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Resumo: As juntas são essenciais para o comportamento global de sistemas estruturais, pois são 

responsáveis por comunicar as tensões entre os seus diversos componentes. Em serviço, essas 

junções estão sujeitas a efeitos não-lineares como fissuras, danos, perdas de aderência entre 

outros. A modelagem precisa desses fenômenos ainda é uma tarefa desafiadora nos dias atuais. 

Para contornar esse problema, as junções são frequentemente consideradas como perfeitas, ou 

seja, com plena capacidade de transmitir esforços. Tal suposição pode ser conservadora em 

muitos casos, e uma abordagem mais realista seria considerar essas juntas como entidades 

elásticas caracterizadas por um conjunto de parâmetros. A tarefa complexa é determinar qual o 

conjunto de parâmetros mais adequado, mesmo sob condições de carga estática. O presente 

estudo propõe um procedimento inovador de identificação numérica baseado no Método dos 

Elementos de Contorno (MEC). O conjunto de parâmetros é identificado através de uma forma 

inversa por meio da teoria do Erro em Relação Constitutiva (ERC). A formulação é aplicada a 

problemas de elasticidade plana, por meio de ensaios numéricos comparando com respostas de 

referências ora analíticas, ora numéricas, utilizando carregamentos exclusivamente estáticos. A 

investigação numérica particular mostra características interessantes, sobretudo o 

comportamento quadrático nas vizinhanças do ponto de otimalidade, mantendo a estabilidade 

numérica mesmo sob fortes discrepâncias nos parâmetros esperados. Os parâmetros da 

interface são corretamente identificados em todos os casos numéricos testados. 

Palavras chaves: MEC; ERC; juntas; identificação de parâmetros. 

 

  



 
Abstract:  

Joints are essential for the global behavior of the structural system because they are responsible 

for communicate stresses among their numerous components. In service, these joints are 

subjected to nonlinear affects such as cracks, damages, adherence losses among others. 

Modeling accurately these phenomena is still a challenging task in the present days. To 

circumvent this problem, the joints are often admitted perfect, which is complete capacity of 

transmitting efforts. Such assumption is conservative in many cases, and a more realistic 

approach is considering the joints as elastic entities characterized by a set of parameters. The 

complex task is to determine which set of parameters is most appropriate, even under static 

loading conditions. The present study proposes an innovative numerical identification 

procedure based on the Boundary Element Method (BEM). The set of parameters is identified 

through inverse formulation according to the Constitutive Relation Error (CRE) theory. The 

formulation is applied to plane elasticity problems, where the numerical tests are performed 

comparing to reference responses, either analytical or numerical. The particular numerical 

investigation shows interesting features, especially the quadratic behavior near the point of 

convergence, maintaining the numerical stability even under strong discrepancies in the 

expected parameters. The interface parameters are correctly identified in all tested cases. 

Keywords: BEM; CRE; Joints; Parameter identification. 

  



 

1  INTRODUCTION 

The increasing complexities of structural designs make the task of accurate predicting 

more and more challenging, even under static load conditions. The understanding of how 

the interconnection between elements affect the global response is an important and active 

research field (Mehrpouya, Graham, & Park, 2013). In this study, a new numerical technique 

based on the Constitutive Error Theory coupled with the Boundary Element Method is 

presented for identifying interface parameters. 

The engineering community has long been concerned with quality of model predictions. 

The idea that has been receiving attention is improving the numerical predictions by 

computational model updating based on experimental measures. In this case, the model has 

finite dimension and it is assumed to be well known. The governing parameters are assumed 

to be doubtful and susceptible to be identifiable according to some criterion. The Model 

Updating has been developed since the middle of World War II in the airplane industry 

(Natke, 1988). The developments are mainly driven by domain methods such as Finite 

Element Method (FEM) (Ben Azzouna, Feissel, & Villon, 2015).  

