
i =AI—(1-ap)p) + “mp + (I-a)p — "p
or,

¢j =AMl = (1 —ap)p)

This implies that parental income, borrowing constraints, and college costs affect an individual’s college
decision by altering their consumption during the study phase. Individuals who choose not to attend

college and enter the labor force do not receive any income transfer. In this case, ¢; = y?

Parental income. Parental income is the parents’ and their spouses incomes from labor (I = ) w*h;(s, £%)).

Parental income depends on the household head’s human capital and demand for robots:
logl = logh(s, &%) + kR; (11)

The parameter k measures the overall impact of robots on parents’ income. To the extent that parents
have, on average, higher levels of educational attainment and more work experience, or are inherently
less prone to engage in routine-related jobs, the effects of robots on parental income will be less negative

when compared to the mean worker.

4.1.B Decision Problem

An agent chooses whether or not to attend college by maximizing the present value of lifetime utility.
This implies a threshold disutility level 1); such that an individual at period j will decide to go to college
if 1, <. This threshold is known to the individual at the time of the college decision. If she decides
to delay the college decision for the next period j + 1, she does not observe the disutility threshold in
advance but does have some expectation over it. Let 7, be the perceived probability of ¢, < 47 in each
period k, and Vjs‘ ; the expected utility over periods j to J. At period j of the study phase, an individual

will decide to attend college if the net present value of this choice is greater or equal to zero:

—1/1 0
Qg = Vi = Viy 20

Since the value of entering the labor force rather than attending college, Vﬁ 7

ual’s college decision in the next period and on whether she is facing the last period of college decision,

depends on an individ-

we have that:
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Ve, uj(cj) + B(mja Vi + (L= m) V) if 5 <4
’ S B w(ar) if j=4

Recall that period 4 corresponds to the last period of college decision and delaying college is not
possible anymore. Now suppose that €2 is normally distributed with density ¢(-) and distribution ®(-).
Then, the fraction S of individuals in cohort ¢ who complete a college degree during their life cycle is:

4

Sy =Y ®(Q;)q, with g =1 (12)
j=0

where g; is the fraction of individuals that make their college decisions in period j or later. Hence, the
product ®(€2;;)q; represents the probability that an individual enrolls in college at age 19 + j. When
there is an increase in the penetration of robots in the market, it has different impacts on different
cohorts because they were exposed in different moments in the study stage. On the one hand, exposure
after age 23 (or period 4) makes no difference because the timing of college decisions has finalized for
everyone, and individuals cannot alter past educational choices. On the other hand, increased robot
penetration should have larger impacts when the exposure occurs at the onset of the study phase where

the pool of individuals potentially altering their educational decisions is the entire population in a cohort.

Effects of robots. We now characterize the effects of a robot shock on the college attainment of different
cohorts. Suppose that there is an advance in robotics technology, such that R;11 — Ry = R; — Rp.
Differentiating (12), we obtain the average effect of robots on cohort ¢ = 0, 1,...T whose earliest period

of exposure is 7 = ¢:

premium effect opportunity cost effect
4
d§2 ds2
_ Z J+4IJ ylwl J+4J 0. 0 Z J\J+3
dStﬂ' =Ir<s5 [ |: Wold — d 0 Y Yold q]¢] + ](;Sjy young
j=

(13)

+ Z J'”‘”’ qid;Mx | dR

parental income effect
where [, .5 is an indicator function that is equal to one if the earliest period of exposure is lower than
5 and zero otherwise. The expression illustrates transparently the importance of the three mechanisms
discussed above: college premium, opportunity costs, and parental income. Notably, the strength of
these mechanisms depends crucially on how the exposure to robots affects labor market earnings and
how heterogeneous these effects are with respect to an individual’s educational attainment. In the case
that college- and non-college workers’ lifetime earnings are identically affected, the premium channel
plays no role. We exploit equation (13) to form the basis of our estimation strategy and quantitative

analysis below.
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4.2 Identification and Estimation

We implement a three-step procedure to take the model to the data. First, we estimate the key earnings

goung,li} separately from the rest of the structure of the model. In practice,

parameters {wl,,, w%,, w
the values of these coefficients are taken directly from the estimates in Section 3.4. Second, we set
some parameters and initial conditions externally. We assume that the discount factor p is equal to
the interest r, and set the latter to 5 percent, following Heckman et al. (1998). This implies that the
discount rate § is approximately 0.95 (~ 1/1.05). We choose the initial earnings by age and Bachelor’s
degree status as well as initial parental income to match the average values observed in the 1990 census.
We set A = 0.07 based on Kalenkoski and Pabilonia (2010), who study similar cohorts and report data
on the transfers that four-year college students receive from their parents. The direct tuition costs of
college, grants, and student loans are parameterized using the average values for the academic years of
1989-90 as published by the National Center for Education Statistics (NCES, 2004). With these data,
it is straightforward to calculate a;,. We calibrate the perceived probabilities of enrollment into college
7, and proportion of individuals making college decisions g; to be consistent with the data on actual
enrollment and entry into college rates by age. In doing so, we use the 1990 census and use the questions
on college attendance and on whether the highest degree completed is “some college but less than a
year” to construct attendance rates and proxies for the rate of persons entering into college by age.
Finally, we set the life of the loan N to 25 years, as in Ionescu and Simpson (2016).

In the third step, we solve analytically the derivatives within the brackets in equation (13) and
estimate the remaining utility parameters 6 = {(¢o, ...,%4),7} using the general method of moments,
given the earnings parameters estimated in the first step and externally calibrated parameters and
initial conditions from the second step. To implement this estimator, we first collapse the data by
year-of-birth and state-of-birth cells, the level of variation we exploit in our reduced-form analysis, and
then define dS;; = S;; — S;i1966 for each cohort born in year ¢t and state i. Cohorts born in 1976 or
later were age 19 or younger by the mid-1990s. We aggregate these cohorts into one group to facilitate
our estimation procedure. We then augment equation (13) to include an additional error term v;; that
reflects measurement error and unobserved differences across cohorts and regions that influence human

capital investments. In the end, the effects of robots for each cohort can be written as follows:

premium effect opportunity cost effect
4
dS); dsQ
G4 1 A1 J+4lJ 040 J\J+3
Sit — Singes = Lr<s [Z [Tyly Wold = 0 Y Woid [45%5  + Z 005" D oung
J=T

(14)

+ Z ]'”3 qi6;MIi | dR; + vy for all £ = 1967, ...,1976 and 7 = 1995 — (£ + 19)

TV
parental income effect

The moment conditions used to jointly estimate the parameters are based on the system (14) and the
pattern of college attendance by age. Specifically, our model has multiple moment conditions of the

form:

E[dRz . Vi(e), (I)j(g) — (I)j =0 (15)
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where v; = {vj1967, ..., Vi1976} is the vector of residuals and ®; are the observed entry into college
probabilities by age. The vector 6 of parameters is estimated as the vector that minimizes: m(0)'Vm(6),
where m(-) corresponds to the moments conditions mentioned above and V' is a weighting matrix. As a
whole, there are 15 moments conditions and 6 parameters to be estimated.

While the parameters are estimated simultaneously, it is useful to discuss the moments that best
identify each of them. The disutility parameters are largely pinned down by seeking the values of the
disutility that are consistent with the pattern of enrollment rates and exposure effects across cohorts.
Heterogeneity in the disutility of college attendance is important to rationalize the differences in enroll-
ment rates by age. The curvature parameter  of utility over consumption is identified by the magnitude
of the effects of robots on college attainment. Intuitively, conditional on all the other parameters, a large
college response means that individuals place a relatively high weight on future consumption, implying

a low value of ~.

