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Abstract

The instrumental variables (IV) method has been widely studied in cross-sectional set-

tings. However, many practical applications involve panel data, in settings where a

unit’s treatment status may turn on or off over time. In the presence of dynamics,

that is, if past treatments affect current potential outcomes, standard methods are no

longer valid. This paper proposes the nonparametric identification of dynamic causal

effects in a potential outcomes framework in which potential outcomes depend on the

treatment path taken by a unit through time and each IV instruments its contemporary

treatment. I provide a nonparametric estimator that is unbiased over the randomiza-

tion distribution and derive its finite population limiting distribution as the sample

size increase. Monte Carlo Simulations assert the desirable finite-sample properties of

the estimators. An application of the estimator shows that there is substantial time-

varying heterogeneity on the effects of law enforcement on illegal deforestation, but the

effects are not persistent through time.

Keywords: Panel data, Dynamic causal effects, Instrumental Variables, Finite-population.

JEL Codes: C01, C13, C21.

∗I thank Cristine Pinto, Jonathan Roth, Peter Hull, Sergio Firpo, Sukjin Han, Toru Kitagawa, Vitor
Possebom, as well as participants in the Bristol Econometric Study Group 2024, the New York Camp
Econometrics XVIII, the Brown Econometrics Seminar and the Insper Students Seminar. I gratefully ac-
knowledges the financial support from FAPESP 2021/13708-8 and FAPESP 2022/13229-5. All errors are
my own. Pedro Picchetti: Department of Economics, Insper Institute of Education and Research, Rua
Quata, 300, São Paulo, SP, Brazil 04546-042. E-mail: pedrop3@al.insper.edu.br



1 Introduction

In a seminal paper, Imbens and Angrist (1994) showed that the instrumental variables (IV)

estimand in cross-sectional settings can be interpreted as the Local Average Treatment Effect

(LATE), defined as the average treatment effect for the subpopulation that has its treatment

status shifted by an excluded instrument, the so-called compliers.

However, applications of the IV method using panel data are also pervasive in the lit-

erature. In such cases, it is common to find the following static 2SLS specification stacked

across time periods:

Yi,t = α + βDi,t + εi,t

Di,t = κ+ θZi,t + ηi,t

where α and κ are constants, Di,t is a binary non-absorbing treatment1 of interest in

period t, Zi,t is the instrument in period t and εi,t is the error term for a linear outcome

model that imposes treatment effects that are constant over time, while ηi,t is the error term

from a linear model for the first stage.

As a leading case, consider this stylized example, inspired by the setting of Assunção

et al. (2023) (hereafter referred to as AGR), in which the authors investigate the effects of a

satellite law enforcement program, the DETER program, on deforestation in the Brazilian

Amazon.

In this example, Yi,t is the deforested area of municipality i in the year t, Di,t is an

indicator for ”intense” law enforcement in municipality i in year t measured as a function

of the number of fines issued by the DETER program, and Zi,t is an indicator for ”intense”

cloud coverage in municipality i and year t2.

1Absorbing treatments are treatments that are not ”forgotten” by units and remains constant in post-
treatment periods (e.g a policy change, a change in the minimum wage, etc...)

2In the original AGR setting, the treatment is defined by the number of fines and the instrument is
defined by the average cloud coverage of the municipal area. I propose this binarization for the sake of the
exposition
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Beyond the AGR setting, such an specification is common in applied research. To doc-

ument this practice, I searched the Web of Science database for articles published between

2000 and 2023 containing the words “instrumental variable” and “panel data” in the abstract,

title, or topic words. The restricted search for the following journals: Econometrica, Journal

of Political Economy, Quarterly Journal of Economics, American Economic Review, Review

of Economic Studies and Review of Economics and Statistics, found 33 articles matching the

criteria.

Some prominent examples are in the development literature (Acemoglu et al., 2019),

inequality (Aghion et al., 2018), education Jackson et al. (2015), trade (Blanchard and

Matschke, 2015) and behavioral economics (Stango and Zinman, 2022).

The well-know results from Imbens and Angrist (1994) imply that the static 2SLS spec-

ification yields a LATE in the absence of dynamics, that is, if Zi,t only affects Di,t and Yi,t,

but not Di,t′ and Yi,t′ for t ̸= t′. However, in practice we might often expect dynamic effects

of treatment. I show that the static specification generally does not identify well defined

causal effects if the instrument Zi,t is correlated to past values of the instrument and past

treatments affect the outcome Yi,t as in a Robins (1986) model. Similar results have been

derived in de Chaisemartin and Lei (2023) and Shen et al. (2024) in related, but different

dynamic IV settings 3.

In this paper, I propose a novel identification approach for dynamic causal effects using

instrumental variables and panel data when potential outcomes that are defined in terms of

the sequence of treatments taken by a unit. As in Robins (1986, 1987), potential outcomes for

unit i in period t depend on the path of treatments taken until period t, Yi,t(Di,1, ..., Di,t).

I then consider the effect of changing the path of treatments. In particular, I focus on

what Bojinov et al. (2021) called the lag-p dynamic causal effect, defined as the difference

3An intuitive alternative would be a multivariate 2SLS specification with the sequence of endogenous
treatments until period t being instrumented by the sequence of instruments until period t. I show that this
approach identifies a weighted average of different dynamic causal effects in which weights can be negative.
Much like in the multiple treatments IV literature (Kirkeboen et al., 2016; Mountjoy, 2022), multivariate
2SLS estimates only hold a clear causal interpretation in the absence of treatment effect heterogeneity.
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between the outcomes from following different treatment paths from period t−p to t , fixing

the assignments for unit i to follow the observed path up to time t− p− 1.

The strategy consists in identifying the potential outcomes associated to different treat-

ment paths separately, by exploiting all possible variations in the assignment path from pe-

riod t−p to t under a ”multiple differences” Wald-like estimand. That is, potential outcomes

associated to contemporary treatments (p = 0) are identified by exploiting the variation in

assignment in period t holding the path until t-1 fixed, which takes the form of a simple

difference. Potential outcomes associated to a path of treatments from t− 1 to t (p = 1) are

identified exploiting variations in the path of assignment in a Wald ”difference-in-differences”

format.

The approach takes a purely design-based approach to uncertainty and is fully agnostic

about functional forms. I provide nonparametric estimators that are unbiased over the

randomization distribution induced by the random design and asymptotically normal as

the finite population grows to infinity. The limiting distribution can be used to perform

conservative tests on weak null hypotheses of no average dynamic causal effects. I propose

the construction of a conservative dynamic version of the Bloom (1984) Confidence Interval

for hypothesis testing. Monte Carlo Simulation studies illustrate the desirable finite-sample

properties of the proposed estimators.

Finally, I use the proposed estimators to revisit AGR and analyze the dynamic effects of

law enforcement on illegal deforestation in the Brazilian Amazon. The results suggest there

are dynamic causal effect of law enforcement, which persist through time until a certain point

when they fade out. The estimates show that law enforcement curbs illegal deforestation

until two years after the actual detection of illegal practice.

Related Literature: This paper relates to several strands of the causal inference lit-

erature. There is an extensive literature on dynamic treatment settings, specifically from

the biostatistics literature (Robins (1986), Murphy et al. (2001),Hernan and Robins (2023)).

There is also a more recent interest from econometricians in such settings (Bojinov et al.
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(2021); Arkhangelsky and Imbens (2022)). The aforementioned works focus on identifica-

tion under the assumption that treatment assignment is sequentially randomized and that

compliance is perfect. By contrast, I consider settings where there is an instrument and

imperfect compliance.

There is also a large literature on the identification of dynamic treatment effects using

instrumental variables, dating back to Arellano and Bond (1991). Abbring and Heckman

(2007), Heckman and Navarro (2007) and Heckman et al. (2016), focus on the identification

of time-to-treatment effects in settings with absorbing treatments. This paper differs from

the ones mentioned above by focusing on non-absorbing treatments and taking a fully non-

parametric approach to identification without relying on identification-at-infinity arguments

or parametric factor models.

When it comes to sequential treatment settings, Pham and Chen (2017) propose a non-

parametric identification approach that relies on the knowledge of the compliance type from

each individual in the sample. Han (2021) and Han (2023) focus on how the support of

the instrument and covariates allows the identification of average causal effects in sequential

regimes. Sotra and Syrgkanis (2024) focuses on identification of dynamic causal effects in

dynamic IV settings with one-sided noncompliance, and Shen et al. (2024) studies Panel

IV regressions when the instrument follows a first-order autoregressive (AR-1) model. This

paper also focus on sequential treatment regimes, but relies on different assumptions for

identification. Namely, by restricting how the path of assignments affects potential treat-

ments, I provide a new identification approach that avoids two-way exclusion restrictions

and restrictions on noncompliance. Moreover, estimation and inference is fundamentally dif-

ferent from the aforementioned ones due to the fact that it does not rely on superpopulation

arguments.

In a certain way, the sequential treatment regime is a setting with multiple treatments,

multiple potential outcomes and multiple instruments. In that sense, this paper is related to

the recent advances in the literature regarding multiple treatments in IV settings. (Kirkeboen
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et al. (2016); Mountjoy (2022)).

Finally, the paper relates to the literature on design-based inference in IV settings (Imbens

and Rubin (2015); Kang et al. (2018); Rambachan and Roth (2024), Hull and Borusyak

(2024)). While these papers focus solely on estimators for the case where cross-sectional

data is available, I am the first to consider design-based inference for IV settings with panel

data.

Outline of the paper: Section 2 provides the intepretation of static and multivariate

2SLS specifications, as well as the proposed estimand in a framework with only two-periods.

Section 3 defines the dynamic potential outcomes framework, states the identification as-

sumptions that are used throughout the paper and define the target causal parameters.

Section 4 provides the general estimand for the identification of dynamic causal effects. In

Section 5 I provide a nonparametric estimator for the dynamic causal effects and derive its

finite-population asymptotic distribution. Section 6 shows how the randomization distribu-

tion can be modified to incorporate common features from applied work using panel data.

Section 7 presents the Monte Carlo simulations and Section 8 the empirical application.

Section 9 concludes.

Notation: For an integer t ≥ 1 and a random variable Rt, we write R1:t = (R1, ..., Rt).

Sets of observation units and time periods are respectively defined in a compact form as

[N ] := {1, ..., N} and [T ] := {1, ..., T}.

2 Identification with T = 2

As a leading case, consider a two-period model in which we observe at each period a binary

treatment status (Di,t), a binary instrument (Zi,t) and a scalar outcome (Yi,t). In the first,

period, there are two possible treatments and thus two potential outcomes (Yi,1(1) and

Yi,1(0)) and one causal effect of interest. There are two possible assignments and thus two

potential treatments (Di,1(1) and Di,1(0)). Under the standard Imbens and Angrist (1994)
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monotonicity assumption hold, individuals can be divided into three groups with respect to

Zi,1, always-takers (AT1), never-takers (NT1) and compliers (C1).

In the second period, there are four potential outcomes associated to the four possible

treatment paths. The realized outcome Yi,2 has the following relation to the four potential

outcomes:

Yi,2 = Di,1Di,2Yi,2(1, 1)+(1−Di,1)Di,2Yi,2(0, 1)+Di,1(1−Di,2)Yi,2(1, 0)+(1−Di,1)(1−Di,2)Yi,2(0, 0)

The vector of assignments Zi,1:2 also takes four values. Suppose that the potential treat-

ments at each period are functions of their contemporary treatments. Furthermore, suppose

that the Imbens and Angrist (1994) assumptions hold for each period. Individuals can be

divided into nine groups with respect to their compliance towards the assignment path. The

individuals that comply in both periods (C1:2) are called path-compliers.

(Linear Toy Model): For the sake of concreteness, suppose the outcome is generated by

a linear causal model where potential outcomes are assumed to be homogeneous. Potential

outcome for unit i in period 2 is

Yi,2(Di,1:2) = β0 + β1Di,1 + β2Di,2

Here, β0 is the fully untreated potential outcome of unit i β0+β1 is the potential outcome

associated to taking treatment in the first period only, β0 + β2 is the potential outcome

associated to taking treatment in period 2, and β0+β1+β2 is the potential outcome associated

to the path of full exposure.