The first appearance of the direct BEM used for Model Updating is related to beam 

vibration using measured Frequency Response Function (FFR), instead of modal input data  

(Dos Santos, Campos, & Neto, 2000). This study is reedited after. The benchmark utilized 

is the Friswell and Mottershead’s beam where the estimated parameters are the flexural 

rigidity, the translational stiffness and rotational stiffness of a flexible joint (Friswell & 

Mottershead, 1995). It is interesting to remark that the dynamical behavior of frame 

structures can be accurately modeled by BEM (de Mesquita Neto, Barretto, & Pavanello, 

2000). No more progress in this specific field has been communicated since then. 

Other fields of engineering have investigated the capability of the BEM identification. 

The advantages of BEM in representing the accurate solutions in the domain has led to the 

development of numerical techniques for modeling site effects (Álvarez-Rubio, Benito, 

Sánchez-Sesma, & Alarcón, 2005). The idea is using two-dimensional analysis for 

identifying relevant parameters for characterize the seismic response of the site depending 

on the estimated subsoil structure. It is a practical application of “best estimates” for practical 

engineering challenges. 

Besides reliability, the existence and uniqueness of the model parameters is a constant 

concern among the engineers, in particular for joints. In general it is possible to relate the 

identifiability of the problem to its parameter sensitivity (Beck & Arnold, 1977). This is a 

strong motivation for adopting gradient approaches taking advantages of continuous 

dependencies among the design parameters, what is a reasonable assumption for practical 

purposes. 

It is frequent the observation of random responses coming out from experimental tests. 

This is due to the inherit variabilities concerning the material properties and load conditions, 

besides the lack of knowledge. Recent investigations have applied the BEM with stochastic 

optimization for better identifying the parameters of cohesive laws (Cordeiro, Leonel, & 

Beaurepaire, 2017).  



 
Concerning identification methods, the Constitutive Relation Error (CRE) approach is 

an important numerical tool. At its birth, it was proposed for quantifying the divergencies 

between numerical approximations and the exact solutions (Ladeveze & Leguillon, 1983). 

Posteriorly, it evolved for quantification of the stiffness and the mass matrices of linear 

dynamical structural systems basing on modal tests (Ladeveze, Nedjar, & Reynier, 1994). 

The CRE problems are generally formulated as inverse forms, which also needs to include 

all available information. In this sense the augmented version (Modified Constitutive 

Relation Error - MCRE), an additional term acts as regularization parameter. It broadens the 

formulation in order to include the evidence measures, instead of making additional 

assumptions (Guchhait & Banerjee, 2016). The CRE technique has permitted the proposition 

of improved predictive algorithms for pressure levels decreasing the needs for prototyping 

which represent expressive saving costs (Decouvreur, Bouillard, Deraemaeker, & Ladevèze, 

2004). 

It is recognized that structural interconnections play a significant role in the behavior of 

complex structures because they govern the energy flow and concentrate dissipative 

phenomena (Arruda & Santos, 1992). In medium-frequency range of vibration, the 

traditional domain methods (such as FEM) become very expensive due to the pollution 

errors. These numerical errors can be circumvented at the expense of refining the mesh as 

the frequency increases. For practical structures this option is often not possible. In addition, 

a major problem is the joint parameter identification including damping effects. In such a 

case, integral methods reveals to be an efficient alternative, such as the Variational Theory 

of Complex Rays which is a Trefftz approach (O. Dorival, Rouch, & Allix, 2008; Olivier 

Dorival, Rouch, & Allix, 2006) because the test functions utilized satisfy the governing 

equation interior to the domain as well as the constitutive relations. The boundary conditions 

are satisfied in a variational sense. In the Trefftz Element Method (TEM) the unknowns are 

the amplitudes of the basis functions and the boundary does not need to be discretized.  

These studies let clear the availability of using integral formulations for parameter 

identification purposes. In particular, the present study presents a specific BEM procedure 

that takes advantage of the fact that all information is available only at the exterior boundary. 

In addition, the proposed approach is the seed for many brunches of investigation such as 

structural health monitoring.  