4.3 Parameter Estimates

The point estimates and standard errors are displayed in Panel A of Table 7. The disutility parameters
are all positive and as one could expect, the disutility of college is increasing with the age at enrollment.
They range from 0.35 to 0.63, all of which are statistically distinguishable from zero. The coeflicient
of risk aversion « is estimated at 1.37 and statistically significant at less than 1 percent. This estimate
is in the lower range of existing estimates in the literature using US microdata. In a series of seminal
studies, Attanasio et al. (1999) and Attanasio and Weber (1995) estimate this coefficient to be 1.35, and
1.5 respectively for the US households.?!

Sensitivity analyses. Appendix Table A13 explores the robustness of our results to alternative as-
sumptions regarding some of the calibrated parameters. Our baseline analysis uses the interest rate of
5 percent, which is somewhat larger than the free-risk interest rate used in some studies analyzing the
college decisions of recent cohorts (Lawson, 2017). Using an interest rate of 3 percent, we estimate the
disutility coefficients that range between 0.41 and 0.68 and a coefficient of risk aversion of 1.40, which
are extremely similar to the baseline estimates. In our analysis, we have assumed that the life of the
loan is 25 years. As a robustness check, we re-estimate the model exploring different repayment periods,
ranging from 10 to 30 years. This alters the value of the payments per period but leaves the coefficient
estimates unchanged. Finally, we re-estimate the model assuming that the perceived probabilities of
enrollment in subsequent periods, 7., are equal to zero, rather than matching them to the actual
patterns of enrollment observed in the data. The parameter estimates remain nearly the same. The
reason why this does not materially alter our results is that the bulk of college entry occurs at age 19,

and then falls rapidly to zero afterward. Thus, setting 7j;. = 0 does not seem to be unreasonable.

Comparison to reduced-form estimates. Panel B of Table 7 compares the structural to reduced-

form average effects of robots on Bachelor’s degree attainment. To compute the average effect implied

310ther important studies in the literature are Blundell et al. (1994) and Banks et al. (2001), who use data from United
Kingdom and estimate a coefficient of risk aversion of 1.37 and 1.96 respectively.
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by the structural model, we first calculate the marginal effect of an additional robot for each cohort
and then take the weighted average across all cohorts, weighting by cohort size. In Figure A7, we in
addition compare the cohort-specific effects generated by the structural and reduced-form estimates. As
one can infer, the model tracks the reduced form estimates quite well. The average estimated effect
implied by the structural model is 0.0039, which is comparable to the 0.0034 estimate from the reduced-
form analysis. In Appendix Figure A9, we show that the model performs well in replicating other key
moments, such as the average and age-specific probabilities of enrollment in a Bachelor’s-level degree

college.

4.4 Understanding the Relative Importance of Mechanisms

With the estimated parameters from the structural model at hand, we next evaluate the importance of
the mechanisms for generating the college response to robots. To do so, we simulate the counterfactual
effects of robots by eliminating each channel one at time while keeping the other mechanisms of impact
unchanged (see Panel C of Table 7). We eliminate the opportunity cost effect by imposing wgoung =0, the
college premium channel by imposing w;l q= wgl 4 = 0, and the parental income mechanism by imposing
k = 0. These results are illustrated in Figure 7. Eliminating the premium channel yields an effect of
robots that is only one-third the actual observed effect, while eliminating the opportunity cost effect
cuts in half the effect of robots. This shows that the college premium effect is more important than the
opportunity cost in explaining an individual’s response to the widespread adoption of industrial robots.
When we eliminate both market incentive effects, the simulated effect of robots becomes negative. This
should not come as a surprise given that it reflects the negative impact of robots on parental income.
Indeed, shutting off the parental income channel leads to an effect of robots that is slightly larger than
the observed baseline. Therefore, in the absence of the market incentive effects, the rapid advances in

robotics that took place since the 1990s would likely have caused a decline in college attainment.

4.5 Recovering Key Elasticities

In panel D of Table 7, we present the implied elasticities of college with respect to parental income,
opportunity cost and college premium. These elasticities are of independent interest because they could
serve as inputs when evaluating the adjustment response of other technologies and labor market shocks.
We obtain these elasticities by simulating the percentage change in college attainment generated by
the robot-induced percentage change in one of these factors while keeping constant the others. Our
calculations suggest an elasticity with respect to the college premium of 0.60. This estimate is slightly
smaller than that documented in Long et al. (2015), who estimate an elasticity of 0.67 studying the
effect of local labor market wages on major choices, but larger than the around 0.10 elasticity based on
lab experimental variation among students of New York University (Wiswall and Zafar, 2015) and on
business cycle variation in France (Beffy et al., 2012). The elasticity with respect to the opportunity
cost is -0.18. Although it is difficult to find directly comparable estimates from the literature, the fact
that it is noticeably smaller in magnitude than the premium elasticity is consistent with the evidence in

Berger (1988) that the lifetime future earnings is more important than initial earnings for individuals
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deciding whether or not to attend college. This is why the premium channel plays a relatively more
important role for generating the college response to robots despite that the decline in unskilled earnings
among young adults, and thus in the opportunity cost, is disproportionately and remarkably larger than
the increase in the college premium.

With respect to parental income, we observe an elasticity of 0.28. Existing research exploiting
experimental variation in parental income suggests that this figure is reasonable. In a recent study,
Bulman et al. (2021) use rich administrative datasets covering the US population and leverage variation
in lottery wins to examine the impact of parental income shocks on children’s college attendance. They
show that the likelihood of having a four-year college degree increases by about 0.22 percent for each 1
percent increase in parental income around the year of high school. This estimate is only slightly lower

than that obtained from our simple structural model.

4.6 Policy Counterfactuals: Robot Subsidies

From a policy perspective, it is important to understand whether and by how much government subsidies
magnify or dampen the endogenous college response to robots. To investigate this question, we carry out
simulations of alternative policies regarding the government college grants. In this exercise, we replace
the actual system of subsidies by a government subsidy which covers 50 percent of the tuition costs for
all students. For the state experiencing the average penetration of robots, this policy change would have
increased the fraction of people with a Bachelor’s degree by 1.3 percentage points (or 3.7 percent) rather
than by 0.7 percentage points (or 1.8 percent). These findings suggests that an endogenous government

subsidy to college can significantly enhance the magnitude of the college response to robots.