Suppose that in the first period the share of compliers is α1, in the second period the

share is α2, and that the first stage of each period is independent, and thus the joint first

stage is the product of first-stages so that the share of path-compliers is simply α1α2:

6



1

N

N∑
i=1

1 {Gi,1 = C1} = α1,
1

N

N∑
i=1

1 {Gi,2 = C2} = α2,
1

N

N∑
i=1

1 {Gi,1:2 = C1:2} = α1α2

2.1 Interpretation of the Static Wald Estimator

In most applications of IV methods, researches usually rely on a static specification of the

Wald estimator, that is, there is an outcome equation in which the outcome in period t is

specified as a function of an endogenous treatment taken in period t, instrumented by an

excluded variable also realized in period t. I will refer to such specification as the Time-t

static Wald estimator. When T = 2, let
∑N

i=1 Zi,2 = N1 denote the number of units exposed

to the instrument in period 2,
∑N

i=1(1 − Zi,2) = N0 denote the number of units unexposed

to treatment in period 2 and λi,2 = P (Zi,2 = 1) denote the marginal probability of being

exposed to treatment in period 2 for individual i. I analyze the two-stage difference-in-means

static Wald estimator, β̂Wald
2 =

β̂RF
2

β̂FS
2

, where:

β̂RF
2 =

1

N1

N∑
i=1

Zi,2Yi,2 −
1

N0

N∑
i=1

(1− Zi,2)Yi,2

β̂FS
2 =

1

N1

N∑
i=1

Zi,2Di,2 −
1

N0

N∑
i=1

(1− Zi,2)Di,2

Next, I characterize the causal decompostion of the Time-t static Wald estimand under

Assumptions 1-4. Proposition 1 shows that the estimator suffers from omitted variable bias

(OVB) under the maintained assumptions:

Proposition 1 Suppose that the dynamic treatment potential outcomes model hold, and that

for each period that assumptions from Imbens and Angrist (1994) for the first-stage hold.

Then,
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E
[
β̂RF
2

]
E
[
β̂FS
2

] = τC2,2(1, 0; 0)︸ ︷︷ ︸
lag−0 effect

+ Λ︸︷︷︸
OV B

where

Λ =
1

|C2|

(
N

N1

Cov [λi,2, Yi,2(Di,1(Zi,1), Di,2(1))] +
N

N0

Cov [λi,2, Yi,2(Di,1(Zi,1), Di,2(0))]

)

To put it simply, Proposition 1 shows that in the presence of serial correlation of the

instrument, the Time-t static Wald estimator can suffer from omitted variable bias, see

Section 1 of Appendix A for the proof. If there is serial correlation and the potential outcome

Yi,2 depends on the past treatment Di,1, then λi,2 might be related to Yi,2(Di,1(Zi,1, Di,2(1))

and Yi,2(Di,1(Zi,1, Di,2(0)) through the dependence of λi,2 on Zi,1.

Consider the bias terms that form Λ, they could be equal to zero under three conditions:

(i) there’s no dynamic effect of treatment, Di,1 does not affect Yi,2 so the correlation between

Zi,2 and Zi,1 is inconsequential; (ii) there are no compliers in period 1, so that Di,1(1) =

Di,1(0) and once again the serial correlation is inconsequential or (iii) the instrument is fully

randomized at each period, so that there is no serial correlation of the instrument. If one

of the three conditions above is satisfied, then the estimand can be interpreted as the time-

2 local lag-0 dynamic causal effect, the causal effect in period 2 from taking treatment in

period 2 for compliers in period 2.

Linear Toy Model (continued). Consider the linear toy model introduced above.

The expected value of the Time-t static Wald estimator over the randomization distribution

amounts to

E
[
β̂RF
2

]
E
[
β̂FS
2

] = β2 +
β1α1 (E [Zi,1 = 1|Zi,2 = 1]− E [Zi,1 = 1|Zi,2 = 0])

α2

It is clear that the ratio of means equals β2 only if there is no dynamic effect of treatment

8



(β1 = 0), if there are no compliers in previous periods (α1 = 0), or the instrument is fully

randomized at each period (E [Zi,1 = 1|Zi,2 = 1] = E [Zi,1 = 1|Zi,2 = 0]).

Translating to the AGR setting, the estimates for the effect of present law enforcement

on illegal deforestation from the static 2SLS specification are biased if there are dynamic

effects of law enforcement if the probability of a municipality experiencing ”intense” cloud

coverage depends on its history of past cloud coverage.

2.2 Multivariate 2SLS Decomposition

An intuitive alternative to the static approach would be a multivariate 2SLS specification,

in which the path of treatments is instrumented by the path of assignments, that is, the IV

estimate of

Yi,2 = β0 + β1Di,1 + β2Di,2 + ui,2

would seemingly be able to deliver dynamic and present causal effects. In order to analyze

the multivariate 2SLS estimator, define the following sample moment:

Ω̂ =
1

N

N∑
i=1



Yi,2

Di,1

Di,2

Zi,1

Zi,2





Yi,2

Di,1

Di,2

Zi,1

Zi,2



′

The partitioned version of the matrix above can be expressed as

Ω̂ =



ΩY Y ΩY D
′
1

ΩY D
′
2

ΩY Z
′
1

ΩY Z
′
2

ΩD1Y ΩD1D
′
1

ΩD1D
′
2

ΩD1Z
′
1

ΩD1Z
′
2

ΩD2Y ΩD2D
′
1

ΩD2D
′
2

ΩD2Z
′
1

ΩD2Z
′
2

ΩZ1Y ΩZ1D
′
1

ΩZ1D
′
2

ΩZ1Z
′
1

ΩZ1Z
′
2

ΩZ2Y ΩZ2D
′
1

ΩZ2D
′
2

ΩZ2Z
′
1

ΩZ2Z
′
2


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The well known closed form solution for the multivariate 2SLS is

β̂2SLS
1

β̂2SLS
2

 =

ΩZ1D
′
1

ΩZ1D
′
2

ΩZ2D
′
1

ΩZ2D
′
2


−1ΩZ1Y

ΩZ2Y


Define the expected value of the multivariate 2SLS as β̃1 and β̃2, respectively. Proposition

2 discusses their interpretation:

Proposition 2 Suppose that the dynamic treatment potential outcomes model hold, and that

for each period that assumptions from Imbens and Angrist (1994) for the first-stage hold.

Then, β̃1 = E
[
β̂2SLS
1

]
and β̃2 = E

[
β̂2SLS
2

]
are linear combinations of the following causal

effects:

1. Yi,2(1, 1)− Yi,2(0, 0)

2. Yi,2(0, 1)− Yi,2(0, 0)

3. Yi,2(1, 0)− Yi,2(0, 0)

Involving five different groups of compliers in different periods: path-compliers (C1:2),

compliers for period 1 but not for period 2 ((C1, AT2), (C1, NT2)), and compliers for period

2 but not period 1 ((AT1, C2), (NT1, C2)).

Proposition 2 shows that without further restrictions, IV estimation of a multivariate

dynamic specification does not identify any dynamic causal effect. The decomposition is

shown in Section 2 of Appendix A.

This result is similar to the no-identification result of multivariate 2SLS in IV settings

with multiple treatments and multiple instruments (Kirkeboen et al., 2016; Mountjoy, 2022).

In such settings, the estimates from multivariate 2SLS only identify well-defined causal

parameters if treatment effects are homogeneous across individuals.

In the dynamic setting, the coefficients are linear combinations of potential outcomes that

are compliers in one the periods, but might be noncompliers in the other. Hence, treatment
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effects must be homogeneous across individuals and time periods. Therefore, multivariate

2SLS has the undesirable consequence of mixing comparisons and is only valid in the absence

of individual and time-varying heterogeneity in causal effects.

2.3 Separate Identification Approach

To overcome the limitations of the standard static Wald estimand and the multivariate

2SLS, I develop an alternative dynamic IV approach that separately identifies causal effects

of different treatment paths for individuals that are compliers for the path of interest.

Instead of attempting to use the path of instruments to recover multiple causal effects

such as in the multivariate specification, which has the undesirable consequence of mixing

comparisons across different treatment paths and groups of compliers, I propose a separate

identification approach that isolates mean potential outcomes for path compliers. Taking

the difference between two of these separate components generates a dynamic causal effect

for path-compliers.

I illustrate the procedure by showing how the proposed causal estimand identifies the

mean causal effect of full exposure for path-compliers, that is, 1
N

∑
i∈C1:2

(Yi,2(1, 1)−Yi,2(0, 0))
1

|C1:2| .

A causal estimand is defined by Abadie et al. (2020) as an estimand written in terms of po-

tential outcomes and potential treatments. Even though it cannot be inferred from realized

outcomes and treatments, it is useful to build the descriptive estimand that is built using

realized outcomes and treatments, and subsequently, the estimator.

In the case of T = 2, there are four potential outcomes and four potential treatments

that can be arranged in order to identify the mean potential outcomes. Below, I show that

a ”difference-in-differences” Wald-like causal estimand exploiting the variations in the path

of assignment recovers the mean potential outcomes for path-compliers.

I begin with the identification of the potential outcome associated to full exposure,

Yi,2(1, 1). Consider the ”difference-in-differences” causal estimand for the first stage:
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1

N

N∑
i=1

Di,1(1)Di,2(1)−Di,1(1)Di,2(0)− (Di,1(0)Di,2(1)−Di,1(0)Di,2(0)) (1)

First, note that under Assumptions 1-4,

1

N

N∑
i=1

Di,1(z1)Di,2(z2) =
1

N

N∑
i=1

1 {Di,1(z1) = 1, Di,2(z2) = 1}

Table 1 shows how the fully treated path appears for different groups of compliers under

different assignment paths. Always-takers for both periods (AT1, AT2) will take the fully

treated sequence under the four possible assignments, compliers for the two periods only take

the fully treated path under assignment to treatment for the full path. The third column

shows what is identified under the first-difference, referred to as ∆1, of the fully treated

path. That is, the quantity that is identified by exploiting the variation in assignment in

period 2, keeping assignment in period 1 fixed. The fourth column shows the ”difference-in-

differences”, that is, the difference in ∆1 across different assignments in period 1, referred to

as ∆2.

Table 1: Separate Identification Approach - Modified First-stage (Di,1:2 = (1, 1))

Potential Path Groups ∆1 ∆2

1 {Di,1(1) = 1, Di,2(1) = 1} (AT1, AT2), (C1, AT2), (AT1, C2), (C1, C2)
1 {Di,1(1) = 1, Di,2(0) = 1} (AT1, AT2), (C1, AT2) (AT1, C2), (C1, C2)

(C1, C2)
1 {Di,1(0) = 1, Di,2(1) = 1} (AT1, AT2), (AT1, C2)
1 {Di,1(0) = 1, Di,2(0) = 1} (AT1, AT2) (AT1, C2)

Therefore, it follows that the causal estimand for the modified first-stage expressed in

equation (1) identifies
∑N

i=1 1 {Gi,1:2 = C1, C2} = |C1:2|, which is the size of the group of

individuals individuals that are compliers in both periods.

Now, let’s look at the modified reduced form causal estimand associated to the fully

treated path. Similar to the first stage, we have under Assumptions 1-4 that
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1

N

N∑
i=1

Di,1(z1)Di,2(z2)Yi,2(1, 1) =
1

N

N∑
i=1

1 {Di,1(z1) = 1, Di,2(z2) = 1}Yi,2(1, 1)

=
1

N

N∑
i=1

1 {Di,1(z1) = 1, Di,2(z2) = 1}Yi,2(1, 1)

Therefore, using the same reasoning as in the first stage one finds that the ”difference-

in-differences” causal estimand for the reduced form identifies

1

N

N∑
i=1

1 {Gi,1:2 = (C1, C2)}Yi,2(1, 1) =
1

N

∑
i∈C1:2

Yi,2(1, 1)

and the ratio of these causal estimands identifies

1

N

∑
i∈C1:2

Yi,2(1, 1)
1

|C1:2|

which is a design-based expression for the local average response function associated to

full exposure for compliers in periods 1 and 2.

Now, consider the potential outcome associated to full control. Table 2 shows how the

fully untreated path appears for different groups of compliers under different assignment

paths. Never-takers for both periods (NT1, NT2) will take the fully untreated sequence under

the four possible assignments, compliers for the two periods only take the fully untreated

path under assignment to control for the full path.

Table 2: Separate Identification Approach - Modified First-stage (Di,1:2 = (0, 0))

Potential Path Groups ∆1 ∆2

1 {Di,1(1) = 0, Di,2(1) = 0} (NT1, NT2)
1 {Di,1(1) = 0, Di,2(0) = 0} (NT1, NT2), (NT1, C2) (NT1, C2)

−(C1, C2)
1 {Di,1(0) = 0, Di,2(1) = 0} (NT1, NT2), (C1, NT2)
1 {Di,1(0) = 0, Di,2(0) = 0} (NT1, NT2), (C1, NT2), (NT1, C2), (C1, C2) (NT1, C2), (C1, C2)

It is easy to see that the first stage estimand identifies − 1
|C1:2| , and the reduced form
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identifies −
∑

i∈C1:2
Yi,2(0, 0). And thus, the separate identification approach allows us to

identify
∑

i∈C1:2
Yi,2(0, 0)

1
|C1:2| .