2  FORWARD FORMULATION 

The media of interest for the present study occupies a domain Ω ⊂ ℝ2 with boundary 

denoted by ∂Ω.  The strain tensor is locally defined as the symmetric part of the gradient 

displacement because only small perturbations are admissible. In this case, the initial 

configuration remains unchanged along time. The scenario is presented in Figure 1. In any 

instant of time, 𝑡, the set of external actions can be outlined in the synthetic way: 

• A surface displacement field 𝑢𝑖 on a portion Γ𝑢, 

• A surface force density field 𝑡𝑖 applied on Γ𝑡, 

• A volume force density 𝑏𝑖 on the domain Ω. 



 

 

Figure 1 Solid configuration 

The classical elasticity problem on its differential form can then be formulated as 

following: 

Problem 1. 

Find the pair of displacement fields, 𝑢𝑖, and stress field, 𝜎𝑖𝑘, such that: 

The displacement field must be kinematically admissible; 

𝑈𝑎𝑑 = {∀𝑡 ∈ [0, 𝑇], 𝑢𝑖|Γ𝑢 = 𝑢𝑖 , ∀𝑦 ∈ 𝜕Ω ∶ 𝑢𝑖|t0 = 𝑢𝑖0 , �̇�𝑖|t0 = �̇�𝑖0} (1) 

The stress tensor field must be statically admissible; 

         𝑆𝑎𝑑 = {∀𝑡 ∈ [0, 𝑇], ∀𝑦 ∈ Ω ∶ 𝜎𝑖𝑘,𝑘 + 𝑏𝑖 = 0, ∀𝑦 ∈ 𝜕ω ∶ 𝜎𝑖𝑘𝑛𝑘 = 𝑡𝑖} (2) 

The constitutive relation must hold along the whole domain. 

𝜎𝑗𝑘|𝑡 = 𝐴[𝜀𝑗𝑘(�̇�𝑖|𝜏), 0 ≤ 𝜏 ≤ 𝑡], ∀𝑦 ∈ 𝜕Ω, ∀𝑡 ∈ [0, 𝑇] (3) 

The strong form of equation (2) is difficult to solve for general boundary conditions 

even for linear materials. However, the Betti’s theorem is a classic approach for joining the 

constitutive law to the admissible sets 𝑈𝑎𝑑 and 𝑆𝑎𝑑. This is the essence of the classical BEM 

computational approach (Aliabadi & Wen, 2010). The mechanical response of a linear 

elastic solid can be formulated as: 

Problem 2. 

Find the pair of boundary fields (𝑢𝑖|Γ, 𝑡𝑖|Γ) ∈ 𝑉
𝑎𝑑such that: 

The boundary field must respect the boundary conditions; 

𝑉𝑎𝑑 = {∀𝑡 ∈ [0, 𝑇], 𝑢𝑖|Γ𝑢 = 𝑢𝑖 , ∀𝑦 ∈ 𝜕Ω ∶ 𝑢𝑖|t0 = 𝑢𝑖0 , �̇�𝑖|t0

= �̇�𝑖0, 𝜎𝑖𝑘𝑛𝑘 = 𝑡𝑖} 
(4) 

The displacement field, 𝑢𝑗,must respect the boundary integral equation; 



 

𝑢𝑖(𝑦) =  ∫ [𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑡𝑗(𝑥) − 𝑝𝑖𝑗

∗ (𝑥, 𝑦)𝑢𝑗(𝑥)]𝑑Γ
Γ

+∫ 𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑏𝑗(𝑥)𝑑Ω

Ω

 (5) 

In this integral form of the elasticity form, 𝑢𝑖𝑗
∗  and 𝑝𝑖𝑗

∗  are known as fundamental 

solutions. For 2D domains these quantities are expressed as follows: 

𝑢𝑖𝑗
∗ (𝑞, 𝑦) =

1

8𝜋𝜇(1 − 𝜈)
[(3 − 4𝜈)𝑙𝑛 (

1

𝑟
) 𝛿𝑖𝑗 + 𝑟,𝑖𝑟,j] (6) 

𝑝𝑖𝑗
∗ (𝑞, 𝑦) = −

1

4𝜋(1 − 𝜈)𝑟
{
𝜕𝑟

𝜕𝑛
[(1 − 2𝜈)𝛿𝑖𝑗 + 2𝑟,𝑖𝑟,𝑗] + (1 − 2𝜈)(𝑛𝑖𝑟,j − 𝑛𝑗𝑟,i)} (7) 

3  INCLUDING JOINTS  

Consider the elastic solid under consideration has a joint Γ𝑗 (Figure 2) dividing it in two 

separated parts.  