4.7 Earnings and Inequality Dynamics

We now turn to the question of what happens with the dynamics of earnings and inequality as younger
generations enter the labor force and replace older ones. Understanding these dynamics is important to
understand the long-run adjustment of the economy to changes in technology. To explore this question,
we extend our partial equilibrium model to include the production sector. Consider an aggregate pro-
duction function @) that combines high-skill labor (Sg), low-skill labor (Sz,), and robots (R) to produce
output. By high- and low-skill labor, we mean college and non-college labor. This production function

takes the following constant elasticity of substitution form:

n

n—1 n—1 n—1] 71

Q= |(agSu) " +(arSL) " + (agR) " (16)

The a’s terms represent effective share parameters and 1 € (0, 00) is the elasticity of substitution. This
production function can be viewed as a reduced-form version of the task-based model developed by
Acemoglu and Autor (2011) and extended in Acemoglu and Restrepo (2018), where capital competes
against labor in the production of tasks. Under this framework, increases in ag are interpreted as a
task-replacing technological change that expands the range of tasks that capital can perform. This
expansion in turn reduces the effective share parameters ay and ay with implications for the dynamic

of earnings and inequality. More formally, let us assume that workers are paid their marginal products.
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In this case, the automation-induced log-change in earnings can be expressed as follows:

1 1 1
dlogwy = 1~ dlogay + ~dlogQ — ~dlogSy
7 7 7

—1 1 1
dlogwy, = LdlogaL + —dlogQ@ — —dlogS|,
n n n

The first two terms on the right-hand side of this system represent the effects of robots on earnings
in the absence of a change in the supply of high- and low-skill labor. A skill-replacing technological
change will reduce the demand for labor via a displacement effect, as captured by a decline in ay and
ar. But this technological change also creates a productivity effect that increases the demand for both
high- and low-skill labor, so the overall demand effect ultimately depends on the relative importance of
these forces. The overall demand effect is not directly observed, but we can recover it for a given change
in the observed earnings and supply of labor and given an estimate of . Knowing the overall demand
effect, we then can simulate the dynamics of earnings and inequality as new generations with different
skills enter the workforce.

To obtain an approximate estimate of the overall demand shift we restrict the parameter 1 based
on the evidence in Katz and Murphy (1992), who estimate the elasticity of substitution to be 1.4. Our
findings in Section 3.4.A suggest that the earnings of low- and high-skill workers declined by 5.6 and 2.4
percent in the state experiencing the average penetration of robots between 1990 and 2008. The results
in section 3.1 indicate the fraction of individuals with a Bachelor’s degree increased by 1.8 percent in
the same state. Since the cohorts exposed to the robot shock during or before the period of college
decisions represent 25 percent of the workforce in 2008, these figures indicate that the overall demand
effect is -5.6 and -2 percent for low- and high-skill workers respectively.

With these calculations, we now simulate the dynamic effects on earnings by altering the fraction
of exposed cohorts that are part of the workforce and simulating the subsequent education response
implied by the change in earnings and college premium. These results are shown in Figure 8. Panel
A of this figure documents that the effect on high-skill earnings becomes more negative over time as
younger generations enter the labor force, going from -2 to -3 percent. This is a direct consequence of the
outward shift in the supply of high-skill labor as more people go to college. At the same time, there is a
mechanical inward shift in the supply of low-skill labor and as a result, the decline in low-skill earnings
becomes less negative over time. The magnitude of this adjustment response is relatively small. Even
when the replacement is complete, the effect of robots on low-skill earnings over the long run would be
only 10 percent smaller (in absolute value) than the baseline effect. This suggests that in the absence
of policies that effectively push more people through college, workers at the end of the skill distribution
are likely to continue experiencing significant earnings declines as robotic technology advances.

Note that since the earnings effects on high-skill workers become larger over time, earnings inequality

falls. The automation-induced change in inequality can be expressed as follows:

d10g<wH) — 17—1d10g<aH> _ ldlog(SH>
wr, n ar, n SL

With this expression, it is straightforward to calculate the dynamics of inequality. Figure 8, panel B

shows that the decline in earnings inequality is sizeable. When the generational replacement is complete,
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the automation-induced earnings gap between college- and non-college-educated persons in the mean
state falls from 3.5 to 2 percent. This result implies that in the absence of the endogenous educational

response, the long-run effect of robots on earnings inequality would be about 75 percent larger.

The role of policy. To explore the role of policy, panels C and D of Figure 8 repeat the same simulation
exercise but introduce a government subsidy that covers 50 percent of the tuition costs for all students.
With this policy change, the dynamics of earnings and inequality become steeper, with the effects on
high-skill earnings becoming larger in magnitude with the replacement of old generations of workers.
This leads to a long-run earnings gap induced by industrial robots of 1 percent, a reduction of a factor of
2 relative to the scenario with no policy change. Overall, these results suggest that policies that enhance
college education have the potential to reduce the effects of automation technologies such as industrial

robots on earnings inequality.

5 Implications and Discussion

The previous sections provide detailed empirical evidence that the unprecedented advances in robotic
technology taking place since the 1990s have induced skill acquisition via an increase in the net returns
to skill investments. These results raise the following question: if the skill premium is an important
force inducing skill acquisition, why has there been little progress in the aggregate trends of college
attainment for cohorts entering the labor market after the 1980s despite the rapid increase in the college
premium? Most of the progress took place earlier, but college completion rates have remained roughly
constant after the 1950s. A possible explanation is that college attendance decisions across states are
substitutes. Specifically, if individuals systematically move from higher-to lower-exposed areas, they
could crowd out the college education of other individuals in those areas. Consequently, as more people
born in exposed regions complete college, we see less completion in other areas so that the aggregate
college response to robotics technology is negligible. While we believe that such negative spillover effects
are plausible, they are likely to play only a minor role in our state-level analysis. Most moves occur
between counties within the same state and since our analysis is at the state-of-birth xbirth-cohort level,
any spillover effect within the state is built into the estimate. Consistent with the limited scope for
spillover effects between states, the data indicate that most individuals attend college in their state
of birth —approximately 80 percent. Therefore, the few ones moving out would need to displace the
college completion rates of a disproportionately large share of individuals in other states to annihilate
the aggregate gain in college attainment. This seems implausible.

Another possibility, which we find more appealing, is that there have been changes in other factors
offsetting the endogenous skill response to technology. This possibility has been already raised in Goldin
and Katz (2009), who provide a comprehensive discussion on possible factors. They highlight the large
baby boom, reduced college readiness, increased neighborhood segregation, and the sharp rise in public
and private college tuition since 1980. Castro and Coen-Pirani (2016) evaluate the role of tuition costs,
skill prices, and education quality in explaining the evolution of college attainment over the 20th century

in a model of human capital investments. They provide evidence that rising tuition costs and declining
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learning ability account for almost all of the slowdown in college attainment of recent cohorts. Other
studies employing an analogous approach reach similar conclusions (Jones and Yang, 2016; Donovan
and Herrington, 2019). The important role of rising tuition costs is consistent with recent experimental
evidence documenting that financial aid, which reduces the costs of college attendance, has a fairly large
causal effect on Bachelor’s degree attainment (Angrist et al., Forthcoming).

It is important to note that these insights do not imply that the skill premium has not been impor-
tant. Our findings suggest that aggregate college attainment would have increased at a slower rate or
even declined in the absence of the market incentive mechanisms generated by changes in automation
technology. The parameters we estimate can serve as inputs to discipline models of skill-biased techno-

logical transitions with endogenous skill choice, as in Caselli and Manning (2019) and Guerreiro et al.
(2022).

6 Concluding Remarks

The last few decades have seen an intense debate on the impacts of automation technologies on workers.
While a vast literature has studied this question both empirically and theoretically, much less evidence is
available on whether and how individuals respond to automation. In this paper, we consider one of the
most natural margins of adjustment —human capital. We investigate the extent to which the adoption
of industrial robots affected individuals’ college decisions in the United States. By exploiting variation
in the baseline industrial mix of each state interacted with plausibly exogenous changes in sector-specific
robot penetration rates, we find strong evidence that growing up in labor markets heavily exposed to
industrial robots leads to greater investments in college education. This effect is large enough to have
consequences for the labor market income. Our estimates suggest that cohorts exposed to robots in
childhood experienced an increase (or a smaller decline) in their labor market income relative to those
cohorts exposed later in the life cycle who could not alter their educational decisions.