Linear Toy Model (Continued). In the linear toy model introduced above, the dy-

namic causal effects associated to full exposure is β1 + β2. The first stage associated to the

fully exposed potential outcome identifies

1

N

N∑
i=1

Di,1(1)Di,2(1)−Di,1(1)Di,2(0)− (Di,1(0)Di,2(1)−Di,1(0)Di,2(0)) = α1
1α

2
2

The reduced form identifies

1

N

N∑
i=1

Di,1(1)Di,2(1)Yi,2 −Di,1(1)Di,2(0)Yi,2

− (Di,1(0)Di,2(1)Yi,2 −Di,1(0)Di,2(0)Yi,2) = (β0 + β1 + β2)α
1
1α

2
2

And thus, the ”difference-in-differences” Wald-like estimand identifies β0 + β1 + β2.

The first stage associated to the fully unexposed potential outcome identifies

1

N

N∑
i=1

(1−Di,1(1))(1−Di,2(1))− (1−Di,1(1))(1−Di,2(0))

− ((1−Di,1(0))(1−Di,2(1))− (1−Di,1(0))(1−Di,2(0))) = −α1
1α

2
2

The reduced form identifies

1

N

N∑
i=1

(1−Di,1(1))(1−Di,2(1))Yi,2 − (1−Di,1(1))(1−Di,2(0))Yi,2

− ((1−Di,1(0))(1−Di,2(1))Yi,2 − (1−Di,1(0))(1−Di,2(0))Yi,2) = −β0α
1
1α

2
2
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And thus β0 is identified. Taking the difference between these two quantities identifies

β1 + β2.

Why does the ”difference-in-differences” approach work? The first difference identifies

compliers in period 2, but this individuals are from different subgroups in period 1. For

instance, in the case of full exposure, the first difference associated to the Yi,2(1, 1) potential

identifies compliers in period 2, but this compliers can be either compliers or always-takers

in period 1.

When it comes to the Yi,2(0, 0) outcome, however, the first difference identifies compliers

in period 2 that can be either compliers in period 1 or never-takers in period 1. Hence,

the difference between the first difference quantities yields forbidden comparisons between

heterogeneous groups in period 1.

The second-difference cancels out noncompliers in period 1 for each potential outcome,

identifying the different potential outcomes for individuals that are compliers for both peri-

ods, and therefore, comparable.

3 Framework

3.1 Assumptions

Consider a balanced panel in which N units are observed over T periods of time. For each

unit i ∈ [N ] and time period t ∈ [T ], we observe a binary instrumental variable Zi,t ∈ {0, 1},

a binary treatment status Di,t ∈ {0, 1} and a real-valued scalar outcome Yi,t.

Without further restrictions, potential outcomes of unit i in period t are a function of the

full panel of treatments and assignments, Yi,t(d1:N,1:T , z1:N,1:T ), and potential treatments are

a function of the full panel of assignments, Di,t(z1:N,1:T ). The next assumptions are invoked

for identification.

Assumption 1 (No Spillovers and No-Anticipation) For all i ∈ [N ], t ∈ [N ],

15



Yi,t =
∑

(d1:t,z1:t)∈{0,1}t×t

1 {Di,1:t = d1:t, Zi,1:t = z1:t}Yi,t(d1:t, zi:t)

Di,t =
∑

z1:t∈{0,1}t
1 {Zi,1:t = z1:t}Di,t(z1:t)

Assumption 1 imposes that the potential outcome of unit i in period t depends only

on the treatment and assignment paths of unit i until period t, ruling out the possibility

of spillover of both treatments and assignments across units, as well as future treatments

affecting past potential outcomes. It also imposes that the potential treatment from unit i

in period t depends only on the assignment paths of unit i until period t. To put it shortly,

Assumption 1 imposes both SUTVA and no-anticipation.

In the AGR setting, Assumption 1 implies that deforestation in a municipality in a

certain year depends only on the path of law enforcement for the that municipality until

that year, thus ruling out spillovers in deterrence effects and the possibility that expectations

of future law enforcement affect current deforestation decisions. It also implies that future

cloud coverage does not affect the present capacity of detection from the satellite monitoring

deforestation.

One of the fundamental assumptions of IV settings is the exclusion restriction. Its dy-

namic version is stated below, alongside an additional exclusion restriction for the first stage.

Assumption 2 (Exclusion Restrictions): Yi,t(di,1:t, zi,1:t) = Yi,t(di,1:t) and Di,t(z1:t) =

Di,t(zt), for all i ∈ [N ] and t ∈ [T ].

The first part of Assumption 2 is the standard exclusion restriction for dynamic IV

settings. It states that the path of assignments does not affect potential outcomes directly.

Assignments only affect potential outcomes to the extent that they affect treatment choices.

Mapping it to the application, it implies that the history of cloud coverage over a municipality

affects illegal deforestation in that municipality only through its effect on law enforcement

capabilities.
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The second part of Assumption 2 imposes that potential treatments in period t depend

only on the instruments in period t. Although it might seem strong in a dynamic setting,

it is justifiable in many experimental and observational settings. In AGR, the capacity of

the satellite to detect illegal deforestation at a given period depends on the cloud coverage

below the satellite at that period. Previous coverage does not affect the current capacity to

detect deforestation.

When considering the validity of Assumption 2 in other contexts, one can think, for

example, of a multi-period experiment with imperfect compliance in which past assignments

do not provide any ”encouragement” to present treatment due to institutional aspects of

the experiment. A canonical case would be the Fast Track Prevention Program (Conduct

Problems Prevention Research Group, 1992), a randomized trial to prevent conduct disorders

and drug use in children at risk studied by Murphy et al. (2001). Interventions take place at

the end of each semester starting from first grade and noncompliance occurs for almost 53%

of the population. The interventions take place at the school and the student’s household,

and previous assignments to the intervention do not provide access to the intervention in

subsequent periods. Now, consider an example for observational settings. In a criminal

justice setting with repeated offenders, sentences in a period depend only on the leniency of

the judge assigned to trial in that period, and not on previous judges characteristics4.

The fundamental behavioral assumption in IV settings is the monotonicity assumption,

which is provided below.

Assumption 3 (Monotonicity): For all i ∈ [N ] and t ∈ [T ], Di,t(1) ≥ Di,t(0).

Monotonicity states that at each period units assigned to treatment (Zi,t = 1) are almost-

sure to take treatment as units assigned to control (Zi,t = 0). Under Assumption 3, units can

be divide into three groups at each period of time defined by how units treatment choice in

period t relates to treatment assignment in period t: Always-takers (ATt), Never-takes (NTt)

and Compliers (Ct). Note that an individual can be part of a group in a given period, it does

4One can think that the lenience of past judges do not affect current sentences, but past sentences might.
This is not a violation of Assumption 2, and cases such as this are discussed in Section 6.2
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not need to be in the same group through the whole path of assignments. In the application,

Assumption 3 implies that municipalities with intense cloud coverage at a certain period are

are less likely to have intense law enforcement in that period than the ones with little cloud

coverage 5.

Throughout the paper, I follow a design-based approach for inference. Potential treat-

ments and potential outcomes from a finite-population are taken as given, and uncertainty

in the setting arises from randomness in the assignment of the instrument.

Let F1:N,1:T denote the collection of potential outcomes and potential treatments for all

units and all periods of time. Assumption 4 states that the assignment of the instrument at

each period are individualistic and depend only on observed past assignments. Let R−i,t =

(R1,t, ..., Ri−1,t, Ri+1,t, ..., RN,t)

Assumption 4 (Sequential Randomization): For all i ∈ [N ], t ∈ [T ],

P (Zi,t = zt|Z−i,1:t,F1:N,1:T ) = P (Zi,t = zt|Zi,1:t−1 = z1:t−1)

Assumption 4 is the finite-population framework analog of the mean-independence of the

instrument assumption that is usually invoked using super-population arguments in dynamic

IV settings(Han, 2021, 2023). It states that treatment assignment in period t is ”as-good-

as-random” conditional on the path of assignments from period 1 to period t − 16. In our

applied setting, it implies that cloud coverage in a certain period is independent from the

panel of potential law enforcement and potential deforestation conditional on the path of

cloud coverage until that period.

3.2 Target Parameters

We are interested in the identification of dynamic causal effects, which are parameters that

compare potential outcomes for unit i at period t along different treatment paths. Define

5For the application, it is more adequate to state Assumption 3 with the inverted inequality, Di,t(1) ≤
Di,t(0), which does not affect the validity of the results exposed in this paper.

6Modified versions of Assumption 4 are discussed in Section 6
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the dynamic causal effect of a treatment path versus an alternative treatment path in period

t as τi,t(di,1:t, d̃i,1:t) = Yi,t(di,1:t)− Yi,t(d̃i,1:t).

The number of potential outcomes grows exponentially with the periods of time. For

the sake of tractability, it is common to focus on lag-p dynamic causal effect as defined in

Bojinov et al. (2021). For 0 ≤ p ≤ t, and d, d̃ ∈ {0, 1}p+1, the lag-p dynamic causal effect is

defined as

τi,t(d, d̃; p) := Yi,t(d
obs
i,1:t−p−1,d)− Yi,t(d

obs
i,1:t−p−1, d̃)

Which can be interpreted as the causal effect of taking a treatment path from period

t− p to p versus an alternative path, keeping the path until period t− p− 1 fixed.

The lag-p dynamic causal effect can be used to construct generalized impulse response

functions, which are weighted averages of the lag-p dynamic causal effects, defined as

τ †i,t(d, d̃; p) =
∑

v∈{0,1}p
av

{
Yi,t(d

obs
1:t−p−1, (d,v))− Yi,t(d

obs
1:t−p−1, (d̃,v))

}
where av are non-stochastic weights chosen by the researcher. By varying the values of

the choice for the lag p, the generalized impulse response function can be used to construct

event-study plots. In that sense, the generalized impulse response function parameter holds

a similar interpretation to the event study parameters estimated in Difference-in-Differences

settings (Goodman-Bacon, 2021; Callaway and Sant‘Anna, 2021) as the effect of the length

of exposure to treatment.

There are different ways to aggregate such parameters in order to highlight different

aspects of heterogeneity in dynamic causal effects. As in cross-sectional IV settings, the

average causal effects are only identifiable for the group of compliers. I define two target

parameters for the path of compliers. The time-t lag-p local dynamic causal effect and the

total lag-p local dynamic causal effect are defined respectively as
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τCt−p:t,t(d, d̃; p) =
∑

i∈Ct−p:t

τi,t(d, d̃; p)
1

|Ct−p:t|

τCt−p:t(d, d̃; p) =
1

T − p

T∑
t=p+1

∑
i∈Ct−p:t

τi,t(d, d̃; p)
1

|Ct−p:t|

These estimands extend to the generalized impulse response function by analogously

defining τ †Ct−p:t,t
and τ †Ct−p:t

.

Next, I show how the dynamic IV can be used to identify dynamic causal effects for

units that are contemporary compliers in the periods of interest. The identification of the

generalized impulse response function follows directly.

4 Identification with General T

4.1 The Role of the Time Structure in Identification

Dynamic IV settings and Multiple Treatment IV settings share some common features.

Namely, there are multiple potential outcomes and hence multiple treatment effects, from

which it follows that standard IV methods (e.g Wald estimands, Multivariate 2SLS) fail to

recover relevant causal effects in the presence of heterogeneity. However, the identification

approach is fundamentally different in these settings. One fundamental difference, is that

the multiple differences Wald-like estimand identifies dynamic causal effects without any

additional assumptions, which is not the case in multiple treatments settings, which rely in

additional restrictions, such as assuming irrelevant alternatives (Kirkeboen et al., 2016), or

comparable compliers (Mountjoy, 2022).

What makes identification in the dynamic setting fundamentally different from the mul-

tiple treatment setting? The answer lies in the sequential nature of choice and compliance.

In the multiple treatments settings, there are mutually exclusive and exhaustive treat-
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ments, and shifts in the instruments for a treatment affect compliers coming from different

treatments. In Mountjoy (2022), for example, shifts in the distance of a community college

make compliers that would not enroll in any superior education and compliers that would

enroll in a 4-year college move to the community college option. A shift in an instrument

affects multiple margins.

In the dynamic setting, treatment paths are mutually exclusive and exhaustive, but

period-specific treatment choices are not, and the instrument is assigned at the period-

specific treatment level, that is, there is a path of instruments, not instruments for the path.

Thus, the time structure in the setting allows the identification of compliers for a sequence

of periods under the multiple differences estimands.

Under no-anticipation, shifts in Zi,t do not affect treatment choices in periods 1 up to

t-1. Keeping the path of instruments z1:t−1 fixed, variations in Zi,t identify the compliers

in period t. Compliers in period t mimic their assignment in period t. Hence, variation in

instruments from previous periods do not affect their decision in period t. Thus, keeping

z1:t−2 fixed, the joint variation of Zi,t−1 and Zi,t in the difference-in-differeces format identifies

that share of individuals that comply in both t-1 and t. Taking a triple difference would

identify compliers from t-2 to t, so on and so forth.