 

Figure 2 Solid with a joint 

To maintain the equilibrium, the joint needs to respect the continuity conditions, which 

now include new constraints to the precedent problem. The new version of the problem is 

then: 

Problem 3. 

Find the pair of boundary fields (𝑢𝑖|Γ, 𝑡𝑖|Γ) ∈ 𝑉
𝑎𝑑such that: 

The boundary field must respect the boundary conditions; 

𝑉𝑎𝑑 = {∀𝑡 ∈ [0, 𝑇], 𝑢𝑖|Γ𝑢 = 𝑢𝑖 , ∀𝑦 ∈ 𝜕Ω ∶ 𝑢𝑖|t0 = 𝑢𝑖0 , �̇�𝑖|t0

= �̇�𝑖0, 𝜎𝑖𝑘𝑛𝑘 = 𝑡𝑖} 
(8) 



 
The displacement field, 𝑢𝑗,must respect the boundary integral equation; 

𝑢𝑖(𝑦) =  ∫ [𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑡𝑗(𝑥) − 𝑝𝑖𝑗

∗ (𝑥, 𝑦)𝑢𝑗(𝑥)]𝑑Γ
Γ

+∫ 𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑏𝑗(𝑥)𝑑Ω

Ω

 (9) 

The equilibrium at the interface must be respected 

𝑢𝑖|∂Ω1 − 𝑢𝑖|∂Ω2 = 0 (10) 

𝑝𝑖|∂Ω1 + 𝑝𝑖|∂Ω2 = 0 (11) 

This is the new version of the forward problem to be solved. Note that the equilibrium 

at interface is imposed on a strong form. This is an advantage of BEM compared to other 

numerical approaches that try to impose these conditions on a variational sense. 

4  CONSTITUTIVE RELATION ERROR FORM 

The key aspect of the present formulation is modifying the way of transmitting 

displacements through the interface (equation 10). The imposition of equilibrium will be 

assured via the solution of an inverse problem. It is well known that inverse problems belong 

to the class of ill-posed problems in a Hadamard sense. Violation of Hadamard's conditions 

often can be fixed by reformulating the problem in conjunction to adding more available 

information (Hansen, 2010). 

The inverse problem is written following the formalism of the CRE theory (Ladevèze 

& Pelle, 2003). This numerical approach was initially proposed for estimating the error 

concerning the numerical approximations. Lately, the procedure was extended to 

identification of parameters. 

The core aspect of the CRE formulation is dividing the governing equations in two 

distinct categories. Category 1: it is named Reliable equations and include all equations that 

must strictly be respected in order to assure the fundamental Mechanics basis. Category 2: 

it is named Unreliable equations, which encompasses all expressions that has any doubtful 

aspect. For example, in Problem 1, among the set of governing equations, equation (3) is the 

most doubtful. The reason is because it depends on parameters that are often not fully known. 

However, this choice is particular to each problem the designer has on hands. To guarantee 

the convergence properties, in the present study the following choice is made: 

=Reliable fields= 

Let 𝑈𝑎𝑑 be the displacement functional space preserving the minimum requirements of 

regularity such that: 

𝑈𝑎𝑑 = {∀𝑦 ∈ 𝜕Ω, ∀𝑡 ∈ [0, 𝑇]: 𝑢𝑖|Γ𝑢 = 𝑢𝑖 , �̇�𝑖|t0 = �̇�𝑖0} 

Let 𝑆𝑎𝑑 be the stress functional space preserving the quasi-static admissible conditions: 



 

𝑆𝑎𝑑 =

{
 
 

 
 

