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Abstract:  

Sensorimotor Mu (8–13 Hz) and Beta (13–30 Hz) rhythms constitute robust electrophysiological fingerprints of 

cortical dynamics accompanying the planning, execution and cessation of voluntary movement. To clarify how these 

spectral signatures can be harnessed in non-invasive brain–computer interfaces (BCIs) for neuro-adaptive feedback 

systems, a systematic review of studies published between January 2015 and July 2025 was undertaken (in addition 

to others to elucidate clinical and technical concepts). Four databases (PubMed, Scopus, Embase and IEEE Xplore) 

were searched for adult EEG research addressing motor preparation, execution, imagery or action observation. After 

the eligibility screening, 35 articles satisfied all inclusion criteria. Most experiments employed, at least, thirty-two 

scalp electrodes 1–40 Hz, band-pass filtering and artefact rejection via independent component analysis. Across 

protocols, contralateral Mu/Beta power fell (event-related desynchronisation) over sensorimotor cortex during real 

or imagined movement, followed by a rapid Beta rebound (event-related synchronisation) signalling cortical re-

inhibition. Peak Mu (~10 Hz) and Beta (~20 Hz) frequencies varied modestly among participants, indicating that 

individual calibration can enhance single-trial classification accuracy. Transient Beta bursts lasting under 200 ms 

consistently marked movement termination, whereas stronger Mu suppression correlated with superior performance 

for neurofeedback of post-stroke rehabilitation tasks. Several studies also reported task-dependent Beta–Gamma 

coupling and attentional modulation of Mu amplitude as emerging control variables. By mapping where, when and 

how strongly these rhythms fluctuate, the review delineates clear feature-selection targets and adaptive-threshold 

guidelines for next-generation BCIs aimed at motor learning and recovery. 
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1. Introduction 

The present systematic review synthesises EEG 

studies published in the last two decades that 

examined Mu and/or Beta ERD/ERS during 

motor preparation, execution, imagery or action 

observation in healthy adults [10] [30] [34]. 

Aiming to map the spatiotemporal 

characteristics (peak frequency, onset latency, 

burst rate) of Mu/Beta modulation across 

paradigms [8] [13] [29], while identifying best 

practices in signal acquisition, preprocessing and 

feature extraction that maximise signal-to-noise 

ratio [15] [14] [35]. Therefore, providing 

evidence-based recommendations for adaptive 

thresholding and personalised calibration in 

next-generation BCIs targeting motor intention 

recognition for post-stroke recovery [9] [25] [4]. 

Building on recent work showing that individual 

differences in Beta dynamics predict short-term 

visuomotor learning [9].  

2. Electroencephalographic Signals 
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Oscillatory electrical activity in the adult brain is 

conventionally grouped into partially 

overlapping frequency “bands” each associated 

with characteristic functional states and 

neurocognitive processes.  

The borders are heuristic, inter-individual shifts 

are common, especially around the individual 

alpha peak frequency, yet the taxonomy 

provides a useful scaffold for interpreting 

spectral analyses in motor-cognitive research [8] 

[13] [21]. 

Table 1. Neural Frequency Bands. 

Band Range 

(Hz) 

Predominant 

functional state 

(In adults) 

 

Delta 

 
0.5 – 4 

Deep NREM 

(slow-wave) sleep, 

homeostatic 

regulation [8],[21] 

 

 

Theta 

 

 
4 – 8 

Drowsiness, 

episodic memory 

encoding, spatial 

navigation; 

sensitive marker in 

mild TBI [19],[21] 
 

Alpha 

 
 

8 – 13 

Eyes-closed rest, 

sensory 

suppression, 

attentional gating 

[11],[18],[26] 

 
Mu 

(sensorimotor α) 

 
 

8 – 13 

(central) 

Sensorimotor 

“idling,” 

modulated by 

action observation 

and motor imagery 

[10],[14],[34] 

 

 
Beta 

 

 

 

13 – 30 

Motor set 

maintenance, 

cortico-muscular 

coupling, post-

movement 

rebound/inhibition 

[9],[16],[29] 

 

 

Gamma 

 

30 – 100 

(low γ) 

 

60 – 200 

(high γ) 

Local cortical 

computation, 

perceptual binding, 

movement 

intention decoding 

[8],[14] 

Classical boundaries have been complemented 

by more recent approaches that decompose 

spectra into periodic and aperiodic components, 

affording finer-grained parameterization of 

oscillatory peaks beyond rigid band limits [8]. 

2.1. Sensorimotor Oscillations 

Decoding voluntary action from scalp EEG 

hinges on two rhythmical fingerprints generated 

in the peri-Rolandic cortex seen in figure 1: the 

Mu (∼8–13 Hz) and Beta (∼13–30 Hz) bands.  

Figure 1. Perirolandic-Cortex Representation 

[36]. 

 

Both reflect synchronous membrane potential 

fluctuations within pyramidal-interneuron 

networks; yet their task-related modulations 

diverge in timing and functional meaning. 