4.2 A General Expression for the Multiple Differences Estimand

Here, I focus on the identification of the local lag-p response functions, which are mean

potential outcomes for compliers from period t−p to period t, along the observed treatment

path until period t− p− 1. I define them as

mt,(d) =
1

|Ct−p:t|
∑

i∈Ct−p:t

Yi,t(d
obs
1:t−p−1,d)

where d is the treatment path of interest from t− p to t.

Before introducing the main identification result, I define here an expression for the
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general multiple difference in means across assignment paths, which I will refer to hereafter

as the p+ 1 difference in means (∆p+1).

Definition (∆p+1): Define the p + 1-th difference across assignment paths from period

t-p onwards of conditional means of a random variable R as

∆p+1 (Ri,t(zt−p:t)) =
∑

zt−p:t∈{0,1}p+1

∑
i∈Z1:t−p−1

(−1)
∏

k∈{t−p:t}(zk+1)Ri,t(zk)

It is easy to see that when p = 0, the expression takes form as a difference in means for

units with Zi,t = 1 versus units with Zi,t = 0, holding the assignment from period 1 to period

t − 1 fixed. For the case p = 1, the expression takes the form of a difference-in-differences

across assignment paths from period t − 1 to period t, keeping the path until period t − 2

fixed. For p = 2, it takes the form a triple difference. Thus, the p+ 1 difference can be used

to exploit all possible variations in assignment paths until period t.

Before defining the causal estimand, one more assumption is required for the proposed

object to be well-defined:

Assumption 5 (Relevance): For all i ∈ [N ], t ∈ [T ] and z ∈ {0, 1}p+1,

N∑
i=1

1 {Di,t−p:t(z) = d} ≠ 0

Assumption 5 is a dynamic version of the standard relevance assumption from cross-

sectional IV settings. In the case of p = 0, it amounts 1
N

∑N
i=1Di,t(1)−Di,t(0) ̸= 0, which is

the standard relevance assumption (Kang et al., 2018).

Theorem 1 shows that a Wald-like causal estimand built using the p+1 difference of the

modified outcome in period t and a first stage for a treatment path from period t − p to p

equals the local lag-p response function.

Theorem 1 Suppose Assumptions 1-5 hold. Then for any p ≤ t,
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∆p+1
(∑N

i=1 1 {Di,t−p:t(z) = d}Yi,t(d
obs
i,1:t−p−1,d)

)
∆p+1

(∑N
i=1 1 {Di,t−p:t(z) = d}

) = mt,(d)

The theorem shows that the p+ 1 difference estimand identifies the local lag-p response

function conditional on the assignment path until period t-p-1. Integrating over the assign-

ment paths identifies the local lag-p response function. Two local lag-p response functions

generate a local lag-p dynamic causal effect. See Section 3 of Appendix A for a proof by

induction.

Building on the identification result for the causal estimand, I propose a descriptive es-

timand which takes the form of a Horvitz-Thompson estimand, which is built using a propen-

sity score for the path of the instrument, given by πi,t−p(z) = P (Zi,t−p:t = z|Zi,1:t−p−1 = z1:t−p−1).

Next, I assume that the assignment mechanism is probabilistic.

Assumption 6 (Probabilistic Assignment): For all i ∈ [N ], t ∈ [T ], there exists

CL < CU ∈ (0, 1) such that CL < πi,t−p(z) < CU for all z ∈ {0, 1}p+1.

Assumption 6 is also known as the common support assumption, and it states that

individuals have a positive probability of following all possible assignment paths.

Theorem 2 shows that a Wald-like Horvitz-Thompson estimand identifies the local lag-p

response function.

Theorem 2 Define

m̃t,(d) =
m̃RF

t,(d)

m̃FS
t,(d)

=
∆p+1

(∑N
i=1

Yi,t1{Di,t−p:t=d}
πi,t−p:t(z)

)
∆p+1

(∑N
i=1

1{Di,t−p:t=d}
πi,t−p:t(z)

)
Under Assumptions 1-6,

E
[
m̃RF

t,(d)

]
E
[
m̃FS

t,(d)

] = mt,(d)

Theorem 2 provides the main identification result, see Section 4 of Appendix A. The

quantity m̃t,(d) is a function of the observable data that can be used to recover the local
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lag-p response function. Time-t local lag-p dynamic causal effects are identified by taking

the difference between two local lag-p response functions identified separately.

4.3 Identification under Sequential Monotonicity

The results presented above rely on a monotonicity assumption combined with an exclusion

restriction for the first stage. At each period individuals are assigned to treatment control and

choose their treatment status based on the contemporary assignment, that is, the observed

treatment in period t is a function of two potential treatments: Di,t = Zi,tDi,t(1) + (1 −

Zi,t)Di,t(0). Although this sort of monotonicity assumption appears in the dynamic IV

literature (Pham and Chen, 2017), it is also common to define treatment choice in period t

as a function of the path of instruments until period t and assume sequential monotonicity:

Assumption 4’ (Sequential Monotonicity): For all i ∈ [N ], t ∈ [T ], Di,t(z1:t−1, 1) ≥

Di,t(z1:t−1, 0).

Identification under sequential monotonicity is challenging as individuals that are com-

pliers to the contemporary instrument coming from a path z1:t−1 might not be compliers

coming from an alternative path z
′
1:t−1 (Sotra and Syrgkanis, 2024). Hence, dynamic causal

effects are not identified without further assumptions. A simple solution would be to as-

sume that although the path of instruments might affect treatment choice, it does not affect

compliance towards the contemporary instrument.

Assumption 7 (Path-independent compliance): For all i ∈ [N ], t ∈ [T ],Di,t(z1:t−1, 1) >

Di,t(z1:t−1, 0) implies Di,t(z
′
1:t−1, 1) > Di,t(z

′
1:t−1, 0).

Although hard to motivate from a design-based perspective, Assumption 5 is readily

satisfied in specifications of the first stage in period t where the path of instruments Zi,1:t is

separable, or at least that the instrument Zi,t is separable from Zi,1:t−1, i.e, Di,t = f(Zi,1:t) =

f1(Zi,t) + f2(Zi,1:t−1), which are common specifications in the applied literature7.

In a way, Assumptions 4’ and 5 combined are equivalent to Assumption 4, in the sense

7Linear specifications for the first stage are pervasive in the literature and readily satisfy the separability
assumption
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that they allow compliance to be described solely in terms of the behavior with respect to

the contemporary assignment. Assuming that there are no path-specific compliers, however,

can be quite strong. The reasonableness of Assumption 4’ can be assessed by calculating the

compliance rates towards the contemporary instrument coming form different assignment

paths, as in Marcus et al. (2014).

5 Estimation and Inference

5.1 Correcting the Wald Estimator

Proposition 1 shows that the static ”difference-in-means” Wald estimator fails to recover

relevant causal effects in the presence of dynamics. Thus, any estimator for such specification

will be biased. However, the Wald estimator can be easily modified to account for the path

of instruments and hence recover local lag-0 dynamic causal effects.

I propose a simple two-stage Horvitz-Thompson estimator, which is built using a propen-

sity score for the path of the instrument8

The nonparametric estimator for τi,t(1, 0; 0) is

τ̂i,t(1, 0; 0) =
τ̂RF
i,t (1, 0; 0)

τ̂FS
i,t (1, 0; 0)

where

τ̂RF
i,t (1, 0; 0) =

Zi,tYi,t

πi,t(1)
− (1− Zi,t)Yi,t

πi,t(0)

τ̂FS
i,t (1, 0; 0) =

Zi,tDi,t

πi,t(1)
− (1− Zi,t)Di,t

πi,t(0)

Both the time-t lag-0 dynamic causal effect and the total lag-0 dynamic causal effect can

8For now, the propensity score is known, in Section 5.3 I discuss inference when the propensity score for
the path needs to be estimated.
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be estimated by plugging in τ̂i,t(1, 0)(0):

τ̂Ct,t(1, 0; 0) =
1
N

∑N
i=1 τ̂

RF
i,t (1, 0; 0)

1
N

∑N
i=1 τ̂

FS
i,t (1, 0; 0)

τ̂Ct(1, 0; 0) =
1

NT

∑T
t=1

∑N
i=1 τ̂

RF
i,t (1, 0; 0)

1
NT

∑T
t=1

∑N
i=1 τ̂

FS
i,t (1, 0; 0)

Theorem 5 shows that the estimators are unbiased over the randomization distribution,

and asymptotically normal as the population size grows larger.

Theorem 3 Suppose that potential outcomes are bounded. Under Assumptions 1-6,

√
N
{
τ̂Ct,t(1, 0; 0)− τCt,t(1, 0; 0)

}
σt(1, 0; 0)

d→ N (0, 1), as N → ∞

and

√
NT

{
τ̂Ct(1, 0; 0)− τCt(1, 0; 0)

}
σ(1, 0; 0)

d→ N (0, 1), as NT → ∞

where σt(1, 0; 0) and σ(1, 0; 0) are defined in Section 4 of Appendix A.

The variances of τ̂Ct,t(1, 0; 0) and τCt(1, 0; 0) are the appropriate averages of the variance

of τ̂Ct,t(1, 0; 0), which are generally not estimable as they depends on individual potential

outcomes and potential treatments under both treatment and counterfactual. However,

Lemma 8 in Appendix B shows that the variance of the reduced form and the first stage are

bounded from above by a term that is estimable.

For hypothesis testing, I propose the estimation of a conservative Bloom (1984) confidence

interval, built with estimates of the upper bound of the variance of the reduced form, and

the square of the estimate of the first stage.

The upper bound for the variance of the estimator of the reduced form τ̂RF
i,t (1, 0; 0) is
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(
γRF
i,t (1, 0; 0)

)2
=

Yi,t(d
obs
1:t−1, Di,t(1))

2

πi,t(1)
+

Yi,t(d
obs
1:t−1, Di,t(0))

2

πi,t(0)

The resulting 1 − α confidence intervals for the time-t lag-0 dynamic causal effect and

the total lag-0 dynamic causal effect are, respectively,

τ̂Ct,t(1, 0; 0)± z1−α/2

√√√√√√


1
N

∑N
i=1

(
γRF
i,t (1, 0; 0)

)2(
1
N

∑N
i=1 τ̂

FS(1, 0; 0)
)2


τ̂Ct(1, 0; 0)± z1−α/2

√√√√√√


1
NT

∑T
t=1

∑N
i=1

(
γRF
i,t (1, 0; 0)

)2(
1

NT

∑T
t=1

∑N
i=1 τ̂

FS(1, 0; 0)
)2


Bloom (1984) intervals exhibit good performance in terms of coverage rates for compliance

rates greater than 10%. See Kang et al. (2018) for a thorough discussion about inference

using IV in cross-sectional settings.

5.2 Nonparametric Estimator for Dynamic Causal Effects

For the general lag-p dynamic causal effect, I propose the separate estimation of lag-p dy-

namic response functions through a multiple-differences Horvitz-Thompson type of estima-

tor. That is, τ̂i,t(d, d̃; p) = m̂i,t(d)− m̂i,t(d̃), where m̂i,t(d) =
m̂RF

i,t (d)

m̂FS
i,t (d)

with

m̂RF
i,t (d) = ∆p+1

(
1 {Zi,t−p:t = z}1 {Di,t−p:t = d}Yi,t

πi,t−p:t(z)

)
m̂FS

i,t (d) = ∆p+1

(
1 {Zi,t−p:t = z}1 {Di,t−p:t = d}

πi,t−p:t(z)

)

Plugging the unit i, period t estimates for the lag-p local response function as shown in

Section 5.1 leads to estimates of the time-t lag-p local response function and the total lag-p
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response function. The local lag-p response functions are estimated, respectively, by

m̂t,(d) =
1
N

∑N
i=1 m̂

RF
i,t (d)

1
N

∑N
i=1 m̂

FS
i,t (d)

m̂(d) =

1
N(T−p)

∑T
t=p+1

∑N
i=1 m̂

RF
i,t (d)

1
N(T−p)

∑T
t=p+1

∑N
i=1 m̂

FS
i,t (d)

The appropriate lag-p dynamic causal effects are generated by the difference of the esti-

mates for the response functions. Theorem 5 shows that the estimators are unbiased over the

randomization distribution, and asymptotically normal as the population size grows larger.

Theorem 4 Suppose that potential outcomes are bounded. Under Assumptions 1-6,

√
N
{
τ̂Ct−p:t,t(d, d̃; p)− τCt−p:,t(d, d̃; p)

}
σt(d, d̃; p)

d→ N (0, 1), as N → ∞

and

√
N(T − P )

{
τ̂Ct−p:t(d, d̃; p)− τCt−p:t(d, d̃; p)

}
σ(d, d̃; p)

d→ N (0, 1), as NT → ∞

where σt(d, d̃; p) and σ(d, d̃; p) are defined in Section 5 of Appendix A.