∀𝑡 ∈ [0, 𝑇], ∀𝑦 ∈ 𝜕Ω ∶

𝑣𝑖(𝑦) =  ∫ [𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑠𝑗(𝑥) − 𝑝𝑖𝑗

∗ (𝑥, 𝑦)𝑣𝑗(𝑥)]𝑑Γ
Γ

+∫ 𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑏𝑗(𝑥)𝑑Ω

Ω

,

∀𝑦 ∈ 𝜕Ω ∶ 𝜎𝑖𝑘𝑛𝑘|Γ = 𝑡𝑖 }
 
 

 
 

 

 

=Unreliable fields= 

The force among the structural faces Γ𝑎 and Γ𝑏 (each side of the interface Γj) is calculated 

by the following expression: 

𝑝𝑖|Γ𝑎 = −𝑝𝑗|Γ𝑏 = 𝑅𝑖𝑗(𝑢𝑗|Γ𝑎 − 𝑢𝑗|Γ𝑏) 

The matrix operator 𝑅𝑖𝑗 is a Hookean and it is dependent on a set of independent 

parameters {𝑝}. The interior constitutive relation is considered to be reliable and it is already 

included in the admissible space 𝑆𝑎𝑑. 

Note that a kinematical and statically admissible fields are completely independent 

between each other. For this reason, it is necessary to have some measure for quantifying 

the quality of a given vector pair  (𝑢, 𝜎) ∈ 𝑈𝑎𝑑 × 𝑆𝑎𝑑 . This measure is the CRE norm having 

the following properties: 

𝐽: 𝑈𝑎𝑑 × 𝑆𝑎𝑑 ⟼ℝ 

𝐽 ≥ 0 

𝐽(𝑢, 𝜎) = 0 ⟺ (𝑢, 𝜎) 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

(12) 

The BEM problems are defined in terms of boundary fields. In this case the CRE norm 

will be defined such as the interface behaves independently from the remaining solid. For 

practical purposes, one can specify other material models than Hookean without changing 

the core formulation. Let the functional norm be defined as: 

𝐽(𝑢, 𝑡) =
1

2
∫ (𝑡𝑖 − 𝑅𝑖𝑘(𝑢𝑘|Γ𝑎 − 𝑢𝑘|Γ𝑏))
Γ𝑗

∙ [𝑅𝑖𝑘]
−1(𝑡𝑖 − 𝑅𝑖𝑘(𝑢𝑘|Γ𝑎 − 𝑢𝑘|Γ𝑏))𝑑Γ 

(13) 

Since this norm assumes zero only when the set of admissible displacement field and 

traction field are the actual solution of the problem, one can define: 

Problem 4. 

Find the pair of boundary fields (𝑢𝑖|Γ, 𝑡𝑖|Γ) ∈ 𝑈
𝑎𝑑 × 𝑆𝑎𝑑such that: 

(𝑢𝑖|Γ, 𝑡𝑖|Γ) = argmin 𝐽(𝑢, 𝑡)  (14) 

Suppose that there are some real measures over some part of the boundary field. Let �̌� 

represent these measures. It is possible to modify the performance measure in order to find 



 
a compromise between BEM model and the experimental tests. The modified function is 

defined as follows: 

1* 1
(t ( )( , ) ( )) (t )

2 a b a bj
ii ik k k i ik k k ik jR u u R u u dJ u t R−

   
= − − − −   

(15) 
1

1
k

K

k

r

N
uu

r
+ −

−
 

In equation (15) 𝑟 is real parameter, 𝑟 ∈ [0,1), that controls the degree of assurance 

conferred to the measures. 𝑁 is a parameter that assures the compatibility between both terms 

for preventing numerical instabilities.  

Note that the admissible solution in Problem 4 is dependent on the set of parameters 

defining the interface. Let 𝑃 be the set of admissible parameters, thus, the searched 

parameters are found through a min-min approach: 

Problem 5. 

