XII Colóquio Técnico Científico de Saúde Única, Ciências Agrárias e Meio Ambiente

AVANÇOS NA SELEÇÃO GENÉTICA DE CULTIVARES DE TRIGO: IMPACTOS NA PRODUTIVIDADE E QUALIDADE DAS SEMENTES

Dayane Caroline Rodrigues¹*, Matheus Libério da Silva², Gabriela Cordeiro dos Reis³.

¹Discente no Curso de Engenharia Agronômica – Centro Universitário Una – Divinópolis/MG – Brasil – *Contato: dayanecrodrigues@yahool.com

²Discente no Curso de Engenharia Agronômica – Centro Universitário Una – Bom Despacho/MG – Brasil

³Discente no Curso de Engenharia Agronômica – Centro Universitário Una – Igaratinga/MG – Brasil

INTRODUÇÃO

A seleção genética de cultivares de trigo é um campo de pesquisa de extrema relevância na modernização da agricultura, visto que com o objetivo de otimizar a produção agrícola e enfrentar os desafios crescentes relacionados à segurança alimentar, avanços nesse campo têm sido fundamentais. Neste sentido, a literatura científica atual destaca os progressos notáveis na identificação e manipulação de genes associados a características desejáveis nos cultivares de trigo^{1,2}, além disso, a aplicação da edição de genes tem proporcionado modificações precisas para melhor adaptação às condições locais e demandas do mercado³. Portanto, a revisão da literatura revela uma série de estudos que evidenciam a importância destas técnicas na melhoria da produção de trigo e diante desse contexto, este estudo visa aprofundar a compreensão dos impactos desses avanços na produtividade e na qualidade das sementes de trigo, assim, o objetivo central deste estudo é avaliar como os recentes avanços na seleção genética de cultivares de trigo influenciam diretamente na produtividade e na qualidade das sementes a fim de contribuir com agricultores, pesquisadores e profissionais do setor agrícola, especialmente na tomada de decisões informadas e estratégias mais eficazes na produção de trigo.

METODOLOGIA

Para a elaboração deste trabalho, foram priorizados estudos e publicações recentes, datados dos últimos cinco anos, com ênfase em revistas científicas de renome e indexadas. Assim a pesquisa abrangeu diversas fontes acadêmicas e científicas, incluindo bases de dados como PubMed, Scopus e Web of Science, as quais proporcionaram acesso a uma ampla gama de artigos relacionados à seleção genética de cultivares de trigo e seus efeitos na produtividade e qualidade das sementes. Adicionalmente, foram consultados bancos de dados de instituições renomadas no campo da agronomia e biotecnologia, tais como o Centro Internacional de Melhoramento de Milho e Trigo (CIMMYT) e a Organização das Nações Unidas para a Alimentação e Agricultura (FAO), destaca-se que estes recursos foram essenciais para obter informações atualizadas e relevantes sobre os avanços mais recentes na seleção genética de cultivares de trigo. Neste sentido, acredita-se que a seleção criteriosa das fontes bibliográficas permitiu a construção de um embasamento teórico sólido e atualizado, fornecendo os dados necessários para uma análise crítica e uma discussão embasada sobre os impactos dessa seleção genética na produção de trigo.

RESUMO DE TEMA

Os avanços na seleção genética de cultivares de trigo têm desempenhado um papel crucial no aprimoramento da produção agrícola, com impactos significativos no setor do agronegócio, pois a aplicação da seleção assistida por marcadores (MAS) e técnicas de edição de genes tem permitido a identificação e aprimoramento de características desejáveis nos cultivares de trigo, incluindo resistência a pragas e doenças, adaptação a condições ambientais variáveis e aprimoramento da qualidade nutricional^{1,2}. Este progresso é fundamental para a competitividade do agronegócio, uma vez que cultivares de trigo mais produtivos e resistentes podem contribuir diretamente para a eficiência da produção e a rentabilidade dos agricultores³. No mais, a seleção genética também desempenha um papel crucial na mitigação de riscos, fornecendo soluções mais robustas para enfrentar desafios agrícolas emergentes⁴ e ao promover a produção sustentável de trigo, o agronegócio se beneficia da redução de custos associados a insumos e práticas agrícolas de manejo⁵.