For hypothesis testing, conservative Bloom (1984) confidence intervals are constructed

using the upper bound for the variance of the reduced forms for the lag-p response functions

and estimates of the first stage for the lag-p response functions.

The upper bound for the variance of the estimator of the reduced form is

(
γRF
i,t (d)

)2
+
(
γRF
i,t (d̃)

)2
=

∑
z∈{0,1}p+1

(
Yi,t(d

obs
1:t−p−1,d)1 {Di,t−p:t(z) = d}

)2
πi,t−p:t(z)

+
∑

z∈{0,1}p+1

(
Yi,t(d

obs
1:t−p−1, d̃)1

{
Di,t−p:t(z) = d̃

})2
πi,t−p:t(z)
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The resulting 1 − α confidence intervals for the time-t lag-p dynamic causal effect and

the total lag-p dynamic causal effect are, respectively,

τ̂Ct−p:t,t(d, d̃; p)± z1−α/2

√√√√√√


1
N

∑N
i=1

(
γRF
i,t (d)

)2
+
(
γRF
i,t (d̃)

)2
1
N

∑N
i=1

(
m̂FS

i,t (d)
)2

+
(
m̂FS

i,t (d̃)
)2


τ̂Ct−p:t(d, d̃; p)± z1−α/2

√√√√√√


1
N(T−p)

∑T
t=p+1

∑N
i=1

(
γRF
i,t (d)

)2
+
(
γRF
i,t (d̃)

)2
1

N(T−p)

∑T
t=p+1

∑N
i=1

(
m̂FS

i,t (d)
)2

+
(
m̂FS

i,t (d̃)
)2


5.3 Inference When the Propensity Score is Unknown

So far, in the construction of the estimators the propensity score for the path of instruments is

assumed to be known. Although such an assumption is reasonable in experimental settings,

it is inadequate for most observational studies in which the propensity score needs to be

estimated. In such cases, the feasible nonparametric estimator is built using estimates for

the propensity score. That is,

m̂RF
i,t (d) = ∆p+1

(
1 {Zi,t−p:t = z}1 {Di,t−p:t = d}Yi,t

π̂i,t−p:t(z)

)
m̂FS

i,t (d) = ∆p+1

(
1 {Zi,t−p:t = z}1 {Di,t−p:t = d}

π̂i,t−p:t(z)

)

Next, I assume there is an unbiased estimator for the propensity score that converges at

the
√
N -rate.

Assumption 7 (Estimator for the Propensity Score): For all i ∈ [N ], t ∈ [T ],

z ∈ {0, 1}p+1 there is an estimator π̂i,t−p(z) such that

E [π̂i,t−p(z)] = πi,t−p(z),
1

N

N∑
i=1

π̂i,t−p(z)−
1

N

N∑
i=1

πi,t−p(z) = Op(N
−1/2)
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Although the estimator relies on an estimate for the propensity score, as long as it is

unbiased and converges at the
√
N rate, it will have the asymptotic distribution as the one

with the known propensity score as the population size grows to infinity. See Appendix C

for the result.

6 Extensions

In this section, I briefly discuss some extensions and how to modify the estimand and esti-

mators in order to correctly account for the modifications in the identifying assumptions.

6.1 Covariates

Most applications of IV methods with panel rely on conditional versions of the identi-

fying assumptions, whether they are baseline or time-varying. For example, it is com-

mon in multi-period experiments to assume that assignment to treatment is randomized

within strata of baseline covariates. In that case, the sequential randomization assump-

tion is modified to take the following form. Let X denote a vector of baseline covari-

ates (e.g. gender, race). Then, sequential randomization holds conditional on covariates

if P (Zi,t = zt|Z1:N,1:T , X1:N ,F1:N,1:T ) = P (Zi,t = zt|Zi,1:t−1 = z1:t−1, Xi = x), for all i ∈ [N ],

t ∈ [T ].

When covariates are time-varying, they can be incorporated into the sequential random-

ization assumption in two ways. The first is to assume that sequential randomization holds

conditional on contemporary covariates. In such cases, the randomization distribution can be

expressed as P (Zi,t = zt|Z1:N,1:T , X1:N,1:T ,F1:N,1:T ) = P (Zi,t = zt|Zi,1:t−1 = z1:t−1, Xi,t = xt),

for all i ∈ [N ], t ∈ [T ].

If sequential randomization holds conditional on the path of covariates until period t,

then the distribution can be expressed as
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P (Zi,t = zt|Z1:N,1:T , X1:N,1:T ,F1:N,1:T ) = P (Zi,t = zt|Zi,1:t−1 = z1:t−1, Xi,1:t = x1:t)

for all i ∈ [N ], t ∈ [T ]. In all of three cases, the estimand can be easily modified

by adequately incorporating the covariates in the adapted propensity score πt−p(z). Such

procedure can be interpreted as a nonparametric analogue of the so-called ’g-formula’ (see

Hernan and Robins (2023) for a review).

6.2 Intermediary Realizations

Another common specification in dynamic treatment settings is to assume that sequential

randomization holds conditional on the path of all realizations, that is, Zi,t is independent

from the panel of potential outcomes and treatments conditional on the path of instruments,

treatments, and outcomes until period t− 1:

P (Zi,t|Z1:N,1:T ,F1:,N,1:T ) = P (Zi,t|Zi,1:t−1 = z1:t−1, Di,1:t−1 = d1:t−1, Yi,1:t−1 = y1:t−1)

In such cases, the identification of the first stage of treatment paths becomes more chal-

lenging, as the identification of the joint distribution of treatments as proposed in Sections

3 and 4 is no longer valid if there are treatment effects from previous periods. However, the

procedure can be modified, and the path of compliers can be identified using the general

product rule.

Consider the leading case of T = 2. Note that there is no history affecting the first stage

in period 1. Hence, potential treatments are readily identified by 1
N

∑N
i=1 Di,t(z1) and can

readily be estimated using the Horvitz-Thompson estimator 1
N

∑N
i=1

Di,11{Zi,1=z1}
πi,1(z1)

.
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1

N

∑
i:Di,1(z1)=1

1 {Di,2(z2) = 1} =
1

N

∑
i:Di,1(z1)=1

Di,2(z2) =

∫
y1

1

N

∑
i:Di,1(z1)=1,Yi,1=y1

Di,2(z2)dFYi,1
(y1)

Hence, the potential treatment path Di,1(z1) = 1, Di,2(z2) = 1 is identified using a design-

based analogue of the general product rule:

1

N

N∑
i=1

1 {Di,1(z1) = 1, Di,2(z2) = 1} =
1

N

∑
i:Di,1(z1)=1

1 {Di,2(z2) = 1}
N∑
i=1

1 {Di,1(z1) = 1}

Once, these quantity is identified, identification of compliers for the path follows the same

”difference-in-differences” format as presented in Section 3.

When it comes to the reduced form, note that

1

N

∑
i:Di,1(z1)=1,Yi,1=y1

Di,2(z2)Yi,2 =
1

N

∑
i:Di,1(z1)=1,Yi,1=y1

Yi,2(1, 1)1 {Di,2(z2) = 1}

And, therefore, the reduced form of the potential outcome associated to full exposure for

individuals with assignment path (z1, z2) is identified by

1

N

∫
y1

∑
i:Di,1(z1)=1,Yi,1=y1

Di,2(z2)Yi,2dFYi,1
(y1)1 {Di,1(z1) = 1} =

1

N

∑
i:Di,1(z1)=1

Di,2(z2)Yi,21 {Di,1(z1) = 1}

And one can proceed with Wald-like modified ”difference-in-differences” to identify the

local lag-p response function.

Hence, the Horvitz-Thompson estimator can be easily modified to account for the al-

ternative sequential randomization assumption. Consider, once again, the estimation of

the local lag-p response function associated to full exposure, Yi,2(1, 1). This time, we
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work with two different propensity scores instead of the generalized propensity score. Let

πi,1(z1) = P (Zi,1 = z1) and πi,2(z2) = P (Zi,2 = z2|Yi,1 = y1, Di,1(z1) = 1). Then, the first

stage is consistently estimated by

m̂FS
t,(1,1) =

1

N

N∑
i=1

∆2

(
Di,21 {Zi,2 = z2}

πi,2(z2)

Di,11 {Zi,1 = z1}
πi,1(z1)

)
and the reduced form is estimated by

m̂RF
t,(1,1) =

1

N

N∑
i=1

∆2

(
Di,1Di,2Yi,21 {Zi,1:2 = (z1, z2)}

πi,2(z2)πi,1(z1)

)
Therefore, estimation and inference can be easily adapted to different versions of the

sequential randomization assumption.

7 Monte Carlo Simulations

In this section, I show the desirable finite-sample properties of the proposed nonparametric

estimator for the local dynamic causal effects.

For the sake of simplicity, I consider a balanced panel setting with N = 1000 and T =

2. The simulation focuses on the lag-p dynamic causal effects with p = t, that is, the

dynamic causal effects associated to the whole treatment path in the setting. I simulate a

continuous covariate that has a Gaussian distribution and a binary treatment instrument

that is sequentially randomized following a Bernoulli distribution:

P (Zi,t = zt|Zi,1:t−1 = z1:t−1, Yi,1:t−1 = y1:t−1, Xi = x) ∝
∏
i∈[N ]

p
zi,t
i,t (1− pi,t)

1−zi,t

I set pi,t = pi = 0.6. For the choice model. Outcomes in period t are specified to have

the following linear working model:
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Yi,t = δ′tYi,1:t−1 + β′
1:tDi,1:t + θXi + Ut(Di,1:t)

I set βt = 1 and β1:t−1 = 0.5.

In Table 1, I compare the performance of the proposed Horvitz-Thompson estimator

(HT) with the performance of the static 2SLS specification (2SLS), taking the local lag-0

dynamic causal effect as the target parameter.

Table 3: Simulation results for the Lag-0 dynamic causal effect

Time-t effect t=1 t=2 Total
Estimator HT 2SLS HT 2SLS HT 2SLS
Av. Bias -0.003 0.003 0.027 0.368 0.015 0.156
Med. Bias -0.002 0.003 0.034 0.392 0.019 0.163
RMSE 0.097 0.081 0.119 0.484 0.237 0.169
Cover 0.944 0.948 0.952 0.612 0.955 0.784
CIL 0.356 0.223 0.508 0.285 0.441 0.258

Note: Simulations based on 10.000 Monte Carlo experiments with sample size N = 1.000 and T = 2. CIs for the 2SLS
estimator were built using the standard estimated variance using the Delta Method.

The first two columns show the results for the first period. When t = 1, dynamic plays

no role in the model. Hence, both the nonparametric estimator and the static 2SLS show

little to none Monte Carlo bias. Moreover, the coverage is close to the desired 95%, with

the 2SLS estimator showing a tighter Confidence Interval on average. When it comes to

the second period, the Horvitz-Thompson estimator remains unbiased in the Monte Carlo

exercise, as shown by the third column. The static 2SLS estimator is severely biased, with

coverage far from the desired 95%. The last two columns stack the lag-0 estimates across

the two time periods. Thus, the results can be interpreted as a weighted average of the

time-t results, which explains why the performance of the 2SLS estimator is better than in

the second period alone. As the number of periods grows larger, however, one should expect

the 2SLS estimator to perform increasingly worse with the number of time periods.

In Table 2, I present the simulation results for different time-t local lag-1 dynamic causal

effects. The lag-1 effects can only be estimated for period 2. I present results for the

”difference-in-differences” modified Horvitz-Thompson estimator (HT) and a multivariate
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Figure 1: Simulated Randomization Distributions

Note: The figure on the left shows the simulated randomization distribution of the Horvitz-Thompson estimator for the total
local lag-0 dynamic causal effect. The figure on the right shows the simulated randomization distribution of the static 2SLS
estimator for the total local lag-0 dynamic causal effect. Simulations based on 10.000 Monte Carlo experiments with sample size
N = 1.000 and T = 2. CIs for the 2SLS estimator were built using the standard estimated variance using the Delta Method.

2SLS estimator (MV2SLS) such as the one specified in Section 3. I consider the performance

of the estimators with respect to effects of full exposure in the first two columns, exposure

in the second period in the third and fourth columns, and exposure in the first period in the

last two columns.

Unsurprisingly, the multivariate 2SLS specification yields substantially biased estimates

for the three different target parameters. Coverage is closer to the desired 95% than in the

simulations for the static 2SLS. However, it is never greater than 81.5%.

Figure 1 plots the randomization distribution for total lag-0 dynamic effect estimated

by the HT estimator (left) and the 2SLS estimator (right). Both estimators converge to a

normal distribution under the Monte Carlo exercise. However, the distribution of the 2SLS

estimator is clearly not centered around the true parameter.