Our exploration of mechanisms suggests that changes in the college premium and opportunity costs
of college-going appear to be a major driver of the improvements in Bachelor’s degree attainment. Areas
with greater robot penetration witnessed a meaningful rise in the premium from having a Bachelor’s
degree and a decline in the opportunity cost of time as measured by the average earnings a young
unskilled receives. We estimate a structural model of college decisions and find that the premium channel
is the most important component generating the college response to robots, accounting for around two-
thirds of the overall effect. Counterfactual simulations suggest that expansions in government grants
have the potential to enhance significantly this endogenous human capital response to automation.

These findings have important implications for the long-run structure of earnings. Our model-
based simulations suggest that the effect of robots on earnings inequality declines over time as younger
generations of workers with different educational choices enter the market. This is driven by an increase
in the relative supply of workers since entering worker generations are more likely to go to college.
Ignoring this endogenous supply effect would lead to effects on inequality that are remarkably larger. A
direct implication of these findings is that policies fostering access to higher education have the potential

to mitigate the disruptive effects of labor-displacing technologies on inequality.
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Figure 1: Trends in the robot market
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Notes: Data on newly installed robots come from the World Robotics (2001), whereas the robot price index is from the
International Federation of Robotics (2006). The robot price index is calculated as an un-weighted arithmetic average
price index across the countries with available annual price data: United States, Germany, France, Italy, United Kingdom,
and Sweden.
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Figure 2: Adjusted Penetration of Robots across States
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Notes: This figure plots the exposure to robots across based on the adjusted penetration of robots in the United States

and top 5 countries (excluding Germany). The adjusted penetration of robots is measured for the 2004-2007 period
(rescaled to a 14-year equivalent change) for the United States, and for the 1993-2007 period for the United States.

Figure 3: Timing of Robot Impacts on Labor Markets
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force. Standard errors are robust to arbitrary forms of heteroskedasticity. Panel B reports the R? from the following
trend-break equation on the coefficients obtained in panel A: 4, = a+7-t+ X- (t —¢*)1{¢t > ¢t} + &. In this expression,

t* is the year of the potential structural break. Following the literature on structural break (Bai, 1997; Bai and Perron,
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Figure 4: Flexible Estimates
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Notes: This figure plots estimates of the interaction between the robot exposure variable and indicators for birth years,
using the flexible version of model (3). The interaction term for individuals born in 1966 is normalized to zero. The
dashed lines represent 95 percent confidence intervals based on standard errors clustered at the state-of-birth level. See

notes to column (3) of Table 1 for details on sample and specification.

Figure 5: Effects on Education Groups
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Notes: This figure shows estimates of the effects of robots on different education categories, based on specification (3).
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Table 1 for details on sample and specification.
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Figure 6: Comparing Model-Based Estimates to Empirical Results
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average effect implied by the structural model in Panel A, we first calculate the marginal effect of an additional robot
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cohort-specific effects generated by the structural and reduced-form estimates.

Figure 7: Simulated Effects on Bachelor Attainment by Components
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38



Figure 8: Simulated Dynamics of Earnings and Inequality
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Table 1: Childhood Exposure Effects on College Attainment

Dependent variable is

Bachelor’s degree or higher
(1) 2) 3) (4)

Robot penetration x post 0.0027 0.0027 0.0034 0.003
[0.0016] [0.0006] [0.0005] [0.0005]

Mean Dep. Variable 0.3617 0.3617 0.3617 0.3833
Observations 7111535 7111535 7111535 2611948
1990 college level x birth-year FE v v v
1990 demographics x birth-year FE v v
Sample restricted to 2015-19 ACSs v
State-of-birth FE v v v v
Birth-year FE v v v v

Notes: This table reports estimates of 3 in equation (3). The sample is limited
to individuals who are over age 30 at survey time and born in one of the States
covering the mainland of the United States. Post is an indicator for individuals
born after 1976. Robot penetration is the intensity of exposure to robots in one’s
state of birth, as described in Section 2. All regressions control for race, gender,
and survey-year fixed effects. The 1990 demographics controls include: log pop-
ulation, the share of population that is under five, the share of population that
is over 65, the share of population that is black, the share of population that is
urban, and the share of population that is part of the labor force. Column (4)
restricts the sample to the ACS conducted between 2015 and 2019. Robust stan-

dard errors in brackets are clustered at the state-of-birth level.
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Table 2: Childhood Exposure Effects on College Attainment
(Mean Reversion, Pre-cohort Trends and Within-Region Variation)

Dependent variable is
Bachelor’s degree or higher
) () (3) 4) (5)
Robot penetration x post 0.0034 0.0036 0.0032 0.0034 0.0037
[0.0005]  [0.0009] [0.0007] [0.0006] [0.0010]

Mean Dep. Variable 0.3617 0.3617 0.3617 0.3617 0.3617
Observations 7111535 7111535 7111535 7111535 7111535
1960, 1970, and 1980 college level (x birth-year FE) v

1960-1990 change in college level (x birth-year FE) v

State-specfic pre-cohort linear trends v

Region-of-birth x birth-year FE v
Baseline covariates v v v v v

Notes: This table explores the robustness of the baseline estimates to additional controls for mean
reversion (columns 2-3), pre-cohort linear trends (column 4), and region-of-birthxbirth-year fixed
effects (column 5). The sample is limited to individuals who are over age 30 at survey time and born
in one of the States covering the mainland of the United States. Post is an indicator for individuals
born after 1976. Robot penetration is the intensity of exposure to robots in one’s state of birth, as
described in Section 2. All regressions include the baseline controls included in column (3) of Table
1 (see footnotes to that table for details). The regions are defined by the US Census Bureau: the
Northeast, the Midwest, the South, and the West. Robust standard errors in brackets are clustered
at the state-of-birth level.
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Table 3: Childhood Exposure Effects on College Attainment
(Controlling for Other Labor Market Shocks, and Social Reforms)

Dependent variable is
Bachelor’s degree or higher

(1) 2) (3) (4) (5) (6)
Robot penetration x post 0.0034 0.0031 0.0028 0.0028 0.0028 0.0027
[0.0005]  [0.0005] [0.0008] [0.0007] [0.0007] [0.0007]
Mean Dep. Variable 0.3617  0.3617 0.3617 0.3617  0.3617  0.3617

Observations 7111535 7111535 7111535 7111535 7111535 7111535

Adding controls for:

Chinese import competition v

1980-82 recession v

War on poverty programs v

Medicaid v

School finance reforms v
Baseline covariates v v v v v v

Notes: This table reports estimates that evaluate the robustness of our baseline results to con-
trolling for other labor market shocks and social reforms. Column (1) repeats the baseline
specification reported in column 3 of Table 1. Column 2 includes interactions between birth-
year fixed effects and the intensity in Chinese import competition (as measured in Autor et
al. (2013)) in the state of birth. Column (3) controls for interactions between birth-year fixed
effects and the measure of 1980-82 recession severity constructed by Stuart (2022) in the state
of birth. Column (4) includes the fraction of childhood years exposed to war-on-poverty pro-
grams for each birth cohort in the state of birth: Head Start, Food Stamp, and Community
Health Centers. Column (5) includes the fraction of childhood years exposed to Medicaid in
the state of birth. Column (6) adds the fraction of school-going ages (5 to 17) exposed to a
school finance reform in the state of birth. Robust standard errors in brackets are clustered at
the state-of-birth level.