During real or imagined movement the power of 

contralateral Mu and low-Beta falls abruptly—

an event-related desynchronisation (ERD)—
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signalling the release of local inhibitory gating 

and the build-up of cortico-spinal drive [4] [9] 

[16].  

Figure 2. Corticospinal Tract [37]. 

 

Upon movement termination, a transient Beta 

rebound, or event-related synchronisation (ERS) 

restores cortical inhibition and is thought to 

index sensory re-afference processing and motor 

set re-establishment [29]. These dynamics are 

reliable enough that single-trial Mu/Beta ERD 

magnitudes can predict movement kinematics, 

BCI cursor trajectories or neurofeedback 

learning rate [22] [25] [34]. Despite such 

regularities, the extraction of unequivocal 

movement “intention” markers is non-trivial 

because:  

(i) oscillatory bursts are brief (< 200 ms) and 

spatially overlapping,  

(ii) inter-individual peak frequencies drift with 

age and cortical physiology [13]. 

(iii) spectral estimates mix periodic and 

aperiodic components that inflate power-law 

baselines [8].  

Consequently, high-density arrays ( ≥  32 

channels) with artefact-suppression pipelines, 

preferably independent component analysis, 

remain standard to maximise the sensor-level 

signal-to-noise ratio [15] [35].  

Within the context of motor-imagery BCIs, 

Mu/Beta suppression emerges slightly earlier (≈ 

200 ms pre-cue) and is sustained longer than 

during overt execution, reflecting the sustained 

efference copy without peripheral feedback [20] 

[27] [31].  

Classification pipelines that incorporate subject-

specific peak frequency windows (~ ±2 Hz 

around the individual alpha frequency) and track 

the stochastic occurrence of Beta bursts, rather 

than mean power, achieve superior accuracy 

especially under adaptive thresholding schemes 

[22] [30].  

Collectively, these findings reaffirm Mu/Beta 

ERD/ERS as the most informative spectral 

proxies of sensorimotor intent yet also expose 

the need for personalised calibration and 

advanced burst-aware feature engineering—
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issues explored systematically in the present 

review. 

2.2. Mu and Beta Oscillations  

Sensorimotor oscillations in the Mu (8 – 13 Hz) 

and Beta (13 – 30 Hz) ranges provide a non-

invasive electrophysiological window on the 

cortical states that precede, accompany and 

follow voluntary movement [4] [9] [35].  

During motor preparation and execution, power 

in both bands decreases, a phenomenon 

classically termed event-related 

desynchronisation (ERD). Whereas movement 

termination is followed by a rapid 

resynchronisation, most prominent in the Beta 

band, known as the post-movement Beta 

rebound (PMBR) or event-related 

synchronisation (ERS) [4] [9] [29].  

These rhythmic signatures have become central 

features for decoding motor intention in EEG-

based brain–computer interfaces (BCIs) and for 

designing neuro-adaptive feedback aimed at 

motor rehabilitation [4] [14] [20] [22] [25]. 

2.2.1. Transient Beta Bursts  

Single-trial analyses consistently reveal brief (< 

200 ms) Beta bursts time-locked to movement 

offset, which coincide with cortico-spinal 

inhibition and precede the broader post-

movement Beta rebound [29].  

Their stereotyped latency and high signal-to-

noise ratio make them attractive features for 

asynchronous BCI “stop” commands, 

complementing the slower PMBR envelope [20] 

[22]. 

Simultaneous EEG–fMRI further shows that 

spontaneous Mu power is negatively correlated 

with BOLD in sensorimotor, dorsal-attention 

and putative mirror-neuron regions, while 

showing positive correlations with salience-

network nodes such as the anterior insula and 

anterior cingulate cortex [35].  

In addition, two studies reported task-specific 

Beta–Gamma phase-amplitude coupling that 

discriminated left- versus right-hand motor 

imagery above chance level, indicating a 

potential multiband control variable for next-

generation BCIs [14]. 

3. Methodology 

All included investigations enrolled healthy 

adults (18–35 years in 76 % of samples) or non-

degenerative clinical populations [7] [12] [25]. 

Most used 32–64 Ag/AgCl scalp electrodes, 

0.5–40 Hz on-line filters and independent-

component analysis for artefact rejection [15]. 

Task paradigms comprised executed movement, 

kinaesthetic motor-imagery, action observation 

and combined observation-imagery 

neurofeedback [6] [7] [12]. 

The four-database research strategy retrieved 

627 records (PubMed = 235; Scopus = 192; 

Embase = 128; IEEE Xplore = 72), mostly from 

between 2015 to 2025. After automated and 

manual de-duplication, 463 unique titles and 

abstracts were screened. Title-and-abstract 

appraisal excluded 405 reports, leaving 58 full 

papers for eligibility assessment; 20 were 

discarded for reasons such as paediatric cohorts, 
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invasive recordings or inadequate spectral detail. 

Thirty-five studies fulfilled every inclusion 

criterion and compose the evidential core of this 

review. 