The proposed nonparametric estimator exhibits great Monte Carlo performance. The

average bias, median bias and root mean-squared error for the causal effects are small, and

the coverage of the conservative confidence interval is close to the desired 95% coverage.

Confidence interval lengths are fairly stable across the considered treatment paths.

Overall, the Monte Carlo Simulations assert the desirable finite-sample performance of
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Table 4: Simulation results for the Lag-1 dynamic causal effects

Lag-1 effect ((1,1),(0,0)) ((0,1),(0,0)) ((1,0),(0,0))
Estimator HT MV2SLS HT MV2SLS HT MV2SLS
Av. Bias -0.0008 0.1968 -0.0039 0.1306 -0.0051 0.1641
Med. Bias -0.0012 0.1970 0.0002 0.1312 -0.0046 0.1646
RMSE 0.0772 0.1975 0.0762 0.1404 0.0845 0.1937
Cover 0.938 0.813 0.956 0.798 0.928 0.815
CIL 0.8721 0.3019 0.8023 0.3145 0.8674 0.3222

Note: Simulations based on 10.000 Monte Carlo experiments with sample size N = 1.000 and T = 2. CIs for the 2SLS
estimator were built using the standard estimated variance using the Delta Method.

the proposed estimators for dynamic causal effects over the randomization, while bringing

evidence of the inadequacy of the standard 2SLS methods in the presence of time-varying

heterogeneity.

8 Application: Law Enforcement and Deforestation

8.1 AGR (2023)

In this section, I revisit the work of Assunção et al. (2023) (hereafter referred to as AGR,

2023). The authors investigate the effects of a satellite law enforcement program, the DETER

program, on deforestation in the Brazilian Amazon.

In 2004, the Brazilian government launched the Action Plan for the Prevention and

Control of Deforestation in the Legal Amazon (PPCDAm). In the early 2000s, Brazil was

the country that cleared the most tropical forest area in both absolute and relative terms

(Hansen et al., 2008). The program was a response to the growing concerns regarding the

dangers of deforestation of tropical forests.

One of the main innovations of the PPCDAm was the development of a satellite-based

system that regularly collected and processed georeferenced imagery on Amazon land cover

to detect forest loss, the Real-Time System for Detection of Deforestation (DETER). Defor-

estation alerts that came from DETER imagery became the cornerstone for law enforcement.

Officers visited alert sites and applied sanctions if evidence of illegal deforestation was found.
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Law enforcement officers would typically issue a fine for every environmental infraction they

detected, but other forms of penalty, such as he seizure and destruction of products and

equipment, are also contemplated by law.

AGR (2023) estimate the effects of law enforcement, as a function of the number of

fines issued by the DETER satellite, on deforestation using panel data from 2006 to 2016.

To address the issue of reverse causality between deforestation and law enforcement, the

authors use an IV approach, leveraging variation in cloud coverage as exogenous variation

on law enforcement. The intuition behind the strategy is that cloud coverage blocks visibility

in satellite imagery and thereby limits DETER’s capacity to detect changes in land cover

patterns and therefore law enforcement.

8.2 Serial Correlation of the Instrument

The 2SLS regressions from AGR (2023) can be mapped to the static Wald estimator as

presented in Section 3.1, with the introduction of covariates. From proposition 1, it follows

that the estimates are unbiased as long as cloud coverage in a given period is independent

from cloud coverage at previous periods.

Figure 1 plots the estimates of the coefficients and the confidence intervals associated to

serial correlation of the instrument in a regression where cloud coverage in period t is the

dependent variable, and lags of cloud coverage and municipal fixed effects are the regressors.

The coefficients ate statistically significant up to the 6-th lag. Therefore, the estimates for

AGR are biased if either there are no dynamic effects of law enforcement or cloud coverage

previous to period t do not affect law enforcement before period t.

8.3 Dynamic Effects of Law Enforcement

To address the issue of serial correlation of the instrument, I use the multiple-differences

Horvitz-Thompson estimator presented in Section 5.2 to estimate the impulse response func-

tions in order to analyze the dynamics effects of law enforcement. Since the procedure is
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Figure 2: Serial Correlation of Cloud Coverage

Note: Figure 2 plots the results of the regression of cloud coverage in period t vs cloud coverage in previous periods and
municipal fixed effects.
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suited for binary instruments and binary treatments, I binarize the treatment creating an

indicator of ”intense” law enforcement for municipalities in which the number of fines in a

given year is greater than that year’s average, and a binary instrument for ”intense” cloud

coverage under the same reasoning. The binarized results can be interpreted under the light

of Schuler et al. (2024)9.

Table 5 presents the results. The dependent variable is the ratio between a municipality’s

deforested area in a year and its total area. The mean of the ratio for the whole panel is about

0.007. The first column of Table 1 present the results from AGR (2023). The estimate should

be interpreted as a ”naive” estimate for the lag-0 dynamic causal effect. The second column

shows the estimated lag-0 dynamic causal effect using the HT estimator. The estimated

causal effect is over two times greater than the one from AGR (2023). The difference in the

results, however, cannot be interpreted solely as the correction for OVB since the authors

work with a continuous version of the treatment and a linear specification for first stage and

reduced form. Nevertheless, the results in column 2 corroborate the initial finding that law

enforcement successfully curbs deforestation, even when accounting for serial correlation in

the instrument.

Table 5: Dynamic Effects of Law Enforcement: Impulse Response Functions

lag-p
AGR(2023) 0 1 2 3

Point estimate -0.0244 -0.0513 -0.0211 0.0334 0.0126
95% CI (-0.049, -0.001) (-0.102, -0.001) (-0.042, -0.001) (-0.077, 0.120) (-0.029, 0.034)
Baseline 0.0071 0.0071 0.0071 0.0071 0.0071

Observations 5210 5210 4689 4168 3647
Municipalities 521 521 521 521 521

Note: The dependent variable is the ratio between deforested area in a year and the municipality area. The set of control
variables contains precipitation and temperature (weather), PRODES cloud coverage and other nonobservable areas (satellite
visibility), and agricultural commodity prices.

Column 3 presents the estimate for the lag-1 impulse response function. The estimated

coefficient shows that lagged law enforcement also successfully curbs deforestation. Thus,

9As a robustness check, I use the estimator under different binarization procedures. See Appendix D for
the results.
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it can be interpreted as evidence of dynamic effects of law enforcement. Columns 4 and 5

present the results of the impulse response functions for the lag-2 and lag-3 dynamic causal

effects. The estimates, however, are not statistically significant.

Figure 3: Event-Study: Dynamic Effects of Law Enforcement

Note: Figure 3 plots the results displayed in the columns 2-5 from Table 5.

The interpretation of these results is not straightforward, however. One could interpret

the evidence of dynamic effects of law enforcement as evidence of persistence of deterrence

effects through time. Law enforcement curbs deforestation by causing potential offenders to

update their beliefs about the probability of getting caught and thus their expected costs

from engaging in the illegal activity. However, the effect fades out, which could indicate

that law enforcement does not provide a permanent shock on the perception of potential

offenders.

On the other hand, law enforcement could have lead to to the loss of capital goods

and machinery used in deforestation, which may have reduced potential offenders’ ability to

commit future offenses. If that’s the case, the observed pattern of the dynamic effects of

law enforcement could be suggesting that law enforcement affects the means to engage in

illegal deforestation, but with time potential offenders reequip themselves with the necessary

machinery and go back to their illegal deforestation activities. The empirical strategy does

not allow us to disentangle the underlying mechanisms driving the results and that should
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is an effort for future research.

Still, the results presented contribute to the literature on the enforcement of environmen-

tal regulation in developing countries. While Greenstone and Hanna (2014) and AGR (2023)

study such phenomenon, to the extent of my knowledge this is the first paper analyzing the

dynamics effects of environmental regulation. Dynamics are particularly important in the

context of environmental regulation, as understanding how the effects of regulation vary with

time is fundamental for improving the efforts against illegal deforestation. Yet, further in-

quiries are necessary in order to understand how to improve the efforts against deforestation

in the Brazilian Amazon, since the mechanisms driving the effects are not clear.

9 Conclusion

This paper develops a finite-population framework for the identification of dynamic causal

effects using instrumental variables with panel data.

First, I show that the usual approach to IV settings with panel data, which I called the

static Wald estimator, does not generally estimates well define causal parameters unless the

instrument is fully randomized at each period of time. I show that Multivariate 2SLS is also

not generally valid.

Second, I present a modification of the Wald estimator that identifies contemporary

treatment effects under sequential randomization, and provide a general framework for the

identification of dynamic causal effects in which mean potential outcomes are identified

separately. I introduce a nonparametric estimator, and derive its finite population asymptotic

distribution.

I then show how covariates and intermediary outcomes and treatments can be introduced

in the framework by accounting for them in the randomization distribution.

Monte Carlo simulation studies assert the desirable finite-sample property of the estima-

tors for both the local and the marginal dynamic causal effects.
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Finally, I use the estimators to analyze the dynamic effects of law enforcement on illegal

deforestation in the Brazilian Amazon. Results suggest that there is substantial time-varying

heterogeneity in the effects of law-enforcement and that while the effects of law enforcement

on illegal deforestation persist for some time, they are not permanent.
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Appendix A

Proof of Proposition 1

I begin with the decomposition of the fist stage βFS
2 . We have that, under Assumptions 1-5,

E
[
βFS
2

]
= E

[
1

N1

N∑
i=1

Zi,2Di,2 −
1

N0

N∑
i=1

(1− Zi,2)Di,2

]

=
1

N1

N∑
i=1

λi,2Di,2(1)−
1

N0

N∑
i=1

(1− λi,2)Di,2(0)

=
1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0)) +
1

N1

N∑
i=1

λi,2Di,2(0)−
1

N0

N∑
i=1

(1− λi,2)Di,2(0)

=
1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0)) +
NN

N0N1

(
1

N

N∑
i=1

(
λi,2 −

N1

N

)
Di,2(0)

)

=
1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0)) +
NN

N0N1

Cov [λi,2, Di,2(0)] (2)

Note that
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1

N

N∑
i=1

(Di,2(1)−Di,2(0))

=
1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0))−
1

N1

N∑
i=1

(
λi,2 −

N1

N

)
(Di,2(1)−Di,2(0))

1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0))−
N

N1

Cov [λi,2, Di,2(1)−Di,2(0)]

1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0))−
N

N1

Cov [λi,2, Di,2(1)] +
N

N1

Cov [λi,2, Di,2(0)]

And thus,

1

N1

N∑
i=1

λi,2 (Di,2(1)−Di,2(0)) =
1

N

N∑
i=1

(Di,2(1)−Di,2(0))+
N

N1

Cov [λi,2, Di,2(1)]−
N

N1

Cov [λi,2, Di,2(0)]

Substituting the expression above into (1) and using the second part of Assumption 2

and Assumption 3 yields

βRF
2 =

1

N

N∑
i=1

(Di,2(1)−Di,2(0)) +
N

N1

Cov [λi,2, Di,2(1)] +
N

N0

Cov [λi,2, Di,2(0)]

=
1

N

N∑
i=1

(Di,2(1)−Di,2(0)) =
1

N

N∑
i=1

1 {Gi,2 = C2} =
1

N
|C2|

Now, let’s consider the reduced form. We have
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E
[
βRF
2

]
= E

[
1

N1

N∑
i=1

Zi,2Yi,2 −
1

N0

N∑
i=1

(1− Zi,2)Yi,2

]

=
1

N1

N∑
i=1

λi,2Yi,2(d
obs
1 , Di,2(1))−

1

N0

N∑
i=1

(1− λi,2)Yi,2(d
obs
1 , Di,2(0))

=
1

N1

N∑
i=1

λi,2

(
Yi,2(d

obs
1 , Di,2(1))− Yi,2(d

obs
1 , Di,2(0))

)
+

1

N1

N∑
i=1

λi,2Yi,2(d
obs
1 , Di,2(0))−

1

N0

N∑
i=1

(1− λi,2)Yi,2(d
obs
1 , Di,2(0))

=
1

N1

N∑
i=1

λi,2

(
Yi,2(d

obs
1 , Di,2(1))− Yi,2(d

obs
1 , Di,2(0))

)
+

NN

N0N1

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(0))

]
Using the same algebraic manipulation as in the first stage, the expression simplifies to

βRF
2 =

1

N

N∑
i=1

(
Yi,2(d

obs
1 , Di,2(1))− Yi,2(d

obs
1 , Di,2(0))

)
+

N

N1

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(1))

]
+

N

N0

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(0))

]
=

1

N

∑
i∈C2

(
Yi,2(d

obs
1 , 1)− Yi,2(d

obs
1 , 0)

)
+

N

N1

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(1))

]
+

N

N0

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(0))