Table 4: Childhood Exposure Effects on Income

Dependent variable is

Log total income

Log earned income

Log income wages

(1) (2) (3) (4) (5) (6)
Robot penetration x post 0.0031 0.0006 0.0021 -0.0003 0.0022  -0.0002
[0.0008]  [0.0008] [0.0008]  [0.0008] [0.0008]  [0.0008]
Bachelor’s degree indicator 0.717 0.6742 0.6651
[0.0082] [0.0071] [0.0068]
Observations 6498308 6498308 6054011 6054011 5738488 5738488
Baseline covariates v v v v v v

Notes: This table reports estimates of 5 in equation (3) for different income measures as outcomes.
Sample sizes vary across outcomes because of missing observations. See notes to Table 1 for details
on sample and baseline covariates. Robust standard errors in brackets are clustered at the state-
of-birth level.

42



Table 5: Robots, Opportunity Costs, Skill Premium, and Parental Income

Long differences, 1990-2008

Log earnings Log skill premium

ages 18-25 ages 25-65 ages 25-65
Bachelor vs  Two-year
Two-year Bachelor’s Bachelor vs  two-year degree vs Log parental

No college No college degree degree no college degree No college income

1) (2) 3) (4) (5) (6) (7 (8)
Robot penetration -0.0309 -0.0282 -0.0219 -0.0124 0.0117 0.0087 0.0028 -0.0057
[0.0049] (0.0027] (0.0017] (0.0018] (0.0023] [0.0021] (0.0017] (0.0018]
Observations 18736 90912 89427 96302 62190 64610 62328 193411

Baseline covariates v v v v v v v v

Notes: This table reports the results from estimating equation (5). The outcomes are computed within cells defined by demographic x

state groups, where the demographic groups are gender, age, race, and place-of-birth. In column (8), the demographic groups include

in addition education level categories. All regressions control for the baseline demographic and socioeconomic state characteristics de-

scribed in Table 1. In addition, all the regressions control for the full set of demographic cell fixed effects. All regressions are weighted

by the 1990 cell size. Robust standard errors in brackets are clustered at the state level.

Table 6: Childhood Exposure Effects on Occupational Characteristics of Majors

100 x Share of

Operators,
assemblers,
Avg. routine inspectors, Precision
task share and production Operators Assemblers Inspectors production
(1) (2) (3) (4) (5) (6)
Robot penetration x post -0.09165 -0.00176 -0.00098 -0.00029 -0.00049 -0.0024
[0.01356] [0.00037] [0.00017] [0.00009] [0.00021] [0.00051]
Mean Dep. Variable 27.01 0.78 0.39 0.15 0.24 1.11
Observations 1987977 1987977 1987977 1987977 1987977 1987977
Baseline covariates v v v v v v

Notes: This table reports estimates of 8 in equation (3) for occupational characteristics of majors. Column (1) con-

siders the average routine task share in each major, as defined by equation (6). Columns (2)-(6) repeat the same logic

as in column (1) but consider specific occupations. The sample is limited to individuals with a Bachelor’s degree. See

notes to Table 1 for details on the sample and basic controls. Robust standard errors in brackets are clustered at the

state-of-birth level.
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Table 7: Estimates of Model Parameters

Panel A: Parameter Estimates Panel B: Comparison of effects
Estimate SE

Coefficient of relative risk aversion o 1.3781  [0.0106] Reduced-form, % Structural model, %
Disutility of college by age at entry : 1.89 2.167

19 o 0.3549  [0.0073]

20 Y1 0.5239  [0.0064]

21 o 0.6147  [0.0077]

22 3 0.6301  [0.0072]

23 o 0.6300  [0.0059]

Panel C: Simulated Effects, % Panel D: Implied FElasticities
Eliminating premium effect 0.778 Premium elasticity 0.5962
Eliminating opp. cos effect 1.056 Opportunity cost elasticity -0.1837
Eliminating income effect 2.444 Parental income elasticity 0.2842

Notes: Panel A reports results from estimating the model via the general method of moments. Panel B compares the model-
generated relative effects to the reduced-form estimates. These relative effects are calculated for the state experiencing the
average penetration of robots. Panel C simulates the effects of robots by eliminating each channel one at time while keeping

the other mechanisms unchanged. Panel D reports the implied elasticities by the model.
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Online Appendix



A Data

A.1 Details on ACS and Variable Definitions

Our basic sample uses data from all the available rounds of the annual American Community
Survey (ACS), ranging from 2001 to 2019. These data are publicly available from the Integrated
Public Use Microdata Series (IPUMS). The samples are limited to native-born in the 1966-83 birth
cohorts who are above age 30 at the time of the survey. This restriction excludes individuals from
Hawaii and Alaska, so the resulting sample includes all individuals born in one of the remaining 48
states or the District of Columbia. In the ACS, the District of Columbia is considered a separate
state. We also exclude individuals residing in institutional group quarters to increase consistency
between the different rounds of the ACS. The basic sample consists of approximately 7.1 million
records.

In terms of labor market outcomes, we consider total personal income, earned income, and
income wages. Total personal income (INCTOT) refers to pre-tax personal income or losses from
all sources for the previous year. Earned income (INCEARN) is the income earned from wages
or a person’s own business or farm for the previous year. Income wages (INCWAGE) represent
the pre-tax wage received as an employee for the previous year. Income observations at top of
the distribution (typically 99 percentile) are top coded, with the top code value often defined as
the state means of values above a given income cutoff. Following Acemoglu and Autor (2011), we
replace the top code values by 1.5 times the value of the respective top code values. To render the
income variables comparable across time, we convert them to constant 1999 dollars applying the
CPI-U to the relevant year.

A.2 Construction of Robot Exposure

Our main analysis relies on the measure of robot exposure developed by Acemoglu and Restrepo
(2020):
Industry shaz M
Robot penetration, = » (77 — 73)
penetrationg Z sj ij 9gj ij

JEX
~
Robot Penetration

(A1)

where /; is the initial employment share of industry j in state s, which we calculate using the census
conducted in 1970 to capture the long-term industrial composition that was prevailing before the
major advance in automation. The variable AM; = M;, —Mj, is the change in the number of robots
in each industry between the base year b and final year 7, normalized by the number of workers Ly,
In the model of automation developed by Acemoglu and Restrepo (2020), the labor market effects

are related to the change in the number of robots per thousand workers after adjusting for the



growth rate of output g; of each industry (captured by the expression g;Mj,/Lj;,). For consistency
with their conceptual framework and ease of comparison, we keep this adjustment term in equation
(1).

Data on robots come from the International Federation of Robotics (IFR), which are available
since 1993 based on yearly surveys of robot suppliers. These data cover 50 countries, including
the United States, and are consistently available for 13 manufacturing and 6 non-manufacturing
industry categories. The manufacturing sector is disaggregated into 13 categories (automotive,
plastics and chemicals, metal products, industrial machinery, food and beverages, basic metals,
electronics, miscellaneous manufacturing, minerals, wood and furniture, shipbuilding and aerospace,
textiles, and paper and printing), while the remaining non-manufacturing corresponds to six broad
groups (mining, education and research, agriculture, utilities, construction, and services). We
use the 1993 to 2007 period to measure the adjusted penetration of robots, using data of average
robot adoption in the top 5 non-US countries with greater advances in robotics (Denmark, Finland,
France, Italy, and Sweden). In robustness exercises, we use measures of robot penetration expanding
the top 5 to include Germany and other European countries with available data on robots. In some
results, we also present results using a measure of robot penetration for the United States.