Find the set of parameters {p} such that: 

{𝑝}  = argmin
𝑝∈𝑃

[ min
(𝑢𝑖|Γ,𝑡𝑖|Γ)∈𝑈

𝑎𝑑×𝑆𝑎𝑑
𝐽∗(𝑢, 𝑡)]  (16) 

5  APPLICATION 

Consider the case illustrated in Figure 3. The structure consists of two plates under 

tensile static loading. It is assumed plane stress conditions. The material parameters are 𝐸1 =
100 𝑁/𝑚𝑚², 𝐸2 = 100 𝑁/𝑚𝑚², 𝜐1 = 0, 𝜐2 = 0. The geometric characteristics are 𝑙1 =
100 𝑚𝑚, 𝑙2 = 100 𝑚𝑚, ℎ = 50 𝑚𝑚. The idea is identifying the joint parameter 

represented by a spring along the axis direction. The left edge is constrained along horizontal 

and vertical directions. The surface load is constant 𝑃 = 10 𝑁/𝑚𝑚². 

The displacement boundary field is analytically given by: 

𝑢(𝑥) =

{
 

 
𝑃𝑥

𝐸1
                    ;  0 < 𝑥 < 𝑙1

𝑃(𝑙1 + 𝑥)

𝐸1
+
𝑃

𝑘
  ; 0 < 𝑥 < 𝑙2

 (17) 

Note that the displacement at the charged edge is inversely proportional to the joint 

parameter 𝑘, for a fixed charge and location. In this case, the perfect joint is achieved doing 

the values of 𝑘 tend to infinity. The expression (17) is used for generating the reference 

displacement measures along the boundary. The adopted joint parameter is 𝑘 = 2.  



 

 

Figure 3 Two-plate structure with a center joint 

The boundary mesh has 8 quadratic elements because the boundary fields behave 

linearly in this case. See Figure 4 for more details. For cases where no priori information is 

available, it is recommended the mesh converge test for finding the appropriate number of 

degrees of freedom to be utilized. 

 

Figure 4 Mesh adopted 

This simple example permits to draw some interesting observations. The linear system 

derived from the equilibrium equations is non-symmetric. In Figure 5, it is showed the matrix 

plot of the present example. Each pixel indicates a specific position in the matrix. If the pixel 

is white, it means that the position contains a zero value. Colored pixels indicate values 

different from zero according to an arbitrary scale. One can see that the number of degrees 

of freedom is increased. The classical direct BEM system would have roughly a matrix 

(48,48) to treat. In the proposed approach, this system increases to (180,180), which 

represent an important decrease in the computational efficiency specially for three 

dimensional cases. However, one can see that the majority of these positions do not need to 

be created because they are occupied by zero. It is possible to use the storage techniques 

similar to those utilized for FEM approaches for gaining better performance. It is also 

possible to observe the placement of matrices 𝐻𝑖, 𝑖 = 1,2, in color blue, and the 

corresponding matrices 𝐺𝑖, 𝑖 = 1,2 in color yellow. The joint matrix is distributed according 



 
to the pertinent degrees of freedom in the top left region. In Figure 6, one depicts the zoom 

into the corresponding joint region of the global matrix from Figure 5. 

The evolution of the values according to the search interval is presented in Figure 7. 

Each point of this curve corresponds to a solution of the posed Problem 4. It is possible to 

see that the point of minimum of this curve corresponds exactly to the reference joint 

parameter value stipulated, 𝑘 = 2. At this point the functional value tends to zero as stated 

in the properties of the CRE theory. The quadratic behavior of this functional is evident and 

it helps to keep stability along the optimization process. It is now clear the chosen min-min 

approach according to Problem 5. 



 

 

Figure 5 Matrix plot of linear system. White positions mean zero value. Colored positions mean 

values different of zero 

 

 



 
 

 

Figure 6 Matrix plot of the joint matrix 

 

Figure 7 Convergence evolution along the parameter search 

 



 

6  CONCLUDING REMARKS 

The present study proposed a BEM formulation for identification of joint parameters of 

structures under static loading conditions. The joints are admitted to behave linearly, 

depending on a limited set of intrinsic parameters. The proposed approach permits to 

determine the value of these parameters based on the structural static response and the 

inverse analysis. The example explored in this study showed the accuracy in the prediction 

of the referred parameters. The stability properties are also an important remark since the 

inverse problems are known for being of difficult solution, especially considering general 

geometries. In addition, it demonstrates numerically the viability of this numerical procedure 

for parameter identification.  
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