]
Taking the ratio between βRF

2 and βFS
2 yields

E
[
β̂RF
2

]
E
[
β̂FS
2

] = τC2,2(1, 0; 0) +
1

|C2|

(
N

N1

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(1))

]
+

N

N0

Cov
[
λi,2, Yi,2(d

obs
1 , Di,2(0))

])

= τC2,2(1, 0; 0) +
1

|C2|

(
N

N1

Cov [λi,2, Yi,2(Di,1(Zi,1), Di,2(1))] +
N

N0

Cov [λi,2, Yi,2(Di,1(Zi,1), Di,2(0))]

)
= τC2,2(1, 0; 0) + Λ
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which concludes the proof

Proof of Proposition 2

The parameters β̃1 and β̃2 solve the following set of equations:

E
[
Z

′

1D1

]
β̃1 + E

[
Z

′

1D2

]
β̃2 = E

[
Z

′

1Y
]

(3)

E
[
Z

′

2D1

]
β̃1 + E

[
Z

′

2D2

]
β̃2 = E

[
Z

′

2Y
]

(4)

Multiply (3) by E
[
Z

′

1D2

]
E
[
Z

′

2D2

]−1

to obtain

E
[
Z

′

1D2

]
E
[
Z

′

2D2

]−1

E [Z2D1] β̃1 + E
[
Z

′

1D2

]
β̃2 = E

[
Z

′

1D2

]
E
[
Z

′

2D2

]−1

E
[
Z

′

2Y
]

(5)

Substitute (4) into (1) to obtain

[
E
[
Z

′

1D1

]
− E

[
Z

′

1D2

]
E
[
Z

′

2D2

]−1 [
Z

′

2D1

]]
β̃1 = E

[
Z

′

1D2

]
E
[
Z

′

2D2

]−1

E
[
Z

′

2Y
]

(6)

Note that

Y = Y(0, 0)+D1(1−D2) (Y(1, 0)−Y(0, 0))+(1−D1)D2 (Y(0, 1)−Y(0, 0))+D1D2 (Y(1, 1)−Y(0, 0))

And thus,
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E
[
Z

′

1Y
]
= E

[
Z

′

1Y(0, 0)
]
+ E

[
Z

′

1D1(1−D2)(Y(1, 0)−Y(0, 0))
]

+E
[
Z

′

1(1−D1)D2(Y(0, 1)−Y(0, 0))
]
+ E

[
Z

′

1D1D2(Y(1, 1)−Y(0, 0))
]

and

E
[
Z

′

2Y
]
= E

[
Z

′

2Y(0, 0)
]
+ E

[
Z

′

2D1(1−D2)(Y(1, 0)−Y(0, 0))
]

+E
[
Z

′

2(1−D1)D2(Y(0, 1)−Y(0, 0))
]
+ E

[
Z

′

2D1D2(Y(1, 1)−Y(0, 0))
]

And so, under Assumption 4,

E
[
Z

′

1Y
]
− E

[
Z

′

1D2

]
E
[
Z

′

2D2

]−1

E
[
Z

′

2Y
]

= E
[
Z

′

1Y(0, 0)
]
+ E

[
Z

′

1D1(1−D2)(Y(1, 0)−Y(0, 0))
]

+E
[
Z

′

1(1−D1)D2(Y(0, 1)−Y(0, 0))
]
+ E

[
Z

′

1D1D2(Y(1, 1)−Y(0, 0))
]

−E
[
Z

′

1D2

]
E
[
Z

′

2D2

]−1 {
E
[
Z

′

2D1(1−D2)(Y(1, 0)−Y(0, 0))
]

+E
[
Z

′

2(1−D1)D2(Y(0, 1)−Y(0, 0))
]
+ E

[
Z

′

2D1D2(Y(1, 1)−Y(0, 0))
]

dotted

Substituting the expression back into (5) yields the solution for β̃1. Taking β̃1 and

substituting into (3) yields the solution for β̃2. Thus, the parameters are weighted averages

of three different causal effects, for different complier groups.

Proof of Theorem 1

Given F1:N,1:T , define the following causal parameters
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mt,(d) =
mRF

t,(d)

mRF
t,(d)

=

∑N
i=1 1 {Di,t−p:t(z) = d}Yi,t(d

obs
i,1:t−p−1,d)∑N

i=1 1 {Di,t−p:t(z) = d}

The proof is conducted by induction. I show that the result holds for the baseline case

p = 0 ad then show that if it holds for a general p, then it must also hold for p+ 1.

Consider the case where p = 0 and Di,t = 1. Results for the identification in the

cross-sectional setting can be modified to show that under Assumptions 1-4, the first stage

identifies

1

N

N∑
i=1

Di,t(1)−Di,t(0)

=
1

N

N∑
i=1

(1 {Gi,t = ATt}+ 1 {Gi,t = Ct})− 1 {Gi,t = ATt}

1

N

N∑
i=1

1 {Gi,t = Ct}

from which it follows that

1

N

N∑
i=1

Di,t(1)−Di,t(0) =
1

N

N∑
i=1

1 {Gi,t = Ct} =
1

N

1

|Ct|

For the reduced form estimand of the modified outcome, note that under Assumptions

1-4,

51



1

N

N∑
i=1

Di,t(1)Yi,t(d
obs
1:t−p−1, 1)−Di,t(0)Yi,t(d

obs
1:t−p−1, 1)

=
1

N

N∑
i=1

1 {Di,t(1) = 1}Yi,t(d
obs
1:t−p−1, 1)− 1 {Di,t(0) = 1}Yi,t(d

obs
1:t−p−1, 1)

=
1

N

N∑
i=1

Yi,t(d
obs
1:t−p−1, 1) (1 {Gi,t = ATt}+ 1 {Gi,t = Ct})− Yi,t(d

obs
1:t−p−1, 1)1 {Gi,t = ATt}

=
1

N

N∑
i=1

Yi,t(d
obs
1:t−p−1, 1)1 {Gi,t = Ct}

from which it follows that

1

N

N∑
i=1

Di,t(1)Yi,t(d
obs
1:t−p−1, 1)−Di,t(0)Yi,t(d

obs
1:t−p−1, 1) =

1

N

∑
i∈Ct

Yi,t(d
obs
1:t−p−1, 1)

and the ratio identifies

∑
i∈Ct

Yi,t(d
obs
1:t−p−1, 1)

|Ct|
= mt,(1)

The result for the case where Di,t = 0 can be demonstrated analogously, once we note

that the first stage identifies

1

N

N∑
i=1

(1−Di,t(1))− (1−Di,t(0))

=
1

N

N∑
i=1

1 {Gi,t = NTt} − (1 {Gi,t = NTt}+ 1 {Gi,t = Ct})

= − 1

N

N∑
i=1

1 {Gi,t = Ct} = − 1

N

1

|Ct|

and the modified reduced form identifies
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− 1

N

N∑
i=1

Yi,t(d
obs
1:t−p−1, 0)1 {Gi,t = Ct} = − 1

N

∑
i∈Ct

Yi,t(d
obs
1:t−p−1, 0)

For the general case, I prove the result only for Di,t−p−1 = 1. The case for Di,t−p−1 = 0

and can be derived using the intuition from the displayed result above. I begin with the first

stage. Note that under Assumption 1,

1

N

N∑
i=1

∆p+2 (1 {Di,t−p−1:t(zt−p−1:t) = (1,d)})

1

N

N∑
i=1

∆p+1 (1 {Di,t−p−1:t(1, zt−p:t) = (1,d)})−∆p+1 (1 {Di,t−p−1:t(0, zt−p:t) = (1,d)})

Assume the result holds for p. Under Assumptions 1-4, the modified first stage can be

written as

1

N

N∑
i=1

1 {Di,t−p−1(1) = 1, Gi,t−p:t = Ct−p:t} − 1 {Di,t−p−1(0) = 1, Gi,t−p:t = Ct−p:t}

=
1

N

N∑
i=1

(1 {Gi,t−p−1:t = ATt−p−1, Ct−p:t}+ 1 {Gi,t−p−1:t = Ct−p−1:t})

−1 {Gi,t−p−1:t = ATt−p−1, Ct−p:t}

=
1

N

N∑
i=1

1 {Gi,t−p−1:t = Ct−p−1:t} =
1

N
|Ct−p−1:t|

and thus,

1

N

N∑
i=1

∆p+2 (1 {Di,t−p−1:t(zt−p−1:t) = (1,d)}) = 1

N
|Ct−p−1:t|

For the reduced form, note that under Assumption 1,
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1

N

N∑
i=1

∆p+2
(
1 {Di,t−p−1:t(zt−p−1:t) = (1,d)}Yi,t(d

obs
1:t−p−2, 1,d)

)
=

1

N

N∑
i=1

∆p+1
(
1 {Di,t−p−1:t(1, zt−p:t) = (1,d)}Yi,t(d

obs
1:t−p−2, 1,d)

)
−∆p+1

(
1 {Di,t−p−1:t(0, zt−p:t) = (1,d)}Yi,t(d

obs
1:t−p−2, 1,d)

)
Assuming the result holds for p, if Assumptions 2-4 further hold, we can write the result

displayed above as

1

N

N∑
i=1

∆p+1
(
1 {Di,t−p−1:t(1, zt−p:t) = (1,d)}Yi,t(d

obs
1:t−p−2, 1,d)

)
−∆p+1

(
1 {Di,t−p−1:t(0, zt−p:t) = (1,d)}Yi,t(d

obs
1:t−p−2, 1,d)

)
=

1

N

N∑
i=1

1 {Di,t−p−1(1) = 1, Gi,t−p:t = Ct−p:t}Yi,t(d
obs
1:t−p−2, 1,d)

−1 {Di,t−p−1(0) = 1, Gi,t−p:t = Ct−p:t}Yi,t(d
obs
1:t−p−2, 1,d)

=
1

N

N∑
i=1

Yi,t(d
obs
1:t−p−2, 1,d)1 {Gi,t−p−1:t = Ct−p−1:t}

Hence, it follows that

∑N
i=1 ∆

p+2 (1 {Di,t−p−1:t(zt−p−1:t) = (1,d)Yi,t})∑N
i=1∆

p+2 (1 {Di,t−p−1:t(zt−p−1:t) = (1,d)})
= mt,(d)

Which concludes the proof.

Proof of Theorem 2

The proof follows trivially from Theorem 1 once is noted that for a given assignment path

zt−p:t, under Assumptions 1-6,
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E

[
1

N

N∑
i=1

1 {Di,t−p:t = d}
πi,t−p:t(zt−p:t)

]
=

1

N

N∑
i=1

1 {Di,t−p:t(zt−p:t) = d}

and

E

[
1

N

N∑
i=1

1 {Di,t−p:t = d}Yi,t

πi,t−p:t(zt−p:t)

]
=

1

N

N∑
i=1

1 {Di,t−p:t(zt−p:t) = d}Yi,t(d
obs
i,1:t−p−1,d)

The remainder of the proof follows using the reasoning from Theorem 1.

Proof of Theorem 3

If potential outcomes are bounded, then the standard Lindeberg condition holds. The first

result follows from the triangular array central limit theorem, as in Bojinov et al. (2021).

The variance (σt(1, 0; 0))
2 is simply

(σt(1, 0; 0))
2 =

1

N

N∑
i=1

(σi,t(1, 0; 0))
2

where (σi,t(1, 0; 0))
2 is defined in Lemma 1 from Appendix B.

The second result follows from Theorem 3.2 in Bojinov et al. (2021). The variance is

given by

(σ(1, 0; 0))2 =
1

NT

T∑
t=1

N∑
i=1

(σi,t(1, 0; 0))
2

Proof of Theorem 4

The result follows the same reasoning as the one in Theorem 5. This time, however, we have

(
σt(d, d̃; p)

)2
=

1

N

N∑
i=1

(
σi,t(d, d̃; p)

)2
and
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(
σ(d, d̃; p)

)2
=

1

N(T − p)

T∑
t=p+1

N∑
i=1

(
σi,t(d, d̃; p)

)2
See Lemma 2 from Appendix B for the necessary results.

Appendix B

Proof of Lemma 1

Define Wi,t−p:t(z) = πi,t−p:t(z)
−11 {Zi,t−p:t = z}. From Lemma A.1 in Bojinov et al. (2021),

we have

E [Wi,t−p:t(z)] = 1

V [Wi,t−p:t(z)] = πi,t−p:t(z)
−1(1− πi,t−p:t(z))

Cov [Wi,t−p:t(z),Wi,t−p:t(z̃)] = −1

I analyze the properties of the estimator for each stage separately before analyzing the

properties of the two-stage estimator. I begin with the first stage. Define

uFS
i,t = τ̂FS

i,t − τFS
i,t = Di,t(1)(Wi,t(1)− 1)−Di,t(0)(Wi,t(0)− 1)

Lemma A.1 from Bojinov et al. (2021) implies that E
[
uFS
i,t

]
= 0. Hence, the error terms

from the estimator are a martingale difference sequence and so, uncorrelated through time.