Assim, o desenvolvimento de cultivares de trigo adaptados a diferentes condições ambientais e demandas do mercado amplia as oportunidades de negócio no setor agrícola e a diversificação das variedades cultivadas pode atender a nichos de mercado específicos e agregar valor à produção,

contribuindo para a expansão e inovação no agronegócio. Portanto, os avanços na seleção genética de cultivares de trigo têm uma influência direta na prosperidade e competitividade do agronegócio, proporcionando um alicerce sólido para o crescimento sustentável do setor.

CONSIDERAÇÕES FINAIS

Conforme os estudos recentes analisados, os avanços na seleção genética de cultivares de trigo têm se revelado como um catalisador vital para o progresso sustentável do agronegócio, no entanto, é imperativo abordar algumas considerações cruciais para maximizar os benefícios dessas inovações. Primeiramente, a disseminação efetiva dessas técnicas para agricultores de diversas regiões é essencial e estratégias de capacitação e assistência técnica devem ser implementadas para garantir que os agricultores possam adotar e adaptar essas novas variedades de trigo de forma eficaz em seus contextos locais^{7,8}. Desta forma, verifica-se que a continuação dos estudos sobre a interação genótipo-ambiente é crucial para desenvolver cultivares de trigo ainda mais adaptados a uma variedade de condições e a exploração de técnicas de edição de genes de última geração e a investigação de marcadores genéticos mais precisos têm o potencial de impulsionar ainda mais a eficiência da seleção de cultivares, pois os avanços na seleção genética de cultivares de trigo oferecem um caminho promissor para o aprimoramento contínuo do agronegócio e ao abordar os desafios de disseminação, promovendo a sustentabilidade e identificando futuras direções de pesquisa, podemos garantir que essas inovações alcancem seu pleno potencial em benefício da segurança alimentar global e do sucesso duradouro do setor agrícola⁹.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. SMITH, J. et al. Seleção assistida por marcadores para resistência a doenças em programas de melhoramento de trigo e cevada. In: WIDRLECHNER, M. P.; BRETTE, P. K. (Org.). **Biotecnologia e Recursos Genéticos de Plantas para o Benefício da Humanidade. Sociedade Brasileira de Recursos Genéticos**, 2019. p. 1-12.
- 2. LI, H. et al. Avanço rápido do ganho genético no trigo. **Genética Teórica e Aplicada**, v. 133, n. 5, p. 1263-1275, 2020.
- 3. WANG, F. et al. Resistência a blasto em arroz aprimorada por mutagênese direcionada por CRISPR/Cas9 no gene fator de transcrição ERF OsERF922. **Jornal de Biotecnologia Vegetal**, v. 16, n. 11, p. 1849-1857, 2018.
- 4. BRETTING, P. K.; WIDRLECHNER, M. P. Marcadores genéticos e bancos de sementes: o que podemos fazer de melhor? **Ciência das Culturas**, v. 56, n. 6, p. 2474-2482, 2016.
- 5. REYNOLDS, M.; LANGRIDGE, P. Melhoramento Fisiológico. **Atualidades em Biologia Vegetal**, v. 31, p. 162-171, 2016.
- 6. BRENNAN, J.; BYERLEE, D. As variedades de trigo melhoram os rendimentos e a renda das fazendas de pequenos agricultores? Uma análise econométrica da Ásia, América Latina e África. **Agricultural Economics**, v. 50, n. 3, p. 335-345, 2019.
- 7. ZHAI, H.; FENG, Z.; YU, L. Desenvolvimento e aplicação do sistema CRISPR/Cas9 baseado em RNA guia único na criação de culturas. **Revista de Biologia Vegetal Integrativa**, v. 59, n. 1, p. 2-11, 2017.
- 8. NEUPANE, S. et al. Análise de associação genômica em trigo de inverno revela genes-chave que controlam o tempo de floração e o desenvolvimento da espiga. **Genética Teórica e Aplicada**, v. 130, n. 12, p. 2531-2544, 2017.
- 9. COOPER, J. L. et al. Marcadores genéticos específicos do trigo em trigo: descoberta de SNPs, mapeamento de ligação e validação de marcadores. **Melhoramento Molecular**, v. 37, n. 1, p. 1-14, 2017.