To compute the measure of adjusted penetration of robots by industry, we use industry-level data
on employment from the European Union-level analysis of capital, labor, energy, materials, and
service inputs (EUKLEMS) Growth and Productivity Accounts (Jager, 2016). We use a “crosswalk”
between the US industry codes in the census and IFR industry codes to match the robot penetration
variable to the baseline employment shares in each state. We collapse the 199 detailed industry
categories in the census into the 19 IFR industries, as detailed in Table Al.

To sum up, we construct the overall measure of robot exposure in each state using the following

step-by-step procedure in which we:
e Step 0: collapse the 199 detailed industry codes in the census to the 19 IFR industries.

e Step 1: construct the initial employment share of each industry in state s using the 1970

census.

e Step 2: compute the adjusted penetration of robots for each industry using data from the
IFR and EUKLEMS database.

e Step 3: combine the results in steps 1 and 2 using equation (A.1) to generate the measure of

robot exposure.

Table A2 provides descriptive statistics for the main measure of exposure to robots, displaying

the substantial variation in the adjusted penetration of robots across industries.

Cross-sectional Variation in Robot Exposure Intensity. Figure A5 shows that there is

substantial variation in the data, with a standard deviation of about 1.35 robots per thousand



workers (relative to the mean of 2 robots per thousand workers). This variation stems not only
from differences in robot adoption rates across industries but from substantial differences in the
baseline industrial composition of employment across states. Figure A6 shows this substantial
variation in initial employment share across states.

The labor market analysis of Acemoglu and Restrepo (2020) relies on data at the commuting-
zone level. Because we have no information on an individual’s birthplace detailed at the commuting
zone level, our analysis focuses on state-level data. While this comes at a cost in terms of loss of
variation, much of the variation in the commuting-zone level data in fact stems from differences
between (rather than within) states. Figure A8 illustrates this visually. Remarkably, state fixed
effects account for about 75 percent of the overall cross-commuting zone variation in robot exposure
intensity. This suggests that our state-level analysis captures a substantial portion of the relevant

identifying variation.



B Details on Some Additional Results and Robustness Checks

B.1 Decomposing Variation: Rotemberg Weights

We next investigate the relative importance of each industry for our results by computing the
“Rotemberg” weights, as recommended by Goldsmith-Pinkham et al. (2020). Here the concern
is that the positive effects on college attainment we find are completely driven by a particular
industry, which would suggest that the results may be the product of unobservable shocks differen-
tially affecting regions disproportionately specialized in certain types of industries. The Rotemberg
weights decompose the Bartik difference-in-differences estimator into a weighted sum of estimates
that use each industry share, along with the robot penetration in each industry, as a separate source
of variation. Let ;5 and ¥;s+ denote Robot penetrations X Post; and the outcome variable after
removing the basic sext of fixed effects and the rest of the control variables. Let also z;;s; denote
ls;- Robot penetration; x Post;, which is the robot exposure variable separately for each industry
after filtering out the baseline covariates. Finally, let p; be the adjusted penetration of robots in

each industry. In this case, the Rotemberg weights can be computed as follows:
B=2>;a;B
5 -1 -
where Bj = (ZZ Zijst Hfz'st) Ez Rijst = Yist
-1
Q5 = (EJ ey EZ Zijst * fL‘ist) g ZZ Zijst * Tist

Under this framework, ﬂNj is obtained in a 2SLS regression where the measure of robot exposure
based only on industry j is used as an instrumental variable for the overall robot exposure variable.
The weights {c;} sum to one, but not all need to be positive.

Appendix Table A7 reports estimates of Bj and «; for the top five industries with the highest
Rotemberg weights. We find that the automotive industry has the largest share of the overall
weight, about 89 percent. This is what one could expect given that the trends in robot adoption
of this industry are almost of incomparable magnitude to that of any other industry. But most
importantly, the automotive industry is not the only reason why we observe the positive effects
of robots on college attainment. As shown in the table, the estimated coefficients § are in fact
somewhat larger when one excludes the automotive industry. Indeed, the coefficient for bachelor

attainment goes from 0.0034 in the baseline to 0.0060 when we exclude the automotive industry.

B.2 Robust Inference

Our baseline analysis uses standard errors clustered at the state-of-birth level. In this section, we
evaluate the robustness of our results to alternative inference approaches. First, we use standard
errors clustered at the state level but adjust them by the effective sample size implied by the relative

importance of each observation, as suggested by Young (2016). Second, because we are using a



shift-share identification strategy, a particular concern is that standard procedures to inference
may result in smaller standard errors if residuals are spatially correlated across areas with similar
sectoral shares (Borusyak et al., 2022). Therefore, we evaluate the robustness of the results using the
inference procedures proposed by Adao et al. (2019) and Borusyak et al. (2022) that address cross-
region correlation in residuals in shift-share designs. Finally, we present results from a specification
that uses standard errors two-way clustered at the state-of-birth and birth-year level, which account
for possible serial and spatial correlation in a flexible manner. As shown in Table A8, the results

are in general very similar to our baseline.

B.3 Robots and Exposure to Other Programs

We examine the extent to which cohort exposure to robots predicts the probability of childhood
exposure to Community Health Centers, Head Start, Food Stamp, Medicaid and School Finance
Reforms. As in Goodman-Bacon (2021), we consider ages 0 to 9 as the relevant window of exposure
for Community Health Centers, Food Stamp and Medicaid, and ages 3 to 4 for Head Start. For the
school finance reforms, we use the ages 5 to 17 as the relevant window of exposure (as in Jackson
et al. (2016)). For each of these programs, we generate a variable measuring the fraction of the
relevant years that a given cohort was exposed to the reform or program. We then estimate our
baseline specification (3) using these measures of program exposure as dependent variables. Table
A9 documents that if anything the post-robot cohorts from states with greater robot penetration
are less likely to have been exposed to these programs in childhood. This suggests that these

programs cannot explain the gains in college attainment we report in Table 1.



Figure Al: Birth Cohorts in the ACS

Panel A. 2001-19 ACS rounds Panel B. 2015-19 ACS rounds
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Figure A2: Observations by Survey Year
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Figure A3: Composition of Birth Cohorts by Survey Year
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Figure A4: College Attendance by Age
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Notes: This figure shows the share of individuals with some college, for a constant sample born in the mainland of
the United States from 1966 to 1972. We use the 1990 census and the 2001-2019 ACS to generate these figures.



Figure A5: Robot Exposure Intensity by State
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Notes: This map displays the intensity of robot exposure across states.