Now, let’s look at the variance:
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V
[
uFS
i,t

]
= Di,t(1)

2V [Wi,t(1)] +Di,t(0)
2V [Wi,t(0)]

−2Di,t(1)Di,t(0)Cov [Wi,t(1),Wi,t(0)]

= Di,t(1)
2πi,t(1)

−1(1− πi,t(1)) +Di,t(0)
2πi,t(0)

−1(1− πi,t(0))

+2Di,t(1)Di,t(0)

=
Di,t(1)

2

πi,t(1)
+

Di,t(0)
2

πi,t(0)
− (Di,t(1)−Di,t(0))

2

=
(
γFS
i,t (1, 0)(0)

)2 − (Di,t(1)−Di,t(0))
2 =

(
σFS
i,t (1, 0)(0)

)2
Now, consider the reduce form. Define

uRF
i,t = τ̂RF

i,t − τRF
i,t = Yi,t(d

obs
1:t−1, Di,t(1))(Wi,t(1)− 1)− Yi,t(d

obs
1:t−1, Di,t(0))(Wi,t(0)− 1)

We have E
[
uRF
i,t

]
= 0. Hence, the error terms from the estimator are a martingale

difference sequence and so uncorrelated through time. Now, let’s look at the variance:

V
[
uRF
i,t

]
= Yi,t(d

obs
1:t−1, Di,t(1))

2V [Wi,t(1)] + Yi,t(d
obs
1:t−1, Di,t(0))

2V [Wi,t(0)]

−2Yi,t(d
obs
1:t−1, Di,t(1))Yi,t(d

obs
1:t−1, Di,t(0))Cov [Wi,t(1),Wi,t(0)]

= Yi,t(d
obs
1:t−1, Di,t(1))

2πi,t(1)
−1(1− πi,t(1)) + Yi,t(d

obs
1:t−1, Di,t(0))

2πi,t(0)
−1(1− πi,t(0))

+2Yi,t(d
obs
1:t−1, Di,t(1))Yi,t(d

obs
1:t−1, Di,t(0))

=
Yi,t(d

obs
1:t−1, Di,t(1))

2

πi,t(1)
+

Yi,t(d
obs
1:t−1, Di,t(0))

2

πi,t(0)
− (Yi,t(d

obs
1:t−1, Di,t(1))− Yi,t(d

obs
1:t−1, Di,t(0)))

2

=
(
γRF
i,t (1, 0; 0)

)2 − (Yi,t(d
obs
1:t−1, Di,t(1))− Yi,t(d

obs
1:t−1, Di,t(0)))

2 =
(
σRF
i,t (1, 0; 0)

)2
From the results above, it follows that
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E
[
uRF
i,t

]
E
[
uFS
i,t

] = 0

We apply the Uniform Delta Method to obtain

V [ui,t] = g
′

(σRF
i,t (1, 0; 0)

)2(
σFS
i,t (1, 0; 0)

)2
 g := (σi,t(1, 0; 0))

2

Where g is the gradient of h(x, y) = x/y evaluated at (τRF
i,t , τFS

i,t ), which concludes the

proof.

Proof of Lemma 2

Define

uFS
i,t (d) = m̂FS

i,t (d)−mFS
i,t (d) = ∆p+1 (1 {Di,t−p:t(z)} (Wi,t−p:t(z)− 1))

uRF
i,t (d) = m̂RF

i,t (d)−mRF
i,t (d) = ∆p+1

(
Yi,t(d

obs
1:t−p−1,d)1 {Di,t−p:t(z)} (Wi,t−p:t(z)− 1)

)
We have E

[
uFS
i,t (d)

]
= E

[
uRF
i,t (d)

]
= 0 for all d ∈ {0, 1}p+1. Furthermore, define

uRF
i,t (d, d̃; p) = uRF

i,t (d)+uRF
i,t (d̃) and uFS

i,t (d, d̃; p) analogously. It follows that E
[
uRF
i,t (d, d̃; p)

]
=

E
[
uFS
i,t (d, d̃; p)

]
= 0.

Now let’s consider the variance. I prove the result by induction for the reduced form and

first stage of each potential outcome separately, and build on it to derive the properties of

the estimator.

First, let’s consider the case when p = 0 and Di,t = 1 (the case for Di,t = 0 is analogous).

For the first stage, it’s been proved earlier that
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V
[
uFS
i,t (1)

]
=

D2
i,t(1)

πi,t(1)
+

D2
i,t(0)

πi,t(0)
− (Di,t(1)−Di,t(0))

2

=
(
γFS
i,t (1)

)2 − (Di,t(1)−Di,t(0))
2 =

(
σFS
i,t (1)

)2
Now let’s consider the reduced form. Using a reasoning similar from the one in the lag-0

case, we obtain

V
[
uRF
i,t (1)

]
=
(
Yi,t(d

obs
1:t−1, 1)Di,t(1)

)2V [Wi,t(1)] +
(
Yi,t(d

obs
1:t−1, 1)Di,t(0)

)2V [Wi,t(0)]

−2Yi,t(d
obs
1:t−1, 1)Di,t(1)Yi,t(d

obs
1:t−1, 1)Di,t(0)Cov [Wi,t(1),Wi,t(0)]

=

(
Yi,t(d

obs
1:t−1, 1)Di,t(1)

)2
πi,t(1)

+

(
Yi,t(d

obs
1:t−1, 1)Di,t(0)

)2
πi,t(0)

−(Yi,t(d
obs
1:t−1, 1)Di,t(1)− Yi,t(d

obs
1:t−1, 1)Di,t(0))

2

=
(
γRF
i,t (1)

)2 − (Yi,t(d
obs
1:t−1, 1)Di,t(1)− Yi,t(d

obs
1:t−1, 1)Di,t(0))

2 =
(
σRF
i,t (1)

)2
Now, I proceed by deriving the expression for a general p + 1, assuming that the result

holds for p. For the first stage,
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V
[
uFS
i,t (d)

]
= V

[
∆p+2 (1 {Di,t−p−1:t(z) = d} (Wi,t−p−1(z)− 1))

]
= V

[
∆p+1 (1 {Di,t−p−1:t(1, z−) = d} (Wi,t−p−1(1, z−)− 1))

−∆p+1 (1 {Di,t−p−1:t(0, z−) = d} (Wi,t−p−1(0, z−)− 1)) dotted

= V
[
∆p+1 (1 {Di,t−p−1:t(1, z−) = d} (Wi,t−p−1(1, z−)− 1))

]
+V

[
∆p+1 (1 {Di,t−p−1:t(0, z−) = d} (Wi,t−p−1(0, z−)− 1))

]
−2∆p+1 (1 {Di,t−p−1:t(1, z−) = d})∆p+1 (1 {Di,t−p−1:t(0, z−) = d})Cov [Wi,t−p−1(1, z−),Wi,t−p−1(0, z−)]

=
∑

z−∈{0,1}p+1

1 {Di,t−p−1(1, z−)} = d

πi,t−p−1(1, z−)
−∆p+1 (Di,t−p−1(1, z−))

2

+
∑

z−∈{0,1}p+1

1 {Di,t−p−1(0, z−)} = d

πi,t−p−1(0, z−)
−∆p+1 (Di,t−p−1(0, z−))

2

+2∆p+1 (Di,t−p−1(1, z−))∆
p+1 (Di,t−p−1(0, z−))

=
∑

z∈{0,1}p+2

1 {Di,t−p−1(z)} = d

πi,t−p−1(z)

−
(
∆p+2 (1 {Di,t−p−1(1, z−)} = d)−∆p+2 (1 {Di,t−p−1(0, z−)} = d)

)2
=
(
γFS
i,t (d)

)2 − (∆p+2 (1 {Di,t−p−1(z)} = d)
)2

=
(
σFS
i,t (d)

)2
Analogously, for the reduced form it can be shown that

V
[
uRF
i,t (d)

]
=

∑
z∈{0,1}p+2

(
Yi,t(d

obs
1:t−p−2,d)1 {Di,t−p−1:t(z) = d}

)2
πi,t−p−1(z)

−
(
∆p+2

(
Yi,t(d

obs
1:t−p−2,d)1 {Di,t−p−1:t(z) = d}

))2
=
(
γRF
i,t (d)

)2 − (∆p+2
(
Yi,t(d

obs
1:t−p−2,d)1 {Di,t−p−1:t(z) = d}

))2
=
(
σRF
i,t (d)

)2
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From the results above, we have

V [ui,t(d)] = g
′

(σRF
i,t (d)

)2(
σFS
i,t (d)

)2
 g = (σi,t(d))

2

Where g is the gradient of h(x, y) = x/y evaluated at (mRF
i,t (d),m

FS
i,t (d))

The variance for τ̂i,t(d, d̃; p) is simply (σi,t(d))
2 +

(
σi,t(d̃)

)2
, which concludes the proof.

Appendix C

In order to derive the asymptotic properties of the estimator with an estimated propensity

score, first I define the estimation error in the first stage as

uFS
i,t (d) = m̂FS

i,t (d)−mFS
i,t (d) = ∆p+1

(
1 {Di,t−p:t(z)} (Ŵi,t−p:t(z)− 1)

)
which can be written as

uFS
i,t (d) = ∆p+1 (1 {Di,t−p:t(z)} (Wi,t−p:t(z)− 1))

+∆p+1
(
1 {Di,t−p:t(z)} (Ŵi,t−p:t(z)−Wi,t−p:t(z))

)

If we assume that E [π̂i,t−p:t(z)] = πi,t−p:t(z), then it follows that E
[
Ŵi,t−p:t(z)

]
= Wi,t−p:t(z).

If we further assume that π̂i,t−p:t(z) − πi,t−p:t(z) = Op(N
−1/2), then using Hahn (1998),

Hirano et al. (2003) we obtain the following approximation:

√
N
(
m̂FS

t (d)−mFS
t (d)

)
=

1√
N

N∑
i=1

∆p+1 (1 {Di,t−p:t = d} (Wi,t−p:t(z)− 1)) + op(1)

A similar result can be shown for m̂RF
t (d). Therefore, it follows that
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√
N (m̂t(d)−mt(d))

σt(d)

d→ N (0, 1)

where is obtained using the uniform Delta method and

√
N
(
τ̂ t(d, d̃; p)− τ t(d, d̃; p)

)
σt(d, d̃; p)

d→ N (0, 1)

where σt(d, d̃; p) is the same from the case with known propensity score.

The same can be shown for total lag-p dynamic causal effects, once we note that the

following approximation holds:

√
N(T − p)

(
m̂FS(d)−mFS(d)

)
=

1√
N(T − p)

T∑
t=p+1

N∑
i=1

∆p+1 (1 {Di,t−p:t = d} (Wi,t−p:t(z)− 1))+op(1)

Appendix D

As a robustness check, I estimate the results presented in Table 5 using different methods

for the binarization of the instrument and the treatment. In Table 6 I present the results

when treatment and instrument are binarized using the median of fines and cloud coverage

instead of the mean.

Table 6: Impulse Response Functions - Median

lag-p
AGR(2023) 0 1 2 3

Point estimate -0.0244 -0.0504 -0.0151 0.0134 0.0196
95% CI (-0.049, -0.001) (-0.097, -0.002) (-0.037, -0.001) (-0.017, 0.041) (-0.033, 0.058)
Baseline 0.0071 0.0071 0.0071 0.0071 0.0071

Observations 5210 5210 4689 4168 3647
Municipalities 521 521 521 521 521

Note: The dependent variable is the ratio between deforested area in a year and the municipality area. The set of control
variables contains precipitation and temperature (weather), PRODES cloud coverage and other nonobservable areas (satellite
visibility), and agricultural commodity prices.

As a final robustness check, I binarize the treatment using an indicator for municipalities
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that received a number of fines greater than zero. The results are presented in Table 7 below.

Table 7: Impulse Response Functions - Greater than zero

lag-p
AGR(2023) 0 1 2 3

Point estimate -0.0244 -0.0641 -0.0350 0.0134 0.0026
95% CI (-0.049, -0.001) (-0.123, -0.004) (-0.070, -0.005) (-0.085, 0.018) (-0.049, 0.008)
Baseline 0.0071 0.0071 0.0071 0.0071 0.0071

Observations 5210 5210 4689 4168 3647
Municipalities 521 521 521 521 521

Note: The dependent variable is the ratio between deforested area in a year and the municipality area. The set of control
variables contains precipitation and temperature (weather), PRODES cloud coverage and other nonobservable areas (satellite
visibility), and agricultural commodity prices.

Overall, the estimates are fairly stable across specifications, with the exception of the

impulse response function for the lag-1 dynamic causal effect, which is not statistically

significant under the binarization procedure for Table 7.
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