Across experiments, Mu (~10 Hz) and Beta (~20 

Hz) event-related desynchronisation (ERD) 

emerged contralateral to the engaged limb, 

beginning ~1 s before movement and persisting 

throughout the motor epoch [4] [9] [16]. 

Subsequent post-movement Beta rebound 

(PMBR) peaked 300–600 ms after termination 

and was centred over medial sensorimotor 

cortex [29] [9]. 

3.1. Inter-individual variability 

Individual peak frequencies varied by ≈ ± 1.5 Hz 

for Mu and ≈ ± 3 Hz for Beta across participants 

[13] [34]. Calibrating feature extraction to these 

idiosyncratic peaks, rather than using fixed 

canonical bands, boosted two-class motor-

imagery classification accuracy by roughly 6 % 

on average [20] [22] [30]. 

3.2. BCI applications 

When power and weighted cross-frequency 

features were combined, Beta-ERS reached 

mean accuracies of 72.8 %, outperforming Mu-

ERD (67.4 %) and Beta-ERD (62.2 %) on the 

same dataset [14]. Ensemble methods such as 

Random Forest further boosted accuracy to > 80 

% for several participants [14]. These figures 

exceed the statistical two-class chance level of 

57.5 % (p < 0.05) and approach clinical usability 

thresholds [20] [30]. 

 

4. Results and Discussion 

Real and imagined movement — In go/no-go 

and centre-out reaching tasks, Beta-ERD 

magnitude scaled with force output and reaction 

time [9] [16]. Whereas stronger Mu-ERD 

predicted higher imagery-vividness scores 

during motor-imagery sessions [34]. 

Action observation — Meta-analytic evidence 

indicates that Mu suppression during mere 

observation is smaller and less somatotopic than 

during execution, challenging its specificity as a 

pure mirror-neuron marker [10]. 

Neurofeedback / rehabilitation — In sub-acute 

stroke training, Beta-ERD amplitude recorded 

over ipsilesional M1 correlated strongly (r = 

0.71) with Fugl-Meyer motor-recovery scores, 

supporting its adoption as a quantitative 

biomarker for therapy progress [4] [25]. 

5. Conclusion 

This systematic review synthesised two decades 

of evidence on the spectral behaviour of 

sensorimotor Mu (8 – 13 Hz) and Beta (13 – 30 

Hz) rhythms during motor preparation, 

execution, imagery and action observation in 

healthy adults and non-degenerative clinical 

populations. All studies confirmed a robust, 

contralateral ERD in both bands that begins ≈ 1 

s before movement onset and scales with 

effector load and task complexity [4] [9] [16]. 

After movement, a brief post-movement Beta 

rebound — often manifested as < 200 ms 
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bursts—signalled corticospinal re-inhibition and 

predicted slower re-initiation of subsequent 

actions [29]. 

Three essential converging insights emerged: 

Individualised peak frequency matters. Peak Mu 

(~ 10 Hz) and Beta (~ 20 Hz) values shifted by 1 

– 3 Hz between participants; tailoring band-pass 

filters and classification features to these peaks 

boosted two-class BCI accuracy by up to 7 % in 

cross-validation folds [13] [20] [22] [30]. 

Amplitude carries functional meaning. Larger 

Mu-ERD amplitudes correlated with better 

neurofeedback gains in stroke rehabilitation and 

with reduced BOLD activity in a distributed 

motor network, indicating efficient cortico-

subcortical recruitment. Conversely, stronger 

PMBR amplitudes indexed greater transient 

inhibition of M1 excitability [4] [25] [29] [35]. 

Temporal micro-structure is informative. High-

resolution analyses revealed that Beta bursts, 

rather than sustained power, best distinguished 

movement termination and error processing, 

suggesting that next-generation BCIs should 

incorporate burst-based detectors instead of 

sliding-window averages [14] [29]. 

On regards to neuro-design implications for 

neuro-adaptive BCIs, some features are a must 

have: 

Use subject-specific Mu/Beta peaks for filter 

banks and adapt thresholds dynamically across 

sessions. Include burst-detection algorithms (< 

250 ms) to capture PMBR events for real-time 

state transitions (e.g., command locking). 

Monitor cross-frequency interactions (Beta–

Gamma, Mu–Theta) as auxiliary features when 

tasks demand heightened attention or 

proprioception [14]. 

Limitations include heterogeneous electrode 

montages (32 – 256 channels), small median 

sample sizes (n = 18), and under-reporting of 

sex-specific effects. Meta-analysis was 

precluded by variability in ERD/ERS 

quantification, underscoring the need for unified 

reporting guidelines aligned with IEC 80601-2-

26 [38]. 

Future research should adopt multimodal 

designs (EEG-fMRI-NIRS) to localise 

oscillatory generators, explore closed-loop 

stimulation that entrains Beta bursts for motor 

recovery and extend investigations to 

ecologically valid, freely moving paradigms 

using mobile EEG and ear-EEG setups [25] [31] 

[35]. Addressing these gaps will accelerate the 

translation of Mu/Beta biomarkers into robust, 

user-centric BCIs for motor rehabilitation and 

human–machine interaction. 
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