Figure A6: Baseline Industrial Shares across States
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Notes: This figure shows the variation in initial industrial shares by state. This figure is constructed using data from
the 1970 census.
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Figure A7: Robot Exposure in Selected States and Industries

Panel A. Initial industrial shares, Louisiana vs. Michigan
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Notes: These figures show the variation underlying the robot exposure variable. Panel A shows the initial industry’s

share of employment in Louisiana and Michigan. Panel B shows the adjusted penetration of robots in each industry.
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Figure A8: Robot Exposure across Commuting Zones after Removing State Effects
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Notes: This figure show the variation the robot exposure variable across commuting zones.
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Figure A9: Bachelor Attainment and Enrollment Probability in Model vs. Data

Panel A. Likelihood of having a Bachelor's degree
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Notes: This figure compares actual and model-based moments.
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Table Al: Crosswalks between 1990 Census Bureau industrial classification and IFR Industries

IFR Industry Census Industry Code Number of Groups
Manufacturing:

Food and Beverages 100-130 10
Textiles 132-152, 220-222, and 450-472

Paper and Printing 160-172 )
Petrochemicals 180-192 and 200-212 10
Wood and Furniture 231, 241, and 242 3
Minerals 250-262 5
Basic Metals 270-272, 280, and 301 5
Metal Products 281-300 6
Industrial Machinery 310-312, 320, 331, and 332 6
Electronics 321-350 and 371-381 10
Automotive 351

Miscellaneous Manufacturing 391 and 392 2
Nonmanufacturing:

Agriculture 10-32 and 2030 6
Mining 40-42 and 50 4
Construction 60 1
Shipbuilding and Aerospace  352-370 4
Services 400-442, 500-842, 870-890, and 892 101
Utilities 450-452 and 470-472 6
Education and Research 850-860 and 891 4

Notes: This table shows the crosswalks between the industry codes in the 1970 census and
that in the IFR data.
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Table A2: Robot Exposure

Observations

Mean Standard Deviation N  Aggreg. Level

Robots per thousand workers 2.09 1.35 49 States
Adjusted penetration of robots per thousand workers (overall) 4.769 8.461 19
Adjusted penetration of robots per thousand workers...
Manufacturing

Automotive 32.94

Petrochemicals 21.46

Metal Products 8.01

Industrial Machinery 1.01

Food and Beverages 5.20

Basic Metals 5.70

Electronics 3.46

Miscellaneous Manufacturing -1.20 IFR industries

Minerals 2.66

Wood and Furniture 3.65

Shipbuilding and Aerospace 2.83

Textiles 1.06

Paper and Printing 0.61
Nonmanufacturing

Mining 2.69

Education and Research 0.30

Agriculture 0.16

Utilities 0.02

Construction 0.07

Services 0.00

Notes: This table provides descriptive statistics for the main measure of exposure to robots, displaying the variation in

the adjusted penetration of robots across industries.
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Table A3: Exposure Effects on Bachelor’s Degree
(Controlling for Initial Market Conditions)

Dependent variable is
Bachelor’s degree or higher

(1) (2) 3) 4) ()

Robot penetration x post 0.0034 0.0029 0.0039 0.0028 0.0029
[0.0005]  [0.0005] [0.0007] [0.0007] [0.0009]

Mean Dep. Variable 0.3617  0.3617  0.3617  0.3617  0.3617
Observations 7111535 7111535 7111535 7111535 7111535
1990 manufacturing share (x birth-year FE) v v
1990 employment-to-pop. ratio (x birth-year FE) v v
1990 avg. wages (x birth-year FE) v v
Baseline covariates v v v v v

Notes: This table explores the robustness of the baseline estimates to additional controls for baseline la-
bor market conditions. The sample is limited to individuals over age 30 at survey time and born in one
of the States covering the mainland of the United States. Post is an indicator for individuals born after
1976. Robot penetration is the intensity of exposure to robots in one’s state of birth, as described in Sec-
tion 2. All regressions include the baseline controls included in column (3) of Table 1 (see footnotes to

that table for details). Robust standard errors in brackets are clustered at the state-of-birth level.
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Table A4: Exposure Effects on Bachelor’s Degree
(2SLS Estimates)

Dependent variable is:

US robot penetration x post Bachelor’s degree or higher
First stage Reduced-form OLS 2SLS
(1) (2) 3) (4)
US robot penetration x post 1.0158 0.0028 0.0033
[0.0465] [0.0003]  [0.0006]
Robot penetration x post 0.0034
[0.0005]
Cragg and Donald (1993) F' statistic 477.68
Mean Dep. Variable 0.4168 0.3617 0.3617  0.3617
Observations 7111535 7111535 7111535 7111535
Baseline covariates v v v v

Notes: This table reports 2SLS estimates of the effect of exposure to robots on Bachelor’s degree attainment.
We instrument the US exposure to robots using exposure to robots from the top 5 European countries in terms
of robot penetration. The sample is limited to individuals who are over age 30 at survey time and born in one
of the States covering the mainland of the United States. Post is an indicator for individuals born after 1976.
Robots is the intensity of exposure to robots in one’s state of birth, as described in Section 2. All regressions
include the baseline controls included in column (3) of Table 1 (see footnotes to that table for details). Robust

standard errors in brackets are clustered at the state-of-birth level.
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Table A5: Exposure Effects on Bachelor’s Degree
(Alternative Definitions of Robot Exposure)

Alternative constructions of robot penetration

Include
Employment all European
shares in Include  countries with Unadjusted
Baseline 1990 Germany data definition
(1) (2) 3) (4) (5)
Robot penetration x post  0.0034 0.0059 0.0025 0.0023 0.0022
(0.0005] [0.0007] [0.0003] [0.0003] [0.0003]
Rescaled coefficient 0.0034 0.0036 0.0033 0.0029 0.0032
Mean Dep. Variable 0.3617 0.3617 0.3617 0.3617 0.3617
Observations 7111535 7111535 7111535 7111535 7111535
Baseline covariates v v v v v

Notes: This table presents results from alternative ways to construct the measure of exposure to
robots. For ease of comparison, the table also reports rescaled coefficients. The rescaled coefficients
are obtained by dividing the point estimates by the ratio of the standard deviations of the baseline
to alternative measures of robot penetration. Column (1) repeats the baseline estimates reported in
column (3) of Table 1. Column (2) uses the 1990 rather than 1970 census to construct the initial
industrial composition of employment in each state. Column (3) includes Germany to construct the
adjusted penetration of robots. Column (4) uses data from all European countries to construct the
adjusted penetration of robots. Column (5) uses the unadjusted penetration of robots to construct
the overall measure of robot exposure. See notes to Table 1 for details on sample and specification.

Robust standard errors in brackets are clustered at the state-of-birth level.
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Table A6: Exposure Effects on Bachelor’s Degree
(Outlier Analaysis)

Exclude
Exclude Exclude Exclude Exclude Exclude highly influential
3-sigma  2-sigma  1-sigma 0.5-sigma high leverage observations

Baseline outliers outliers outliers  outliers  observations (Cook’s distance)

(1) 2) 3) (4) (5) (6) (7
Robot penetration x post  0.0034 0.0034 0.0034 0.0034 0.0036 0.0033 0.0036
[0.0005)  [0.0005] [0.0005] [0.0005]  [0.0005] [0.0004] [0.0004]
Mean Dep. Variable 0.3617 0.3615 0.3611 0.3606 0.3614 0.3395 0.3615
Observations 7111535 7109758 7099378 7052943 6892806 6870213 6769715
Baseline covariates v v v v v v v

Notes: This table evaluates the robustness to outliers. Column (1) repeats the baseline results reported in column (2)
of Table 1. Columns (2)-(5) exclude observations that are 3, 2, 1, and 0.5 standard deviations away from the residual
mean respectively. Column (6) excludes observations with leverage superior to 2k/N, with k being the number of pre-
dictors and N the number of observations. Column (7) excludes observations that shift the baseline estimate at least to
4/N (Cook’s distance). See notes to Table 1 for details on sample and specification. Robust standard errors in brackets

are clustered at the state-of-birth level.
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Table A7: Exposure Effects on Bachelor’s Degree
(Top 5 Industries with Largest Rotemberg Weights)

Industry-specific Estimate of 3

Rotemberg Estimate of without
Weight 15} industry k
(1) 2) 3)
Automotive 0.8947 0.0029 0.0060
Petrochemicals 0.0840 0.0058 0.0032
Basic Metals 0.0292 0.0078 0.0033
Metal products 0.0256 0.0044 0.0034
Industrial Machinery 0.0081 0.0041 0.0034

Notes: This table decomposes the baseline coefficient S into a weighted
sum of estimates that use each industry share, along with the robot pen-
etration in each industry, as a separate source of variation. Column (1)
table presents Rotemberg weights for the top 5 industries with the highest
weights, following Goldsmith-Pinkham et al. (2020). The even-numbered
columns report industry-specific coefficients, which are obtained in a 2SLS
regression where the measure of robot exposure based only on industry &
is used as an instrumental variable for the overall robot exposure variable.
The remaining columns show the estimated coefficient when each industry
is excluded from the overall measure of robot exposure. See notes to Table

1 for details on sample and specification.
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Table A8: Exposure Effects on Bachelor’s Degree
(Robustness to Alternative Inference Procedures)

Alternative inference procedures

Clustered by

state + Twoway clustering
Young (2016) Borusyak et al. (2022) Adao et al. (2019) by state +
Baseline effective d.o.f.-adj. robust SE robust SE birth year
) 2) 3) 4) (5)
Robot penetration x post  0.0034 0.0034 0.0034 0.0034 0.0034
(0.0005] (0.0007] [0.0004] [0.0004] [0.0006]
Mean Dep. Variable 0.3617 0.3617 0.3617 0.3617 0.3617
Observations 7111535 7111535 7111535 7111535 7111535
Baseline covariates v v v v v

Notes: This table evaluates the robustness of the baseline results in Table 1 to alternative inference approaches: i) standard errors
clustered at the state level but adjusted by the effective sample size implied by the relative importance of each observation, as
suggested by Young (2016); i) inference procedures proposed by Adao et al. (2019) and Borusyak et al. (2022) that address cross-
region correlation in residuals in shift-share designs; ii7) two-way clustering by state-of-birth and birth year. See notes to Table 1

for details on sample and specification.
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Table A9: Robots and Exposure to Safety Net Programs and School Finance Reforms

Fraction of relevant years of exposure to...

Community School
Health Centers Head Start Food Stamp Medicaid Finance Reforms
(1) (2) (3) (4) (5)
Robot penetration x post -0.0018 -0.0027 -0.0168 -0.0085 -0.023
[0.0019] [0.0011] [0.0062] [0.0048] [0.0175]
Mean Dep. Variable 0.3019 0.8182 0.9192 0.9752 0.3893
Observations 7111535 7111535 7111535 7111535 7111535
Baseline covariates v v v v v

Notes: This table estimates the effects of robots on the share of childhood years exposed to each program
and reform. As in Goodman-Bacon (2021), we consider ages 0 to 9 as the relevant window of exposure for
Community Health Centers, Food Stamp, and Medicaid, and ages 3 to 4 for Head Start. For the school
finance reforms, we use the ages 5 to 17 as the relevant window of exposure (as in Jackson et al. (2016)).
See notes to Table 1 for details on sample and specification. Robust standard errors in brackets are clus-
tered at the state-of-birth level.
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Table A10: Exposure Effects on Bachelor’s Degree
(Controlling Flexibly for Other Social Reforms)

Controlling for birth-cohort FE x adoption year of...

Community School
Baseline Health Centers Head Start Food Stamp Medicaid Finance Reforms
(1) (2) (3) (4) (5) (6)
Robot penetration x post  0.0034 0.0032 0.0034 0.0033 0.0035 0.0034
[0.0005] [0.0006] [0.0005] [0.0005] [0.0005] [0.0005]
Mean Dep. Variable 0.3617 0.3617 0.3617 0.3617 0.3617 0.3617
Observations 7111535 7111535 7111535 7111535 7111535 7111535

Notes: This table demonstrates the robustness of the baseline estimates to controlling flexibly for the timing of war-
on-poverty programs, Medicaid, and School Finance reforms. Columns (2)-(6) repeat the baseline specification, but
separately include birth-cohort fixed effects interacted with the year of each program or adoption across states. See
notes to Table 1 for details on sample and specification. Robust standard errors in brackets are clustered at the state-
of-birth level.
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Table All: Exposure Effects on Income
(Controlling state-of-residence x Birth-cohort Fixed Effects)

Dependent variable is

Log total income Log earned income Log income wages
(1) (2) (3) (4) () (6)

Robot penetration x Post 0.0031 0.0082 0.0021 0.0077 0.0022 0.0082

[0.0008]  [0.0016] [0.0008]  [0.0022] [0.0008]  [0.0023]

Observations 6498308 6498308 6054011 6054011 5738488 5738488
State-of-residence x birth-year FE v v v
Baseline covariates v v v v v v

Notes: This table demonstrates the robustness of the baseline estimates to controlling for state-of-
residencex birth-cohort fixed effects. See notes to Table 1 for details on sample and specification. Robust

standard errors in brackets are clustered at the state-of-birth level.
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Table A12: Robots and Supply-Side Responses

Log-differences 1990-2008:

Average revenue Average revenue Total
Average net from from Government transfers
tuition and fees  state and local state and local in education and
costs appropiations grants training assistance
(1) (2) (3) (4)
Robot penetration -0.013 -0.047 0.012 -0.025
[0.012] [0.048] [0.019] [0.030]
Mean Dep. Variable 1.132 1.605 0.367 1.062
Observations 49 49 49 49
Baseline covariates v v v v

Notes: This table reports results from estimating equation (5): AY;g9_0s = a + yRobotss +Z.Q + &s.
The unit of analysis is a state. All regressions control for the baseline demographic and socioeconomic
state characteristics described in Table 1. Standard errors are robust to arbitrary forms of heteroskedas-

ticity.
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Table A13: Estimates of Model Parameters
(Sensitivity analyses)

Perceived
enrollment
Baseline  Alternative Alternative life of the loan probability
Estimate interest rate 10 years 20 years 30 years set to zero
(1) (2) 3) (4) (5) (6)
Coefficient of relative risk aversion o 1.3781 1.4089 1.3781 1.3781 1.3781 1.3867
[0.0106] [0.0107] [0.0106] [0.0106]  [0.0107] [0.0106]
Disutility of college by age at entry:
19 Yo 0.3549 0.3806 0.3546 0.3548 0.3549 0.2794
[0.0073] [0.0086] [0.0073]  [0.0073]  [0.0073] [0.0070]
20 Y1 0.5239 0.5465 0.5238 0.5238 0.5239 0.4976
[0.0064] [0.0067] [0.0064]  [0.0064] [0.0064] [0.0063]
21 Yo 0.6147 0.6344 0.6146 0.6146 0.6147 0.597
[0.0077] [0.0088] [0.0077]  [0.0077]  [0.0077] [0.0072]
22 ¥3  0.6301 0.6489 0.6299 0.63 0.63 0.6353
[0.0072] [0.0083] [0.0072]  [0.0072]  [0.0072] [0.0069]
23 [N 0.63 0.6483 0.6297 0.6297 0.6298 0.6555
[0.0059] [0.0072] [0.0059]  [0.0059]  [0.0059] [0.0057]

Notes: This table explores the robustness of the structural results to alternative assumptions regarding some of the cali-
brated parameters. Column (1) repeats the baseline specification. Column (2) sets the interest rate to 3 percent (instead
of 5 percent). Columns (3)-(5) explore different repayment periods, ranging from 10 to 30 years. Column (6) assumes

that the perceived probability of enrollment in subsequent periods is zero.
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